JP2002265276A - Silicon nitride powder and silicon nitride sintered compact - Google Patents

Silicon nitride powder and silicon nitride sintered compact

Info

Publication number
JP2002265276A
JP2002265276A JP2001063736A JP2001063736A JP2002265276A JP 2002265276 A JP2002265276 A JP 2002265276A JP 2001063736 A JP2001063736 A JP 2001063736A JP 2001063736 A JP2001063736 A JP 2001063736A JP 2002265276 A JP2002265276 A JP 2002265276A
Authority
JP
Japan
Prior art keywords
silicon nitride
particles
particle size
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001063736A
Other languages
Japanese (ja)
Inventor
Toshiyuki Imamura
寿之 今村
Masahisa Sofue
昌久 祖父江
Shigeyuki Hamayoshi
繁幸 濱吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001063736A priority Critical patent/JP2002265276A/en
Publication of JP2002265276A publication Critical patent/JP2002265276A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride sintered compact having high strength, high toughness and excellent heat dissipating properties. SOLUTION: A silicon nitride powder is characterized in that the particle diameters (d10 ), (d50 ) and (d90 ) corresponding to accumulated frequencies of 10%, 50% and 90% by volume, respectively, have particle diameter distribution of 0.5 to 0.8 μm, 2.5 to 4.5 μm and 7.5 to 10.0 μm, respectively, and the content of oxygen is 0.01 to 0.5 wt.%. The silicon nitride sintered compact is obtained by using this silicon nitride power, and has a thermal conductivity of >=80 W/m.K, a three-point bending strength at room temperature of >=600 MPa and fracture toughness of >=5 MPa.m<1/2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高靱性か
つ優れた放熱性を有する窒化ケイ素焼結体と前記窒化ケ
イ素焼結体を得ることができ、かつシート成形性に優れ
る窒化ケイ素粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having high strength, high toughness and excellent heat dissipation, and a silicon nitride powder capable of obtaining the silicon nitride sintered body and having excellent sheet formability. About.

【0002】[0002]

【従来の技術】窒化ケイ素焼結体は、高温強度特性、耐
摩耗性等の機械的特性に加え、耐熱性、低熱膨張性、耐
熱衝撃性、および金属に対する耐食性に優れているの
で、従来からガスタ−ビン用部材、エンジン用部材、製
鋼用機械部材、あるいは溶融金属の耐溶部材等の各種構
造用部材に用いられている。また、高い絶縁性を利用し
て電気絶縁材料として使用されている。
2. Description of the Related Art Sintered silicon nitride has excellent mechanical properties such as high-temperature strength and abrasion resistance, as well as excellent heat resistance, low thermal expansion, thermal shock resistance, and corrosion resistance to metals. It is used for various structural members such as members for gas turbines, members for engines, mechanical members for steelmaking, and melt-resistant members of molten metal. In addition, it is used as an electrical insulating material by utilizing high insulating properties.

【0003】近年、高周波トランジスタ、パワーIC等
の発熱量の大きい半導体素子の実用化に伴い、電気絶縁
性に加えて良好な放熱特性を得られるように高い熱伝導
率を有するセラミックス基板の需要が増加している。こ
のようなセラミックス基板として、窒化アルミニウム基
板が用いられているが、機械的強度や破壊靱性等が低
く、基板ユニットの組立て工程での締め付けによって割
れを生じたり、また、Si半導体素子を実装した回路基
板では、Si金属と基板との熱膨張差が大きいため、冷
熱サイクルにより窒化アルミニウム基板にクラックや割
れを生じて実装信頼性が低下するという問題がある。
[0003] In recent years, with the practical use of semiconductor elements having a large amount of heat, such as high-frequency transistors and power ICs, there has been a demand for ceramic substrates having high thermal conductivity so as to obtain good heat dissipation characteristics in addition to electric insulation. It has increased. As such a ceramic substrate, an aluminum nitride substrate is used. However, the mechanical strength and the fracture toughness are low, and the substrate may be cracked by tightening during the assembly process of the substrate unit, or a circuit on which a Si semiconductor element is mounted. In the substrate, since the thermal expansion difference between the Si metal and the substrate is large, there is a problem that cracks and cracks are generated in the aluminum nitride substrate due to the thermal cycle and the mounting reliability is reduced.

【0004】そこで、窒化アルミニウム基板より熱伝導
率は劣るものの、熱膨張率がSiに近似すると共に、機
械的強度、破壊靱性、および耐熱疲労特性に優れる高熱
伝導窒化ケイ素焼結体からなる基板が注目されている。
[0004] Therefore, a substrate made of a high thermal conductive silicon nitride sintered body having a lower thermal conductivity than an aluminum nitride substrate but having a coefficient of thermal expansion close to that of Si and having excellent mechanical strength, fracture toughness, and thermal fatigue resistance is used. Attention has been paid.

【0005】高強度・高熱伝導性を有する窒化ケイ素焼
結体を製造するための原料窒化ケイ粉末としては、焼結
性ならびに得られる上記特性を考慮して、比表面積、平
均粒子径、粒度分布、β型窒化ケイ素粒子の割合(β分
率)等の粉末特性に注目した研究が盛んに行われてい
る。
As a raw material silicon nitride powder for producing a silicon nitride sintered body having high strength and high thermal conductivity, a specific surface area, an average particle diameter, and a particle size distribution are taken into consideration in consideration of sinterability and the above-mentioned properties to be obtained. Studies on powder characteristics such as the ratio of β-type silicon nitride particles (β fraction) and the like have been actively conducted.

【0006】例えば、特開2000−72552号公報
には、熱伝導率が50W/m・K以上、室温での3点曲
げ強度が700MPa以上である窒化ケイ素質放熱部材
ならびに、当該放熱部材を得るために原料として用いる
窒化ケイ素粉末の平均粒子径が0.4〜0.7μm、1
μm以下の粒子の累積で60〜80%であり、かつ累積
90%が2〜5μmの粒度分布を有することを特徴とし
た記載がある。
For example, Japanese Patent Application Laid-Open No. 2000-72552 discloses a silicon nitride heat radiating member having a thermal conductivity of 50 W / m · K or more and a three-point bending strength at room temperature of 700 MPa or more, and a heat radiating member. The average particle diameter of the silicon nitride powder used as a raw material is 0.4 to 0.7 μm,
There is a description that 60 to 80% of the particles having a particle size of μm or less are accumulated, and 90% of the particles have a particle size distribution of 2 to 5 μm.

【0007】また、特許第3002642号公報にはα
率が70〜98重量%の窒化ケイ素粉末であって、粒子
径0.6μm以下のβ型窒化ケイ素粒子が2〜15重量
%含有され、しかも該窒化ケイ素粉末中に含まれるβ型
窒化ケイ素粒子が全量に対して40重量%以上含有さ
れ、さらに、粒子径1.0〜3.0μmのβ型窒化ケイ
素粒子が全量に対して2〜5重量%含有されていること
を特徴とする窒化ケイ素粉末が記載されている。
Further, Japanese Patent No. 3002462 discloses α
Silicon nitride powder having a particle size of 70 to 98% by weight, containing 2 to 15% by weight of β-type silicon nitride particles having a particle diameter of 0.6 μm or less, and β-type silicon nitride particles contained in the silicon nitride powder. Characterized in that β-type silicon nitride particles having a particle size of 1.0 to 3.0 μm are contained in an amount of 2 to 5% by weight based on the total amount. A powder is described.

【0008】また、当該窒化ケイ素粉末を原料として用
いた窒化ケイ素焼結体は、4点曲げ強度が1000MP
a以上、破壊靱性が7.0MPa・m1/2以上および
熱伝導率が30W/m・K以上で高強度・高靱性かつ優
れた放熱性を有することが載されている。
The silicon nitride sintered body using the silicon nitride powder as a raw material has a four-point bending strength of 1000 MPa.
a, a fracture toughness of 7.0 MPa · m 1/2 or more, a thermal conductivity of 30 W / m · K or more, and high strength, high toughness, and excellent heat dissipation.

【0009】[0009]

【発明が解決しようとする課題】前述の特開2000−
72552号公報に記載の窒化ケイ素放熱部材は、窒化
ケイ素柱状結晶を主体としてなる相対密度95%以上の
焼結体からなるものであって、該焼結体の切断面におけ
る窒化ケイ素粒子の長軸粒子径の平均径が1〜3μmで
あり、粒径1μm以下の結晶粒子が累積で50〜70%
の粒度分布からなり、かつ熱伝導率が50W/m・K以上
かつ室温での3点曲げ強度が700MPa以上であり、
高い放熱性と高強度を併せ持つといった利点を有してい
る。
Problems to be Solved by the Invention
The silicon nitride heat-dissipating member described in Japanese Patent No. 72552 is made of a sintered body having a relative density of 95% or more mainly composed of silicon nitride columnar crystals, and a major axis of silicon nitride particles on a cut surface of the sintered body. The average particle diameter is 1 to 3 μm, and 50 to 70% of crystal particles having a particle diameter of 1 μm or less are accumulated.
Having a thermal conductivity of 50 W / m · K or more and a three-point bending strength at room temperature of 700 MPa or more,
It has the advantage of having both high heat dissipation and high strength.

【0010】また、該窒化ケイ素放熱部材の製造方法に
ついて、上述のように特定の粒度分布を有する窒化ケイ
素原料粉末を用いることによりシート成形性を向上させ
るとともに、それに伴い焼結体中の窒化ケイ素粒子の粒
度分布を特定の範囲に制御することにより切り出し加工
や研磨加工を行うことなく、薄型の単一層、あるいは積
層構造からなる放熱部材を提供できるといった利点を有
している。
[0010] Further, in the method of manufacturing the silicon nitride heat radiating member, the sheet moldability is improved by using the silicon nitride raw material powder having a specific particle size distribution as described above, and the silicon nitride in the sintered body is concomitantly improved. By controlling the particle size distribution of the particles to a specific range, there is an advantage that a thin heat-dissipating member having a single-layer or laminated structure can be provided without cutting or polishing.

【0011】さらに、前述の特許第3002642号公
報には、原料粉末中にα型窒化ケイ素粒子とともに含ま
れるβ型窒化ケイ素粒子の粒度を調整することにより、
強度・靱性に優れ、かつ30W/m・K以上の熱伝導率
を有する焼結体を作製することが可能であるといった利
点を有している。
Further, the aforementioned Japanese Patent No. 3002462 discloses that the particle size of β-type silicon nitride particles contained in raw material powder together with α-type silicon nitride particles is adjusted.
It has the advantage that a sintered body having excellent strength and toughness and having a thermal conductivity of 30 W / m · K or more can be produced.

【0012】しかしながら、特開2000−72552
号公報に記載の放熱部材では、高耐圧・高電流の大出力
のパワー半導体用基板として用いるには、熱伝導率が低
く半導体素子で発生する熱を迅速に系外へ放散せること
ができないといった問題がある。
However, Japanese Patent Application Laid-Open No. 2000-72552
In the heat dissipating member described in Japanese Patent Application Laid-Open No. H10-209, the heat conductivity of the semiconductor element cannot be quickly dissipated to the outside due to low thermal conductivity in order to use it as a high-power, high-current, high-output power semiconductor substrate. There's a problem.

【0013】また、特許第3002642号公報記載の
手法では、原料として用いる窒化ケイ素粉末の平均粒子
径が0.4μm〜0.7μmならびに累計90%径(d
90)が2.0〜5.0μmと小さく、このため、0.
5〜2.0mm厚さのシート成形体を作製する場合には、
粒子充填度ならびに成形体密度が低くなり、さらに乾燥
時にはクラックが生じる等、著しく成形性に劣るという
難点がある。
In the method described in Japanese Patent No. 3002462, the average particle diameter of the silicon nitride powder used as a raw material is 0.4 μm to 0.7 μm, and a total 90% diameter (d
90 ) is as small as 2.0 to 5.0 μm.
When producing a sheet molded body having a thickness of 5 to 2.0 mm,
There is a problem that the moldability is remarkably inferior, for example, the degree of filling of particles and the density of the compact are low, and cracks are generated during drying.

【0014】また、当該原料粉末を使用することにより
得られる焼結体については、ミクロ組織中の窒化ケイ素
粒子が中心部と周辺部が識別できるとの記載が有るが、
これは、添加したβ粒子が成長核として作用しているこ
とを示唆しているが、一方では、中心部と周辺部で組成
が異なることを示している。これは、プラズマエッチン
グでのエッチングレート差があることから、すなわち、
周辺部には粒成長過程で助剤成分等が固溶することを示
している。粒子中の不純物は熱伝導媒体であるフォノン
の散乱源となり、ひいては焼結体の熱伝導率を低下させ
る。したがって、実施例で説明されている様に、当該焼
結体の熱伝導率は高々70W/m・Kに止まっている。し
たがって、前述の第3002642号公報にある焼結体
と同様に、当該焼結体を高耐圧・高電流の大出力のパワ
ー半導体用基板として用いるには、放熱性に乏しいとい
った難点がある。
[0014] Further, with respect to a sintered body obtained by using the raw material powder, there is a description that silicon nitride particles in a microstructure can distinguish a central portion from a peripheral portion.
This suggests that the added β particles act as growth nuclei, but on the other hand, indicates that the composition is different between the central part and the peripheral part. This is because there is a difference in the etching rate in plasma etching, that is,
This indicates that auxiliary components and the like are dissolved in the peripheral portion during the grain growth process. The impurities in the particles serve as a scattering source of phonons, which are a heat conduction medium, and lower the thermal conductivity of the sintered body. Therefore, as described in the examples, the thermal conductivity of the sintered body is at most 70 W / m · K. Therefore, similarly to the sintered body disclosed in the above-mentioned Japanese Patent No. 3002462, there is a drawback in that the sintered body has poor heat dissipation when used as a high-voltage, high-current, high-output power semiconductor substrate.

【0015】本発明は、上記従来の問題に鑑みてなされ
たものであり、シート成形性に優れた粒度分布を有する
窒化ケイ素粉末およびこれを原料として用いた高強度・
高靱性でかつ優れた放熱性を有する焼結体を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a silicon nitride powder having a particle size distribution excellent in sheet formability and a high-strength,
An object is to provide a sintered body having high toughness and excellent heat dissipation.

【0016】[0016]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、用いる窒化ケイ素粉末の粒度分布、β型
窒化ケイ素粒子の割合ならびに形状、含有酸素量等の粉
末特性を規定することにより、安定して80W/m・K以
上の熱伝導率と十分な曲げ強度ならびに破壊靱性を有す
る窒化ケイ素質焼結体が得られることを見出し、本発明
に至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have specified powder characteristics such as the particle size distribution of silicon nitride powder to be used, the ratio and shape of β-type silicon nitride particles, and the oxygen content. As a result, the present inventors have found that a silicon nitride-based sintered body having a thermal conductivity of 80 W / m · K or more and sufficient bending strength and fracture toughness can be stably obtained, thereby leading to the present invention.

【0017】すなわち、上記課題を解決した本発明の窒
化ケイ素粉末は、体積割合で積算頻度が10%、50%
および90%での粒子径(d10)(d50)および(d
90)が、それぞれ0.5〜0.8μm、2.5〜4.
5μmおよび7.5〜10.0μmの粒度分布を有し、
かつ含有酸素量が0.01〜0.5wt%であることを特
徴とする。
That is, the silicon nitride powder of the present invention that has solved the above-mentioned problems has an integration frequency of 10% and 50% in volume ratio.
And the particle size (d 10 ) at 90% (d 50 ) and (d 50 )
90 ) are 0.5-0.8 μm and 2.5-4.
Having a particle size distribution of 5 μm and 7.5 to 10.0 μm,
In addition, the oxygen content is 0.01 to 0.5 wt%.

【0018】原料粉末の粒度分布は、特にシート成形性
ならび焼結体密度に大きく影響する。体積割合で積算頻
度が10%、50%および90%での粒子径(d10
(d )および(d90)が、それぞれ、前記範囲を外
れた場合には、適度の粒子充填度が得られず、充分な成
形体密度を得ることができなくなり、しいては焼結体密
度が低下する等の不具合を生じる。特に、(d50)が
2.5μm未満の場合、全窒化ケイ素粉末の累積粒子の
粒径が小さく、粒子充填度が低下して、シート成形後の
成形体シートにクラック等の不具合が生ずる。
The particle size distribution of the raw material powder greatly affects the sheet formability and the density of the sintered body. Particle size (d 10 ) at cumulative frequency of 10%, 50% and 90% in volume ratio
(D 5 0) and is (d 90), respectively, when outside the above range is not appropriate particle packing degree obtained, it becomes impossible to obtain sufficient green density, by force sintering Problems such as a decrease in body density occur. In particular, when (d 50 ) is less than 2.5 μm, the particle diameter of the cumulative particles of the total silicon nitride powder is small, the degree of particle filling is reduced, and defects such as cracks occur in the molded sheet after sheet molding.

【0019】また、(d90)が7.5μm未満の場
合、粒成長駆動力となる窒化ケイ素粉末の粒径差が小さ
くなり、焼成温度が1850℃〜1950℃で、保持時
間が比較的短時間である10時間以下で焼成した場合に
は、粒成長の度合いが小さく柱状粒子が発達したミクロ
組織が得られず、熱伝導率が80W/m・K未満となる。
When (d 90 ) is less than 7.5 μm, the difference in particle diameter of the silicon nitride powder, which is a driving force for grain growth, becomes small, the firing temperature is 1850 ° C. to 1950 ° C., and the holding time is relatively short. If the firing is performed for 10 hours or less, a microstructure in which the degree of grain growth is small and columnar particles are developed cannot be obtained, and the thermal conductivity is less than 80 W / m · K.

【0020】また、(d90)が10μm超の場合、シ
ート成形性は良好であるが、過度に大きな粒径の割合が
増大するので、焼結助剤粉末との反応が阻害され難焼結
性となり低密度の焼結体となる。このため、充分な強度
ならびに熱伝導率が得られない。したがって、
(d10)(d50)および(d90)が、それぞれ0.
5〜0.8μm、2.5〜4.5μmおよび7.5〜1
0.0μmの粒度分布を有することが望ましい。
When (d 90 ) is more than 10 μm, the sheet formability is good, but the ratio of the excessively large particle size increases, so that the reaction with the sintering aid powder is hindered and sintering is difficult. And becomes a low-density sintered body. Therefore, sufficient strength and thermal conductivity cannot be obtained. Therefore,
(D 10 ), (d 50 ) and (d 90 ) are each 0.
5-0.8 μm, 2.5-4.5 μm and 7.5-1
It is desirable to have a particle size distribution of 0.0 μm.

【0021】含有酸素量が0.01wt%未満では、焼結
助剤と反応するSiO成分が極端に少なくなり、充分
な液相量が得られず難焼結性を示すようになる。一方、
0.5wt%超の場合は、充分なSiO成分があるため
良好な焼結体密度が得られる反面、焼結体の第2のミク
ロ組織成分である熱伝導率の低い粒界相の量が過剰とな
ること、これに加えて、窒化ケイ素粒子中に残存する酸
素量が高くなることとなり、焼結体の熱伝導率が80W
/m・K未満となる。したがって、含有酸素量が0.0
1〜0.5wt%であることが好ましい。
When the oxygen content is less than 0.01% by weight, the amount of SiO 2 component which reacts with the sintering aid becomes extremely small, so that a sufficient liquid phase cannot be obtained and the sintering becomes difficult. on the other hand,
When the content is more than 0.5 wt%, a sufficient sintered body density can be obtained due to the presence of a sufficient SiO 2 component, but the amount of the grain boundary phase having a low thermal conductivity, which is the second microstructure component of the sintered body. Becomes excessive, and in addition, the amount of oxygen remaining in the silicon nitride particles increases, and the thermal conductivity of the sintered body becomes 80 W
/ M · K. Therefore, the oxygen content is 0.0
It is preferably 1 to 0.5 wt%.

【0022】また、本発明の窒化ケイ素粉末は、平均粒
子径(d50)以上の粒子中に存在するβ型窒化ケイ素
粒子の割合が1から50%であることを特徴とする。β
型窒化ケイ素粒子の割合が、1%未満では成長核として
の効果はあるものの、含有量が少ないために作用する成
長核の数が少なく、異常粒成長が起こりミクロ組織中に
大きな粒子を均一分散できなくなり、曲げ強度が低下す
る。また、50%超では成長核の核が多くなり、粒成長
の過程で粒子同士が互いに衝突するため粒成長阻害が起
こり、強度は維持できるが、発達した柱状粒子からなる
窒化ケイ素焼結体のミクロ組織を得られず、従来に比べ
て高い熱伝導率を実現困難となる。
Further, the silicon nitride powder of the present invention is characterized in that the ratio of β-type silicon nitride particles present in particles having an average particle diameter (d 50 ) or more is 1 to 50%. β
When the percentage of silicon nitride particles is less than 1%, the effect as growth nuclei is effective, but the content is small, so the number of acting nuclei is small, abnormal grain growth occurs, and large particles are uniformly dispersed in the microstructure. And the bending strength decreases. On the other hand, if it exceeds 50%, the number of nuclei of growth nuclei increases, and the particles collide with each other in the course of grain growth. As a result, the grain growth is inhibited, and the strength can be maintained. Since a microstructure cannot be obtained, it becomes difficult to achieve a higher thermal conductivity than in the past.

【0023】また、β型窒化ケイ素粒子の粒径が0.5
〜5μm、アスペクト比が2〜10、不純物としての含
有酸素量が0.5wt%以下であることを特徴とする。β
型窒化ケイ素粒子の粒径が0.5μm未満では、液相生
成過程において液相中に固溶してしまい、成長核として
の効果がなくなり、発達した柱状粒子からなるミクロ組
織が得られず、熱伝導率、靱性ともに著しく低下する。
一方、5μmを超えると成長核としての作用は有るもの
の、選択的な粒成長が促進され、粒子同士が互いに衝突
する頻度が増大して粒成長阻害を来たす。これにより柱
状粒子が衝突する近傍の粒界3重点で気孔が形成するた
めに密度低下が生じ、かつ粒子内には転位が形成され易
くなり、結果として強度、靱性の機械特性の低下、さら
には熱伝導率の低下が起こる。したがって、β型窒化ケ
イ素粒子の粒径が0.5〜5μmであることが好まし
い。
The β-type silicon nitride particles have a particle size of 0.5
.About.5 .mu.m, an aspect ratio of 2 to 10, and an oxygen content as an impurity of 0.5 wt% or less. β
If the particle size of the silicon nitride particles is less than 0.5 μm, it will form a solid solution in the liquid phase during the liquid phase generation process, lose its effect as a growth nucleus, and cannot obtain a microstructure composed of developed columnar particles, Both thermal conductivity and toughness are significantly reduced.
On the other hand, if it exceeds 5 μm, although it acts as a growth nucleus, selective grain growth is promoted, and the frequency of collision of particles with each other increases, thereby inhibiting grain growth. As a result, pores are formed at the grain boundary triple point in the vicinity of the collision of the columnar particles, causing a decrease in density, and dislocations are easily formed in the particles. As a result, the mechanical properties of strength and toughness decrease, and A decrease in thermal conductivity occurs. Therefore, the particle size of the β-type silicon nitride particles is preferably 0.5 to 5 μm.

【0024】β型窒化ケイ素粒子のアスペクト比が10
超の場合は、窒化ケイ素焼結体の緻密化が阻害され、結
果として、常温における3点曲げ強度が600MPa未
満となる。したがって、β型窒化ケイ素粒子のアスペク
ト比を10以下、好ましくは2〜10とすることが望ま
しい。
The aspect ratio of β-type silicon nitride particles is 10
If it is more than that, the densification of the silicon nitride sintered body is hindered, and as a result, the three-point bending strength at room temperature becomes less than 600 MPa. Therefore, the aspect ratio of the β-type silicon nitride particles is desirably 10 or less, preferably 2 to 10.

【0025】また、β型窒化ケイ素粒子の含有酸素量が
0.5wt%超の場合、ミクロ組織を構成する窒化ケイ素
粒子中に残存する酸素量が高くなる。窒化ケイ素粒子中
に含有される酸素により熱伝導媒体であるフォノンの散
乱が発生し、窒化ケイ素焼結体の熱伝導率が低下する。
したがって、β型窒化ケイ素粒子の含有酸素量は0.5
wt%以下であることが望ましい。
When the amount of oxygen contained in the β-type silicon nitride particles exceeds 0.5 wt%, the amount of oxygen remaining in the silicon nitride particles constituting the microstructure increases. Oxygen contained in the silicon nitride particles causes phonons, which are a heat conductive medium, to be scattered, thereby lowering the thermal conductivity of the silicon nitride sintered body.
Therefore, the oxygen content of the β-type silicon nitride particles is 0.5
Desirably, it is not more than wt%.

【0026】また、前記窒化ケイ素粉末からなる窒化ケ
イ素焼結体は、熱伝導率が80W/m・K以上、室温にお
ける3点曲げ強度が600MPa以上、破壊靱性が5M
Pa・m1/2以上であり高強度・高靱性かつ高熱伝導
性に富んでいる。当該焼結体を絶縁基板として用いた金
属回路基板は、耐衝撃性ならびに耐冷熱サイクル性に優
れている。
The silicon nitride sintered body made of the silicon nitride powder has a thermal conductivity of 80 W / m · K or more, a three-point bending strength at room temperature of 600 MPa or more, and a fracture toughness of 5M or more.
Pa · m 1/2 or more, rich in high strength, high toughness and high thermal conductivity. A metal circuit board using the sintered body as an insulating substrate is excellent in impact resistance and cold-heat cycle resistance.

【0027】[0027]

【発明の実施の形態】本発明の窒化ケイ素粉末の粒度分
布を調整する方法として、例えば、粒度分布の異なる粉
末を混合する方法、あるいは、イミド分解法により得た
前駆体のシリコンジイミドならびにアモルファス窒化ケ
イ素を結晶化させる際の温度、時間ならびに昇温速度等
を含めた熱処理条件制御による方法、さらにシリコン直
接窒化法あるいは酸化シリコン還元窒化法により得た塊
状窒化ケイ素を順次分級する方法を適用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method of adjusting the particle size distribution of the silicon nitride powder of the present invention, for example, a method of mixing powders having different particle size distributions, or a method of mixing silicon diimide and amorphous nitride of a precursor obtained by an imide decomposition method A method of controlling the heat treatment conditions including the temperature, time, and rate of temperature rise for crystallizing silicon, and a method of sequentially classifying bulk silicon nitride obtained by silicon direct nitridation or silicon oxide reduction nitridation can be applied.

【0028】粒度分布の異なる粉末を混合して粒度分布
を調整する際には、例えば、(d )(d50)および
(d90)が、1)0.2μm、0.5μmおよび1.0
μm、2)0.75μm、2.5μmおよび7.5μm、
3)0.75μm、2.5μmおよび7.5μmの粒度分
布を有する3種類の窒化ケイ素粉末を、それぞれ体積分
率が12%、70%および22%となるよう混合する。
[0028] When a mixture of different powder particle size distribution to adjust the particle size distribution, for example, is (d 1 0) (d 50 ) and (d 90), 1) 0.2μm , 0.5μm and 1 .0
μm, 2) 0.75 μm, 2.5 μm and 7.5 μm,
3) Three kinds of silicon nitride powders having a particle size distribution of 0.75 μm, 2.5 μm and 7.5 μm are mixed to have volume fractions of 12%, 70% and 22%, respectively.

【0029】また、β型窒化ケイ素粒子量の調整には、
(d50)が2.5〜4.5μmの粉末中で、(d50
以上に含まれる粒子の割合が1〜50%となるよう添加
混合する。用いるβ型窒化ケイ素粒子は、前述したよう
にミクロ組織の制御と、さらには高強度・高靱性および
高熱伝導率を得るうえで、形状ならびに含有酸素量を規
定することが肝要である。
In addition, for adjusting the amount of β-type silicon nitride particles,
(D 50 ) in a powder of 2.5-4.5 μm, wherein (d 50 )
Addition and mixing are performed so that the ratio of the particles contained above becomes 1 to 50%. As described above, it is important to determine the shape and oxygen content of the β-type silicon nitride particles for controlling the microstructure and obtaining high strength, high toughness and high thermal conductivity as described above.

【0030】ここで、用いたβ型窒化ケイ素粒子は、例
えば、窒化ケイ素粉末を窒素または窒素/水素の混合雰
囲気中で1400℃〜1950℃×5〜20時間熱処理
することにより製造できる。高いβ分率および低酸素化
を実現するために、熱処理条件を1800℃〜1900
℃×5〜20時間にすることがより好ましい。熱処理後
の含有酸素量を0.5wt%以下にするために、初期含有
酸素量をSiO量換算で2wt%未満とすることが好ま
しい。またFe、Al等の不純物量を極力少なく抑える
目的からイミド分解法による高純度原料の窒化ケイ素質
粉末の使用がより好ましい。
The β-type silicon nitride particles used here can be produced, for example, by subjecting silicon nitride powder to heat treatment at 1400 ° C. to 1950 ° C. × 5 to 20 hours in a nitrogen or nitrogen / hydrogen mixed atmosphere. In order to realize a high β fraction and low oxygen content, the heat treatment conditions are set to 1800 ° C. to 1900 ° C.
C. × 5 to 20 hours is more preferable. In order to reduce the oxygen content after the heat treatment to 0.5 wt% or less, it is preferable that the initial oxygen content be less than 2 wt% in terms of SiO 2 . From the viewpoint of minimizing the amount of impurities such as Fe and Al, it is more preferable to use a high-purity raw material silicon nitride powder by an imide decomposition method.

【0031】更に、シリコンジイミド等の窒化ケイ素の
前駆体およびアモルファス窒化ケイ素を結晶化する手法
により、本発明の粒度分布を有する窒化ケイ素粉末を調
整する方法では、窒素およびアンモニアを含む雰囲気
中、1200℃〜1500℃で加熱処理してα型窒化ケ
イ素粒子を生成させる。続いて1500℃以上の加熱処
理にて、β型窒化ケイ素粒子の生成量、形状ならびに含
有量を調整する。α型粒子の粒子径は、窒化ケイ素前駆
体ならびにアモルファス窒化ケイ素の粒子径に依存す
る。また、昇温時間の影響も受け易く、昇温時間が早い
場合は粒子径が小さく、また遅い場合には粒子径が大き
くすることができる。β型窒化ケイ素粒子の形状は加熱
処理温度に依存し、温度の上昇とともに粒子径が増大す
る。また、アスペクト比も熱処理温度の上昇とともに増
大する。したがって、前記粒度分布となるように熱処理
条件を制御することが重要である。
Further, according to the method for preparing a silicon nitride powder having a particle size distribution of the present invention by a method of crystallizing a precursor of silicon nitride such as silicon diimide and amorphous silicon nitride, the method comprises the steps of: A heat treatment is performed at a temperature of from 1500C to 1500C to generate α-type silicon nitride particles. Subsequently, the amount, shape and content of β-type silicon nitride particles are adjusted by a heat treatment at 1500 ° C. or higher. The particle size of the α-type particles depends on the particle sizes of the silicon nitride precursor and the amorphous silicon nitride. In addition, the particle size is easily affected by the temperature rise time, and the particle size can be small when the temperature rise time is short and large when the temperature rise time is slow. The shape of the β-type silicon nitride particles depends on the heat treatment temperature, and the particle size increases as the temperature increases. Further, the aspect ratio also increases as the heat treatment temperature increases. Therefore, it is important to control the heat treatment conditions so that the particle size distribution is obtained.

【0032】シリコン直接窒化法あるいは酸化シリコン
還元窒化法により得た塊状窒化ケイ素を順次分級する方
法では、得られる窒化ケイ素粉末中のFe、Alおよび
Ca等の不純物量は、原料となる金属シリコンおよび酸
化シリコンの純度に大きく依存しており、また、塊状の
窒化ケイ素は粉砕・分級工程を必要とするので、使用す
る装置からのこれら不純物元素が混入することが多い。
焼結体の熱伝導率向上のためにはこれら阻害要因となる
不純物の混入を抑えることが肝要である。
In the method of sequentially classifying the bulk silicon nitride obtained by the silicon direct nitridation method or the silicon oxide reduction nitridation method, the amount of impurities such as Fe, Al and Ca in the obtained silicon nitride powder depends on the amount of metallic silicon and Since it largely depends on the purity of the silicon oxide, and the bulk silicon nitride requires a pulverizing / classifying step, these impurity elements from the equipment to be used are often mixed.
In order to improve the thermal conductivity of the sintered body, it is important to suppress the incorporation of these impurities that cause an obstacle.

【0033】本発明の窒化ケイ素焼結体からなる基板
は、高強度、高靱性ならびに高熱伝導率の特徴を生かし
て、パワ−半導体用基板またはマルチチップモジュ−ル
用基板などの各種基板、ペルチェ素子用熱伝板、あるい
は各種発熱素子用ヒ−トシンクなどの電子部品用部材に
好適である。
The substrate made of the silicon nitride sintered body of the present invention is characterized by high strength, high toughness and high thermal conductivity, and various substrates such as a substrate for a power semiconductor or a substrate for a multi-chip module, and a Peltier. It is suitable for electronic component members such as a heat transfer plate for an element or a heat sink for various heating elements.

【0034】本発明の窒化ケイ素基板により半導体素子
用基板を構成した場合、半導体素子の作動に伴う繰り返
しの冷熱サイクルによる基板のクラックの発生が抑制さ
れ、耐熱衝撃性ならびに耐冷冷熱サイクル性が著しく向
上し、耐久性ならびに信頼性に優れたものを提供でき
る。また、高出力化および高集積化を指向する半導体素
子を搭載した場合でも熱抵抗特性の劣化が少なく、かつ
優れた放熱特性を発揮する。また本発明の窒化ケイ素基
板による優れた機械的特性を反映してそれ自体が構造部
材を兼ねることができるので回路基板構造を簡略化でき
るという実用性に富んだ利点を有する。
When a substrate for a semiconductor device is constituted by the silicon nitride substrate of the present invention, the occurrence of cracks in the substrate due to the repetitive cooling / heating cycles accompanying the operation of the semiconductor device is suppressed, and the thermal shock resistance and the cooling / cooling / heat cycling resistance are remarkably improved. In addition, a product excellent in durability and reliability can be provided. Further, even when a semiconductor element for high output and high integration is mounted, deterioration of thermal resistance characteristics is small and excellent heat radiation characteristics are exhibited. In addition, since the silicon nitride substrate of the present invention can also serve as a structural member by reflecting the excellent mechanical properties of the silicon nitride substrate, it has a practical advantage that the circuit board structure can be simplified.

【0035】また、本発明の窒化ケイ素質焼結体は、上
述の電子部品用部材以外に熱衝撃および熱疲労の耐熱抵
抗特性が要求される材料に幅広く利用できる。構造用部
材として、各種の熱交換器部品や熱機関用部品、アルミ
ニウムや亜鉛等の金属溶解の分野で用いられるヒーター
チューブ、ストークス、ダイカストスリーブ、溶湯攪拌
用プロペラ、ラドル、あるいは熱電対保護管等に適用で
きる。また、アルミニウム、亜鉛等の溶融金属めっきラ
インで用いられるシンクロール、サポートロール、軸
受、あるいは軸等に適用することにより、急激な加熱や
冷却に対して耐割れ性に富んだ部材となり得る。また、
鉄鋼あるいは非鉄の加工分野では、圧延ロール、スキー
ズロール、ガイドローラ、線引きダイス、あるいは工具
用チップ等に用いれば、被加工物との接触時の放熱性が
良好なため、耐熱疲労性および耐熱衝撃性を改善するこ
とができ、これにより摩耗が少なく、熱応力割れを生じ
にくくできる。
Further, the silicon nitride sintered body of the present invention can be widely used for materials requiring heat resistance characteristics such as thermal shock and thermal fatigue, in addition to the above-mentioned members for electronic parts. Structural members include various heat exchanger parts and heat engine parts, heater tubes used in the field of melting metals such as aluminum and zinc, Stokes, die-cast sleeves, propellers for molten metal agitation, ladles, thermocouple protection tubes, etc. Applicable to Further, by applying the present invention to a sink roll, a support roll, a bearing, a shaft, or the like used in a hot-dip metal plating line for aluminum, zinc, or the like, a member having excellent crack resistance against rapid heating and cooling can be obtained. Also,
In the field of steel or non-ferrous processing, when used for rolling rolls, squeeze rolls, guide rollers, drawing dies, or tool tips, etc., it has good heat dissipation when it comes into contact with the workpiece, so it can withstand heat fatigue and heat resistance. The impact resistance can be improved, thereby reducing abrasion and making thermal stress cracking less likely to occur.

【0036】さらに、スパッタターゲット部材にも適用
でき、例えば磁気記録装置のMRヘッド、GMRヘッ
ド、またはTMRヘッドなどに用いられる電気絶縁膜の
形成や、熱転写プリンターのサーマルヘッドなどに用い
られる耐摩耗性皮膜の形成に好適である。スパッタして
得られる被膜は、本質的に高熱伝導特性を持つととも
に、スパッタレートも十分高くでき、被膜の電気的絶縁
耐圧が高いものとなる。このため、このスパッタターゲ
ットで形成したMRヘッド、GMRヘッド、またはTM
Rヘッド用の電気絶縁性被膜は高熱伝導ならびに高耐電
圧の特性を有するので、素子の高発熱密度化や絶縁性被
膜の薄膜化が図れる。また、このスパッタターゲットで
形成したサ−マルヘッド用の耐摩耗性被膜は、窒化ケイ
素本来の特性により耐摩耗性が良好であることはもとよ
り、高熱伝導性のため熱抵抗が小さくできるので印字速
度を高めることができる。
Further, the present invention can be applied to a sputter target member, for example, for forming an electric insulating film used for an MR head, a GMR head or a TMR head of a magnetic recording apparatus, and for abrasion resistance used for a thermal head of a thermal transfer printer. Suitable for forming a film. The film obtained by sputtering has inherently high thermal conductivity, a sufficiently high sputter rate, and a high electric breakdown voltage of the film. Therefore, an MR head, GMR head, or TM
Since the electrical insulating film for the R head has characteristics of high thermal conductivity and high withstand voltage, it is possible to increase the heat generation density of the element and to reduce the thickness of the insulating film. In addition, the wear-resistant coating for a thermal head formed with this sputter target has not only good wear resistance due to the inherent characteristics of silicon nitride but also high thermal conductivity, so that thermal resistance can be reduced. Can be enhanced.

【0037】[0037]

【実施例】以下、実施例により本発明を説明するが、そ
れら実施例により本発明が限定されるものではない。 (実施例1)(d10)(d50)および(d90)が、
1)0.2μm、0.5μmおよび1.0μm、2)0.
75μm、2.5μmおよび7.5μm、3)0.75μ
m、2.5μmおよび7.5μmの粒度分布が異なる3種
類の窒化ケイ素粉末を、それぞれ体積分率が、12%、
70%および22%となるよう窒化ケイ素粉末を調整し
た。また、β型窒化ケイ素粒子量の調整には、
(d50)が2.5μm以上に含まれる粒子の割合が30
%となるよう添加混合する。ここでβ型窒化ケイ素粒子
は、前記製造方法により作製したものを用いた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 (d 10 ), (d 50 ) and (d 90 )
1) 0.2 μm, 0.5 μm and 1.0 μm, 2) 0.
75 μm, 2.5 μm and 7.5 μm, 3) 0.75 μm
Three types of silicon nitride powders having different particle size distributions of m, 2.5 μm, and 7.5 μm were respectively obtained by a volume fraction of 12%,
The silicon nitride powder was adjusted to 70% and 22%. In addition, to adjust the amount of β-type silicon nitride particles,
The ratio of particles having (d 50 ) of 2.5 μm or more is 30
% And mixed. Here, the β-type silicon nitride particles used were those produced by the above-described production method.

【0038】得られた窒化ケイ素粉末の粒度分布はレー
ザー回折散乱型粒度分布測定装置(堀場製作所製、LA
−920)により湿式法により評価した。溶媒は蒸留水
を、分散剤は2wt%のメタクリル酸ナトリウム水溶液を
用い、水中での窒化ケイ素屈折率は、実数部1.65、
虚数部0.2であることから、当該装置の屈折率選択メ
ニューよりこれらの数値に近い、実数部1.70、虚数
部0.1を選択した。また、含有酸素量は、窒素/酸素
同時分析計(LECO社 TC436)を用い測定した。
The particle size distribution of the obtained silicon nitride powder was measured using a laser diffraction scattering type particle size distribution analyzer (LA, manufactured by Horiba, Ltd.).
-920) by the wet method. The solvent used was distilled water, the dispersant used was a 2 wt% aqueous solution of sodium methacrylate, and the refractive index of silicon nitride in water was 1.65 real parts.
Since the imaginary part is 0.2, a real part 1.70 and an imaginary part 0.1 which are close to these numerical values are selected from the refractive index selection menu of the device. The oxygen content was measured using a simultaneous nitrogen / oxygen analyzer (TC436, manufactured by LECO).

【0039】また、平均粒子径(d50)以上の粒子中
に存在するβ型窒化ケイ素粒子の割合(β分率)は、以
下の方法で求めた。すなわち、得られた窒化ケイ素粉末
の粉末量500gを2Lの樹脂ポットに挿入し、これに
粉末量に対して分散剤(レオガードGP)2wt%を添加し
た1.0Lのエタノールを加え、10φの樹脂ボールを
用いて、5時間ボールミル混合して窒化ケイ素スラリー
とした。得られた窒化ケイ素スラリーは、遠心分級器に
より所定の分級条件で分級点が、粒度分布測定で求めた
(d50)となるよう湿式分級を行った。分級点の調整
は装置の回転数で制御した。更に精度を高めるためこの
作業を3回繰り返した。得られた窒化ケイ素分級スラリ
ーを、乾燥後目開き150μmの篩を用いて造粒し、Cu
―Kα線を用いたX線回折強度比から式(1)により求
めた。 β分率(%)= {(Iβ(101)+Iβ(210))/(Iβ(101)+Iβ(210)+Iα(102)+Iα(20 1) )}×100 …… (1) Iβ(101) :β型Siの(101)面回折ピ
ーク強度 Iβ(210) :β型Siの(210)面回折ピ
ーク強度 Iα(102) :α型Siの(102)面回折ピ
ーク強度 Iα(210) :α型Siの(210)面回折ピ
ーク強度
The ratio (β fraction) of β-type silicon nitride particles present in particles having an average particle diameter (d 50 ) or more was determined by the following method. That is, 500 g of the obtained silicon nitride powder was inserted into a 2 L resin pot, and 1.0 L of ethanol to which 2 wt% of a dispersant (Leoguard GP) was added based on the amount of the powder was added. Using a ball, ball mill mixing was performed for 5 hours to obtain a silicon nitride slurry. The obtained silicon nitride slurry was subjected to wet classification with a centrifugal classifier under predetermined classification conditions such that the classification point was (d 50 ) determined by particle size distribution measurement. The adjustment of the classification point was controlled by the rotation speed of the apparatus. This operation was repeated three times to further increase the accuracy. The obtained silicon nitride classified slurry was dried, and then granulated using a sieve having an opening of 150 μm.
-It was determined from the X-ray diffraction intensity ratio using Kα radiation according to the formula (1). beta fraction (%) = {(I β (101) + I β (210)) / (I β (101) + I β (210) + I α (102) + I α (20 1))} × 100 ...... (1) I β ( 101): β -type Si 3 N 4 in (101) plane diffraction peak intensity I beta (210): beta-type Si 3 of N 4 (210) plane diffraction peak intensity I alpha (102 ): alpha-type Si 3 (102 of N 4) plane diffraction peak intensity I α (210): (210 of alpha-type Si 3 N 4) plane diffraction peak intensity

【0040】β型窒化ケイ素粒子の粒径、およびアスペ
クト比は、走査型電子顕微鏡(日立製作所製FE-SEM S4
500)により直接観察倍率×2000倍、観察視野20
0μm×500μm中の粉末500個を評価対象とし、ア
スペクト比が2以上である柱状の窒化ケイ素粒子を無作
為に選定して画像解析装置により最小径と最大径を測定
し、その平均値を求めて評価した。また、β型窒化ケイ
素粒子中の酸素量は、前記(1)式を用いて求めた全粉
末のβ型粒子の割合と、全粉末中の含有酸素量を乗じた
数値を求めた。図1に得られた窒化ケイ素粉末の粒度分
布評価結果を、また、図2に調整した窒化ケイ素粉末の
形状観察像を示す。当該粉末の10%、50%および9
0%累積径(d10、d50およびd90)は、それぞ
れ、0.72μm、3.1μmおよび8.6μmであり、
酸素量は0.45wt%である。また、(d50)以上に
含まれるβ型窒化ケイ素粒子の割合が30%であり、粒
子径が3.5μm、アスペクト比が8.5および酸素量
が0.2wt%である。
The particle diameter and the aspect ratio of the β-type silicon nitride particles were determined by a scanning electron microscope (FE-SEM S4 manufactured by Hitachi, Ltd.).
500), direct observation magnification x 2000 times, observation visual field 20
500 powders in 0 μm × 500 μm were evaluated, columnar silicon nitride particles having an aspect ratio of 2 or more were randomly selected, the minimum and maximum diameters were measured by an image analyzer, and the average value was determined. Was evaluated. The amount of oxygen in the β-type silicon nitride particles was determined by multiplying the ratio of the β-type particles in all the powders obtained by using the formula (1) and the oxygen content in the entire powders. FIG. 1 shows the particle size distribution evaluation results of the obtained silicon nitride powder, and FIG. 2 shows the observed shape image of the adjusted silicon nitride powder. 10%, 50% and 9 of the powder
The 0% cumulative diameters (d 10 , d 50 and d 90 ) are 0.72 μm, 3.1 μm and 8.6 μm, respectively,
The oxygen content is 0.45 wt%. Further, the proportion of β-type silicon nitride particles contained in (d 50 ) or more is 30%, the particle size is 3.5 μm, the aspect ratio is 8.5, and the oxygen content is 0.2 wt%.

【0041】次に、当該窒化ケイ素粉末を用い、焼結助
剤として平均粒子径0.2μmのMgO粉末を3wt%、
および平均粒子径0.4μmのYO粉末を1wt%配合
し、次いで、アミン系の分散剤を2wt%添加したトルエ
ン・ブタノール溶液を満たしたボールミルの樹脂製ポッ
ト中に作製した混合粉末および粉砕媒体の窒化ケイ素製
ボールを投入し、48時間湿式混合した。次いで、前記
ポット中の混合粉末100重量部に対しポリビニル系の
有機バインダーを15重量部および可塑剤(ジメチルフ
タレ−ト)を5重量部添加し、次いで48時間湿式混合
しシート成形用スラリーを得た。この成形用スラリーの
粘度が100ポイズになるよう真空脱気にて溶媒量を調
整後、ドクターブレード法により厚みが0.7mm〜
1.5mmとなる成形体シートを成形した。作製した成
形体シートに対して、外観検査を行い、クラックの有無
を調べた。そして、この成形体シートを60mm×70
mmに切断し、寸法、平均厚さならびに重量を測定して
成形体密度を算出した。さらにこの成形体シートを温度
120℃、プレス圧100kgf/cmで積層圧着し、
60mm×70mm×6tの積層成形体を得た。
Next, using the silicon nitride powder, 3 wt% of MgO powder having an average particle diameter of 0.2 μm as a sintering aid,
And 1 wt% of Y 2 O 3 powder having an average particle diameter of 0.4 μm, and then mixed powder prepared in a resin pot of a ball mill filled with a toluene / butanol solution containing 2 wt% of an amine-based dispersant; A ball made of silicon nitride as a pulverizing medium was charged and wet-mixed for 48 hours. Next, 15 parts by weight of a polyvinyl-based organic binder and 5 parts by weight of a plasticizer (dimethyl phthalate) were added to 100 parts by weight of the mixed powder in the pot, and then wet-mixed for 48 hours to obtain a sheet forming slurry. . After adjusting the amount of the solvent by vacuum degassing so that the viscosity of the molding slurry becomes 100 poise, the thickness is 0.7 mm to
A molded sheet having a size of 1.5 mm was formed. An appearance inspection was performed on the produced molded body sheet to check for cracks. Then, this molded body sheet is 60 mm × 70
mm, and the dimensions, average thickness and weight were measured to calculate the density of the compact. Further, the molded sheet is laminated and pressed at a temperature of 120 ° C. and a press pressure of 100 kgf / cm 2 ,
A laminated molded product of 60 mm × 70 mm × 6 t was obtained.

【0042】次いで、この積層成形体を空気中400〜
600℃で2〜5時間加熱することにより、予め添加し
有機バインダー成分を十分に脱脂(除去)した。次いで
脱脂体を0.9MPa(9気圧)の窒素雰囲気中で18
50℃×5〜10時間の焼成を行い、その後室温に冷却
し、窒化ケイ素質焼結体を得た。更に、100W/m・K
以上の高熱伝導率化には、高温の1900℃×10時間
および1950℃×5時間での焼成、あるいは同窒素雰
囲気中で1900℃×20時間の熱処理を行った。
Next, the laminated molded product was placed in air at 400 to
By heating at 600 ° C. for 2 to 5 hours, the organic binder component added in advance was sufficiently degreased (removed). Next, the degreased body was cooled to 18 MPa in a nitrogen atmosphere of 0.9 MPa (9 atm).
Firing was performed at 50 ° C. × 5 to 10 hours, and then cooled to room temperature to obtain a silicon nitride sintered body. Furthermore, 100W / m · K
In order to increase the thermal conductivity as described above, firing was performed at a high temperature of 1900 ° C. × 10 hours and 1950 ° C. × 5 hours, or heat treatment was performed at 1900 ° C. × 20 hours in the same nitrogen atmosphere.

【0043】次に得られた窒化ケイ素質焼結体から、直
径10mm×厚さ3mmの熱伝導率および密度測定用の
試験片、ならびに縦3mm×横4mm×長さ40mmの
曲げ試験片を採取した。密度はマイクロメ−タにより寸
法を測定し、重量を測定し算出した。また、相対密度
(理論密度に対する比率)も求めた。熱伝導率はレーザ
ーフラッシュ法により常温での比熱および熱拡散率を測
定し熱伝導率を算出した。3点曲げ強度および破壊靱性
は、それぞれ常温にてJIS R1606およびJIS
R1607に準拠し測定を行った。以上の製造条件の
概略および評価結果を、表1、2の試料No.1〜8に示
す。
Next, from the obtained silicon nitride sintered body, a test piece of 10 mm in diameter × 3 mm in thickness for measuring thermal conductivity and density and a bending test piece of 3 mm in length × 4 mm in width × 40 mm in length were collected. did. The density was calculated by measuring the size with a micrometer and measuring the weight. The relative density (ratio to the theoretical density) was also determined. The thermal conductivity was calculated by measuring the specific heat and the thermal diffusivity at room temperature by a laser flash method. The three-point bending strength and fracture toughness were measured at room temperature according to JIS R1606 and JIS, respectively.
The measurement was performed according to R1607. The outlines of the above manufacturing conditions and the evaluation results are shown in Samples 1 to 8 of Tables 1 and 2.

【0044】(比較例1)表1に記載の製造条件とした
以外は実施例1と同様にして、粒子径(d10
(d50)および(d90)ならびに含有酸素量の窒化ケ
イ素粉末特性が異なるもの、また、平均粒子径
(d50)以上の粒子中に存在するβ型窒化ケイ素粒子
の割合、当該粒子の粒径、アスペクト比、含有酸素量な
どのβ型粉末の粉末特性が異なる窒化ケイ素質粉末を作
製した。次いで得られた窒化ケイ素質粉末を用いた窒化
ケイ素スラリーを調整して成形体シートを得、クラック
の有無ならびに成形体密度のシート成形性を評価した。
さらに良好な成形体シートが得られた試料については、
焼結体の材料特性も評価した。以上の製造条件の概略お
よび評価結果を、表1、2の試料No.11〜24に示
す。なお、シート成形性に不具合の生じたNo.11〜1
5については、材料特性評価は実施していない。
Comparative Example 1 The particle diameter (d 10 ) was the same as in Example 1 except that the production conditions described in Table 1 were used.
(D 50 ) and (d 90 ) and those having different silicon nitride powder characteristics in terms of oxygen content, the ratio of β-type silicon nitride particles present in particles having an average particle diameter (d 50 ) or more, the particle size of the particles Silicon nitride powders having different powder characteristics such as diameter, aspect ratio, and oxygen content were prepared. Then, a silicon nitride slurry using the obtained silicon nitride-based powder was adjusted to obtain a molded body sheet, and the presence or absence of cracks and the sheet moldability of the molded body density were evaluated.
For the sample from which a better molded sheet was obtained,
The material properties of the sintered body were also evaluated. The outline of the above manufacturing conditions and the evaluation results are shown in Samples Nos. 11 to 24 of Tables 1 and 2. In addition, No. 11 to 1 in which the sheet formability had a problem
For No. 5, material property evaluation was not performed.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】表1および表2の試料No.1〜8から、以
下の知見が得られた。体積割合で積算頻度が10%、5
0%および90%での粒子径(d10)(d50)および
(d 90)が、それぞれ0.5〜0.8μm、2.5〜
4.5μmおよび7.5〜10.0μmの粒度分布を有
し、かつ含有酸素量が0.01〜0.5wt%であり、平
均粒子径(d50)以上の粒子中に存在するβ型窒化ケ
イ素粒子の割合が1から50%で、当該粒子の粒径が
0.5〜5μm、アスペクト比が2〜10、不純物とし
ての含有酸素量が0.5wt%以下である窒化ケイ素粉末
を原料として得られた窒化ケイ素焼結体は、常温におけ
る熱伝導率が80W/m・K以上になり、かつ常温にお
ける3点曲げ強度が600MPa以上、破壊靭性が5M
Pa・m /2以上になる。一方、従来技術による窒化
ケイ素質焼結体の熱伝導率は40W/m・K程度であっ
た。
From the sample Nos. 1 to 8 in Tables 1 and 2,
The following findings were obtained. 10% integration frequency by volume ratio, 5
Particle size at 0% and 90% (d10) (D50)and
(D 90) Are 0.5-0.8 μm, 2.5-
Has particle size distribution of 4.5 μm and 7.5 to 10.0 μm
And the oxygen content is 0.01 to 0.5 wt%,
Uniform particle size (d50) Β-type nitride existing in the above particles
The ratio of the i-particles is 1 to 50%, and the particle size of the particles is
0.5-5 μm, aspect ratio 2-10, impurities
Nitride powder containing less than 0.5 wt% oxygen
The silicon nitride sintered body obtained from
Thermal conductivity of 80 W / m · K or more and at room temperature
Flexural toughness is 600MPa or more and fracture toughness is 5M
Pa ・ m1 / 2That is all. On the other hand, nitriding by the prior art
The thermal conductivity of the silicon-based sintered body is about 40 W / m · K.
Was.

【0048】これに対し、表1、2の比較例1の試料N
o.11〜24から以下の知見が得られた。表1中での成
形体密度について、成形体密度不良とは1.4g/cm3
未満のものを示し、この数値未満では、焼成後の焼結体
密度はいずれの場合にも90%以下となった。
On the other hand, Sample N of Comparative Example 1 in Tables 1 and 2
o. The following findings were obtained from 11 to 24. Regarding the compact density in Table 1, "poor compact density" means 1.4 g / cm 3.
Below this value, the sintered body density after firing was 90% or less in each case.

【0049】No.11では、窒化ケイ素粒子の(d10)が
0.5μm未満であり、微細粒子の割合が増えて、成形
性が悪くなり成形体シートにクラックが生じた。No.1
2では、(d10)が0.8μm超であり、高い充填密度
が得られる粒度分布の範囲から外れたために、成形性が
悪くなり成形体密度不良が生じた。またNo.13では、
窒化ケイ素粒子の(d50)が2.5μm未満であり、微
細粒子の割合が増えて、成形性が悪くなり成形体シート
にクラックが生じた。No.14では、(d50)が4.5
μm超であり、高い充填密度が得られる粒度分布の範囲
から外れたために、成形性が悪くなり成形体密度不良が
生じた。
In No. 11, the (d 10 ) of the silicon nitride particles was less than 0.5 μm, the proportion of fine particles increased, the moldability deteriorated, and cracks occurred in the molded sheet. No.1
In No. 2, (d 10 ) was more than 0.8 μm, which was out of the range of the particle size distribution at which a high packing density was obtained, so that the moldability was deteriorated and the molded article density was poor. In No.13,
The (d 50 ) of the silicon nitride particles was less than 2.5 μm, the proportion of fine particles increased, the moldability deteriorated, and cracks occurred in the molded sheet. In No. 14, (d 50 ) is 4.5
Since it was more than μm and was out of the range of the particle size distribution at which a high packing density was obtained, the moldability was deteriorated and a molded article density defect occurred.

【0050】No.15では、窒化ケイ素粒子の(d90
が7.5μm未満であり、この粉末からなる成形体シー
トを保持時間が10時間以下の比較的短時間の焼成で
は、焼結体の熱伝導率は80W/m・K未満となった。N
o.16では、(d90)が10.0μm超であり、粗大粒
子が混在しているために難焼結性となり焼結体密度が8
9.1%と低く、このため熱伝導率、強度および破壊靱
性が著しく劣化した。No.17では、窒化ケイ素粒子中
の含有酸素量が0.01wt%未満であり、焼結助剤成分
と反応して液相を生成するためのSiO成分が極度に
低下するために、得られた焼結体の密度は、80.0%
と極めて低く、このため熱伝導率、曲げ強度および破壊
靱性が著しく劣化した。No.18では、窒化ケイ素粒子
中の含有酸素量が0.5wt%超であり、助剤成分と反応
して液相を生成するためのSiO 成分が過度に存在す
るため、ミクロ組織中の第2成分である低熱伝導相の粒
界相の割合が増大するため、良好な焼結体の密度が得ら
れたものの、熱伝導率は80W/m・K未満となった。
In No. 15, the silicon nitride particles (d90)
Is less than 7.5 μm, and
Baking for a relatively short time with a holding time of 10 hours or less
The thermal conductivity of the sintered body was less than 80 W / m · K. N
In o.16, (d90) Is larger than 10.0 μm,
And the density of the sintered body is 8
9.1%, so thermal conductivity, strength and fracture toughness
Remarkably deteriorated. In No. 17, in silicon nitride particles
Oxygen content of less than 0.01 wt%, sintering aid component
To form a liquid phase by reacting with2Ingredients are extremely
Due to the decrease, the density of the obtained sintered body is 80.0%
And extremely low, thus thermal conductivity, bending strength and fracture
The toughness deteriorated significantly. In No. 18, silicon nitride particles
Oxygen content is more than 0.5wt% and reacts with auxiliary components
To produce a liquid phase 2Excessive ingredients
Therefore, the particles of the low thermal conductive phase, which is the second component in the microstructure,
Good density of sintered body is obtained because the ratio of interphase increases.
However, the thermal conductivity was less than 80 W / m · K.

【0051】No.19では、(d50)以上におけるβ型
窒化ケイ素粒子の割合が、1%未満であり、焼結体ミク
ロ組織中に異常粒成長によって粗大柱状粒子が生成した
ため、曲げ強度が520MPaと低い値となった。ま
た、No.20では、(d50)以上におけるβ型窒化ケイ
素粒子の割合が50%超であり、成長核とし作用するβ
型窒化ケイ素粒子数が多く、粒成長過程で粒成長阻害が
起こり、柱状粒子が充分に発達したミクロ組織が得られ
ないため、熱伝導率は80W/m・K未満となった。No.
21では、β型窒化ケイ素粒子の粒径が0.5μm未満
と小さく、成長核として作用しないために、柱状粒子が
充分に発達したミクロ組織が得られないため、熱伝導率
ならびに破壊靱性が低く、それぞれ、60W/m・Kな
らびに4.5MPa・m1/2となった。
In No. 19, the ratio of β-type silicon nitride particles in (d 50 ) or more was less than 1%, and coarse columnar particles were generated in the microstructure of the sintered body due to abnormal grain growth. The value was as low as 520 MPa. In No. 20, the ratio of β-type silicon nitride particles in (d 50 ) or more was more than 50%, and β acting as a growth nucleus
Since the number of silicon nitride particles was large, grain growth was inhibited during the grain growth process, and a microstructure in which columnar grains were sufficiently developed could not be obtained, the thermal conductivity was less than 80 W / m · K. No.
In No. 21, since the particle size of β-type silicon nitride particles is as small as less than 0.5 μm and does not act as a growth nucleus, a microstructure in which columnar particles are sufficiently developed cannot be obtained. , Respectively, and became 60 W / m · K and 4.5 MPa · m 1/2 , respectively.

【0052】また、No.22およびNo.23では、それぞ
れ、β型窒化ケイ素粒子の粒径が5μm超、およびアス
ペクト比が10超であり、粗大なβ型粒子が成長核とな
るため、難焼結性となり、核から成長した柱状粒子の3
重点に残留気孔が形成され、密度が著しく低下した。こ
のため、焼結体の熱伝導率、曲げ強度および破壊靱性
は、いずれも低い値となった。No.24では、β型窒化
ケイ素粒子中の酸素量が0.5wt%超であり、ミクロ組
織中の窒化ケイ素粒子中に固溶する酸素量が多くなり、
熱伝導率は70W/m・Kに低下した。
In Nos. 22 and 23, the β-type silicon nitride particles have a particle size of more than 5 μm and an aspect ratio of more than 10, and coarse β-type particles serve as growth nuclei. It becomes sinterable and 3 of columnar particles grown from the core
Residual pores were formed at the points and the density was significantly reduced. Therefore, the thermal conductivity, bending strength, and fracture toughness of the sintered body were all low values. In No. 24, the amount of oxygen in the β-type silicon nitride particles exceeds 0.5 wt%, and the amount of oxygen dissolved in the silicon nitride particles in the microstructure increases,
Thermal conductivity dropped to 70 W / mK.

【0053】(実施例2)実施例1で得た厚さ0.8m
mの成形体シートを空気中400〜600℃で2〜5時
間加熱することにより、予め添加し有機バインダー成分
を十分に脱脂(除去)した。次いで脱脂体を0.9MP
a(9気圧)の窒素雰囲気中で1850℃×5時間の焼
成を行い、次いで同窒素雰囲気中で1900℃×20時
間の熱処理を行い、その後室温に冷却して焼結体を得
た。得られた窒化ケイ素質焼結体シートに機械加工を施
し縦50mm×横50mm×厚さ0.6mmの半導体装
置用の基板を製造した。
(Example 2) The thickness 0.8 m obtained in Example 1
m was heated in air at 400 to 600 ° C. for 2 to 5 hours to sufficiently add and degrease (remove) the organic binder component in advance. Next, the degreased body is 0.9MP
A firing was performed at 1850 ° C. × 5 hours in a nitrogen atmosphere of a (9 atm), then a heat treatment was performed at 1900 ° C. × 20 hours in the same nitrogen atmosphere, and then cooled to room temperature to obtain a sintered body. The obtained silicon nitride sintered body sheet was machined to produce a semiconductor device substrate having a length of 50 mm, a width of 50 mm and a thickness of 0.6 mm.

【0054】この窒化ケイ素質焼結体製基板を用いて図
3に示す回路基板を作製した。窒化ケイ素基板32は、
表1および表2のNo.3に示す曲げ強度750MPa、
破壊靱性6.4MPa・m1/2、および熱伝導率10
5W/m・Kのものである。
A circuit board shown in FIG. 3 was manufactured using the silicon nitride sintered body. The silicon nitride substrate 32
Flexural strength 750 MPa shown in No. 3 of Table 1 and Table 2,
Fracture toughness of 6.4 MPa · m 1/2 and thermal conductivity of 10
5 W / m · K.

【0055】図3において、回路基板30は作製した前
記縦50mm×横50mm×厚さ0.6mm寸法の窒化
ケイ素焼結体製基板32の表面に銅製回路板31を設
け、前記基板32の裏面に銅板33をろう材34により
接合して構成されている。この回路基板30に対し、3
点曲げ強度の評価および耐熱サイクル試験を行った。そ
の結果、曲げ強度が600MPa以上と大きく、回路基
板30の実装工程における締め付け割れ、およびはんだ
付け工程時の熱応力に起因するクラックの発生する頻度
がほぼ見られなくなり、回路基板を使用した半導体装置
の製造歩留まりを大幅に改善できることが実証された。
また、耐熱サイクル試験は、−40℃での冷却を20
分、室温での保持を10分および180℃における加熱
を20分とする昇温/降温サイクルを1サイクルとし、
これを繰り返し付与し、基板部にクラック等が発生する
までのサイクル数を測定した。その結果、1000サイ
クル経過後においても窒化ケイ素焼結体製基板32の割
れや銅製回路板31ならびに銅製板33の剥離はなく、
優れた耐久性と信頼性を兼備することが確認された。ま
た、1000サイクル経過後においても耐電圧特性の低
下は発生しなかった。
Referring to FIG. 3, a circuit board 30 is provided with a copper circuit board 31 on the surface of a silicon nitride sintered body 32 having dimensions of 50 mm × 50 mm × 0.6 mm. And a copper plate 33 joined by a brazing material 34. For this circuit board 30, 3
Evaluation of point bending strength and heat cycle test were performed. As a result, the bending strength is as large as 600 MPa or more, and the frequency of occurrence of cracks due to tightening cracks in the mounting process of the circuit board 30 and thermal stress in the soldering process is almost not observed, and the semiconductor device using the circuit board It has been proved that the production yield can be greatly improved.
In the heat cycle test, cooling at −40 ° C.
A heating / cooling cycle in which holding at room temperature for 10 minutes and heating at 180 ° C. for 20 minutes are one cycle,
This was repeatedly applied, and the number of cycles until cracks or the like occurred in the substrate portion was measured. As a result, even after the lapse of 1000 cycles, there was no cracking of the silicon nitride sintered body substrate 32 or peeling of the copper circuit board 31 and the copper plate 33,
It was confirmed that it had both excellent durability and reliability. Also, even after 1000 cycles, the withstand voltage characteristics did not decrease.

【0056】[0056]

【発明の効果】以上記述の通り、本発明の窒化ケイ素粉
末は、シート成形時のクラック発生かつ成形体密度が低
下することなく、シート成形性に優れ、かつ10時間以
下の比較的短時間の焼成にも、焼結体のミクロ組織中に
発達した柱状粒子を均一に分散することが可能である。
さらに当該粉末を適用した本発明の窒化ケイ素焼結体
は、本来有する高強度/高靱性に加えて高い熱伝導率を
具備するので、半導体素子用基板として用いた場合に半
導体素子の作動に伴う繰り返しの冷熱サイクルに起因す
る基板の割れの発生を抑制でき耐熱衝撃性ならびに耐冷
熱サイクル性を著しく向上することができる。
As described above, the silicon nitride powder of the present invention has excellent sheet moldability without causing cracks during sheet molding and lowering of the compact density, and has a relatively short time of 10 hours or less. Also during firing, it is possible to uniformly disperse the columnar particles developed in the microstructure of the sintered body.
Furthermore, the silicon nitride sintered body of the present invention to which the powder is applied has a high thermal conductivity in addition to the inherent high strength / high toughness. The occurrence of cracks in the substrate due to repeated cooling / heating cycles can be suppressed, and the thermal shock resistance and the cooling / heating cycle resistance can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化ケイ素粉末の代表的な粒度分布評
価図である。
FIG. 1 is a typical particle size distribution evaluation diagram of a silicon nitride powder of the present invention.

【図2】本発明の窒化ケイ素粉末の代表的な走査型電子
顕微鏡により撮影した写真である。
FIG. 2 is a photograph taken by a typical scanning electron microscope of the silicon nitride powder of the present invention.

【図3】本発明の回路基板例を示す要部断面図である。FIG. 3 is a sectional view of a main part showing an example of a circuit board of the present invention.

【符号の説明】[Explanation of symbols]

30:回路基板、31:銅製回路板、32:窒化ケイ素
基板、33:銅製回路板、34:ろう材。
30: circuit board, 31: copper circuit board, 32: silicon nitride substrate, 33: copper circuit board, 34: brazing material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA06 BA09 BA32 BB06 BB09 BB32 BB73 BC13 BC14 BC17 BC22 BC31 BC34 BC42 BC54 BC71 BD01 BD03 BD04 BD11 BD12 BD14 BD16 BD37 BE03 BE22 BE23 BE32  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA06 BA09 BA32 BB06 BB09 BB32 BB73 BC13 BC14 BC17 BC22 BC31 BC34 BC42 BC54 BC71 BD01 BD03 BD04 BD11 BD12 BD14 BD16 BD37 BE03 BE22 BE23 BE32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 体積割合で積算頻度が10%、50%お
よび90%での粒子径(d10)(d50)および(d
90)が、それぞれ0.5〜0.8μm、2.5〜4.
5μmおよび7.5〜10.0μmの粒度分布を有し、
かつ含有酸素量が0.01〜0.5wt%であることを特
徴とする窒化ケイ素粉末。
1. Particle diameters (d 10 ), (d 50 ) and (d 50 ) at an integration frequency of 10%, 50% and 90% in volume ratio
90 ) are 0.5-0.8 μm and 2.5-4.
Having a particle size distribution of 5 μm and 7.5 to 10.0 μm,
A silicon nitride powder having an oxygen content of 0.01 to 0.5% by weight.
【請求項2】 平均粒子径(d50)以上の粒子中に存
在するβ型窒化ケイ素粒子の割合が1から50%である
請求項1に記載の窒化ケイ素粉末。
2. The silicon nitride powder according to claim 1, wherein the proportion of β-type silicon nitride particles present in the particles having an average particle diameter (d 50 ) or more is 1 to 50%.
【請求項3】 β型窒化ケイ素粒子の粒子径が0.5〜
5μm、アスペクト比が2〜10、不純物としての含有
酸素量が0.5wt%以下である請求項1または請求項2
に記載の窒化ケイ素粉末。
3. The particle size of the β-type silicon nitride particles is 0.5 to 0.5.
3. The composition according to claim 1, wherein the content is 5 μm, the aspect ratio is 2 to 10, and the content of oxygen as an impurity is 0.5 wt% or less. 4.
3. The silicon nitride powder according to item 1.
【請求項4】 請求項1から請求項3のいずれかに記載
の窒化ケイ素粉末を用い、熱伝導率が80W/m・K以
上、室温における3点曲げ強度が600MPa以上、破
壊靱性が5MPa・m1/2以上であることを特徴とす
る窒化ケイ素焼結体。
4. The silicon nitride powder according to claim 1, having a thermal conductivity of 80 W / m · K or more, a three-point bending strength at room temperature of 600 MPa or more, and a fracture toughness of 5 MPa · A silicon nitride sintered body characterized by having a m 1/2 or more.
JP2001063736A 2001-03-07 2001-03-07 Silicon nitride powder and silicon nitride sintered compact Pending JP2002265276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001063736A JP2002265276A (en) 2001-03-07 2001-03-07 Silicon nitride powder and silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001063736A JP2002265276A (en) 2001-03-07 2001-03-07 Silicon nitride powder and silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JP2002265276A true JP2002265276A (en) 2002-09-18

Family

ID=18922675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001063736A Pending JP2002265276A (en) 2001-03-07 2001-03-07 Silicon nitride powder and silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2002265276A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900488A1 (en) * 2005-07-04 2008-03-19 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
JP2011014924A (en) * 2010-09-22 2011-01-20 Hitachi Metals Ltd Silicon nitride substrate
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same
JP2014073944A (en) * 2012-10-05 2014-04-24 Hitachi Metals Ltd Method of producing silicon nitride sintered body
WO2015194552A1 (en) * 2014-06-16 2015-12-23 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
EP3951857A4 (en) * 2019-03-29 2022-05-18 Denka Company Limited Silicon nitride sintered body, method for producing same, multilayer body and power module
WO2022210209A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2022210214A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact
WO2022210179A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body
WO2023032982A1 (en) * 2021-09-03 2023-03-09 株式会社 東芝 Highly thermally conductive silicon nitride sintered compact, silicon nitride substrate, silicon nitride circuit board, and semiconductor device
CN116161969A (en) * 2018-12-11 2023-05-26 株式会社东芝 Sliding member, and bearing, engine and driving device using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900488A1 (en) * 2005-07-04 2008-03-19 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
EP1900488B1 (en) * 2005-07-04 2014-06-25 Denki Kagaku Kogyo Kabushiki Kaisha METHOD FOR PRODUCING A CERAMIC SUBSTRATE IN Si3N4
JP2011014924A (en) * 2010-09-22 2011-01-20 Hitachi Metals Ltd Silicon nitride substrate
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same
JP2014073944A (en) * 2012-10-05 2014-04-24 Hitachi Metals Ltd Method of producing silicon nitride sintered body
US10399854B2 (en) 2014-06-16 2019-09-03 Ube Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN106470939A (en) * 2014-06-16 2017-03-01 宇部兴产株式会社 Alpha-silicon nitride powders, silicon nitride sinter and circuit substrate and the manufacture method of alpha-silicon nitride powders
JPWO2015194552A1 (en) * 2014-06-16 2017-04-27 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
CN106470939B (en) * 2014-06-16 2018-09-04 宇部兴产株式会社 The manufacturing method of alpha-silicon nitride powders, silicon nitride sinter and circuit board and alpha-silicon nitride powders
WO2015194552A1 (en) * 2014-06-16 2015-12-23 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
KR20170021282A (en) 2014-06-16 2017-02-27 우베 고산 가부시키가이샤 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN116161969A (en) * 2018-12-11 2023-05-26 株式会社东芝 Sliding member, and bearing, engine and driving device using same
EP3951857A4 (en) * 2019-03-29 2022-05-18 Denka Company Limited Silicon nitride sintered body, method for producing same, multilayer body and power module
WO2022210209A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2022210214A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact
WO2022210179A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body
JP7171973B1 (en) * 2021-03-30 2022-11-15 デンカ株式会社 Method for producing silicon nitride powder, slurry, and silicon nitride sintered body
JP7242972B2 (en) 2021-03-30 2023-03-20 デンカ株式会社 Method for producing silicon nitride powder and silicon nitride sintered body
JPWO2022210209A1 (en) * 2021-03-30 2022-10-06
WO2023032982A1 (en) * 2021-09-03 2023-03-09 株式会社 東芝 Highly thermally conductive silicon nitride sintered compact, silicon nitride substrate, silicon nitride circuit board, and semiconductor device

Similar Documents

Publication Publication Date Title
KR100833962B1 (en) Silicon nitride powder, sintered silicon nitride, sintered silicon nitride substrate, and circuit board and thermoelectric element module comprising such sintered silicon nitride substrate
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP2018184333A (en) Method of manufacturing silicon nitride substrate and silicon nitride substrate
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JP2002097005A5 (en)
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP3998252B2 (en) Method for producing aluminum nitride sintered body
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2000192168A (en) Silicon carbide composite material and its production
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JP4332824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body, sintered body thereof, substrate, circuit board for semiconductor element
JP4912530B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3922847B2 (en) Aluminum nitride sintered body for circuit board and manufacturing method thereof