JP2001019557A - Silicon nitride sintered compact, its production and substrate - Google Patents
Silicon nitride sintered compact, its production and substrateInfo
- Publication number
- JP2001019557A JP2001019557A JP11185474A JP18547499A JP2001019557A JP 2001019557 A JP2001019557 A JP 2001019557A JP 11185474 A JP11185474 A JP 11185474A JP 18547499 A JP18547499 A JP 18547499A JP 2001019557 A JP2001019557 A JP 2001019557A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- nitride sintered
- thermal conductivity
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体用の基板、
自動車、機械などの幅広い分野で使用される各種構造部
品、電気部品の素材として利用できる、高い熱伝導率を
有するとともに強度、破壊靭性等の機械的特性にも優れ
た窒化珪素焼結体とその製造方法に関する。The present invention relates to a semiconductor substrate,
A silicon nitride sintered body that has high thermal conductivity and excellent mechanical properties such as strength and fracture toughness, and can be used as a material for various structural parts and electric parts used in a wide range of fields such as automobiles and machines. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】窒化珪素焼結体(窒化珪素セラミックス
ともいう)は、化学的に安定な材料であり、優れた機械
的特性を有するので、自動車用エンジン部材、摺動部材
等として適した材料である。また、高い絶縁性を利用し
て、電気絶縁材としても使用されている。2. Description of the Related Art Sintered silicon nitride (also referred to as silicon nitride ceramics) is a chemically stable material and has excellent mechanical properties. It is. In addition, it is used as an electrical insulating material by utilizing high insulating properties.
【0003】しかしながら、窒化珪素は共有結合性の強
い物質であり、優れた高温特性を有する反面、難焼結性
の物質である。このため、窒化珪素セラミックスは、Y
2O3等の酸化物を焼結助剤として添加し、焼結性を高め
て緻密化させている。これらの焼結助剤及び原料である
窒化珪素中に含まれるSiO2が窒化珪素セラミックス
の粒界相を形成し、機械的特性や熱的特性に影響を及ぼ
す。[0003] However, silicon nitride is a substance having a strong covalent bond and has excellent high-temperature characteristics, but is a substance which is difficult to be sintered. For this reason, silicon nitride ceramics
An oxide such as 2 O 3 is added as a sintering aid to enhance the sinterability and make the material denser. These sintering aids and SiO 2 contained in the raw material silicon nitride form a grain boundary phase of the silicon nitride ceramics, which affects mechanical and thermal properties.
【0004】従来の窒化珪素セラミックスは、窒化珪素
粉末に焼結助剤を添加し、成形した後、得られた成形体
を1600〜2200℃の高温で所定時間焼成し、得ら
れた焼結体を所望の形状に研削加工して製造されてい
る。[0004] Conventional silicon nitride ceramics are obtained by adding a sintering aid to silicon nitride powder, molding the resultant, and firing the obtained molded body at a high temperature of 1600 to 2200 ° C for a predetermined time. Is ground to a desired shape.
【0005】一方、半導体回路用の基板としては、電気
絶縁性に加えて、優れた放熱特性が要求されるために高
熱伝導率が必要となる。On the other hand, a substrate for a semiconductor circuit is required to have high thermal conductivity because of being required to have excellent heat dissipation characteristics in addition to electric insulation.
【0006】近年、回路基板を自動車あるいは高速電気
鉄道用途に適用するために、回路基板の小型化、半導体
素子の高集積化等が進みに従い、これらの回路基板にお
ける絶縁材料の一層の放熱特性アップが望まれてきてい
る。このような材料としてはBeOを添加した炭化ケイ
素(SiC)や窒化アルミニウム(AlN)等が開発さ
れている。しかしながら、SiCやAlNは熱伝導率は
高いが、強度や破壊靭性と言った機械的特性が低いた
め、耐熱サイクル特性や取り扱い時の強度等に問題があ
る。In recent years, in order to apply circuit boards to automobiles or high-speed electric railways, as circuit boards have become smaller and semiconductor elements have been highly integrated, the heat radiation characteristics of insulating materials in these circuit boards have been further improved. Has been desired. As such a material, silicon carbide (SiC) added with BeO, aluminum nitride (AlN), and the like have been developed. However, although SiC and AlN have high thermal conductivity, they have low mechanical properties such as strength and fracture toughness, and thus have problems in heat cycle characteristics, handling strength, and the like.
【0007】即ち、従来の電気絶縁性高熱伝導セラミッ
クスとして知られているSiC、BeO、AlNは、熱
伝導率が100W/mK以上と高く、放熱特性には優れ
ているが、強度、破壊靭性等の機械的特性が低くく、こ
のために、回路基板等として用いる場合、実装工程にお
いて半導体素子をネジ締めで固定する際にセラミックス
基板の割れ等の破損を生じたり、半導体素子の作動に伴
う繰り返し熱サイクルを受けて、金属回路層との接合部
付近のセラミックス基板にクラックが発生し易く、耐熱
サイクル特性及び信頼性が低いと言う問題がある。That is, SiC, BeO, and AlN, which are known as conventional electrically insulating and high heat conductive ceramics, have a high thermal conductivity of 100 W / mK or more and are excellent in heat radiation characteristics, but have strength, fracture toughness, etc. When used as a circuit board or the like, when the semiconductor element is fixed by screwing in the mounting process, the ceramic substrate may be damaged such as cracking or repeated operation of the semiconductor element. Due to the thermal cycle, cracks are likely to occur in the ceramic substrate near the joint with the metal circuit layer, and there is a problem that the heat resistant cycle characteristics and reliability are low.
【0008】窒化珪素焼結体は、強度や破壊靭性等の機
械的特性に優れるため、構造材料への適用が進んでいる
材料ではあるが、SiCやAlNに比べて熱伝導率が低
いため、高い放熱特性が要求される電気絶縁性基板への
適用は十分には進んでいなかった。一般的な焼結助剤で
あるY2O3とAl2O3を添加した焼結体では、熱伝導率
は20W/mK程度であり、AlNやSiCの100〜
270W/mKに比較すると非常に低熱伝導率であっ
た。[0008] Silicon nitride sintered body is a material that has been applied to structural materials because of its excellent mechanical properties such as strength and fracture toughness. However, since its thermal conductivity is lower than that of SiC or AlN, Application to electrical insulating substrates that require high heat dissipation characteristics has not been sufficiently advanced. In a sintered body to which Y 2 O 3 and Al 2 O 3 , which are general sintering aids, are added, the thermal conductivity is about 20 W / mK, and the thermal conductivity of AlN or SiC is 100 to
The thermal conductivity was very low as compared to 270 W / mK.
【0009】窒化珪素は電気絶縁材料であるため、室温
付近での熱伝達は主にフォノンによって起こる。フォノ
ンは空孔、転移、点欠陥などの結晶格子の乱れや、粒界
相、気孔等により散乱されるので、窒化珪素の熱伝導率
も窒化珪素粒子の結晶学的純度や焼結助剤の種類、焼結
体密度などの影響を受ける。窒化珪素の理論的予測値
は、その結晶構造から280W/mK程度であると推測
されているが、実際に窒化珪素の単結晶を合成して実用
用途に適用することは難しく、一般には焼結体として製
造されている。Since silicon nitride is an electrically insulating material, heat transfer near room temperature mainly occurs by phonons. Since phonons are scattered by disorder of the crystal lattice such as vacancies, transitions, and point defects, grain boundary phases, pores, etc., the thermal conductivity of silicon nitride also depends on the crystallinity of silicon nitride particles and the sintering aid. It is affected by the type and density of the sintered body. The theoretical predicted value of silicon nitride is estimated to be about 280 W / mK from its crystal structure, but it is difficult to actually synthesize a single crystal of silicon nitride and apply it to practical use. Manufactured as a body.
【0010】窒化珪素の焼結は、窒化珪素粒子が焼結助
剤と窒化珪素粉末中に含まれるSiO2成分とから構成
される液相に溶解、析出しながら進むので、得られる窒
化珪素焼結体中の個々の窒化珪素粒子は単結晶に近いと
考えられ、比較的高熱伝導率が期待される。しかし、実
際の窒化珪素焼結体においては、前述した粒界相や窒化
珪素粒子内への結晶学的純度の影響の方が大きく、通常
の製造条件によるならば、理論熱伝導率の1〜2割程度
の熱伝導率しか得られていないのが現状である。The sintering of silicon nitride proceeds while the silicon nitride particles dissolve and precipitate in a liquid phase composed of a sintering aid and a SiO 2 component contained in the silicon nitride powder. The individual silicon nitride particles in the compact are considered to be close to a single crystal, and relatively high thermal conductivity is expected. However, in an actual silicon nitride sintered body, the influence of the above-mentioned crystallographic purity on the grain boundary phase and the inside of the silicon nitride particles is larger. At present, only about 20% of the thermal conductivity is obtained.
【0011】窒化珪素焼結体の高熱伝導化については、
「日本セラミックス協会学術論文誌」1989年1月号
56〜62頁に、Alを含む焼結助剤を用いず、Y2O3
のみを添加してHIP(熱間等方圧)焼結することによ
り、熱伝導率が70W/mKの焼結体を得られること
が、記載されている。Regarding the high thermal conductivity of the silicon nitride sintered body,
In the "Journal of the Ceramic Society of Japan," the January issue, pp. 56-62, 1989, without the use of a sintering aid, including Al, Y 2 O 3
It is described that a sintered body having a thermal conductivity of 70 W / mK can be obtained by adding only HIP (hot isostatic pressure) and sintering.
【0012】また、特開平4−175268号公報や特
開平4−219371号公報に記載されている通りに、
焼結体中のAl、酸素含有量を低下させ、Ti、Zr、
Hf等の金属を添加し、場合によってはY2O3を焼結助
剤として添加することにより、熱伝導率40W/mK以
上の焼結体を得る方法が知られている。Further, as described in JP-A-4-175268 and JP-A-4-219371,
Reduce the Al and oxygen contents in the sintered body, Ti, Zr,
There is known a method of obtaining a sintered body having a thermal conductivity of 40 W / mK or more by adding a metal such as Hf and, in some cases, adding Y 2 O 3 as a sintering aid.
【0013】更に、「日本セラミックス協会学術論文
誌」1996年1月号49〜53頁には、焼結助剤とし
て少量のY2O3及びNd2O3を用い、2200℃と非常
に高い温度で4時間HIP焼結することにより、熱伝導
率が122W/mKの窒化珪素焼結体を得ている。[0013] Furthermore, in the "Journal of the Ceramic Society of Japan", January 1996, pp. 49-53, a small amount of Y 2 O 3 and Nd 2 O 3 was used as a sintering aid, and the temperature was as high as 2200 ° C. By performing HIP sintering at a temperature for 4 hours, a silicon nitride sintered body having a thermal conductivity of 122 W / mK is obtained.
【0014】従来の窒化珪素セラミックスは、強度、破
壊靭性等の機械的特性には優れていても、熱伝導率に関
しては、上記の通りにSiC、AlN、BeOセラミッ
クスに比べてまだ低く実用上充分でないこと、更には、
高熱伝導率を有したものを得ようとすると、Al等の不
純物が少ない高純度の窒化珪素原料粉末を用いて、高温
でHIP焼結等の特殊な焼結法を用いなければならず、
得られる焼結体が非常に高価になってしまい、半導体用
回路基板等の電子材料用途にはほとんど実用化されてい
ないのが現実である。Although conventional silicon nitride ceramics have excellent mechanical properties such as strength and fracture toughness, the thermal conductivity is still lower than that of SiC, AlN, and BeO ceramics as described above, and is sufficiently practical for practical use. Not even,
In order to obtain a material having high thermal conductivity, a special sintering method such as HIP sintering must be used at a high temperature using a high-purity silicon nitride raw material powder having a small amount of impurities such as Al.
The resulting sintered body is very expensive, and is not practically used for electronic materials such as circuit boards for semiconductors.
【0015】[0015]
【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたものであり、高熱伝導性、並びに強度
や破壊靭性などの優れた機械的特性を損なうことなく、
放熱特性及び信頼性に優れる半導体回路基板やバルブ等
の自動車部品の素材として好適な窒化珪素焼結体を安価
に提供することを目的としている。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and without impairing high heat conductivity and excellent mechanical properties such as strength and fracture toughness.
It is an object of the present invention to provide an inexpensive silicon nitride sintered body that is excellent in heat dissipation characteristics and reliability and is suitable as a material for automobile parts such as semiconductor circuit boards and valves.
【0016】[0016]
【課題を解決するための手段】本発明者は、上記目的を
達成するために、窒化珪素焼結体を得るための原料粉末
の粉体特性、焼結助剤の組成、量、更には焼結条件等に
関して鋭意検討した結果、得られる窒化珪素焼結体中の
所定サイズ以上の窒化珪素粒子が特定の組成を満足する
ときに、強度や破壊靭性などの優れた機械的特性を損な
うことなく、しかも従来よりも高熱伝導性を示す窒化珪
素焼結体を得て、本発明を完成するに至った。In order to achieve the above object, the present inventor has set forth the powder characteristics of the raw material powder for obtaining the silicon nitride sintered body, the composition and amount of the sintering aid, and the sintering aid. As a result of intensive studies on the bonding conditions and the like, when silicon nitride particles having a predetermined size or more in the obtained silicon nitride sintered body satisfy a specific composition, without impairing excellent mechanical properties such as strength and fracture toughness. In addition, the present invention has been completed by obtaining a silicon nitride sintered body having higher thermal conductivity than the conventional one.
【0017】すなわち、本発明は、窒化珪素粉末に、イ
ットリア及び/又はランタノイド族元素の1種以上の酸
化物を添加してなる原料粉末を成形後に焼結する窒化珪
素焼結体の製造方法であって、Alを300ppm以
下、酸素を1重量%以下含有し、α化率が70%以下で
ある窒化珪素粉末を用い、2μm以上の短軸径を有する
窒化珪素粒子の酸素、Al、Ca、Feの含有量の合計
が1500ppm以下となるように窒化珪素粒子を成長
させながら焼結することを特徴とする窒化珪素焼結体の
製造方法である。That is, the present invention relates to a method for producing a silicon nitride sintered body in which a raw material powder obtained by adding one or more oxides of yttria and / or lanthanoid group elements to silicon nitride powder is molded and then sintered. A silicon nitride powder containing 300 ppm or less of Al and 1% by weight of oxygen, and having an alpha conversion of 70% or less is used, and oxygen, Al, Ca, and silicon nitride particles having a minor axis diameter of 2 μm or more are used. A method for producing a silicon nitride sintered body, comprising sintering silicon nitride particles while growing them so that the total content of Fe is 1500 ppm or less.
【0018】本発明は、窒化珪素粉末のα化率をX%、
窒化珪素粉末中の累積平均径の2.5倍以上の粒径を有
する窒化珪素粒子の窒化珪素粉末中における割合をY体
積%とした場合に、0≦X≦70、Y≧0、しかもY≧
−0.05X+1を満足する粒度分布を有することを特
徴とする前記の窒化珪素焼結体の製造方法である。According to the present invention, the α-rate of the silicon nitride powder is set to X%,
When the ratio of silicon nitride particles having a particle diameter of 2.5 times or more the cumulative average diameter in the silicon nitride powder in the silicon nitride powder is Y volume%, 0 ≦ X ≦ 70, Y ≧ 0, and Y ≧
The method for producing a silicon nitride sintered body described above, having a particle size distribution satisfying -0.05X + 1.
【0019】本発明は、焼結操作を9.8MPa以下の
窒素加圧雰囲気中で、温度1800〜2000℃の範囲
で8時間以上保持することを特徴とする前記の窒化珪素
焼結体の製造方法である。The present invention is characterized in that the sintering operation is maintained at a temperature in the range of 1800 to 2000 ° C. for 8 hours or more in a nitrogen pressurized atmosphere of 9.8 MPa or less. Is the way.
【0020】また、本発明は、酸素、Al、Ca、Fe
の含有量の合計が1500ppm以内であり、短軸径が
2μm以上である窒化珪素粒子を有することを特徴とす
る窒化珪素焼結体である。The present invention also relates to oxygen, Al, Ca, Fe
Is a silicon nitride sintered body characterized by having silicon nitride particles having a total content of less than 1500 ppm and a minor axis diameter of 2 μm or more.
【0021】本発明は、前記短軸径が2μm以上の窒化
珪素粒子が、窒化珪素焼結体全体に対して10面積%以
上65面積%以下であることを特徴とする前記の窒化珪
素焼結体である。The present invention is characterized in that said silicon nitride particles having a minor axis diameter of 2 μm or more account for 10 to 65 area% of the entire silicon nitride sintered body. Body.
【0022】本発明は、前記短軸径が2μm以上の窒化
珪素粒子が、窒化珪素焼結体全体に対して10面積%以
上65面積%以下であることを特徴とする前記の窒化珪
素焼結体である。The present invention is characterized in that said silicon nitride particles having a minor axis diameter of 2 μm or more account for 10 to 65 area% of the entire silicon nitride sintered body. Body.
【0023】本発明は、前記短軸径が2μm以上の窒化
珪素粒子が、窒化珪素焼結体全体に対して10〜35面
積%であり、しかも短軸径が2μm以上の窒化珪素粒子
の面積平均径が17.5μm以下であることを特徴とす
る前記の窒化珪素焼結体である。According to the present invention, the silicon nitride particles having a short axis diameter of 2 μm or more are 10 to 35 area% with respect to the entire silicon nitride sintered body, and the area of the silicon nitride particles having a short axis diameter of 2 μm or more. The silicon nitride sintered body described above, having an average diameter of 17.5 μm or less.
【0024】本発明は、熱伝導率が100〜160W/
mKであることを特徴とする前記の窒化珪素焼結体であ
る。The present invention has a thermal conductivity of 100 to 160 W /
mK.
【0025】本発明は、窒化珪素82〜91.5重量
%、イットリウム及び/又はランタノイド族元素合計が
酸化物換算して8〜15重量%、ハフニウムとジルコニ
ウムの合計が酸化物換算して0〜3重量%含有すること
を特徴とする前記の窒化珪素焼結体である。According to the present invention, 82 to 91.5% by weight of silicon nitride, 8 to 15% by weight of the total of yttrium and / or lanthanoid group elements in terms of oxide, and 0 to 8 of the total of hafnium and zirconium in terms of oxide. The silicon nitride sintered body described above, which is contained in an amount of 3% by weight.
【0026】本発明は、窒化珪素焼結体を構成する粒界
相が、M相(Re2Si3O3N4)又はJ相(Re4Si2
O7N4)を含有し、前記M相とJ相のX線回折における
メインピーク強度の合計が当該窒化珪素焼結体中のβ型
窒化珪素の(200)面のピーク強度に対して0.01
〜0.2であることを特徴とする前記の窒化珪素焼結体
である。According to the present invention, the grain boundary phase constituting the silicon nitride sintered body is an M phase (Re 2 Si 3 O 3 N 4 ) or a J phase (Re 4 Si 2
O 7 N 4 ), and the sum of the main peak intensities in the X-ray diffraction of the M phase and the J phase is 0 with respect to the peak intensity of the (200) plane of β-type silicon nitride in the silicon nitride sintered body. .01
And 0.2 to 0.2.
【0027】加えて、本発明は、前記の窒化珪素焼結体
を用いてなることを特徴とする窒化珪素回路基板であ
る。In addition, the present invention is a silicon nitride circuit board characterized by using the above silicon nitride sintered body.
【0028】[0028]
【発明の実施の形態】窒化珪素セラミックスは、柱状の
β型窒化珪素粒子が複雑に絡み合った微細組織を呈して
おり、この組織が強度、破壊靭性などの機械的特性に大
きく寄与している。また、焼結体中の気孔は、欠陥とし
て作用し強度特性に影響を及ぼす。窒化珪素セラミック
スにおいては、これらの欠陥をも含めた焼結体組織を最
適化することが、高い熱伝導率を有しながら強度、破壊
靭性等の機械的特性にも優れた焼結体を得るために重要
である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon nitride ceramics have a microstructure in which columnar β-type silicon nitride particles are intricately intertwined, and this structure greatly contributes to mechanical properties such as strength and fracture toughness. Moreover, the pores in the sintered body act as defects and affect the strength characteristics. In silicon nitride ceramics, optimizing the structure of the sintered body including these defects can provide a sintered body that has high thermal conductivity and excellent mechanical properties such as strength and fracture toughness. Important for.
【0029】窒化珪素焼結体中の窒化珪素粒子が相接す
る時の二粒子界面の厚みは1nm程度であり、これは室
温におけるフォノン平均自由工程の1/3程度以下であ
るから、窒化珪素焼結体の熱伝導率に寄与する割合は、
粒界相よりも窒化珪素粒子内の方が大きいと考えられ
る。従って、窒化珪素焼結体の熱伝導率を高くするに
は、窒化珪素粒子の結晶学的純度を上げることが重要で
あると考えられる。The thickness of the interface between the two particles when the silicon nitride particles in the silicon nitride sintered body are in contact with each other is about 1 nm, which is about 1/3 or less of the phonon mean free path at room temperature. The ratio contributing to the thermal conductivity of the sintered body is
It is considered that the inside of the silicon nitride particles is larger than the grain boundary phase. Therefore, in order to increase the thermal conductivity of the silicon nitride sintered body, it is considered important to increase the crystallographic purity of the silicon nitride particles.
【0030】本発明者らは、上記推察に基づき、窒化珪
素焼結体中の窒化珪素粒子の結晶学的純度を上げるため
に、いろいろな原料窒化珪素粉末や焼結助剤を用いて実
験的に検討した結果、特定の窒化珪素原料粉末を用い、
特定の焼結条件を採用することにより、酸素や特定の金
属不純物の窒化珪素粒子からの吐き出し、即ち窒化珪素
粒子の純化作用が生じ、その結果、2μm以上の短軸径
を有するまでに発達した窒化珪素粒子が成長し、しかも
それが高度に純化されている窒化珪素焼結体が、従来の
優れた機械的性質を損なうことなく、しかも熱伝導率が
著しく高く改善されているという知見を得て、本発明に
至ったものである。Based on the above presumption, the present inventors conducted experiments using various raw material silicon nitride powders and sintering aids to increase the crystallographic purity of the silicon nitride particles in the silicon nitride sintered body. As a result of the study, using a specific silicon nitride raw material powder,
By adopting the specific sintering conditions, oxygen and specific metal impurities are discharged from the silicon nitride particles, that is, a purification action of the silicon nitride particles occurs, and as a result, it has been developed to have a minor axis diameter of 2 μm or more. It has been found that silicon nitride particles, in which silicon nitride particles are grown and which are highly purified, have significantly improved thermal conductivity without impairing the conventional excellent mechanical properties. Thus, the present invention has been accomplished.
【0031】すなわち、本発明は、窒化珪素粉末に、イ
ットリウム及び/又はランタノイド族元素の1種以上の
酸化物を添加してなる原料粉末を成形後に焼結する窒化
珪素焼結体の製造方法であって、Alを300ppm以
下、酸素を1重量%以下含有し、α化率が70%以下で
ある窒化珪素粉末を用い、2μm以上の短軸径を有する
窒化珪素粒子の酸素、Al、Ca、Feの含有量の合計
が1500ppm以下となるように窒化珪素粒子を成長
させながら焼結することを特徴とする窒化珪素焼結体の
製造方法である。That is, the present invention relates to a method for manufacturing a silicon nitride sintered body in which a raw material powder obtained by adding at least one oxide of yttrium and / or a lanthanoid group element to a silicon nitride powder is molded and then sintered. A silicon nitride powder containing 300 ppm or less of Al and 1% by weight of oxygen, and having an alpha conversion of 70% or less is used, and oxygen, Al, Ca, and silicon nitride particles having a minor axis diameter of 2 μm or more are used. A method for producing a silicon nitride sintered body, comprising sintering silicon nitride particles while growing them so that the total content of Fe is 1500 ppm or less.
【0032】窒化珪素の焼結助剤としては、各種の酸化
物等が用いられているが、Al2O3に例示される窒化珪
素と固溶する焼結助剤を用いて得られる従来公知の窒化
珪素焼結体は、窒化珪素粒子内に前記アルミナ等の焼結
助剤が固溶した部分が点欠陥として存在するために、室
温付近においてはフォノン散乱を起こし、熱伝導率を低
下させる。これに対して、本発明では、窒化珪素と固溶
しないイットリウム及び/又はランタノイド族元素の1
種以上の酸化物を焼結助剤として採用しているものであ
る。前記イットリウム並びにランタノイド族元素の中で
は、Yb、Er、Dy、Hoなどのイオン半径の小さい
元素が好ましい。As the sintering aid for silicon nitride, various oxides and the like are used, and conventionally known sintering aids obtained by using a sintering aid which forms a solid solution with silicon nitride exemplified by Al 2 O 3 are used. In the silicon nitride sintered body, since a portion where the sintering aid such as alumina is dissolved in the silicon nitride particles is present as a point defect, phonon scattering occurs near room temperature and the thermal conductivity is reduced. . On the other hand, in the present invention, one of yttrium and / or a lanthanoid group element which does not form a solid solution with silicon nitride is used.
More than one kind of oxide is employed as a sintering aid. Among the yttrium and lanthanoid group elements, elements having a small ionic radius such as Yb, Er, Dy, and Ho are preferable.
【0033】本発明の焼結助剤とその添加量を例示すれ
ば、窒化珪素原料粉末82〜91.5重量%に対して、
イットリウム及び/又はランタノイド族元素合計が酸化
物換算して8〜15重量%、必要ならば、更にハフニウ
ムとジルコニウムの合計が酸化物換算して0〜3重量%
添加する。イットリウム及び/又はランタノイド族元素
の酸化物、並びにハフニウムとジルコニウムの酸化物
は、いずれも窒化珪素とは固溶しないので、焼結助剤と
して用いるとき、得られる窒化珪素焼結体の高熱伝導率
化へ寄与するからである。For example, the sintering aid of the present invention and the amount of the sintering additive may be represented by the following formula:
The total amount of yttrium and / or lanthanoid group elements is 8 to 15% by weight in terms of oxides, and if necessary, the total of hafnium and zirconium is 0 to 3% by weight in terms of oxides.
Added. Since the oxides of yttrium and / or lanthanoid elements and the oxides of hafnium and zirconium do not form a solid solution with silicon nitride, when used as a sintering aid, the resulting silicon nitride sintered body has a high thermal conductivity. This is because it contributes to the development of
【0034】イットリウム及び/又はランタノイド族元
素の合計が酸化物換算で8重量%未満では、液相総量が
少なくなくなるため、過度に粒成長し強度低下を招く場
合がある。特に6重量%以下の場合には得られる焼結体
の緻密化不足を招きやすい。また、15重量%以上の添
加量では粒界相量が多くなりすぎて粒界相でのフォノン
散乱の影響が窒化珪素粒内でのフォノン散乱に比べて無
視できなくなり、熱伝導率低下を招く場合がある。If the total amount of yttrium and / or lanthanoid group elements is less than 8% by weight in terms of oxides, the total amount of the liquid phase will not be small, so that grain growth may be excessive and the strength may be reduced. In particular, when the content is 6% by weight or less, insufficient sintering of the obtained sintered body is likely to occur. On the other hand, if the addition amount is 15% by weight or more, the amount of the grain boundary phase becomes too large, and the influence of phonon scattering in the grain boundary phase cannot be ignored compared to the phonon scattering in silicon nitride grains, resulting in a decrease in thermal conductivity. There are cases.
【0035】一方、ハフニウム及び/又はジルコニウム
の添加は粒成長と純化効果の助長に役立つものであり、
必ずしも添加する必要はないが、ハフニウム及び/又は
ジルコニウムを0.5重量%〜3重量%添加すると焼結
時に窒化珪素粒子の成長と純化効果が助長され、本発明
の目的が達成しやすい。つまり、ハフニウムとジルコニ
ウムの酸化物の添加の合計量が0.5重量%未満では粒
成長への寄与は小さく、窒化珪素粒子純化作用へのさら
なる効果が認めがたいことがある。また、添加量が酸化
物換算で3重量%を超えるときには、粒界相の量が多く
なりすぎて粒界相でのフォノン散乱の影響が窒化珪素粒
内でのフォノン散乱に比べて無視できなくなり、熱伝導
率低下を招く場合がある。On the other hand, the addition of hafnium and / or zirconium serves to promote grain growth and the purifying effect.
Although not necessarily added, addition of 0.5% by weight to 3% by weight of hafnium and / or zirconium facilitates the growth and purification effect of silicon nitride particles during sintering, and the object of the present invention is easily achieved. That is, if the total amount of the addition of the oxides of hafnium and zirconium is less than 0.5% by weight, the contribution to the grain growth is small, and it may be difficult to recognize a further effect on the purification action of the silicon nitride particles. On the other hand, when the added amount exceeds 3% by weight in terms of oxide, the amount of the grain boundary phase becomes too large and the effect of phonon scattering in the grain boundary phase cannot be ignored compared to phonon scattering in silicon nitride grains. In some cases, the thermal conductivity may be reduced.
【0036】次ぎに、本発明において、窒化珪素原料粉
末として、Alを300ppm以下、酸素を1重量%以
下含有し、α化率が70%以下である窒化珪素粉末を用
いる理由について説明する。Next, the reason for using silicon nitride powder containing 300 ppm or less of Al and 1% by weight of oxygen and having an α conversion of 70% or less in the present invention will be described.
【0037】まず、Alについては、原料粉末中に含有
する金属不純物の中で、Alは焼結時における溶解−再
析出過程の中で粒界へ吐き出されることなく、窒化珪素
粒子中に固溶したまま存在するようになり、結果的に得
られる窒化珪素焼結体の熱伝導率を低下させてしまうた
めである。First, among the metal impurities contained in the raw material powder, Al is dissolved in the silicon nitride particles without being discharged to the grain boundaries during the dissolution-reprecipitation process during sintering. This is because it is present as it is, and the thermal conductivity of the resulting silicon nitride sintered body is reduced.
【0038】原料窒化珪素粉末中のAl量の得られる窒
化珪素焼結体の熱伝導率への影響は、本発明者らの検討
結果に依れば、Alが100ppm増加する毎に窒化珪
素焼結体の熱伝導率を約3W/mK低下させるので、半
導体搭載用回路基板を狙って、例えば100W/mK以
上の高熱伝導率を発現させるためには、原料粉末中のA
l含有量を150ppm以下とすることが必要で、13
0W/mK以上の高熱伝導率を発現させるにはAl含有
量を100ppm以下に抑えることが好ましい。The effect of the amount of Al in the raw material silicon nitride powder on the thermal conductivity of the obtained silicon nitride sintered body, according to the results of studies by the present inventors, shows that every 100 ppm of Al increases silicon nitride firing. Since the thermal conductivity of the consolidated body is reduced by about 3 W / mK, in order to develop a high thermal conductivity of, for example, 100 W / mK or more with the aim of a circuit board for mounting a semiconductor, A in the raw material powder is required.
l content must be 150 ppm or less.
In order to exhibit a high thermal conductivity of 0 W / mK or more, it is preferable to suppress the Al content to 100 ppm or less.
【0039】また、窒化珪素粉末中に含有する酸素は、
焼結過程において通常SiO2として存在し、焼結時の
液相を構成するが、その存在量と得られる窒化珪素焼結
体の特性へ影響に関しては、本発明者らの検討結果に基
づけば、原料粉末時の酸素量が少なすぎると緻密化せず
に気孔が残存して熱伝導率が低下し、一旦固溶したAl
以外の金属不純物や酸素を粒界に吐き出す駆動力が低減
して窒化珪素粒内の純化作用を阻害すること、一方、多
すぎると液相形成時に窒化珪素粒子内に酸素が多量に固
溶して熱伝導率低下を起こすこと、液相中のSiO2濃
度が高くなり粒成長を抑制する効果があることが判っ
た。このような理由から、実際の製造上で問題なく焼結
体を得るには、1.0重量%以下であることが必要で、
0.5重量%以上であることが好ましい。The oxygen contained in the silicon nitride powder is
In the sintering process, it is usually present as SiO 2 and constitutes a liquid phase at the time of sintering. Regarding its abundance and its effect on the properties of the obtained silicon nitride sintered body, based on the results of the study by the present inventors, If the amount of oxygen in the raw material powder is too small, pores remain without densification, the thermal conductivity decreases, and the Al
Driving force to discharge metal impurities and oxygen other than to the grain boundary is reduced, and the purification action in the silicon nitride grains is hindered.On the other hand, if too much, a large amount of oxygen forms a solid solution in the silicon nitride particles during liquid phase formation. It has been found that the thermal conductivity is lowered and that the SiO 2 concentration in the liquid phase is increased to suppress the grain growth. For these reasons, in order to obtain a sintered body without any problem in actual production, the content needs to be 1.0% by weight or less.
It is preferably at least 0.5% by weight.
【0040】窒化珪素原料粉末のα化率については、α
化率が70%以上であると緻密化が阻害されてしまうこ
とがあり、この場合には焼結体中に気孔が残存して熱伝
導率が低下してしまう。半導体搭載用回路基板の用途に
適するため100W/mK以上の高熱伝導率窒化珪素焼
結体を作製しようとすると、相対密度として98〜10
0%が必要となる。従って、このようなほぼ理論密度に
達するような焼結体密度を得るには、窒化珪素原料粉の
α化率を70%以下にすることが必要である。With respect to the α-rate of the silicon nitride raw material powder, α
If the conversion rate is 70% or more, the densification may be hindered, and in this case, pores remain in the sintered body and the thermal conductivity decreases. In order to produce a silicon nitride sintered body having a high thermal conductivity of 100 W / mK or more in order to be suitable for use as a circuit board for mounting a semiconductor, a relative density of 98 to 10 is required.
0% is required. Therefore, in order to obtain such a sintered body density that almost reaches the theoretical density, it is necessary to reduce the α-rate of the silicon nitride raw material powder to 70% or less.
【0041】尚、α化率が70%以上の窒化珪素原料
を、窒化珪素と固溶しないイットリウム及び/又はラン
タノイド族元素の1種以上の酸化物を含有する焼結助剤
系とともに焼結する場合、SiO2を助剤として1重量
%以上添加することにより比較的容易に緻密化すること
ができるが、この場合は液相中のSiO2濃度が高くな
り前記の通り熱伝導率が低下するので100W/mK以
上の高熱伝導率は得がたい。A silicon nitride raw material having an α conversion of 70% or more is sintered together with a sintering aid system containing at least one oxide of yttrium and / or a lanthanoid element which does not form a solid solution with silicon nitride. In this case, densification can be made relatively easily by adding 1% by weight or more of SiO 2 as an auxiliary agent. However, in this case, the concentration of SiO 2 in the liquid phase increases and the thermal conductivity decreases as described above. Therefore, it is difficult to obtain a high thermal conductivity of 100 W / mK or more.
【0042】前記窒化珪素粉末とイットリウム及び/又
はランタノイド族元素の1種以上の酸化物を含有する混
合粉末を成形し焼結することで、本発明の焼結体を得る
ことができるが、その際の成形方法に関しては従来公知
の成形法、例えばプレス成形法、押出成形法、射出成形
法、鋳込み成形法等のいずれをも採用できる。また、焼
結方法については、本発明の目的を達成できればどのよ
うな方法でも構わないが、以下に詳述する窒素雰囲気下
での加圧焼結法が、高価な設備を必要とせず、安定し
て、多量に窒化珪素焼結体を供給できるので、好まし
い。The sintered body of the present invention can be obtained by molding and sintering a mixed powder containing the silicon nitride powder and one or more oxides of yttrium and / or lanthanoid group elements. As the molding method at this time, any conventionally known molding method, for example, any of a press molding method, an extrusion molding method, an injection molding method, a cast molding method and the like can be adopted. The sintering method may be any method as long as the object of the present invention can be achieved.However, the pressure sintering method under a nitrogen atmosphere described below does not require expensive equipment and is stable. Thus, a large amount of silicon nitride sintered body can be supplied, which is preferable.
【0043】焼結時の雰囲気については、後述するよう
に、本発明で選択する温度範囲において、窒化珪素の分
解を抑えるために窒素加圧下で行なう必要がある。窒素
加圧の上限圧力は窒化珪素焼結体の熱伝導率及び強度や
破壊靭性などの機械的特性面から9.8MPa以下であ
り、好ましくは1MPa以下で行われれば、HIP等の
特殊な焼成装置を必要とせず、得られる焼結体のコスト
を安くすることができる。As described later, the sintering atmosphere must be performed under nitrogen pressure in the temperature range selected in the present invention in order to suppress the decomposition of silicon nitride. The upper limit pressure of nitrogen pressurization is 9.8 MPa or less in view of the thermal conductivity and mechanical properties such as strength and fracture toughness of the silicon nitride sintered body, and is preferably 1 MPa or less. No equipment is required, and the cost of the obtained sintered body can be reduced.
【0044】窒素雰囲気下での加圧焼結方法では、前記
原料粉末から得た成形体を、9.8MPa以下の窒素加
圧雰囲気中で、温度1800〜2000℃の領域で加熱
し、焼結体中の窒化珪素粒子の短軸径が2μm以上にま
で成長させると共に、前記窒化珪素粒子中の酸素、A
l、Ca、Feの合計量が1500ppm以下になるま
で純化させればよいが、通常は、前記温度領域で8時間
以上保持すればよい。保持時間の上限については、窒化
珪素粒子の純化、成長という観点からは制限されない
が、生産性が低下すること、場合によっては窒化珪素粒
子が成長しすぎて強度が低下することなどの問題も発生
することがあり、通常72時間程度までの保持が好まし
い。In the pressure sintering method under a nitrogen atmosphere, a compact obtained from the raw material powder is heated in a nitrogen pressure atmosphere of 9.8 MPa or less at a temperature of 1800 to 2000 ° C., and sintered. The silicon nitride particles in the body are grown to a minor axis diameter of 2 μm or more, and oxygen, A
Purification may be performed until the total amount of l, Ca, and Fe becomes 1500 ppm or less, but usually, the temperature may be maintained in the temperature range for 8 hours or more. The upper limit of the holding time is not limited from the viewpoint of purification and growth of the silicon nitride particles, but there are also problems such as a decrease in productivity and, in some cases, a decrease in strength due to excessive growth of the silicon nitride particles. In some cases, it is preferable to maintain the temperature for up to about 72 hours.
【0045】尚、前記温度領域について、1800℃未
満の焼成温度では緻密不足が発生し、2000℃を超え
る温度では、粒成長が進みすぎて得られる焼結体の強度
などの機械的特性が低下することがある。好ましい温度
領域は1850〜1950℃である。In the above temperature range, insufficient sintering occurs at a sintering temperature lower than 1800 ° C., and at a temperature higher than 2,000 ° C., mechanical properties such as the strength of a sintered body obtained by excessively growing grains deteriorate. May be. A preferred temperature range is 1850-1950 ° C.
【0046】また、窒化珪素粉末について、本発明者ら
の実験的検討の結果より、窒化珪素粉末のα化率をX
%、窒化珪素粉末の累積平均径の2.5倍の粒径を有す
る原料粉末中における割合をY体積%としたときに、0
≦X≦70、Y≧0、しかもY≧−0.05X+1を満
足する粒度分布を有することが、100W/mK以上の
熱伝導率を有する窒化珪素焼結体を得ることができるの
で、好ましい。Further, based on the results of an experimental study conducted by the present inventors on the silicon nitride powder, the α-rate of the silicon nitride powder was set to X
% In the raw material powder having a particle diameter 2.5 times the cumulative average diameter of the silicon nitride powder,
It is preferable to have a particle size distribution satisfying ≦ X ≦ 70, Y ≧ 0, and Y ≧ −0.05X + 1 since a silicon nitride sintered body having a thermal conductivity of 100 W / mK or more can be obtained.
【0047】上記XとYとの関係については、本発明者
らが実験的検討の結果見出したものであり、半導体回路
基板等の用途に応じた熱伝導率を達成するためには、
X、Yが特定の関係を満足する必要があり、熱伝導率を
パラメーターとして前記の関係を示したものが図1であ
る。The relationship between X and Y was found by the present inventors as a result of an experimental study. In order to achieve a thermal conductivity suitable for a use such as a semiconductor circuit board,
X and Y need to satisfy a specific relationship, and FIG. 1 shows the above relationship using the thermal conductivity as a parameter.
【0048】即ち、窒化珪素粉末のα化率をX%、窒化
珪素粉末の累積平均径の2.5倍以上の粒径を有する窒
化珪素粒子の窒化珪素粉末中における割合をY体積%と
した場合に、100W/mK以上の高熱伝導率を得るた
めには、0≦X≦70、Y≧0、しかもY≧−0.05
X+1を満足する必要があり、115W/mK以上の高
熱伝導率を得るには、0≦X≦70、Y≧0、しかもY
≧−0.05X+2.5を満足することが好ましく、更
に、130W/mK以上の高熱伝導率を得るには、0≦
X≦70、Y≧0、しかもY≧−0.05X+4.5を
満足することが好ましい。That is, the α ratio of the silicon nitride powder was X%, and the ratio of silicon nitride particles having a particle diameter of 2.5 times or more the cumulative average diameter of the silicon nitride powder in the silicon nitride powder was Y volume%. In this case, in order to obtain a high thermal conductivity of 100 W / mK or more, 0 ≦ X ≦ 70, Y ≧ 0, and Y ≧ −0.05.
It is necessary to satisfy X + 1, and in order to obtain a high thermal conductivity of 115 W / mK or more, 0 ≦ X ≦ 70, Y ≧ 0, and Y
It is preferable to satisfy ≧ −0.05X + 2.5, and to obtain a high thermal conductivity of 130 W / mK or more, 0 ≦
It is preferable that X ≦ 70, Y ≧ 0, and Y ≧ −0.05X + 4.5 are satisfied.
【0049】尚、本発明で使用する窒化珪素原料粉の粒
度分布を測定する方法は、JISR1629に準じてレ
ーザー散乱法によって測定できる。The particle size distribution of the silicon nitride raw material powder used in the present invention can be measured by a laser scattering method according to JISR1629.
【0050】上記の方法で得られる本発明の窒化珪素焼
結体の微細組織は、短軸径2μm以上の粗大粒子と、短
軸径2μm未満の微細な粒子並びに粒界相に分類するこ
とができる。短軸径2μm未満の微細粒子は、前述の純
化作用が十分に行われていないため、窒化珪素原料粉末
中の金属不純物や酸素が多く含有されており、窒化珪素
焼結体の中では粒界相とともにフォノンを散乱し、熱伝
導率を低下させる部分と考えられる。The microstructure of the silicon nitride sintered body of the present invention obtained by the above method can be classified into coarse particles having a minor axis diameter of 2 μm or more, fine particles having a minor axis diameter of less than 2 μm, and a grain boundary phase. it can. The fine particles having a minor axis diameter of less than 2 μm contain a large amount of metal impurities and oxygen in the silicon nitride raw material powder because the above-described purification action is not sufficiently performed, and the grain boundaries are contained in the silicon nitride sintered body. It is considered to be a part that scatters phonons together with the phase and lowers the thermal conductivity.
【0051】これに対して、短軸径2μm以上の粗大粒
子は、粒成長と共に不純物の純化が進んでいるため、短
軸径2μm未満の微細粒子や粒界相に比べて、純度の高
い窒化珪素粒子となっており、この存在によって窒化珪
素焼結体の熱伝導が高く維持される。窒化珪素焼結体で
100W/mK以上の高熱伝導率を発現させるには、前
記粗大粒子中の酸素、Al、Ca、Feの含有量の合計
が1500ppm以下である。On the other hand, the coarse particles having a minor axis diameter of 2 μm or more are purifying impurities along with the grain growth. Therefore, the nitrides having a higher purity than the fine particles having a minor axis diameter of less than 2 μm and the grain boundary phase are obtained. Silicon particles are present, and the presence thereof keeps the thermal conductivity of the silicon nitride sintered body high. In order for the silicon nitride sintered body to exhibit a high thermal conductivity of 100 W / mK or more, the total content of oxygen, Al, Ca, and Fe in the coarse particles is 1500 ppm or less.
【0052】前記窒化珪素焼結体中の不純物量測定方法
に関しては、窒化珪素焼結体を瑪瑙乳鉢で解砕した後、
60メッシュ篩通しを行ない、Journal of
the American Ceramic Soci
ety論文誌1994年7月号1857〜1862頁に
記載の方法で、粒界相を溶解させた後、湿式分級あるい
は遠心分級で短軸径2μmを境界に微細粒子と粗大粒子
とに分類する。その抽出された窒化珪素粒子の酸素分析
に付いてはLECO社製のO/N同時分析計(TC-4
36)にて定量し、他の金属不純物に付いてはICP分
析法で定量化すれば良い。Regarding the method of measuring the amount of impurities in the silicon nitride sintered body, the silicon nitride sintered body was crushed in an agate mortar,
Perform 60 mesh sieving, Journal of
the American Ceramic Soci
After dissolving the grain boundary phase by the method described in ety Transactions of July 1994, pp. 1857-1862, the particles are classified into fine particles and coarse particles with a minor axis diameter of 2 μm as a boundary by wet classification or centrifugal classification. Regarding the oxygen analysis of the extracted silicon nitride particles, an O / N simultaneous analyzer (TC-4 manufactured by LECO) was used.
36), and other metal impurities may be quantified by ICP analysis.
【0053】本発明の窒化珪素焼結体においては、上記
した通りに、窒化珪素粒子中における酸素、Al、C
a、Feの含有量の合計が1500ppm以内である短
軸径が2μm以上の窒化珪素粒子を有することが特徴で
ある。前記不純物量の合計が1500ppmよりも多い
と、100W/mK以上の高熱伝導率を発現させること
が難しく、半導体搭載用回路基板に用いた時の用途を制
限されてしまう。130W/mK以上の高熱伝導率を発
現するには、前記不純物量の合計が1000ppm以下
であることが好ましい。In the silicon nitride sintered body of the present invention, as described above, oxygen, Al, C
It is characterized by having silicon nitride particles having a minor axis diameter of 2 μm or more in which the total content of a and Fe is within 1500 ppm. If the total amount of the impurities is more than 1500 ppm, it is difficult to exhibit a high thermal conductivity of 100 W / mK or more, which limits the use when used for a circuit board for mounting semiconductors. In order to exhibit a high thermal conductivity of 130 W / mK or more, the total amount of the impurities is preferably 1000 ppm or less.
【0054】本発明の窒化珪素焼結体においては、前記
短軸径が2μm以上の窒化珪素粒子が、窒化珪素焼結体
全体に対して10面積%以上65面積%以下であること
が好ましい。前記の通り、窒化珪素は粒成長とともに窒
化珪素粒内の不純物を粒界に吐き出すことから、ある程
度の粒成長が必要である。短軸径が2μm以上の窒化珪
素粒子が、窒化珪素焼結体全体に対して10面積%未満
であれば、粒内純化作用が不充分で十分な高熱伝導率が
得られないことがある。また、短軸径が2μm以上の窒
化珪素粒子が、窒化珪素焼結体全体に対して65面積%
以上存在するときには、粒成長した粒子同士が立体的に
衝突し、その衝突部分に欠陥を発生させ、熱伝導率の低
下を起こす場合が有るし、またこの場合には強度低下が
生じて、実用上問題となる場合もある。In the silicon nitride sintered body of the present invention, it is preferable that the silicon nitride particles having the minor axis diameter of 2 μm or more accounts for 10 area% or more and 65 area% or less based on the entire silicon nitride sintered body. As described above, silicon nitride discharges impurities in silicon nitride grains to the grain boundaries as the grains grow, so that some degree of grain growth is required. If the silicon nitride particles having a minor axis diameter of 2 μm or more are less than 10 area% with respect to the entire silicon nitride sintered body, the intragranular purification action is insufficient and sufficient high thermal conductivity may not be obtained. In addition, silicon nitride particles having a minor axis diameter of 2 μm or more account for 65 area% of the entire silicon nitride sintered body.
When the particles are present, the grown particles may collide with each other three-dimensionally, causing a defect in the collision part, causing a decrease in the thermal conductivity. This can be a problem.
【0055】窒化珪素焼結体の微細組織評価に関して
は、窒化珪素焼結体を研削加工し、更にダイアモンド砥
粒で鏡面研磨した後、酸素を8%含有するCF4ガス中
でRFプラズマエッチングを行ない、得られた試料を走
査型顕微鏡(SEM)を用いて350倍の倍率で観察を
行なえば良い。更に、微細組織の定量評価に関しては、
得られたSEM写真を用いて、画像解析装置によって窒
化珪素粒子と粒界とを二値化し、窒化珪素粒子のみ存在
面積を得て、短軸径2μm以上の粒子1000個以上に
ついてを観察総面積に対する存在割合を面積%で算出す
る。また、短軸径2μm以上の面積平均径については、
粒子径の面積50%に相当する粒子径を面積平均径とす
る。With respect to the evaluation of the microstructure of the silicon nitride sintered body, the silicon nitride sintered body was ground and further mirror-polished with diamond abrasive grains, and then subjected to RF plasma etching in CF 4 gas containing 8% oxygen. Then, the obtained sample may be observed at a magnification of 350 times using a scanning microscope (SEM). Furthermore, regarding quantitative evaluation of microstructure,
Using the obtained SEM photograph, the silicon nitride particles and the grain boundaries are binarized by an image analyzer to obtain an area where only the silicon nitride particles exist, and to observe the total area of 1000 or more particles having a minor axis diameter of 2 μm or more. Is calculated as area%. For the area average diameter of the short axis diameter of 2 μm or more,
The particle diameter corresponding to 50% of the particle diameter area is defined as the area average diameter.
【0056】本発明の窒化珪素焼結体の機械的特性は、
3点曲げ強度で450MPa以上で、破壊靭性値が6M
Pa・m1/2以上であることを特徴としている。これら
の値は、回路基板のみならず、放熱基板やエンジン部品
として用いる場合にも充分であり、高い信頼性を要求さ
れる用途に用いることがでる。The mechanical properties of the silicon nitride sintered body of the present invention are as follows:
With a three-point bending strength of 450 MPa or more, a fracture toughness value of 6 M
Pa · m 1/2 or more. These values are sufficient for use not only as a circuit board but also as a heat dissipation board or an engine component, and can be used for applications requiring high reliability.
【0057】加えて、本発明に用いる窒化珪素焼結体の
微細組織として、前記短軸径が2μm以上の窒化珪素粒
子が、窒化珪素焼結体全体に対して10〜35面積%で
あり、しかも短軸径が2μm以上の窒化珪素粒子の面積
平均径が17.5μm以下であることが好ましい。この
場合、前述の通り、放熱基板やエンジン部品として用い
る場合にも、一層優れた機械的特性を有するので、極め
て高い信頼性を要求される用途にも用いることができる
からである。In addition, as a microstructure of the silicon nitride sintered body used in the present invention, the silicon nitride particles having a minor axis diameter of 2 μm or more are 10 to 35 area% with respect to the whole silicon nitride sintered body, In addition, it is preferable that the area average diameter of silicon nitride particles having a short axis diameter of 2 μm or more is 17.5 μm or less. In this case, as described above, even when used as a heat radiating board or an engine component, it has more excellent mechanical properties, and can be used for applications requiring extremely high reliability.
【0058】また、本発明に用いる窒化珪素焼結体の熱
伝導率は、100〜160W/mKであることを特徴と
する。熱伝導率が100W/mK未満では、放熱基板と
して十分な放熱特性が得られず、その用途が限定される
からである。また、160W/mK以上の高熱伝導率を
窒化珪素焼結体で発現させようとすると、AlNやSi
Cに比べて機械的強度が劣る場合があるからである。The silicon nitride sintered body used in the present invention has a thermal conductivity of 100 to 160 W / mK. If the thermal conductivity is less than 100 W / mK, sufficient heat radiation characteristics cannot be obtained as a heat radiation substrate, and its use is limited. Further, if a high thermal conductivity of 160 W / mK or more is to be developed in a silicon nitride sintered body, AlN or Si
This is because the mechanical strength may be lower than that of C.
【0059】本発明の窒化珪素焼結体においては、X線
回折で調べたときの粒界結晶相として、M相(Re2S
i3O3N4)又はJ相(Re4Si2O7N4)を含有し、
前記M相とJ相のX線回折におけるメインピーク強度の
合計(IGB)が当該窒化珪素焼結体中のβ型窒化珪素
の(200)面のピーク強度ISNに対して0.01〜
0.2であることを特徴とする。なお、結晶相の同定
は、焼結体を研削加工した後、焼結体のままX線回折装
置で測定することができる。In the silicon nitride sintered body of the present invention, the M phase (Re 2 S
i 3 O 3 N 4 ) or J phase (Re 4 Si 2 O 7 N 4 ),
The sum of the main peak intensities (IGB) in the X-ray diffraction of the M phase and the J phase is 0.01 to less than the peak intensity ISN of the (200) plane of β-type silicon nitride in the silicon nitride sintered body.
0.2. The identification of the crystal phase can be measured by an X-ray diffractometer after grinding the sintered body and keeping the sintered body.
【0060】窒化珪素焼結体の熱伝導率は、窒化珪素粒
子内の結晶欠陥及び粒界相によるフォノン散乱によって
起こされる。そこで、粒界相を結晶化することが一層の
高熱伝導化に役にたつ。本発明の窒化珪素焼結体の粒界
結晶相の種類に関しては、M相(Re2Si3O3N4)又
はJ相(Re4Si2O7N4)を少なくとも含有するもの
である。窒化珪素の粒成長は、本発明のように助剤とし
て添加した希土類酸化物、窒化珪素及び窒化珪素に不可
避で存在するシリカが液相を形成し、比較的大きい窒化
珪素粒子上に析出することが特徴であるが、粒成長初期
には液相中のシリカ濃度が十分に高く、Re2SiO
5相、H相(Re10Si7O23N4)、K相(ReSi
2N)などのような比較的シリカリッチな液相を形成す
る。The thermal conductivity of a silicon nitride sintered body is caused by phonon scattering due to crystal defects and grain boundary phases in silicon nitride particles. Therefore, crystallization of the grain boundary phase is useful for further increasing the thermal conductivity. Regarding the type of the grain boundary crystal phase of the silicon nitride sintered body of the present invention, the silicon nitride sintered body contains at least an M phase (Re 2 Si 3 O 3 N 4 ) or a J phase (Re 4 Si 2 O 7 N 4 ). . In the grain growth of silicon nitride, the rare earth oxide, silicon nitride and silica unavoidably present in silicon nitride added as an auxiliary as in the present invention form a liquid phase and precipitate on relatively large silicon nitride particles. In the early stage of grain growth, the silica concentration in the liquid phase is sufficiently high, and the Re 2 SiO
5 phase, H phase (Re 10 Si 7 O 23 N 4 ), K phase (ReSi
2 N) to form a relatively silica-rich liquid phase, such as.
【0061】そのため、この段階では液相中から多量の
シリカ由来の酸素が窒化珪素粒子内に固溶されるが、溶
解−再析出を繰り返す内に窒化珪素粒子内から液相中に
酸素等が吐き出されるいわゆる純化作用が起こることが
本発明者たちによって確認された。この純化作用は金属
不純物ではAl以外の金属不純物及び酸素が対象になる
が、このうち酸素については、粒界へ吐き出され、液相
中でシリカとなり、更に気相中へ一酸化珪素として排出
される。このため、窒化珪素粒子の成長とともに、液相
中のシリカ濃度は低くなっていき、窒化珪素粒子内の純
化が非常に起こりやすい状況になってくる。この状態を
呈するときの粒界相組成がJ相(Re4Si2O7N4)で
あり、さらにシリカ濃度が低くなったときには、最終的
にはM相(Re2Si3O3N4)となる。即ち、これらの
粒界相組成はいずれも窒化珪素の高熱伝導化に寄与して
いる。At this stage, a large amount of oxygen derived from silica is dissolved in the silicon nitride particles from the liquid phase at this stage. However, oxygen and the like are introduced from the silicon nitride particles into the liquid phase during repeated dissolution-reprecipitation. It has been confirmed by the present inventors that so-called purifying action occurs. This purifying action includes metal impurities other than Al and oxygen as metal impurities. Of these, oxygen is discharged to the grain boundaries, becomes silica in the liquid phase, and is further discharged as silicon monoxide in the gas phase. You. For this reason, as the silicon nitride particles grow, the concentration of silica in the liquid phase becomes lower, and the silicon nitride particles become very easily purified. When this state is exhibited, the grain boundary phase composition is the J phase (Re 4 Si 2 O 7 N 4 ), and when the silica concentration further decreases, finally the M phase (Re 2 Si 3 O 3 N 4) ). That is, each of these grain boundary phase compositions contributes to high thermal conductivity of silicon nitride.
【0062】本発明の窒化珪素焼結体においては、前述
の通り、粒界相が特定の値以上に結晶化していることが
特徴であり、その結晶化の程度に関しては、M相(Re
2Si3O3N4)又はJ相(Re4Si2O7N4)を含有
し、前記M相とJ相のX線回折におけるメインピーク強
度の合計(IGB)が当該窒化珪素焼結体中のβ型窒化
珪素の(200)面のピーク強度ISNに対して0.0
1〜0.2であることが好ましい。IGB/ISNの比
が0.01未満では、粒界相の結晶化が不充分であり、
十分な熱伝導率が得られない場合が有る。一方、IGB
/ISNの比が0.2を超えると、粒界相の量が多くな
りすぎて、熱伝導率を低下させてしまうことがある。As described above, the silicon nitride sintered body of the present invention is characterized in that the grain boundary phase is crystallized to a specific value or more.
2 Si 3 O 3 N 4 ) or J phase (Re 4 Si 2 O 7 N 4 ), and the sum of the main peak intensities (IGB) in the X-ray diffraction of the M phase and the J phase is determined by the silicon nitride sintering. The peak intensity of (200) plane of β-type silicon nitride in the body is 0.0
It is preferably from 1 to 0.2. When the ratio of IGB / ISN is less than 0.01, crystallization of the grain boundary phase is insufficient,
In some cases, sufficient thermal conductivity cannot be obtained. On the other hand, IGB
If the ratio of / ISN exceeds 0.2, the amount of the grain boundary phase becomes too large, and the thermal conductivity may be reduced.
【0063】本発明の窒化珪素焼結体は、高熱伝導性、
電気絶縁性及び機械的特性が要求される回路基板等に用
いることができる。例えば、パワーモジュール用の回路
基板等では、従来回路基板に求められていた電気絶縁性
に加え、高い熱伝達性能と機械的特性が要求されてきて
いる。The silicon nitride sintered body of the present invention has high thermal conductivity,
It can be used for a circuit board or the like that requires electrical insulation and mechanical properties. For example, in a circuit board for a power module or the like, high heat transfer performance and high mechanical properties are required in addition to electric insulation, which is conventionally required for a circuit board.
【0064】本発明の窒化珪素回路基板は、基板に用い
られる窒化珪素焼結体の強度、破壊靭性などの機械的特
性が優れているため、ヒートサイクル等の繰り返し熱応
力や基板自身に対する曲げ応力に対し、高い信頼性を有
している。また、窒化珪素自体、高い絶縁抵抗を有する
ため、厳しい使用条件で用いられる回路基板に適してい
る。更に、本発明の窒化珪素焼結体を用いた窒化珪素回
路基板は、一般的なセラミックス回路基板であるアルミ
ナ回路基板に比べ、機械的特性に優れるだけでなく、高
熱伝導率が要求される回路基板の用途に適している。The silicon nitride circuit board of the present invention has excellent mechanical properties such as strength and fracture toughness of the silicon nitride sintered body used for the board. Has high reliability. Further, since silicon nitride itself has a high insulation resistance, it is suitable for a circuit board used under severe use conditions. Furthermore, a silicon nitride circuit board using the silicon nitride sintered body of the present invention is a circuit that not only has excellent mechanical properties but also requires a high thermal conductivity as compared with an alumina circuit board which is a general ceramic circuit board. Suitable for substrate applications.
【0065】本発明の窒化珪素焼結体より回路基板を得
る方法としては、板状の窒化珪素焼結体又は研削加工等
により板状に加工した窒化珪素焼結体を、例えば銅等の
金属板と接合した後、エッチング等の手法によって回路
を形成することで製造することができる。As a method for obtaining a circuit board from the silicon nitride sintered body of the present invention, a plate-shaped silicon nitride sintered body or a silicon nitride sintered body processed into a plate shape by grinding or the like is used to obtain a metal substrate such as copper. It can be manufactured by forming a circuit by a technique such as etching after bonding with a plate.
【0066】窒化珪素焼結体と金属板との接合方法に関
しては、例えば、窒化珪素焼結体と金属板とを不活性ガ
ス又は真空雰囲気中で加熱し、窒化珪素焼結体と金属板
を直接接合する方法(直接接合法)やTi、Zr等の活
性金属と低融点合金を作るAg、Cu等の金属を混合又
は合金としたろう材を窒化珪素焼結体と金属板との間に
介在させて不活性ガス又は真空雰囲気中で加熱圧着する
方法(活性金属法)を利用して製造できる。With respect to the joining method of the silicon nitride sintered body and the metal plate, for example, the silicon nitride sintered body and the metal plate are heated in an inert gas or a vacuum atmosphere, and the silicon nitride sintered body and the metal plate are joined together. A direct joining method (direct joining method) or a brazing material made by mixing or alloying an active metal such as Ti or Zr with a low melting point alloy such as Ag or Cu between the silicon nitride sintered body and the metal plate. It can be manufactured using a method (active metal method) in which heat and pressure are applied in an inert gas or vacuum atmosphere with intervening.
【0067】[0067]
【実施例】以下、実施例と比較例をあげて、更に本発明
を詳細に説明するが、本発明はこれに限定されるもので
はない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
【0068】〔実施例1〜25、比較例1〜12〕表1
に示す粉体特性の異なる窒化珪素原料粉末A〜Nに、表
2に示すとおりに焼結助剤を添加し、更にメタノールを
添加して湿式ボールミルで1時間混合を行なった。次に
これらのスラリーをろ過、乾燥して原料粉末を得た後、
20MPaの成形圧で金型成形した後、200MPaの
成形圧でCIP成形して、5mm×30mm×50mm
の成形体を得た。得られた成形体は、窒化ホウ素(B
N)製の坩堝内に充填し、カーボンヒーターの電気炉で
表3に示す窒素ガス圧力、焼成温度、焼成時間で焼成
し、焼結体を作製した。また、上記操作で得た各種焼結
体の密度をアルキメデス法で測定し、その結果を表4、
表5に示した。[Examples 1 to 25, Comparative Examples 1 to 12] Table 1
As shown in Table 2, sintering aids were added to the silicon nitride raw material powders A to N having different powder characteristics shown in Table 2, and methanol was further added, followed by mixing for 1 hour by a wet ball mill. Next, after filtering and drying these slurries to obtain raw material powders,
After molding with a molding pressure of 20 MPa, CIP molding with a molding pressure of 200 MPa, 5 mm × 30 mm × 50 mm
Was obtained. The obtained molded body was made of boron nitride (B
N), and sintered in an electric furnace of a carbon heater at a nitrogen gas pressure, a firing temperature and a firing time shown in Table 3 to produce a sintered body. The densities of the various sintered bodies obtained by the above operation were measured by Archimedes' method, and the results were shown in Table 4,
The results are shown in Table 5.
【0069】[0069]
【表1】 [Table 1]
【0070】尚、本発明における窒化珪素粉末の粒度分
布はJIS R1629に準じてレーザー散乱法によっ
て測定し、窒化珪素粉末の累積平均径の2.5倍以上の
粒径を有する窒化珪素粒子の原料粉末中における割合を
体積%として算出した。The particle size distribution of the silicon nitride powder in the present invention is measured by a laser scattering method in accordance with JIS R1629, and the raw material of the silicon nitride particles having a particle diameter of 2.5 times or more of the cumulative average diameter of the silicon nitride powder. The ratio in the powder was calculated as volume%.
【0071】[0071]
【表2】 [Table 2]
【0072】[0072]
【表3】 [Table 3]
【0073】[0073]
【表4】 [Table 4]
【0074】[0074]
【表5】 [Table 5]
【0075】次に、得られた各種の焼結体を#200の
ダイアモンドホイールで平面研削し、20mm×20m
m×3mmの形状に加工した。実施例1、5、14〜1
9、及び比較例5〜7、10〜12については、これら
の加工体を用いX線回折により結晶相の同定を行なっ
た。X線回折の結果を前記表5に示した。Next, the obtained various sintered bodies were ground by a diamond wheel of # 200 to obtain a 20 mm × 20 m
It was processed into a shape of mx 3 mm. Examples 1, 5, 14-1
9 and Comparative Examples 5 to 7 and 10 to 12, the crystal phases were identified by X-ray diffraction using these processed bodies. The results of X-ray diffraction are shown in Table 5 above.
【0076】尚、表3中の結晶相の表記に関して、Mは
M相、JはJ相、R1Sはモノシリケート、R2Sはダ
イシリケートを示す。With respect to the notation of the crystal phase in Table 3, M indicates M phase, J indicates J phase, R1S indicates monosilicate, and R2S indicates disilicate.
【0077】次に、前記焼結体を研削加工し、熱伝導率
測定用の10mmφ×3mmの試片並びにJIS R1
601に準じた強度試験体を作製し、室温の熱伝導率と
室温の3点曲げ強さを調べた。尚、熱伝導率は、レーザ
ーフラッシュ法(JIS R1611に準拠)により熱
拡散率と比熱容量を測定し、焼結体密度、熱拡散率及び
比熱容量の積によって熱伝導率とした。また、強度試験
体をダイアモンド砥粒で鏡面研削し、JIS R160
7に準じてIF法による破壊靭性の評価を行なった。Next, the sintered body was ground, and a 10 mmφ × 3 mm specimen for measuring thermal conductivity and JIS R1
A strength test specimen according to 601 was prepared, and the thermal conductivity at room temperature and the three-point bending strength at room temperature were examined. The thermal conductivity was determined by measuring the thermal diffusivity and the specific heat capacity by a laser flash method (based on JIS R1611) and determining the thermal conductivity by the product of the sintered body density, the thermal diffusivity, and the specific heat capacity. In addition, the strength test specimen is mirror-polished with diamond abrasive grains, and is subjected to JIS R160
The fracture toughness was evaluated by the IF method according to No. 7.
【0078】また、鏡面研削した焼結体を8%の酸素を
含有するCF4ガス雰囲気中でRF80Wの出力で8分
間エッチングを行なった後、SEMにより焼結体微細組
織の観察を350倍の倍率で行なった。次いで、これら
のSEM写真を用いて画像解析装置により焼結体組織の
定量評価を行なった。微細組織の定量評価に関しては、
得られたSEM写真を用いて、画像解析装置によって窒
化珪素粒子と粒界とを二値化し、窒化珪素粒子のみ存在
面積を得て、短軸径2μm以上の粒子1000個以上に
ついて観察総面積に対する存在割合を粗大粒子割合と称
して面積%で算出した。また、短軸径2μm以上の面積
平均径については、粒子径の面積50%に相当する粒子
径を面積平均径とした。Further, after the mirror-polished sintered body was etched at a power of RF 80 W for 8 minutes in a CF 4 gas atmosphere containing 8% oxygen, the microstructure of the sintered body was observed by SEM at a magnification of 350 times. Performed at magnification. Next, using these SEM photographs, a quantitative evaluation of the structure of the sintered body was performed by an image analyzer. Regarding the quantitative evaluation of microstructure,
Using the obtained SEM photograph, the image analysis apparatus binarizes the silicon nitride particles and the grain boundaries, obtains the area where only the silicon nitride particles exist, and calculates the total area of 1000 or more particles having a minor axis diameter of 2 μm or more with respect to the total observed area. The abundance ratio was calculated as area%, called the coarse particle ratio. Further, as for the area average diameter of the short axis diameter of 2 μm or more, the particle diameter corresponding to 50% of the particle diameter was defined as the area average diameter.
【0079】尚、窒化珪素焼結体中の不純物量測定方法
に関しては、窒化珪素焼結体を瑪瑙乳鉢で解砕した後、
60メッシュ篩通しを行ない、Journal of
the American Ceramic Soci
ety論文誌1994年7月号1857〜1862頁に
記載されている公知の方法で粒界相を溶解させた後、湿
式分級で短軸径2μmを境界に微細粒子と粗大粒子とに
分類した。前記操作で得た窒化珪素粒子の酸素分析に付
いては、LECO社製のO/N同時分析計(TC-43
6)にて定量し、他の金属不純物に付いてはICP分析
法で金属不純物としてAl、Ca及びFeの含有量を定
量化して、先の酸素量分析結果と併せて窒化珪素粒子内
の(酸素+Al+Ca+Fe)不純物量合計を算出し
た。The method for measuring the amount of impurities in the silicon nitride sintered body was as follows: after the silicon nitride sintered body was crushed in an agate mortar,
Perform 60 mesh sieving, Journal of
the American Ceramic Soci
After dissolving the grain boundary phase by a known method described in ety Transactions, July 1994, pp. 1857-1862, the particles were classified into fine particles and coarse particles with a short axis diameter of 2 μm as a boundary by wet classification. Regarding the oxygen analysis of the silicon nitride particles obtained by the above operation, an O / N simultaneous analyzer (TC-43 manufactured by LECO) was used.
6), and for other metal impurities, the contents of Al, Ca, and Fe as metal impurities were quantified by ICP analysis, and together with the results of the oxygen content analysis, ( The total amount of oxygen + Al + Ca + Fe) impurities was calculated.
【0080】次に、前記窒化珪素焼結体を研削加工によ
り40mm×80mm×0.6mmの形状の平板とし
た。得られた平板の両面に活性金属含有のろう材(Ag
−Cu−Ti:80−15−5)を30μmの厚さでス
クリーン印刷し、回路側に0.3mm厚の銅板及び裏面
に0.15mm厚の銅板を搭載し、10-3Torr台の
真空雰囲気下、温度850℃で30分間加熱した。その
後、冷却して複合体を得た。Next, the silicon nitride sintered body was formed into a flat plate of 40 mm × 80 mm × 0.6 mm by grinding. An active metal-containing brazing material (Ag
-Cu-Ti: 80-15-5) was screen-printed at a thickness of 30 [mu] m, equipped with circuitry 0.15mm thick copper plate and the back surface of the 0.3mm thick side copper plate, 10 -3 Torr stand vacuum Heating was performed at 850 ° C. for 30 minutes in an atmosphere. Thereafter, the mixture was cooled to obtain a composite.
【0081】この複合体について、板厚0.3mmの銅
板側を研磨し、パターニング用レジストを印刷して、熱
硬化後、塩化第二鉄水溶液に浸積エッチングして所望の
パターン形成した。更に、回路間に残留する接合材を除
くために銅板部を酸性フッ化アンモニウム水溶液に浸触
させた後、水洗してパターン形成した回路基板を作製し
た。The copper plate having a thickness of 0.3 mm was polished on the composite, a resist for patterning was printed, and after curing by heat, it was immersed and etched in an aqueous ferric chloride solution to form a desired pattern. Further, in order to remove the bonding material remaining between the circuits, the copper plate portion was immersed in an aqueous solution of ammonium ammonium fluoride, and then washed with water to produce a circuit board having a pattern formed thereon.
【0082】上記回路基板を、−50℃と150℃の恒
温槽にてそれぞれ30分間ずつ保持することを一サイク
ルとして、これを最高3000サイクルまで行ない、銅
回路を接合した部分においてクラックが発生するまでの
サイクル数を調べた。Holding the circuit board in a constant temperature bath at -50.degree. C. and 150.degree. C. for 30 minutes each is performed up to 3000 cycles, and cracks occur at the portions where the copper circuits are joined. The number of cycles up to was examined.
【0083】以上の実施例と比較例との対比より以下の
ことが明瞭である。即ち、イットリウム及び/またはラ
ンタノイド族元素の1種以上の酸化物を焼結助剤に用
い、Alが300ppm以下、酸素を1重量%以下含有
した、α化率が70%以下である窒化珪素粉末を用い
て、2μm以上の短軸径を有する窒化珪素粒子の酸素、
Al、Ca、Feの含有量合計が1500ppm以下に
なるように窒化珪素粒子を成長させながら焼結したもの
で、100W/mK以上の高熱伝導率を有する窒化珪素
焼結体が得られている。特に窒化珪素原料粉末中のAl
含有量が150ppm以下のものを使用し、かつ、実施
例1〜3の通り、イッテルビウム、エルビウム、ジスプ
ロミウム等のイオン半径の小さなランタノイド族元素酸
化物との組み合わせでは130W/mK以上の高熱伝導
率の窒化珪素焼結体が得られている。The following is clear from the comparison between the above Examples and Comparative Examples. That is, silicon nitride powder containing one or more oxides of yttrium and / or a lanthanoid element as a sintering aid, containing 300 ppm or less of Al and 1% by weight of oxygen, and having an alpha conversion of 70% or less. Using oxygen of silicon nitride particles having a short axis diameter of 2 μm or more,
Silicon nitride particles are grown and sintered so that the total content of Al, Ca, and Fe is 1500 ppm or less, and a silicon nitride sintered body having a high thermal conductivity of 100 W / mK or more has been obtained. In particular, Al in silicon nitride raw material powder
A substance having a high thermal conductivity of 130 W / mK or more is used in combination with a lanthanoid group element oxide having a small ionic radius such as ytterbium, erbium, or dyspromium, using a substance having a content of 150 ppm or less and as in Examples 1 to 3. A silicon nitride sintered body has been obtained.
【0084】また、100W/mK以上の高熱伝導率を
発現する窒化珪素焼結体は、短軸径2μm以上の粗大粒
子を有し、その窒化珪素粒子中の酸素、Al、Ca、F
eの含有量合計が1500ppm以下になっている。The silicon nitride sintered body exhibiting a high thermal conductivity of 100 W / mK or more has coarse particles having a minor axis diameter of 2 μm or more, and oxygen, Al, Ca, F in the silicon nitride particles.
The total content of e is 1500 ppm or less.
【0085】更に、実施例1、20〜25より図1を得
ることができる。図1に示すようにα化率をX%、窒化
珪素粉末の累積平均径の2.5倍の粒径を有する原料粉
末中における割合をY体積%とした場合に、所望の熱伝
導率をパラメーターとして、XとYとの関係式が得ら
れ、100W/mK以上の高熱伝導率を得るためには、
0≦X≦70、Y≧0、しかもY≧−0.05X+1で
あり、115W/mK以上の高熱伝導率を得るには、0
≦X≦70、Y≧0、しかもY≧−0.05X+2.5
であり、更に130W/mK以上の高熱伝導率を得るに
は、0≦X≦70、Y≧0、しかもY≧−0.05X+
4.5を満足すれば良い。Further, FIG. 1 can be obtained from Examples 1 and 20 to 25. As shown in FIG. 1, when the α ratio is X% and the ratio in the raw material powder having a particle diameter 2.5 times the cumulative average diameter of the silicon nitride powder is Y volume%, the desired thermal conductivity is A relational expression between X and Y is obtained as a parameter, and in order to obtain a high thermal conductivity of 100 W / mK or more,
0 ≦ X ≦ 70, Y ≧ 0, and Y ≧ −0.05X + 1. To obtain a high thermal conductivity of 115 W / mK or more, 0
≤X≤70, Y≥0, and Y≥-0.05X + 2.5
In order to further obtain a high thermal conductivity of 130 W / mK or more, 0 ≦ X ≦ 70, Y ≧ 0, and Y ≧ −0.05X +
It is only necessary to satisfy 4.5.
【0086】なお、比較例2の通りに、窒化珪素原料粉
末のα化率が97.5%のものを本発明の助剤系と組み
合せても、表2の通り十分に緻密化せず、100W/m
K以上の高熱伝導率が得られない。更に、比較例3の通
りに、この原料粉末にシリカを緻密化するように多量に
添加しても、その窒化珪素粒子中の酸素、Al、Ca、
Feの含有量合計が1500ppm以上になってしま
い、100W/mK以上の高熱伝導率が得られない。As shown in Table 2, when the silicon nitride raw material powder having an α conversion ratio of 97.5% was combined with the auxiliary system of the present invention as in Comparative Example 2, the powder was not sufficiently densified. 100W / m
High thermal conductivity of K or higher cannot be obtained. Further, as in Comparative Example 3, even if a large amount of silica was added to this raw material powder so as to densify it, oxygen, Al, Ca,
The total content of Fe becomes 1500 ppm or more, and a high thermal conductivity of 100 W / mK or more cannot be obtained.
【0087】比較例4、5及び6のように窒化珪素原料
粉末中のAl含有量が多いものは、窒化珪素粒子内中に
Alが不純物として残留するため、短軸径2μm以上の
粗大粒子を有しても、その窒化珪素粒子中の酸素、A
l、Ca、Feの含有量合計1500ppm以上になっ
てしまい、100W/mK以上の高熱伝導率が得られな
い。In the case of the silicon nitride raw material powder having a large Al content as in Comparative Examples 4, 5 and 6, since Al remains in the silicon nitride particles as impurities, coarse particles having a minor axis diameter of 2 μm or more were removed. Oxygen, A in the silicon nitride particles
The total content of l, Ca, and Fe becomes 1500 ppm or more, and a high thermal conductivity of 100 W / mK or more cannot be obtained.
【0088】比較例10及び11のように窒化珪素原料
粉末中の酸素含有量が多いものは、窒化珪素粒子内中に
Al量が少ない原料粉末を用いても、酸素が不純物とし
て十分に純化されないので、短軸径2μm以上の粗大粒
子を有しても、その窒化珪素粒子中の酸素、Al、C
a、Feの含有量合計1500ppm以上になってしま
い、100W/mK以上の高熱伝導率が得られない。In the silicon nitride raw material powder having a high oxygen content as in Comparative Examples 10 and 11, oxygen is not sufficiently purified as an impurity even if the raw material powder having a small amount of Al in the silicon nitride particles is used. Therefore, even if there are coarse particles having a minor axis diameter of 2 μm or more, oxygen, Al, C
a, the total content of Fe becomes 1500 ppm or more, and a high thermal conductivity of 100 W / mK or more cannot be obtained.
【0089】更に、比較例例5〜7及び比較例11、1
2の通りに、使用する窒化珪素粉末中のAl含有量が多
いか、酸素含有量が多い場合には、短軸径が2μm以上
の窒化珪素粒子の面積割合が10面積%に満たなく、窒
化珪素の粒成長による純化作用が不十分で100W/m
K以上の高熱伝導率が達成できていない。Further, Comparative Examples 5 to 7 and Comparative Examples 11 and 1
As shown in 2, when the silicon nitride powder used has a large Al content or a large oxygen content, the area ratio of silicon nitride particles having a minor axis diameter of 2 μm or more is less than 10 area%, Insufficient purifying action due to silicon grain growth is 100 W / m
High thermal conductivity of K or higher has not been achieved.
【0090】実施例中の100W/mK以上の高熱伝導
率を発現する窒化珪素焼結体の中でも、短軸径が2μm
以上の窒化珪素粒子の面積平均径が17.5μm以下で
あるものは、表2に示す通り、室温曲げ強度が450M
Pa以上の高強度を示し、前記回路基板を使った−50
℃と150℃の恒温槽にてそれぞれ30分間ずつ保持し
つつ行ったヒートサイクル試験において、3000サイ
クルにおいてもクラックの発生は全く見られなかった。
なお、窒化珪素焼結体の室温曲げ強度とヒートサイクル
試験の結果には相関があり、室温曲げ強度が350MP
a以下のものは、すべて2000サイクル未満にクラッ
クが発生した。Among the silicon nitride sintered bodies exhibiting a high thermal conductivity of 100 W / mK or more in the examples, the short axis diameter is 2 μm.
The silicon nitride particles having an area average diameter of 17.5 μm or less had a room-temperature bending strength of 450 M as shown in Table 2.
It shows high strength of Pa or more, and -50 using the circuit board.
In a heat cycle test carried out while holding each in a thermostat at 30 ° C. and 150 ° C. for 30 minutes, no cracks were observed even at 3000 cycles.
Note that there is a correlation between the room temperature bending strength of the silicon nitride sintered body and the result of the heat cycle test, and the room temperature bending strength is 350 MPa.
The cracks occurred in less than 2,000 cycles in all of the samples having a or less.
【0091】窒化珪素82〜91.5重量%、イットリ
ウム及び/又はランタノイド族元素の1種以上の合計が
酸化物換算して8〜15重量%、ハフニウムとジルコニ
ウムの合計が酸化物換算して0.5〜3重量%含有する
窒化珪素焼結体は、表2の通り、100W/mK以上の
高熱伝導率を発現する。82 to 91.5% by weight of silicon nitride, 8 to 15% by weight of the sum of at least one element of yttrium and / or lanthanoid group element in terms of oxide, and 0 to 15% by weight of hafnium and zirconium in terms of oxide. As shown in Table 2, the silicon nitride sintered body containing 0.5 to 3% by weight exhibits a high thermal conductivity of 100 W / mK or more.
【0092】実施例の100W/mK以上の高熱伝導率
を発現する窒化珪素焼結体の粒界相は、表2の通り、M
相(Re2Si3O3N)又はJ相(Re4Si2O7N4)
を含有し、前記M相とJ相のX線回折におけるメインピ
ーク強度の合計が当該窒化珪素焼結体中のβ型窒化珪素
の(200)面のピーク強度に対して0.01〜0.2
である。As shown in Table 2, the grain boundary phase of the silicon nitride sintered body exhibiting a high thermal conductivity of 100 W / mK or more is M
Phase (Re 2 Si 3 O 3 N) or J phase (Re 4 Si 2 O 7 N 4 )
And the sum of the main peak intensities in the X-ray diffraction of the M phase and the J phase is 0.01 to 0. 2
It is.
【0093】[0093]
【発明の効果】本発明の窒化珪素焼結体は、窒化珪素粒
子内部への不純物固溶を極力抑え、窒化珪素粒子内の純
度、微細組織、結晶粒界相の組成、量などを制御してい
るので、強度、破壊靭性等の機械的特性に優れると共
に、熱伝導率が100W/mK以上と高く、半導体用基
板をはじめとし、自動車及び高速電気鉄道の幅広い分野
で各種構造部品用素材として利用することができる。According to the silicon nitride sintered body of the present invention, the solid solution of impurities into silicon nitride particles is suppressed as much as possible, and the purity, microstructure, composition and amount of grain boundary phase in silicon nitride particles are controlled. It has excellent mechanical properties such as strength and fracture toughness, and has a high thermal conductivity of 100 W / mK or more. It is used as a material for various structural components in a wide range of fields, including semiconductor substrates, automobiles and high-speed electric railways. Can be used.
【0094】本発明の窒化珪素焼結体の製造方法に依れ
ば、前記窒化珪素焼結体を安定して多量に提供すること
ができ、産業上有用である。According to the method for producing a silicon nitride sintered body of the present invention, the silicon nitride sintered body can be stably provided in a large amount, which is industrially useful.
【0095】本発明の窒化珪素回路基板は、熱伝導率が
高く、機械的特性に優れているので、信頼性が要求され
る輸送機器等の用途や、パワーモジュール用回路基板等
に適している。Since the silicon nitride circuit board of the present invention has high thermal conductivity and excellent mechanical properties, it is suitable for use in transportation equipment and the like requiring reliability and a circuit board for a power module. .
【図1】 窒化珪素焼結体の熱伝導率をパラメーターと
して、窒化珪素粉末のα率(X%)と、窒化珪素粉末中
の累積平均径の2.5倍以上の粒径を有する窒化珪素粒
子の窒化珪素粉末中における割合(Y体積%)とが満足
するべき関係を表す図。FIG. 1 is a graph showing a coefficient of thermal conductivity of a silicon nitride sintered body as a parameter, and an α ratio (X%) of a silicon nitride powder and a silicon nitride having a particle diameter of 2.5 times or more of a cumulative average diameter in the silicon nitride powder. FIG. 6 is a diagram showing a relationship that should be satisfied with the ratio of particles in silicon nitride powder (Y volume%).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 鈴弥 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内 Fターム(参考) 4G001 BA08 BA09 BA10 BA12 BA14 BA32 BA71 BA73 BB08 BB09 BB10 BB12 BB14 BB32 BB71 BC12 BC13 BC48 BC52 BC54 BC55 BD03 BD13 BD14 BD16 BD23 BE01 BE22 BE26 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Suzuya Yamada 3-5-1 Asahicho, Machida-shi, Tokyo F-term in Central Research Laboratory, Denka Kagaku Kogyo Co., Ltd. 4G001 BA08 BA09 BA10 BA12 BA14 BA32 BA71 BA73 BB08 BB09 BB10 BB12 BB14 BB32 BB71 BC12 BC13 BC48 BC52 BC54 BC55 BD03 BD13 BD14 BD16 BD23 BE01 BE22 BE26
Claims (10)
ンタノイド族元素の1種以上の酸化物を添加してなる原
料粉末を成形後に焼結する窒化珪素焼結体の製造方法で
あって、Alを300ppm以下、酸素を1重量%以下
含有し、α化率が70%以下である窒化珪素粉末を用
い、2μm以上の短軸径を有する窒化珪素粒子の酸素、
Al、Ca、Feの含有量の合計が1500ppm以下
となるように窒化珪素粒子を成長させながら焼結するこ
とを特徴とする窒化珪素焼結体の製造方法。1. A method for producing a silicon nitride sintered body, comprising sintering a raw material powder obtained by adding one or more oxides of yttrium and / or lanthanoid group elements to silicon nitride powder, followed by sintering. A silicon nitride powder containing not more than 300 ppm and not more than 1% by weight of oxygen and having an alpha conversion of not more than 70%, and oxygen of silicon nitride particles having a short axis diameter of not less than 2 μm;
A method for producing a silicon nitride sintered body, comprising sintering silicon nitride particles while growing them so that the total content of Al, Ca, and Fe is 1500 ppm or less.
末中の累積平均径の2.5倍以上の粒径を有する窒化珪
素粒子の窒化珪素粉末中における割合をY体積%とした
場合に、0≦X≦70、Y≧0、しかもY≧−0.05
X+1を満足する粒度分布を有することを特徴とする請
求項1記載の窒化珪素焼結体の製造方法。2. The method according to claim 1, wherein the α-formation ratio of the silicon nitride powder is X%, and the ratio of silicon nitride particles having a particle diameter of at least 2.5 times the cumulative average diameter in the silicon nitride powder is Y volume%. 0 ≦ X ≦ 70, Y ≧ 0, and Y ≧ −0.05
2. The method for producing a silicon nitride sintered body according to claim 1, having a particle size distribution satisfying X + 1.
囲気中で、温度1800〜2000℃の範囲で8時間以
上保持することを特徴とする請求項1又は請求項2記載
の窒化珪素焼結体の製造方法。3. The silicon nitride according to claim 1, wherein the sintering operation is maintained in a nitrogen pressurized atmosphere of 9.8 MPa or less at a temperature of 1800 to 2000 ° C. for 8 hours or more. A method for manufacturing a sintered body.
1500ppm以下であり、短軸径が2μm以上である
窒化珪素粒子を有することを特徴とする窒化珪素焼結
体。4. A silicon nitride sintered body comprising silicon nitride particles having a total content of oxygen, Al, Ca and Fe of 1500 ppm or less and a minor axis diameter of 2 μm or more.
化珪素焼結体全体に対して10面積%以上65面積%以
下であることを特徴とする請求項4記載の窒化珪素焼結
体。5. The silicon nitride sintered body according to claim 4, wherein the silicon nitride particles having a minor axis diameter of 2 μm or more account for 10 to 65 area% of the entire silicon nitride sintered body. body.
化珪素焼結体全体に対して10〜35面積%であり、し
かも短軸径が2μm以上の窒化珪素粒子の面積平均径が
17.5μm以下であることを特徴とする請求項4又は
5記載の窒化珪素焼結体。6. A silicon nitride particle having a short axis diameter of 2 μm or more accounts for 10 to 35 area% of the entire silicon nitride sintered body, and a silicon nitride particle having a short axis diameter of 2 μm or more has an area average diameter of 2 μm or more. The silicon nitride sintered body according to claim 4, wherein the thickness is 17.5 μm or less.
ことを特徴とする請求項4、請求項5又は請求項6記載
の窒化珪素焼結体。7. The silicon nitride sintered body according to claim 4, wherein the thermal conductivity is 100 to 160 W / mK.
ウム及び/又はランタノイド族元素の1種以上の合計が
酸化物換算で8〜15重量%、ハフニウムとジルコニウ
ムの合計が酸化物換算して0〜3重量%含有することを
特徴とする請求項7記載の窒化珪素焼結体。8. 82 to 91.5% by weight of silicon nitride, 8 to 15% by weight of the sum of at least one element of yttrium and / or lanthanoid group element in terms of oxide, and the sum of hafnium and zirconium in terms of oxide. 8. The silicon nitride sintered body according to claim 7, wherein the content is 0 to 3% by weight.
(Re2Si3O3N4)又はJ相(Re4Si2O7N4)を
含有し、前記M相とJ相のX線回折におけるメインピー
ク強度の合計が当該窒化珪素焼結体中のβ型窒化珪素の
(200)面のピーク強度に対して0.01〜0.2で
あることを特徴とする請求項7又は請求項8記載の窒化
珪素焼結体。9. A grain boundary phase constituting a silicon nitride sintered body contains an M phase (Re 2 Si 3 O 3 N 4 ) or a J phase (Re 4 Si 2 O 7 N 4 ), and the M phase And the sum of the main peak intensities in the X-ray diffraction of the J-phase and the β-type silicon nitride in the silicon nitride sintered body is 0.01 to 0.2 with respect to the peak intensity of the (200) plane. The silicon nitride sintered body according to claim 7 or 8, wherein
7、請求項8又は請求項9記載の窒化珪素焼結体を用い
てなることを特徴とする窒化珪素回路基板。10. A silicon nitride circuit board comprising the silicon nitride sintered body according to claim 4, claim 5, claim 6, claim 7, claim 8, or claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185474A JP2001019557A (en) | 1999-06-30 | 1999-06-30 | Silicon nitride sintered compact, its production and substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185474A JP2001019557A (en) | 1999-06-30 | 1999-06-30 | Silicon nitride sintered compact, its production and substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001019557A true JP2001019557A (en) | 2001-01-23 |
Family
ID=16171408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11185474A Pending JP2001019557A (en) | 1999-06-30 | 1999-06-30 | Silicon nitride sintered compact, its production and substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001019557A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007261832A (en) * | 2006-03-27 | 2007-10-11 | Sumco Solar Corp | Silicon nitride release material powder, method for producing release material and firing method |
JPWO2005113466A1 (en) * | 2004-05-20 | 2008-03-27 | 株式会社東芝 | High thermal conductivity silicon nitride sintered body and silicon nitride structural member |
JP2012092006A (en) * | 2010-09-29 | 2012-05-17 | Kyocera Corp | Silicon nitride sintered compact, circuit board using this and electronic device |
JP2016160117A (en) * | 2015-02-27 | 2016-09-05 | 新日鐵住金株式会社 | Silicon nitride ceramic sintered compact and method for producing the same |
CN112912356A (en) * | 2018-11-01 | 2021-06-04 | 宇部兴产株式会社 | Method for manufacturing silicon nitride substrate and silicon nitride substrate |
-
1999
- 1999-06-30 JP JP11185474A patent/JP2001019557A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005113466A1 (en) * | 2004-05-20 | 2008-03-27 | 株式会社東芝 | High thermal conductivity silicon nitride sintered body and silicon nitride structural member |
JP4869070B2 (en) * | 2004-05-20 | 2012-02-01 | 株式会社東芝 | High thermal conductivity silicon nitride sintered body and silicon nitride structural member |
JP2007261832A (en) * | 2006-03-27 | 2007-10-11 | Sumco Solar Corp | Silicon nitride release material powder, method for producing release material and firing method |
JP2012092006A (en) * | 2010-09-29 | 2012-05-17 | Kyocera Corp | Silicon nitride sintered compact, circuit board using this and electronic device |
JP2016160117A (en) * | 2015-02-27 | 2016-09-05 | 新日鐵住金株式会社 | Silicon nitride ceramic sintered compact and method for producing the same |
CN112912356A (en) * | 2018-11-01 | 2021-06-04 | 宇部兴产株式会社 | Method for manufacturing silicon nitride substrate and silicon nitride substrate |
CN112912356B (en) * | 2018-11-01 | 2023-05-02 | Ube 株式会社 | Method for manufacturing silicon nitride substrate and silicon nitride substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100836150B1 (en) | Sintered silicon nitride, method of manufacturing the same and sintered silicon nitride substrate | |
JP5850031B2 (en) | Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module | |
JP5245405B2 (en) | Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module | |
JP5673106B2 (en) | Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module | |
JP2018184333A (en) | Method of manufacturing silicon nitride substrate and silicon nitride substrate | |
JP7062229B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP2002201075A (en) | Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method | |
JP3565425B2 (en) | Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body | |
JP2002293642A (en) | Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board | |
JPWO2019235594A1 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP2009218322A (en) | Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module | |
WO2005049525A1 (en) | High thermally conductive aluminum nitride sintered product | |
JP3775335B2 (en) | Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same | |
JP4089974B2 (en) | Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same | |
JP4556162B2 (en) | Silicon nitride-based sintered body, method for producing the same, and circuit board using the same | |
CN114787105A (en) | Plate-like silicon nitride sintered body and method for producing same | |
JP3002642B2 (en) | Silicon nitride powder, silicon nitride sintered body, and circuit board using the same | |
JP4518020B2 (en) | A silicon nitride sintered body and a circuit board using the same. | |
JP2001019557A (en) | Silicon nitride sintered compact, its production and substrate | |
JP2002265276A (en) | Silicon nitride powder and silicon nitride sintered compact | |
JP2002029850A (en) | Sintered silicon nitride compact and method for manufacturing the same | |
JPH11100274A (en) | Silicon nitride sintered compact, its production and circuit board | |
JP2002029849A (en) | Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same | |
JP2002029851A (en) | Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact | |
JPH11100273A (en) | Silicon nitride sintered compact, its production and circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070802 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070919 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070926 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071115 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20071207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100818 |