JP2003137671A - Mullite-based porous body and method of producing the same - Google Patents

Mullite-based porous body and method of producing the same

Info

Publication number
JP2003137671A
JP2003137671A JP2001338841A JP2001338841A JP2003137671A JP 2003137671 A JP2003137671 A JP 2003137671A JP 2001338841 A JP2001338841 A JP 2001338841A JP 2001338841 A JP2001338841 A JP 2001338841A JP 2003137671 A JP2003137671 A JP 2003137671A
Authority
JP
Japan
Prior art keywords
mullite
porous body
powder
silica
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001338841A
Other languages
Japanese (ja)
Inventor
Yusuke Moriyoshi
佑介 守吉
Masayuki Goto
正幸 後藤
Yoshinori Yamaguchi
祥範 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTAKE SERAMU KK
OTAKE SERAMU KK
Original Assignee
OOTAKE SERAMU KK
OTAKE SERAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTAKE SERAMU KK, OTAKE SERAMU KK filed Critical OOTAKE SERAMU KK
Priority to JP2001338841A priority Critical patent/JP2003137671A/en
Publication of JP2003137671A publication Critical patent/JP2003137671A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily improve resistance to erosion, creep resistance and spalling resistance at a low cost. SOLUTION: A blend of an alumina powder and a silicon carbide powder is formed, and the formed body is fired at 1,550 to 1,700 deg.C under an oxidizing atmosphere. Thereby, activated silica formed by the oxidation reaction is reacted with the alumina powder, and primary particles 2, 2a, etc., comprising a mullite crystal are formed, and at the same time, the primary particles 2 and secondary particles 3, 3a, etc., formed by the coagulation of the primary particles 2 are strongly bonded through bonding phases 4 formed from the activated silica.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼成用治具、焼成
炉構築用部材等の耐火物として有用なムライトセラミッ
クス製の多孔体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous body made of mullite ceramics, which is useful as a refractory material such as a jig for firing and a member for constructing a firing furnace, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、ムライトセラミックス(3Al2
3・2SiO2 )製の多孔体は、セラミックス製品製
造時(焼成時)に使用するサヤ、セッター等の焼成用治
具、炉床板、耐火ブロック等の焼成炉構築用部材として
広く利用されている。ムライト質多孔体の製造方法とし
ては、セラミックス類より融点が低いソーダ等のアルカ
リ成分を焼結助剤として含有させたアルミナ(Al2
3)粉末とシリカ(SiO2 )粉末とを配合し、かかる
配合物を成形後、1600℃程度の温度で焼成すること
で、焼成時に溶融し液相化した焼結助剤を介してアルミ
ナ粉末とシリカ粉末とを反応させ、ムライト結晶を生成
すると共に、ムライト結晶同士を焼結させる様にした方
法が一般的ある。しかし、この方法で製造した焼成用治
具等は、一旦液相化した焼結助剤がガラス相として粒界
に析出しているため、高温且つ短時間で製品を焼上げる
迅速焼成に用いた場合、耐クリープ性及び耐スポーリン
グ性が不十分で破損する虞れがあり、又フェライト、圧
電素子、積層コンデンサー等の高侵食性成分を含む電子
部品類の焼成用治具に用いた場合、電子部品類に含まれ
る高侵食性成分によって、ガラス相が侵され、著しく機
械的強度が低下したり、亀裂や層剥離が発生する等の問
題を有していた。又、製品(電子部品類)に対しては、
焼成時の侵食反応で製品中の化学成分が消費されるた
め、製品の化学組成が変動し、品質低下を招来してい
た。そこで、焼結助剤を含まない超高純度のアルミナ粉
末とシリカ粉末との配合物を成形後、1800℃以上の
高温下で焼成することで、粒界にガラス相が殆ど存在し
ないムライト質多孔体を得る技術が開発された。しか
し、高価な超高純度の原料を用いることや、1800℃
以上の高温下で焼成しなければならないことから、原料
費、燃料費等の経費が嵩むだけでなく、焼成炉に多大な
熱的負荷がかかり、焼成炉の耐用期間を縮めてしまう等
の改善すべき課題があった。又、ゾル・ゲル法で合成し
た高純度で易焼結性のアルミナ粉末とシリカ粉末とを用
いる方法も一部採用されているが、更に高価な合成原料
を用いることから、安価な一般普及品の製造には適さ
ず、極一部の特殊用途のものに使用が限定された。
2. Description of the Related Art Conventionally, mullite ceramics (3Al 2
O 3 · 2SiO 2 ) porous bodies are widely used as firing jigs such as sheaths and setters for firing (during firing) ceramic products, hearth plates, fire block constructions, etc. There is. As a method for producing a mullite porous body, alumina (Al 2 O) containing an alkaline component such as soda having a lower melting point than ceramics as a sintering aid is used.
3 ) Alumina powder is mixed with powder and silica (SiO 2 ) powder, and the mixture is molded and then fired at a temperature of about 1600 ° C. There is a general method in which the mullite crystals are sintered together with the silica powder by reacting with the silica powder. However, the firing jig and the like manufactured by this method were used for rapid firing in which the product was fired at a high temperature in a short time because the sintering aid once liquefied was precipitated as a glass phase at the grain boundaries. In this case, the creep resistance and spalling resistance are insufficient and there is a risk of damage, and when used in a jig for firing electronic parts containing highly erodible components such as ferrite, piezoelectric elements, and multilayer capacitors, The highly erosive component contained in electronic parts has a problem that the glass phase is corroded, the mechanical strength is remarkably lowered, and cracks and delamination occur. For products (electronic parts),
Since the chemical components in the product are consumed by the erosion reaction at the time of baking, the chemical composition of the product fluctuates, resulting in deterioration of quality. Therefore, a mixture of ultra-high-purity alumina powder and silica powder that does not contain a sintering aid is molded and then fired at a high temperature of 1800 ° C. or higher, so that a mullite porous material having almost no glass phase at grain boundaries is formed. The technology to gain the body was developed. However, the use of expensive ultra-high purity raw materials and 1800 ° C
Since it must be fired at the above high temperature, not only the cost of raw materials, fuel, etc. will increase, but also a great thermal load will be applied to the firing furnace, which will shorten the service life of the firing furnace. There was a task to be done. In addition, although a method of using high-purity and easily-sinterable alumina powder and silica powder synthesized by the sol-gel method is also partially adopted, it is an inexpensive general popular product because more expensive synthetic raw materials are used. Was not suitable for the production of, and its use was limited to a very limited number of special purposes.

【0003】[0003]

【発明が解決しようとする課題】本発明は、耐侵食性、
耐クリープ性及び耐スポーリング性を向上させたムライ
ト質多孔体及びこれを簡便且つ安価に製造する方法を提
供する。
DISCLOSURE OF THE INVENTION The present invention provides erosion resistance,
(EN) Provided are a mullite porous body having improved creep resistance and spalling resistance, and a method for producing the mullite porous body simply and inexpensively.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題に鑑
み、アルミナ粉末と炭化珪素粉末との配合物を成形後、
酸化雰囲気の下、1550℃〜1700℃の範囲で焼成
することによって、酸化反応で生成した活性シリカをア
ルミナ粉末と反応させて、ムライト結晶から成る一次粒
子を生成すると共に、一次粒子、及び一次粒子が凝集し
た二次粒子を、活性シリカで形成した結合相を介して強
固に結合させる様にして、上記課題を解決する。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention is directed to molding a compound of alumina powder and silicon carbide powder,
By firing in the range of 1550 ° C. to 1700 ° C. in an oxidizing atmosphere, activated silica produced by the oxidation reaction is reacted with alumina powder to produce primary particles composed of mullite crystals, and the primary particles and the primary particles. The above-mentioned problem is solved by firmly binding the secondary particles aggregated with each other through the binding phase formed of activated silica.

【0005】[0005]

【発明の実施の形態】以下本発明の一実施例を図面に基
づいて説明する。図1は本発明に係るムライト質多孔体
の微構造を示す模式図、図2は図1の部分拡大図であ
る。本発明に係る多孔体1は、ムライト結晶(一次粒
子)2、2a…が複数個結合して凝集体(二次粒子)3、
3a…を形成し、更に無数の凝集体3、3a…が三次元的に
結合してモザイク状の微構造を形成しており、ムライト
結晶2、2a…及びその凝集体3、3a…は、シリカが主成
分の結合相4を介して結合している。又、二次粒子3、
3a…における一次粒子2、2a…間には微細な小気孔5、
5a…が存在し、二次粒子3、3a…間には小気孔5、5a…
より大径な大気孔6、6a…が存在している。尚、図3は
本発明のムライト質多孔体1のSEM(走査型電子顕微
鏡)写真であり、図4は従来のムライト質多孔体のSE
M写真である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the microstructure of a mullite porous material according to the present invention, and FIG. 2 is a partially enlarged view of FIG. In the porous body 1 according to the present invention, a plurality of mullite crystals (primary particles) 2, 2a ... Are combined to form an aggregate (secondary particle) 3,
3a ..., and innumerable aggregates 3, 3a ... Are three-dimensionally combined to form a mosaic-like microstructure. The mullite crystals 2, 2a ... And the aggregates 3, 3a. Silica is bonded via the bonding phase 4 of the main component. In addition, the secondary particles 3,
The small particles 5 between the primary particles 2 and 2a in 3a.
5a ... are present, and small pores 5, 5a ... Are present between the secondary particles 3, 3a.
Larger atmospheric holes 6, 6a ... Are present. 3 is a SEM (scanning electron microscope) photograph of the mullite porous body 1 of the present invention, and FIG. 4 is an SE of the conventional mullite porous body.
It is an M photograph.

【0006】次に本発明のムライト質多孔体の製造方法
について説明する。先ず、アルミナ(Al2 3)粉末
と炭化珪素(SiC)粉末とを配合し、かかる配合物を
加圧成形等の適宜方法で所望の形状に成形する。アルミ
ナ粉末及び炭化珪素粉末は、不純物が極めて少ない超高
純度のものでなくて良く、又アルミナ、炭化珪素、ムラ
イト等のセラミックス類より融点が低い焼結助剤を含有
させる必要もない。アルミナ粉末と炭化珪素粉末の配合
比は、モル比で3:2(重量比で約80:20)、即ち
ムライトセラミックス(3Al23・2SiO2 )に
おけるアルミナとシリカの理論モル比が理想であるが、
炭化珪素粉末の配合量が理論モル比を超えると、多孔体
1の耐スポーリング性を低下させる遊離のシリカが生成
してしまうため、炭化珪素の配合割合は理論モル比以下
が望ましい。又、配合物にシリカ粉末を幾分添加しても
良いが、この場合は、炭化珪素粉末とシリカ粉末との総
配合量がムライトセラミックスにおけるシリカの理論モ
ル比を超えない様に調整する。次に、成形体を酸化雰囲
気の下で焼成して多孔体1を形成する。焼成温度が、1
550℃未満の場合は、ムライト合成反応が不十分で未
反応物が存在することとなり、1700℃超過の場合
は、ムライト結晶(一次粒子)2、2a…が成長過大で耐
クリープ性が低下するため、焼成温度は1550℃〜1
700℃の範囲が望ましい。
Next, a method for producing the mullite porous material of the present invention will be described. First, alumina (Al 2 O 3 ) powder and silicon carbide (SiC) powder are blended, and the blend is molded into a desired shape by an appropriate method such as pressure molding. The alumina powder and the silicon carbide powder do not have to be ultra-high purity with extremely few impurities, and it is not necessary to include a sintering aid having a melting point lower than that of ceramics such as alumina, silicon carbide, and mullite. The ideal mixing ratio of alumina powder and silicon carbide powder is 3: 2 (80:20 by weight), that is, the theoretical molar ratio of alumina to silica in mullite ceramics (3Al 2 O 3 .2SiO 2 ). But
When the blending amount of the silicon carbide powder exceeds the theoretical molar ratio, free silica that deteriorates the spalling resistance of the porous body 1 is generated. Therefore, the blending ratio of the silicon carbide is preferably the theoretical molar ratio or less. Although some silica powder may be added to the mixture, in this case, the total amount of the silicon carbide powder and the silica powder is adjusted so as not to exceed the theoretical molar ratio of silica in the mullite ceramics. Next, the molded body is fired in an oxidizing atmosphere to form the porous body 1. Firing temperature is 1
When the temperature is lower than 550 ° C, unreacted substances are present due to insufficient mullite synthesis reaction, and when the temperature is higher than 1700 ° C, the mullite crystals (primary particles) 2, 2a ... grow excessively and the creep resistance decreases. Therefore, the firing temperature is 1550 ° C to 1
A range of 700 ° C is desirable.

【0007】以下、実施例に基づいて本発明を更に詳細
に説明する。先ず、アルミナ、炭化珪素、電融シリカ及
び珪石の粉末原料を表1に示す割合で配合し、各配合物
をボールミルで湿式粉砕して、各配合物の粒径を5〜1
0μに調製した。
The present invention will be described in more detail based on the following examples. First, powder raw materials of alumina, silicon carbide, fused silica, and silica were mixed in the proportions shown in Table 1, and each compound was wet-milled with a ball mill to give a particle size of 5 to 1 for each compound.
It was adjusted to 0 μ.

【0008】[0008]

【表1】 [Table 1]

【0009】次に、乾燥させた各配合物に適量のバイン
ダー(例えば、各配合物の乾粉100gに対し、4%C
MC水溶液を5g程度)を夫々加えて混練し、かかる混
練物を30MPaの圧力で加圧成形した。最後に、各成
形体を酸化雰囲気下にて、表1に示す最高温度を4時間
保持の条件で焼成して、試験体1〜4を作成した。生成
した結晶は試験体1〜4全てムライト結晶であり、曲強
度、見掛比重、嵩比重、気孔率、吸水率、熱膨張係数及
び熱伝導率は表1に示す通りであった。
Next, an appropriate amount of binder is added to each dried formulation (for example, 4% C per 100 g of dry powder of each formulation).
MC aqueous solution (about 5 g) was added and kneaded, and the kneaded product was pressure-molded at a pressure of 30 MPa. Finally, each molded body was fired under an oxidizing atmosphere under the condition that the maximum temperature shown in Table 1 was maintained for 4 hours to prepare test bodies 1 to 4. The produced crystals were all mullite crystals of test bodies 1 to 4, and the bending strength, apparent specific gravity, bulk specific gravity, porosity, water absorption coefficient, thermal expansion coefficient and thermal conductivity were as shown in Table 1.

【0010】更に、試験体1〜4の耐クリープ性、耐ス
ポーリング性及び耐薬品性(耐酸性、耐アルカリ性)を
次の方法で評価した。耐クリープ性の評価方法として
は、試験体1〜4の寸法を幅×長さ×厚み=20×18
0×4mmに加工し、この試験体1〜4を支点間隔15
0mmの支持具で水平支持し、支点間の中心部に、寸法
20×30×50mm、重量100gの重りを載置し、
この状態のまま昇温速度200℃/Hrで1450℃ま
で加熱し、最高温度を24時間保持した後、自然放冷
し、試験体1〜4の撓み量(mm)を隙間ゲージで測定
した。
Further, the creep resistance, spalling resistance and chemical resistance (acid resistance, alkali resistance) of the test bodies 1 to 4 were evaluated by the following methods. As the evaluation method of the creep resistance, the dimensions of the test bodies 1 to 4 are width × length × thickness = 20 × 18.
Processed to 0 x 4 mm, and test specimens 1 to 4 with fulcrum spacing 15
Horizontally supported by a 0 mm supporting tool, and a weight of 100 g is placed at the center between the fulcrums with a size of 20 × 30 × 50 mm and a weight of 100 g.
In this state, the temperature was raised to 1450 ° C. at a temperature rising rate of 200 ° C./Hr, the maximum temperature was maintained for 24 hours, and then naturally cooled, and the bending amount (mm) of each of the test bodies 1 to 4 was measured with a gap gauge.

【0011】耐スポーリング性の評価方法としては、試
験体1〜4の寸法を幅×長さ×厚み=100×100×
4mmに加工し、この試験体1〜4を所定温度に設定さ
れている炉中に投入し30分間保持後、炉外に取出し、
自然放冷後、割れ、亀裂の欠陥の有無を観察し、欠陥が
見当たらない場合は、炉の設定温度を高くして上記と同
様の操作を行い、欠陥が発生するまでこのサイクルを繰
り返して、欠陥が発生する直前の温度を耐スポーリング
性温度とした。
As an evaluation method of the spalling resistance, the dimensions of the test bodies 1 to 4 are width × length × thickness = 100 × 100 ×
After processing to 4 mm, the test pieces 1 to 4 were put into a furnace set to a predetermined temperature, held for 30 minutes, and then taken out of the furnace.
After natural cooling, cracks, observe the presence of crack defects, if no defects are found, raise the furnace temperature and perform the same operation as above, repeat this cycle until defects occur, The temperature immediately before the occurrence of defects was taken as the spalling resistance temperature.

【0012】耐薬品性(耐酸性、耐アルカリ性)の評価
方法としては、試験体1〜4の寸法を幅×長さ×厚み=
10×10×4mmに加工し、この試験体1〜4の乾燥
重量を測定した後、10%HCl水溶液、又は10%N
aOH水溶液に試験体1〜4全体を完全に浸漬し、この
状態のまま90℃まで加熱し24時間保持後、水洗し、
乾燥させて再び乾燥重量を測定して、単位面積当たりの
減量を次式で算出した。 Re=(W1 ─W2 )/A Re:単位面積当たりの減量(mg/cm2 ) W1 :酸又はアルカリ水溶液に浸漬前の試験体1〜4の
乾燥重量(mg) W2 :酸又はアルカリ水溶液に浸漬後の試験体1〜4の
乾燥重量(mg) A :試験体1〜4の表面積(cm2 ) 比較対象として、アルミナ99%の緻密体、アルミナ9
5%の多孔体、従来の方法で作成したムライト質多孔体
を同一の方法で評価し、その結果を試験体1〜4の評価
結果と共に表2に示す。
As a method for evaluating chemical resistance (acid resistance, alkali resistance), the dimensions of the test pieces 1 to 4 are width × length × thickness =
After processing into 10 × 10 × 4 mm and measuring the dry weight of these test bodies 1 to 4, 10% HCl aqueous solution or 10% N
The entire test bodies 1 to 4 were completely immersed in the aOH aqueous solution, heated to 90 ° C. in this state and kept for 24 hours, and then washed with water,
After drying, the dry weight was measured again, and the weight loss per unit area was calculated by the following formula. Re = (W 1 −W 2 ) / A Re: Weight loss per unit area (mg / cm 2 ) W 1 : Dry weight (mg) of test pieces 1 to 4 before immersion in an acid or alkaline aqueous solution W 2 : Acid Alternatively, the dry weight (mg) of the test bodies 1 to 4 after being immersed in the alkaline aqueous solution A: the surface area (cm 2 ) of the test bodies 1 to 4 As a comparison object, a dense body of 99% alumina, and alumina 9
A 5% porous body and a mullite porous body prepared by the conventional method were evaluated by the same method, and the results are shown in Table 2 together with the evaluation results of the test bodies 1 to 4.

【0013】[0013]

【表2】 [Table 2]

【0014】表2に示す様に、本発明の多孔体1(試験
体1〜4)は、耐クリープ性、耐スポーリング性、耐薬
品性(耐酸性、耐アルカリ性)の全ての点において、比
較対象品に比し、良好な結果を得た。
As shown in Table 2, the porous body 1 (test pieces 1 to 4) of the present invention has all the creep resistance, the spalling resistance, and the chemical resistance (acid resistance, alkali resistance). Good results were obtained in comparison with the comparative products.

【0015】この結果が得られた理由は次の様に考察さ
れる。一般的に、緻密体、多孔体を問わず、セラミック
ス焼結体の機械的強度及び耐クリープ性は、焼結体を構
成する結晶(一次粒子、即ち原料粉末)の大きさに比例
し、結晶が大きい程、焼結体の機械的強度及び耐クリー
プ性は高くなるが、より大きな原料粉末を完全に焼結さ
せるためには、原料粉末の大径化と共に焼成温度の高温
化が必要であり、従来は実用上の限界があった。
The reason why this result was obtained is considered as follows. In general, regardless of whether it is a dense body or a porous body, the mechanical strength and creep resistance of a ceramic sintered body are proportional to the size of the crystal (primary particles, that is, raw material powder) that constitutes the sintered body. The larger the value, the higher the mechanical strength and creep resistance of the sintered body, but in order to completely sinter a larger raw material powder, it is necessary to increase the diameter of the raw material powder and raise the firing temperature. However, there was a practical limit in the past.

【0016】これに対し、本発明の多孔体1は、酸化雰
囲気下での焼成時に酸化されて活性化したシリカ(炭化
珪素が二酸化珪素に酸化される過程で発生する珪素、一
酸化珪素及び二酸化珪素のラジカルで、原子中の電子の
過不足により極めて反応性が高い状態のもの。この様に
炭化珪素由来のラジカル状態のシリカ類を本明細書中で
は、活性シリカと称する。)と、アルミナ粉末とを反応
させてムライト結晶を生成することにより、生成直後の
ムライト結晶も活性状態となり、活性状態の結晶(一次
粒子2、2a…)同士が固体間反応で頗る強固に結合して
いる。又、一次粒子2、2a…が凝集して、二次粒子3、
3a…を形成し、更に二次粒子3、3a…が強固に結合して
モザイク状の微構造を形成している。又、活性シリカの
極一部は、結晶化せず、粒界にシリカが主成分の結合相
4として析出し、この結合相4によって、一次粒子2、
2a…及び二次粒子3、3a…の結合は更に強固になってい
る。従って、本発明の多孔体1は、一次粒子2、2a…が
強固に結合した二次粒子3、3a…自体があたかも一つの
大きな結晶の如く振る舞い、その結果、極めて高い機械
的強度、優れた耐クリープ性を示すと思料される。又、
シリカが主成分の結合相4は、セラミックス類より融点
が低いソーダ等の焼結助剤から成るガラス相に比して、
耐侵食性が高く、酸やアルカリに侵されない。
On the other hand, the porous body 1 of the present invention comprises silica activated by being oxidized and activated during firing in an oxidizing atmosphere (silicon, silicon monoxide, and dioxide generated during the process of oxidizing silicon carbide into silicon dioxide). Radicals of silicon having extremely high reactivity due to excess or deficiency of electrons in atoms. Thus, radical-type silicas derived from silicon carbide are referred to as activated silica in the present specification) and alumina. By reacting with the powder to generate mullite crystals, the mullite crystals immediately after generation are also in the active state, and the crystals in the active state (primary particles 2, 2a ...) Are strongly bound to each other by the reaction between the solids. Further, the primary particles 2, 2a ...
3a ... Are formed, and the secondary particles 3, 3a ... Are strongly bonded to each other to form a mosaic microstructure. Further, a very small part of the activated silica is not crystallized, and silica is precipitated at the grain boundary as a binder phase 4 containing silica as a main component.
The bonds between 2a ... And the secondary particles 3, 3a. Therefore, the porous body 1 of the present invention behaves as if the secondary particles 3, 3a ... In which the primary particles 2, 2a ... Are tightly bound are like one large crystal, resulting in extremely high mechanical strength. It is considered to exhibit creep resistance. or,
The binder phase 4 containing silica as a main component has a melting point lower than that of ceramics, as compared with a glass phase made of a sintering aid such as soda.
Highly erosion resistant, not attacked by acid or alkali.

【0017】セラミックス焼結体の耐スポーリング性
(R)は次式で表される。 R=(熱伝導率×曲げ強度)/(熱膨張係数×弾性率) ここで、熱伝導率及び熱膨張係数はセラミックスの種類
に依存する固有の定数である。従って、焼結体の耐スポ
ーリング性を向上させるためには、曲げ強度(機械的強
度)を大きくし、弾性率を小さくしなければならない。
又、弾性率は焼結体の気孔径に反比例し、気孔径を大き
くする程、弾性率は小さくなる。つまり、本発明の多孔
体1は、一次粒子2、2a…及び二次粒子3、3a…間が強
固に結合しているため、曲げ強度(機械的強度)が大き
く、又上述の様に、モザイク状の微構造を有し、二次粒
子3、3a…間に、一次粒子2、2a…間に存在する小気孔
5、5a…より大径なる大気孔を6、6a…が存在するた
め、弾性率が小さくなる。従って、多孔体1の曲げ強度
(機械的強度)が大きく、弾性率は小さいため、優れた
耐スポーリング性を示すと思料される。
The spalling resistance (R) of the ceramic sintered body is expressed by the following equation. R = (thermal conductivity × bending strength) / (thermal expansion coefficient × elastic modulus) Here, the thermal conductivity and the thermal expansion coefficient are unique constants depending on the type of ceramics. Therefore, in order to improve the spalling resistance of the sintered body, it is necessary to increase the bending strength (mechanical strength) and decrease the elastic modulus.
The elastic modulus is inversely proportional to the pore diameter of the sintered body, and the larger the pore diameter, the smaller the elastic modulus. That is, in the porous body 1 of the present invention, since the primary particles 2, 2a ... And the secondary particles 3, 3a ... Are strongly bonded, the bending strength (mechanical strength) is large, and as described above, Since it has a mosaic-like microstructure and has small pores 5 and 5a existing between the primary particles 2 and 2a between the secondary particles 3 and 3a. , The elastic modulus becomes small. Therefore, since the bending strength (mechanical strength) of the porous body 1 is large and the elastic modulus is small, it is considered that the porous body 1 exhibits excellent spalling resistance.

【0018】[0018]

【発明の効果】要するに本発明は、ムライト結晶(一次
粒子)2、2a…及びその凝集体(二次粒子)3、3a…を
シリカが主成分の結合相4を介して結合したので、一次
粒子2、2a…及び二次粒子3、3a…間の結合が強固で、
而も二次粒子3、3a…間に、一次粒子2、2a…間に存在
する小気孔5、5a…より大径なる大気孔6、6a…が存在
するため、極めて優れた耐クリープ性及び耐スポーリン
グ性を有し、迅速焼成に用いる各種の耐火物に最適であ
る。又、シリカが主成分の結合相4は、酸やアルカリに
侵食されず、極めて優れた耐侵食性を有するため、本発
明の多孔体1で形成された焼成用治具を用いれば、電子
部品類等の高侵食性成分を含有する製品を焼成しても、
全く侵食されず、繰り返し使用が可能なだけでなく、製
品の組成を安定させて、製品品質の向上を図ることが出
来る。
In summary, according to the present invention, since the mullite crystals (primary particles) 2, 2a ... And their aggregates (secondary particles) 3, 3a ... Are bonded through the bonding phase 4 containing silica as a main component, The bond between the particles 2, 2a ... And the secondary particles 3, 3a.
In addition, between the secondary particles 3 and 3a, there are the small pores 5 and 5a existing between the primary particles 2 and 2a, which are larger than the atmospheric pores 6 and 6a. It has spalling resistance and is most suitable for various refractories used for rapid firing. Further, the binder phase 4 containing silica as a main component is not corroded by an acid or an alkali and has an extremely excellent corrosion resistance. Therefore, if the firing jig formed of the porous body 1 of the present invention is used, an electronic component Even if a product containing highly erosive components such as
Not only is it not eroded at all, it can be used repeatedly, and the composition of the product can be stabilized to improve product quality.

【0019】アルミナ粉末と炭化珪素粉末との配合物を
成形後、酸化雰囲気の下、1550℃〜1700℃の範
囲で焼成して形成する様にしたので、酸化反応過程で活
性化した活性シリカをアルミナ粉末と反応させることに
より、ムライトの一次粒子2、2a…を生成すると共に、
一次粒子2、2a…及び、一次粒子2、2a…が凝集した二
次粒子3、3a…を、活性シリカで形成した結合相4で強
固に結合して、極めて優れた耐クリープ性及び耐スポー
リング性を有する多孔体1を得ることが出来る。更に、
比較的安価な原料を用い、実用上無理のない温度範囲で
焼成するため、原料費、燃料費を低く抑えることが出
来、又焼成炉に負担がかからず、焼成炉が傷まないこと
から、ランニングコストを削減することが出来るため、
製品の低廉化を図ることが出来る。
Since a mixture of alumina powder and silicon carbide powder is molded and then fired in an oxidizing atmosphere in the range of 1550 ° C. to 1700 ° C., activated silica activated in the oxidation reaction process is formed. By reacting with alumina powder, mullite primary particles 2, 2a ...
The primary particles 2, 2a ... And the secondary particles 3, 3a ... In which the primary particles 2, 2a ... Are agglomerated are firmly bound by the binder phase 4 formed of activated silica, and the extremely excellent creep resistance and the scratch resistance are obtained. The porous body 1 having a poling property can be obtained. Furthermore,
Since relatively inexpensive raw materials are used and firing is carried out in a temperature range that is practically reasonable, raw material costs and fuel costs can be kept low, and since the firing furnace is not burdened and the firing furnace is not damaged, Because running costs can be reduced,
Product cost can be reduced.

【0020】配合物にシリカ粉末を添加する様にしたの
で、珪石等の更に安価を原料を使用して、製品を更に低
廉化することが出来る。
Since silica powder is added to the composition, it is possible to further reduce the cost of the product by using a cheaper raw material such as silica stone.

【0021】炭化珪素粉末の配合量、又は炭化珪素粉末
とシリカ粉末の総配合量をムライトセラミックスにおけ
るシリカの理論モル比以下にする様にしたので、多孔体
1の耐スポーリング性に悪影響を及ぼす遊離のシリカの
生成を抑止して、多孔体1の耐久性を更に高くすること
が出来る等その実用的効果甚だ大である。
Since the blending amount of the silicon carbide powder or the total blending amount of the silicon carbide powder and the silica powder is set to be equal to or less than the theoretical molar ratio of silica in the mullite ceramics, the spalling resistance of the porous body 1 is adversely affected. The production of free silica can be suppressed, and the durability of the porous body 1 can be further enhanced, which is a great practical effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るムライト質多孔体の微構造を示す
模式図である。
FIG. 1 is a schematic diagram showing a microstructure of a mullite porous material according to the present invention.

【図2】図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG.

【図3】本発明のムライト質多孔体1の走査型電子顕微
鏡写真である。
FIG. 3 is a scanning electron micrograph of a mullite porous body 1 of the present invention.

【図4】従来のムライト質多孔体の走査型電子顕微鏡写
真である。
FIG. 4 is a scanning electron micrograph of a conventional mullite porous body.

【符号の説明】[Explanation of symbols]

1 多孔体 2、2a… 一次粒子 3、3a… 二次粒子 4 結合相 1 Porous body 2, 2a ... Primary particles 3, 3a ... Secondary particles 4 bonded phase

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G019 GA02 GA04 4G030 AA36 AA37 AA47 BA23 BA25 BA33 CA01 CA05 CA09 GA11 GA14 GA22 GA25 GA27 HA01 4K051 AA07 BE00 BE03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G019 GA02 GA04                 4G030 AA36 AA37 AA47 BA23 BA25                       BA33 CA01 CA05 CA09 GA11                       GA14 GA22 GA25 GA27 HA01                 4K051 AA07 BE00 BE03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ムライト結晶及びその凝集体をシリカが
主成分の結合相を介して結合したことを特徴とするムラ
イト質多孔体。
1. A mullite porous body, characterized in that mullite crystals and aggregates thereof are bonded through a bonding phase containing silica as a main component.
【請求項2】 アルミナ粉末と炭化珪素粉末との配合物
を成形後、酸化雰囲気の下、1550℃〜1700℃の
範囲で焼成して形成する様にしたことを特徴とするムラ
イト質多孔体の製造方法。
2. A mullite porous body characterized in that it is formed by molding a mixture of alumina powder and silicon carbide powder and then firing the mixture in an oxidizing atmosphere at a temperature in the range of 1550 ° C. to 1700 ° C. Production method.
【請求項3】 配合物にシリカ粉末を添加する様にした
ことを特徴とする請求項2記載のムライト質多孔体の製
造方法。
3. The method for producing a mullite porous body according to claim 2, wherein silica powder is added to the composition.
【請求項4】 炭化珪素粉末の配合量、又は炭化珪素粉
末とシリカ粉末の総配合量をムライトセラミックスにお
けるシリカの理論モル比以下にする様にしたことを特徴
とする請求項2又は3記載のムライト質多孔体の製造方
法。
4. The method according to claim 2, wherein the blending amount of the silicon carbide powder or the total blending amount of the silicon carbide powder and the silica powder is set to be equal to or less than the theoretical molar ratio of silica in the mullite ceramics. A method for producing a mullite porous body.
JP2001338841A 2001-11-05 2001-11-05 Mullite-based porous body and method of producing the same Pending JP2003137671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338841A JP2003137671A (en) 2001-11-05 2001-11-05 Mullite-based porous body and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338841A JP2003137671A (en) 2001-11-05 2001-11-05 Mullite-based porous body and method of producing the same

Publications (1)

Publication Number Publication Date
JP2003137671A true JP2003137671A (en) 2003-05-14

Family

ID=19153273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338841A Pending JP2003137671A (en) 2001-11-05 2001-11-05 Mullite-based porous body and method of producing the same

Country Status (1)

Country Link
JP (1) JP2003137671A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287975B2 (en) 2003-06-12 2007-10-30 Towa Corporation Resin mold material and resin mold
JP2012119675A (en) * 2010-11-11 2012-06-21 Kitagawa Ind Co Ltd Electronic circuit and heat sink
US8728991B2 (en) 2009-12-31 2014-05-20 Oxane Materials, Inc. Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
JP2015504841A (en) * 2012-01-11 2015-02-16 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory and method for forming glass plate using refractory
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9670763B2 (en) 2010-01-29 2017-06-06 Halliburton Energy Services, Inc. Self-toughened high-strength proppant and methods of making same
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363163C (en) * 2003-06-12 2008-01-23 东和株式会社 Resin mold material and resin mold
US7287975B2 (en) 2003-06-12 2007-10-30 Towa Corporation Resin mold material and resin mold
US8728991B2 (en) 2009-12-31 2014-05-20 Oxane Materials, Inc. Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
US10000690B2 (en) 2009-12-31 2018-06-19 Halliburton Energy Services, Inc. Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
US9410078B2 (en) 2009-12-31 2016-08-09 Halliburton Energy Services, Inc. Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
US9670763B2 (en) 2010-01-29 2017-06-06 Halliburton Energy Services, Inc. Self-toughened high-strength proppant and methods of making same
JP2012119675A (en) * 2010-11-11 2012-06-21 Kitagawa Ind Co Ltd Electronic circuit and heat sink
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
JP2016188170A (en) * 2012-01-11 2016-11-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory and process of forming glass sheet using the refractory
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
JP2015504841A (en) * 2012-01-11 2015-02-16 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory and method for forming glass plate using refractory
JP2018135267A (en) * 2012-01-11 2018-08-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory object and method for forming glass sheet using the same
JP2019206472A (en) * 2012-01-11 2019-12-05 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory object and method for forming glass pane with refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Similar Documents

Publication Publication Date Title
JP4376579B2 (en) Silicon nitride bonded SiC refractory and method for producing the same
JP2533992B2 (en) Aluminum titanate ceramics and manufacturing method thereof
JP3600933B2 (en) Method for producing aluminum titanate-based sintered body
JP5230935B2 (en) Aluminum magnesium titanate crystal structure and manufacturing method thereof
JPH07277814A (en) Alumina-based ceramic sintered compact
US9546114B2 (en) SiAlON bonded silicon carbide material
JP5593529B2 (en) Black zirconia reinforced alumina ceramic and method for producing the same
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
CN111620692B (en) Plasma etching resistant ceramic, preparation method thereof and plasma etching equipment
JP2003137671A (en) Mullite-based porous body and method of producing the same
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP4420171B2 (en) Sialon ceramic porous body and method for producing the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JP3368960B2 (en) SiC refractory
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3127514B2 (en) Furnace material for ceramic firing
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP3108362B2 (en) High-strength inorganic fiber molded body
JP4054098B2 (en) Firing jig
JP3949950B2 (en) Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing)
JP2005082450A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JPH08198664A (en) Alumina-base sintered body and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410