JP7062230B2 - Plate-shaped silicon nitride sintered body and its manufacturing method - Google Patents

Plate-shaped silicon nitride sintered body and its manufacturing method Download PDF

Info

Publication number
JP7062230B2
JP7062230B2 JP2020523188A JP2020523188A JP7062230B2 JP 7062230 B2 JP7062230 B2 JP 7062230B2 JP 2020523188 A JP2020523188 A JP 2020523188A JP 2020523188 A JP2020523188 A JP 2020523188A JP 7062230 B2 JP7062230 B2 JP 7062230B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
plate
nitride sintered
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020523188A
Other languages
Japanese (ja)
Other versions
JPWO2019235594A1 (en
Inventor
卓司 王丸
耕司 柴田
道夫 本田
昌孝 藤永
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Corp filed Critical Ube Corp
Publication of JPWO2019235594A1 publication Critical patent/JPWO2019235594A1/en
Application granted granted Critical
Publication of JP7062230B2 publication Critical patent/JP7062230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Products (AREA)

Description

本発明は、β型窒化ケイ素を主成分する板状の窒化ケイ素質焼結体に関し、特に高い熱伝導率と高い機械的強度および靭性を併せ持ち、絶縁基板および回路基板として用いるのに好適な板状の窒化ケイ素質焼結体およびその製造方法に関する。 The present invention relates to a plate-shaped silicon nitride sintered body containing β-type silicon nitride as a main component, which has particularly high thermal conductivity, high mechanical strength and toughness, and is suitable for use as an insulating substrate and a circuit substrate. The present invention relates to a silicon nitride sintered body in the form of a silicon nitride and a method for producing the same.

窒化ケイ素質焼結体は、機械的強度、靭性、耐熱衝撃性などに優れるため各種の機械部品、耐摩耗部品に用いられるほか、高い電気絶縁性と優れた熱伝導性を利用して電気絶縁材料にも適用されている。従来の電気絶縁セラミックスとしては、酸化アルミニウム、窒化アルミニウムなどが知られている。酸化アルミニウムは熱伝導率が低いため、パワー半導体などへの適用に対して放熱性が不足する問題がある。一方、窒化アルミニウムは熱伝導率が高く、放熱性に優れるが、機械的強度や破壊靭性が低いため、モジュールの組み立て工程で割れを生じるという問題が有る。また、半導体素子を実装した回路基板では半導体素子との熱膨張差に起因して、熱サイクルによりクラックや割れを生じ、実装信頼性が低下するという問題がある。回路基板等の用途においては、特に高いレベルで、高熱伝導性と優れた機械的特性(強度および靭性)を両立する板状の窒化ケイ素質焼結体が求められている。 Silicon nitride sintered body is used for various mechanical parts and wear-resistant parts because it has excellent mechanical strength, toughness, thermal shock resistance, etc., and it is also electrically insulated by utilizing high electrical insulation and excellent thermal conductivity. It is also applied to materials. As conventional electrically insulating ceramics, aluminum oxide, aluminum nitride and the like are known. Since aluminum oxide has a low thermal conductivity, there is a problem that heat dissipation is insufficient for application to power semiconductors and the like. On the other hand, aluminum nitride has high thermal conductivity and excellent heat dissipation, but has low mechanical strength and fracture toughness, so that there is a problem that cracks occur in the module assembly process. Further, in the circuit board on which the semiconductor element is mounted, there is a problem that cracks and cracks occur due to the thermal cycle due to the difference in thermal expansion from the semiconductor element, and the mounting reliability is lowered. In applications such as circuit boards, there is a demand for a plate-shaped silicon nitride sintered body that has both high thermal conductivity and excellent mechanical properties (strength and toughness) at a particularly high level.

そこで、電気絶縁セラミックスとして強度および靭性に優れた窒化ケイ素を利用した種々の提案がある。例えば、特許文献1には破壊靭性が6MPa√m以上、熱伝導率が60W/(m・K)の窒化ケイ素質焼結体が記載されているが、焼結助剤としてAlを0.1wt%以上添加しているためか、破壊靭性値は7.4MPa√m以下、熱伝導率は78W/(m・K)以下である。Therefore, there are various proposals using silicon nitride, which has excellent strength and toughness, as an electrically insulating ceramic. For example, Patent Document 1 describes a silicon nitride sintered body having a fracture toughness of 6 MPa√m or more and a thermal conductivity of 60 W / (m · K), but Al 2 O 3 is used as a sintering aid. The fracture toughness value is 7.4 MPa√m or less, and the thermal conductivity is 78 W / (m · K) or less, probably because 0.1 wt% or more is added.

例えば特許文献2には、D10、D50およびD90が、それぞれ0.5~0.8μm、2.5~4.5μmおよび7.5~10.0μmの粒度分布を有し、含有酸素量が0.01~0.5wt%であり、平均粒子径(D50)以上の粒子中に存在するβ型窒化ケイ素粒子の割合が1から50%である窒化ケイ素粉末が、シート成形性に優れ、高強度・高靱性でかつ優れた放熱性を有する焼結体を提供することが記載されている。しかしながら、MgO/Y重量比が3.0であるためか、曲げ強度は850MPa以下、破壊靭性値は7.5MPa√m以下である。For example, in Patent Document 2, D 10 , D 50 and D 90 have particle size distributions of 0.5 to 0.8 μm, 2.5 to 4.5 μm and 7.5 to 10.0 μm, respectively, and contain oxygen. Silicon nitride powder having an amount of 0.01 to 0.5 wt% and having a proportion of β-type silicon nitride particles present in particles having an average particle size (D 50 ) or more of 1 to 50% has good sheet formability. It is described to provide a sintered body having excellent, high strength, high toughness, and excellent heat dissipation. However, probably because the MgO / Y2O3 weight ratio is 3.0 , the bending strength is 850 MPa or less and the fracture toughness value is 7.5 MPa√m or less.

また特許文献3には、窒化ケイ素質焼結体の切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに20000個以下であり、熱伝導率が室温において75W/(m・K)以上、室温から200℃までにおいて45W/(m・K)以上であり、3点曲げ強度が室温において800MPa以上である窒化ケイ素質焼結体を提供することが記載されている。Further, in Patent Document 3, when the cut surface of the silicon nitride sintered body is observed, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is 20,000 per 1 mm 2 . Silicon nitride having a thermal conductivity of 75 W / (m · K) or more at room temperature, 45 W / (m · K) or more from room temperature to 200 ° C., and a three-point bending strength of 800 MPa or more at room temperature. It is described to provide a sintered body.

また特許文献4には、β分率が30~100%であり、酸素量が0.5wt%未満であり、平均粒子径が0.2~10μmであり、アスペクト比が10以下であり、粒子の長軸方向に溝部が形成されている柱状粒子を含み、Fe含有量及びAl含有量がそれぞれ100ppm以下である窒化ケイ素粉末が、高温・高圧焼成といったコストの高い焼成法を必要とせずに、高い熱伝導率および高い強度を有する窒化ケイ素質焼結体を提供することができることが記載されている。しかしながら、原料Si粉末の酸素含有量が著しく少なく、平均粒子径が大きく、かつ不純物Fe量が高くて、MgO/RExOy重量比が1.5以上であるためか、曲げ強度は850MPa以下であり、破壊靭性値は測定されていない。Further, in Patent Document 4, the β fraction is 30 to 100%, the amount of oxygen is less than 0.5 wt%, the average particle size is 0.2 to 10 μm, the aspect ratio is 10 or less, and the particles. Silicon nitride powder containing columnar particles having grooves formed in the long axis direction and having Fe content and Al content of 100 ppm or less, respectively, does not require a high-cost firing method such as high-temperature and high-pressure firing. It is described that it is possible to provide a silicon nitride sintered body having high thermal conductivity and high strength. However, the bending strength is 850 MPa or less probably because the oxygen content of the raw material Si 3 N 4 powder is extremely low, the average particle size is large, the amount of impurity Fe is high, and the MgO / RExOy weight ratio is 1.5 or more. And the fracture toughness value has not been measured.

また特許文献5には、窒化珪素粉末100質量部に対し、MgO、Y及びSiOを含有し、その比率が(1)MgO/(MgO+SiO)=34~59mol%、並びに、(2)Y/(Y+SiO)=50~66mol%である焼結助剤5~15質量部の存在下に、窒化珪素粉末を焼結して得られる窒化珪素焼結体からなる窒化珪素基板が開示されている。しかしながら、その実施例および比較例を示す表1に記載された焼結助剤組成から計算されるMgO/Y重量比は、0.055~0.194(wt/wt)であり、MgOの配合割合が少ない。そのためか、得られる窒化珪素基板の電気特性は優れるものの、抗折強度は750MPa以下という低い値に留まっている。Further, Patent Document 5 contains MgO , Y2O3 and SiO 2 in 100 parts by mass of silicon nitride powder, and the ratio thereof is (1) MgO / (MgO + SiO 2 ) = 34 to 59 mol%, and ( 2) Silicon nitride sintering obtained by sintering silicon nitride powder in the presence of 5 to 15 parts by mass of a sintering aid having Y 2 O 3 / (Y 2 O 3 + SiO 2 ) = 50 to 66 mol%. A silicon nitride substrate made of a body is disclosed. However , the MgO / Y2O3 weight ratio calculated from the sintering aid composition shown in Table 1 showing the examples and comparative examples is 0.055 to 0.194 (wt / wt). The blending ratio of MgO is small. Probably because of this, although the obtained silicon nitride substrate has excellent electrical characteristics, the bending strength remains as low as 750 MPa or less.

さらに特許文献6には、窒化珪素粒子の所定格子面のそれぞれのX線回折線強度の割合から下記式(1)により定まる、厚さ方向に垂直な面内における配向割合を示す配向度faが、表面においては0.33以下であり、表面から基板厚さの20%以上内側まで研削して得られた面においては0.16~0.33であるとともに、前記表面における配向度faが前記表面から基板厚さの20%以上内側まで研削して得られた面における配向度faより大きく、反りが2.0μm/mm以下であることを特徴とする窒化珪素基板が開示されている。同公報によれば、配向度faは以下のように定義されている。
fa=(P-P)/(1-P) ・・・(1)
この式(1)において、Pは以下の式(2)で表され、窒化珪素基板における窒化珪素粒子について(110)面、(200)面、(210)面、(310)面及び(320)面のX線回折線強度Iの合計と、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面及び(002)面のX線回折線強度Iの合計との比を示す。また、Pは以下の式(3’)で表され、I(110)、I(200)、I(101)、I(210)、I(201)、I(310)、I(320)、およびI(002)は、窒化珪素粉末における窒化珪素粒子について(110)面、(200)面、(210)面、(310)面及び(320)面のX線回折線強度I’ の合計と、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面及び(002)面のX線回折線強度I’の合計との比を示す。
P=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002))・・・(2)
=(I’(110)+I’(200)+I’(210)+I’(310)+I’(320))/(I’(110)+I’(200)+I’(101)+I’(210)+I’(201)+I’(310)+I’(320)+I’(002))・・・(3’)
Further, Patent Document 6 describes an orientation degree fa indicating an orientation ratio in a plane perpendicular to the thickness direction, which is determined by the following formula (1) from the ratio of the X-ray diffraction line intensity of each predetermined lattice surface of silicon nitride particles. The surface is 0.33 or less, the surface obtained by grinding from the surface to the inside of 20% or more of the substrate thickness is 0.16 to 0.33, and the degree of orientation fa on the surface is the above. A silicon nitride substrate is disclosed, which is larger than the degree of orientation fa on the surface obtained by grinding from the surface to the inside by 20% or more of the substrate thickness, and has a warp of 2.0 μm / mm or less. According to the same publication, the degree of orientation fa is defined as follows.
fa = (P-P 0 ) / (1-P 0 ) ... (1)
In this formula (1), P is represented by the following formula (2), and the silicon nitride particles in the silicon nitride substrate have (110) planes, (200) planes, (210) planes, (310) planes, and (320) planes. The total of the X-ray diffraction line intensities I of the planes, the (110) plane, the (200) plane, the (101) plane, the (210) plane, the (201) plane, the (310) plane, the (320) plane, and the (002) plane. The ratio with the sum of the X-ray diffraction line intensities I of the surface is shown. Further, P 0 is represented by the following equation (3'), I 0 (110), I 0 (200), I 0 (101), I 0 (210), I 0 (201), I 0 (310). ), I 0 (320), and I 0 (002) are the (110), (200), (210), (310), and (320) planes X of the silicon nitride particles in the silicon nitride powder. The total of the line diffraction line strength I'and the (110) plane, (200) plane, (101) plane, (210) plane, (201) plane, (310) plane, (320) plane and (002) plane. The ratio with the sum of the X-ray diffraction line intensity I'is shown.
P = (I (110) + I (200) + I (210) + I (310) + I (320)) / (I (110) + I (200) + I (101) + I (210) + I (201) + I (310) + I (320) + I (002)) ... (2)
P 0 = (I'(110) + I'(200) + I'(210) + I'(310) + I'(320)) / (I'(110) + I'(200) + I'(101) + I'( 210) + I'(201) + I'(310) + I'(320) + I'(002)) ... (3')

しかしながら、焼結助剤の重量比および添加量が異なるためか、得られる窒化ケイ素質焼結体の3点曲げ強度は864MPa以下、破壊靭性値は6.8MPa√m以下に留まっている。 However, probably because the weight ratio and the amount of the sintering aid added are different, the three-point bending strength of the obtained silicon nitride sintered body is 864 MPa or less, and the fracture toughness value is 6.8 MPa√m or less.

さらに特許文献7には、粒界相が非晶質相とMgSiN結晶相からなり、希土類元素(RE)を含んだ結晶相を含まないことによって熱伝導率を向上させた窒化珪素基板が開示されている。しかしながら、粒界でMgSiN結晶相が成長するためか、得られる窒化ケイ素質焼結体の3点曲げ強度は862MPa以下に留まっており、破壊靭性値は測定されていない。Further, Patent Document 7 discloses a silicon nitride substrate having an amorphous phase and a MgSiN2 crystal phase, and having an improved thermal conductivity by not containing a crystal phase containing a rare earth element (RE). Has been done. However, probably because the MgSiN2 crystal phase grows at the grain boundaries, the three-point bending strength of the obtained silicon nitride sintered body remains at 862 MPa or less, and the fracture toughness value has not been measured.

なお、特許文献8の実施例には、ロータリーキルン焼成により製造された比表面積5~30m/gの窒化ケイ素粉末を原料として用いた窒化ケイ素質焼結体の特性値が開示されている。表3および表4には、それぞれ、焼結助剤として酸化イットリウムと酸化アルミニウムを添加して、窒素ガス雰囲気下1780℃で2時間焼結することにより得られた窒化ケイ素質焼結体の曲げ強度、および焼結助剤として酸化イットリウムと酸化マグネシウムを添加して、加圧窒素ガス下1900℃で22時間焼結することにより得られた窒化ケイ素質焼結体の曲げ強度と熱伝導率が掲載されている。表3によれば、窒素ガス雰囲気下1780℃で2時間焼結することにより得られた窒化ケイ素質焼結体の曲げ強度は1020~1220MPaであるが、この表に掲載された、酸化イットリウムと酸化アルミニウムを添加した窒化ケイ素質焼結体が著しく低い熱伝導率を示すことは、当業者の技術常識である。一方、表4によれば、酸化イットリウムと酸化マグネシウムを添加した窒化ケイ素質焼結体は130~142W/mKという高い熱伝導率を示しているが、1900℃-22時間という高温長時間での焼結では、粒成長が著しく進行するために、605~660MPaという低い曲げ強度しか得られていない。即ち、高い熱伝導率と優れた機械的強度を併せ持つ窒化ケイ素質焼結体は得られておらず、高い熱伝導率と優れた機械的強度を両立することの難しさを示している。In the examples of Patent Document 8, characteristic values of a silicon nitride sintered body using a silicon nitride powder having a specific surface area of 5 to 30 m 2 / g produced by rotary kiln firing as a raw material are disclosed. Tables 3 and 4 show the bending of the silicon nitride sintered body obtained by adding yttrium oxide and aluminum oxide as sintering aids and sintering at 1780 ° C. for 2 hours in a nitrogen gas atmosphere, respectively. The bending strength and thermal conductivity of the silicon nitride sintered body obtained by adding yttrium oxide and magnesium oxide as sintering aids and sintering at 1900 ° C. under pressurized nitrogen gas for 22 hours can be obtained. It is posted. According to Table 3, the bending strength of the silicon nitride sintered body obtained by sintering at 1780 ° C. for 2 hours under a nitrogen gas atmosphere is 1020 to 1220 MPa. It is common knowledge of those skilled in the art that a silicon nitride sintered body to which aluminum oxide is added exhibits a remarkably low thermal conductivity. On the other hand, according to Table 4, the silicon nitride sintered body to which yttrium oxide and magnesium oxide are added shows a high thermal conductivity of 130 to 142 W / mK, but at a high temperature of 1900 ° C. to 22 hours for a long time. In sintering, grain growth progresses remarkably, so that only a low bending strength of 605 to 660 MPa is obtained. That is, a silicon nitride sintered body having both high thermal conductivity and excellent mechanical strength has not been obtained, and it shows that it is difficult to achieve both high thermal conductivity and excellent mechanical strength.

特開平11-100276号公報Japanese Unexamined Patent Publication No. 11-100276 特開2002-265276号公報Japanese Unexamined Patent Publication No. 2002-265276 特開2002-293641号公報Japanese Unexamined Patent Publication No. 2002-293641 特開2004-262756号公報Japanese Unexamined Patent Publication No. 2004-262756 国際公開第2007/018050号International Publication No. 2007/018050 特開2009-218322号公報Japanese Unexamined Patent Publication No. 2009-218322 国際公開第2010/002001号International Publication No. 2010/002001 国際公開第2013/146713号International Publication No. 2013/146713 特開2015-63440号公報Japanese Unexamined Patent Publication No. 2015-63440

これら、従来の窒化ケイ素質焼結体は近年益々発熱量が増大する半導体モジュールに対しては熱伝導性または機械的特性が不足しがちであり、特に動作中の高温域まで放熱性を安定に確保することがより一層望まれている現状においては、熱伝導性と機械的特性の両面で性能不足である。熱伝導率を上げるために1900℃以上の高温で焼結すると、粒成長が進み過ぎて機械的特性が低下し、逆に、機械的特性を向上させるために1790℃未満の温度で焼結すると粒成長が著しく不足して熱伝導率が低下するため、高い熱伝導率と優れた機械的特性(強度と破壊靭性)を併せ持つ板状の窒化ケイ素質焼結体を得ることは非常に難しい。また、特許文献3では、高い熱伝導率と高い機械的強度を両立するには、40気圧(4MPa)以上の高い雰囲気圧力を必要としているため、高圧下で使用できる焼結炉が必要となる。その実施例から分かるように、9気圧(0.9MPa)では、熱伝導率と機械的強度の両面で著しく特性不足である。本発明はかかる事情に鑑み、焼結時の雰囲気圧力を特許文献3のように高くすることなく、より低い圧力で、高い熱伝導率と優れた機械的特性を併せ持つ板状の窒化ケイ素質焼結体を提供することを目的とする。 These conventional silicon nitride sintered bodies tend to lack thermal conductivity or mechanical properties for semiconductor modules whose calorific value is increasing in recent years, and particularly stabilize heat dissipation even in the high temperature range during operation. In the present situation where it is more desired to secure it, the performance is insufficient in terms of both thermal conductivity and mechanical properties. Sintering at a high temperature of 1900 ° C or higher to increase thermal conductivity causes excessive grain growth and lowers mechanical properties, and conversely, sintering at a temperature of less than 1790 ° C to improve mechanical properties. It is very difficult to obtain a plate-shaped silicon nitride sintered body having both high thermal conductivity and excellent mechanical properties (strength and fracture toughness) because the grain growth is significantly insufficient and the thermal conductivity is lowered. Further, in Patent Document 3, in order to achieve both high thermal conductivity and high mechanical strength, a high atmospheric pressure of 40 atm (4 MPa) or more is required, so a sintering furnace that can be used under high pressure is required. .. As can be seen from the embodiment, at 9 atm (0.9 MPa), the characteristics are significantly insufficient in terms of both thermal conductivity and mechanical strength. In view of this situation, the present invention does not increase the atmospheric pressure during sintering as in Patent Document 3, but at a lower pressure, plate-shaped silicon nitride baked with high thermal conductivity and excellent mechanical properties. The purpose is to provide a unity.

本発明者らは、高い熱伝導率と優れた機械的特性(強度と破壊靭性)を併せ持つ板状の窒化ケイ素質焼結体を得る方法について鋭意研究を重ねた結果、特定の比表面積と酸素含有量を有する窒化ケイ素粉末を原料に用い、シート成形条件と併せて、焼結過程における粒成長を高度に制御することによって、焼結時の雰囲気圧力を大きくすることなく、高い熱伝導率と優れた機械的特性(強度と破壊靭性)を併せ持つ窒化ケイ素質焼結体を製造し得ることを見出し、本発明を完成するに至った。すなわち本発明は以下の事項に関する。 As a result of intensive research on a method for obtaining a plate-shaped silicon nitride sintered body having both high thermal conductivity and excellent mechanical properties (strength and fracture toughness), the present inventors have conducted intensive studies on a specific specific surface area and oxygen. By using silicon nitride powder with a content as a raw material and highly controlling the grain growth in the sintering process in combination with the sheet forming conditions, high thermal conductivity can be achieved without increasing the atmospheric pressure during sintering. We have found that it is possible to produce a silicon nitride sintered body having excellent mechanical properties (strength and fracture toughness), and have completed the present invention. That is, the present invention relates to the following matters.

本発明の板状の窒化ケイ素質焼結体は、焼結体としての実測アルカリ土類金属含有量と実測希土類金属含有量の比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、実測アルミニウム含有量が50ppm未満であり、相対密度が98%以上であり、窒化ケイ素質焼結体の板面に垂直な切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに500個以上10000個以下であり、さらに、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faが0.08以上0.25以下であることを特徴とする。ここで、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、後述の<配向度faの算出方法>に記載された式(1)で表される配向度faである。この板状の窒化ケイ素質焼結体は、シート成形プロセスにより作製された板状の成形体(グリーンシート)を雰囲気ガス圧力3MPa以下で焼結して製造することができる。In the plate-shaped silicon nitride sintered body of the present invention, the ratio of the measured alkaline earth metal content to the measured rare earth metal content as a sintered body is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal. When the cut surface perpendicular to the plate surface of the silicon nitride sintered body is observed, the content is ≤1.30, the measured aluminum content is less than 50 ppm, the relative density is 98% or more, and the columnar β is observed. Among the type silicon nitride particles, the number of those having a major axis length of more than 10 μm is 500 or more and 10,000 or less per 1 mm 2 , and the arithmetic average roughness Ra is 0.05 μm or more and 0.5 μm or less. The orientation degree fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the polished surface is 0.08 or more and 0.25 or less. Here, the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles is the degree of orientation fa represented by the formula (1) described in <Method for calculating the degree of orientation fa> described later. This plate-shaped silicon nitride sintered body can be manufactured by sintering a plate-shaped molded body (green sheet) produced by a sheet forming process at an atmospheric gas pressure of 3 MPa or less.

なお、焼結体としての前記の実測アルカリ土類金属含有量と実測希土類金属含有量との比率を、酸化物基準で焼結体中のアルカリ土類金属酸化物と希土類金属酸化物との重量比に換算すると、0.34≦アルカリ土類金属酸化物/希土類金属酸化物≦1.95である。 The ratio of the measured alkaline earth metal content to the measured rare earth metal content as a sintered body is the weight of the alkaline earth metal oxide and the rare earth metal oxide in the sintered body based on the oxide. In terms of ratio, 0.34 ≤ alkaline earth metal oxide / rare earth metal oxide ≤ 1.95.

本発明の一態様においては、板状の窒化ケイ素質焼結体は、厚さが1.5mm以下であり、厚さ/面積比が0.015(1/mm)以下であることを特徴とする。この板状の窒化ケイ素質焼結体は、好ましくは、研削または研磨加工による厚み方向に垂直な板面表層部の除去量は、片面当たり0.03mm以下のものである。 In one aspect of the present invention, the plate-shaped silicon nitride sintered body is characterized in that the thickness is 1.5 mm or less and the thickness / area ratio is 0.015 (1 / mm) or less. do. In this plate-shaped silicon nitride sintered body, the amount of removal of the plate surface surface layer portion perpendicular to the thickness direction by grinding or polishing is preferably 0.03 mm or less per surface.

本発明の一態様においては、前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面から0.08mm以上内側まで研削して得られた面における内部の柱状β型窒化ケイ素粒子の配向割合を示す前記の配向度faが0.01以上0.16未満であることを特徴とする。 In one aspect of the present invention, the columnar β-type silicon nitride inside the surface obtained by grinding from a surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less to the inside by 0.08 mm or more. The orientation degree fa indicating the orientation ratio of the silicon particles is 0.01 or more and less than 0.16.

なお、前記の表面から0.08mm以上内側まで研削して得られた内部の面における配向度faは前記の表面における配向度faより小さいことが好ましく、その差異が0.03以上0.08以下であることが、より好ましい。 The degree of orientation fa on the inner surface obtained by grinding from the surface to the inside by 0.08 mm or more is preferably smaller than the degree of orientation fa on the surface, and the difference is 0.03 or more and 0.08 or less. Is more preferable.

本発明の一態様においては、焼結体としての実測酸素含有量が1.4重量%以上2.9重量%以下である前記の板状の窒化ケイ素質焼結体であることを特徴とする。 One aspect of the present invention is characterized by the above-mentioned plate-shaped silicon nitride sintered body having an actually measured oxygen content of 1.4% by weight or more and 2.9% by weight or less as a sintered body. ..

本発明の一態様においては、アルカリ土類金属酸化物が酸化マグネシウムであり、希土類金属酸化物が酸化イットリウム、酸化エルビウム、酸化スカンジウムおよび酸化ルテチウムから選ばれる少なくとも一種の酸化物であることを特徴とする。 In one aspect of the present invention, the alkaline earth metal oxide is magnesium oxide, and the rare earth metal oxide is at least one oxide selected from yttrium oxide, erbium oxide, scandium oxide and lutetium oxide. do.

本発明の一態様においては、焼結体としての実測マグネシウム含有量と前記の実測希土類金属含有量とを合計した助剤由来の金属元素含有量が1.8重量%~5.0重量%となる前記の板状の窒化ケイ素質焼結体であることを特徴とする。 In one aspect of the present invention, the metal element content derived from the auxiliary agent, which is the sum of the measured magnesium content as the sintered body and the measured rare earth metal content, is 1.8% by weight to 5.0% by weight. It is characterized by being the above-mentioned plate-shaped silicon nitride sintered body.

ここで、焼結体としての前記のマグネシウムと前記の希土類金属とを合計した実測含有量を、酸化物基準で焼結体中の酸化マグネシウムと希土類金属酸化物とを合計した含有量に換算すると、2.7重量%~6.8重量%である。 Here, the measured content of the magnesium as a sintered body and the rare earth metal is converted into the total content of magnesium oxide and the rare earth metal oxide in the sintered body based on the oxide. It is 2.7% by weight to 6.8% by weight.

本発明の一態様においては、算術平均粗さRaが0.06μm以上0.4μm以下に研磨された表面における開気孔率が1.0%以下であり、開気孔の最大開口径が1.0μm以下であることを特徴とする。 In one aspect of the present invention, the open porosity on the surface polished to an arithmetic average roughness Ra of 0.06 μm or more and 0.4 μm or less is 1.0% or less, and the maximum opening diameter of the open pores is 1.0 μm. It is characterized by the following.

本発明の一態様においては、前記の窒化ケイ素質焼結体が色調ムラの抑制された板状の窒化ケイ素質焼結体であることを特徴とする。 One aspect of the present invention is characterized in that the silicon nitride sintered body is a plate-shaped silicon nitride sintered body in which color tone unevenness is suppressed.

本発明の一態様においては、前記の窒化ケイ素質焼結体の粒界にMgSiN等からなるMg化合物の結晶相が、実質的に含まれていないことを特徴とする。One aspect of the present invention is characterized in that the grain boundaries of the silicon nitride sintered body do not substantially contain the crystal phase of the Mg compound made of MgSiN2 or the like.

本発明の一態様においては、熱伝導率が室温において90W/(m・K)以上であり、4点曲げ強度が室温において900MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが7.6MPa√m以上であることを特徴とする。In one aspect of the present invention, the thermal conductivity is 90 W / (m · K) or more at room temperature, the four-point bending strength is 900 MPa or more at room temperature, and the fracture toughness value measured by the IF method (indentation method). The K IC is 7.6 MPa√m or more.

本発明の一態様においては、焼結体としての実測マグネシウム含有量と前記の実測希土類金属含有量の比率が0.26≦実測マグネシウム含有量/実測希土類金属含有量≦1.05であり、前記の実測マグネシウム含有量と前記の実測希土類金属含有量とを合計した助剤由来の金属元素含有量が2.4重量%~4.0重量%であることを特徴とする。 In one aspect of the present invention, the ratio of the measured magnesium content as the sintered body to the measured rare earth metal content is 0.26 ≤ measured magnesium content / measured rare earth metal content ≤ 1.05. The content of the metal element derived from the auxiliary agent, which is the sum of the measured magnesium content and the measured rare earth metal content, is 2.4% by weight to 4.0% by weight.

焼結体中の前記の実測マグネシウム含有量と前記の実測希土類金属含有量とを、酸化物基準で酸化マグネシウム含有量と希土類金属酸化物含有量に換算すると、その比率は0.34≦酸化マグネシウム含有量/希土類金属酸化物含有量≦1.37であり、酸化マグネシウムと希土類金属酸化物とを合計した含有量は3.4重量%~5.8重量%である。 When the measured magnesium content and the measured rare earth metal content in the sintered body are converted into magnesium oxide content and rare earth metal oxide content on an oxide basis, the ratio is 0.34 ≤ magnesium oxide. Content / rare earth metal oxide content ≦ 1.37, and the total content of magnesium oxide and rare earth metal oxide is 3.4% by weight to 5.8% by weight.

本発明の一態様においては、焼結体としての前記の実測酸素含有量が1.75重量%以上2.10重量%以下であることを特徴とする。 One aspect of the present invention is characterized in that the measured oxygen content of the sintered body is 1.75% by weight or more and 2.10% by weight or less.

本発明の一態様においては、窒化ケイ素質焼結体の板面に垂直な切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに1000個以上5000個以下であることを特徴とする。In one aspect of the present invention, when the cut surface perpendicular to the plate surface of the silicon nitride sintered body is observed, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is determined. It is characterized in that the number is 1000 or more and 5000 or less per 1 mm 2 .

本発明の一態様においては、前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における柱状のβ型窒化ケイ素粒子の配向割合を示す前記の配向度faが0.10~0.20であることを特徴とする。 In one aspect of the present invention, the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface where the arithmetic average roughness Ra is polished to 0.05 μm or more and 0.5 μm or less is 0. It is characterized by being 10 to 0.20.

本発明の一態様においては、前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面から0.08mm以上内側まで研削して得られた面における、柱状β型窒化ケイ素粒子の配向割合を示す前記の配向度faが0.01以上0.13以下であることを特徴とする。 In one aspect of the present invention, columnar β-type silicon nitride on a surface obtained by grinding from a surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less to the inside by 0.08 mm or more. The orientation degree fa, which indicates the orientation ratio of the particles, is 0.01 or more and 0.13 or less.

なお、前記の表面から0.08mm以上内側まで研削して得られた内部の面における配向度faは前記の表面における配向度faより小さいことが好ましく、その差異が0.03以上0.08以下であることが、より好ましい。 The degree of orientation fa on the inner surface obtained by grinding from the surface to the inside by 0.08 mm or more is preferably smaller than the degree of orientation fa on the surface, and the difference is 0.03 or more and 0.08 or less. Is more preferable.

本発明の一態様においては、熱伝導率が室温において100W/(m・K)以上であり、4点曲げ強度が室温において1000MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが9.0MPa√m以上であることを特徴とする。In one aspect of the present invention, the thermal conductivity is 100 W / (m · K) or more at room temperature, the four-point bending strength is 1000 MPa or more at room temperature, and the fracture toughness value measured by the IF method (indentation method). The K IC is 9.0 MPa √ m or more.

本発明の一態様においては、窒化ケイ素原料として、比表面積が13.0m/g以上、酸素含有量が1.2wt%以上2.3wt%以下、表面酸素の含有割合FSOが0.76~1.10重量%であり、アルミニウム含有量が50ppm未満である窒化ケイ素粉末を使用し、焼結助剤として、アルカリ土類金属酸化物と希土類金属酸化物との重量比が0.40≦アルカリ土類金属酸化物/希土類金属酸化物≦2.0を満足するような配合比で、アルカリ土類金属酸化物および希土類金属酸化物を3.2~7.0wt%添加して、出発組成物(窒化ケイ素質焼結体製造のためのグリーンシート作製原料)を調整し、出発組成物からシート成形プロセスにより板状の成形体(グリーンシート)を作製し、板状の成形体(グリーンシート)を窒素含有ガス圧力が0.15~3MPaの加圧雰囲気下、最高保持温度が1790℃以上1880℃以下の温度範囲で焼結することにより、実測アルカリ土類金属含有量と実測希土類金属含有量との比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、実測アルミニウム含有量が50ppm未満であり、相対密度が98%以上である板状の窒化ケイ素質焼結体を製造することを特徴とする。In one aspect of the present invention, as a raw material for silicon nitride, the specific surface area is 13.0 m 2 / g or more, the oxygen content is 1.2 wt% or more and 2.3 wt% or less, and the surface oxygen content ratio FSO is 0.76 to 0.76. Using silicon nitride powder having 1.10% by weight and an aluminum content of less than 50 ppm, the weight ratio of alkaline earth metal oxide to rare earth metal oxide is 0.40 ≤ alkali as a sintering aid. Starting composition by adding 3.2 to 7.0 wt% of alkaline earth metal oxide and rare earth metal oxide in a compounding ratio satisfying earth metal oxide / rare earth metal oxide ≤ 2.0. (Green sheet manufacturing raw material for manufacturing silicon nitride sintered body) is adjusted, and a plate-shaped molded body (green sheet) is prepared from the starting composition by a sheet molding process, and a plate-shaped molded body (green sheet) is prepared. By sintering in a pressurized atmosphere with a nitrogen-containing gas pressure of 0.15 to 3 MPa and a maximum holding temperature of 1790 ° C or higher and 1880 ° C or lower, the measured alkaline earth metal content and the measured rare earth metal content The ratio with is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal content ≤ 1.30, the measured aluminum content is less than 50 ppm, and the relative density is 98% or more. It is characterized by producing a siliconic sintered body.

本発明の一態様においては、実測酸素含有量が1.4重量%以上2.9重量%以下である前記の板状の窒化ケイ素質焼結体を製造することを特徴とする。 One aspect of the present invention is characterized in that the plate-shaped silicon nitride sintered body having an actually measured oxygen content of 1.4% by weight or more and 2.9% by weight or less is produced.

本発明の一態様においては、アルカリ土類金属酸化物が酸化マグネシウムであり、希土類金属酸化物が酸化イットリウム、酸化エルビウム、酸化スカンジウムおよび酸化ルテチウムから選ばれる少なくとも一種の酸化物である前記の板状の窒化ケイ素質焼結体を製造することを特徴とする。 In one embodiment of the present invention, the plate-like plate-like oxide in which the alkaline earth metal oxide is magnesium oxide and the rare earth metal oxide is at least one oxide selected from yttrium oxide, erbium oxide, scandium oxide and lutetium oxide. It is characterized by producing a silicon nitride sintered body of the above.

本発明の一態様においては、焼結助剤として、酸化マグネシウムと希土類金属酸化物との重量比が0.40≦酸化マグネシウム/希土類金属酸化物≦1.4を満足するような配合比で、酸化マグネシウムおよび希土類金属酸化物を窒化ケイ素粉末と焼結助剤の合計質量を基準として4.0~6.0wt%添加すること、シート成形プロセスにより作製された板状の成形体(グリーンシート)を窒素含有ガス圧力が0.15~0.9MPaの加圧雰囲気下、最高保持温度が1790℃以上1880℃以下の温度範囲で、当該最高保持温度にて6時間~20時間保持して焼結すること、実測マグネシウム含有量と実測希土類金属含有量の比率が0.26≦実測マグネシウム含有量/実測希土類金属含有量≦1.05であり、実測アルミニウム含有量が50ppm未満であり、相対密度が98%以上である板状の窒化ケイ素質焼結体を製造することを特徴とする。 In one aspect of the present invention, as the sintering aid, the blending ratio is such that the weight ratio of magnesium oxide and the rare earth metal oxide satisfies 0.40 ≤ magnesium oxide / rare earth metal oxide ≤ 1.4. Add 4.0 to 6.0 wt% of magnesium oxide and rare earth metal oxide based on the total mass of silicon nitride powder and sintering aid, and plate-shaped molded body (green sheet) produced by the sheet forming process. Sintered by holding at the maximum holding temperature for 6 to 20 hours in a temperature range of 1790 ° C or higher and 1880 ° C or lower under a pressurized atmosphere with a nitrogen-containing gas pressure of 0.15 to 0.9 MPa. The ratio of the measured magnesium content to the measured rare earth metal content is 0.26 ≤ measured magnesium content / measured rare earth metal content ≤ 1.05, the measured aluminum content is less than 50 ppm, and the relative density is It is characterized by producing a plate-shaped silicon nitride sintered body having a content of 98% or more.

本発明の一態様においては、上記の段落に記載された板状の窒化ケイ素質焼結体を用いる絶縁基板又は回路基板が提供される。 In one aspect of the present invention, an insulating substrate or a circuit board using the plate-shaped silicon nitride sintered body described in the above paragraph is provided.

本発明によれば、高い熱伝導率と優れた機械的特性(強度と破壊靭性)を併せ持つ板状の窒化ケイ素質焼結体が提供され、しかも、この板状の窒化ケイ素質焼結体は焼結時の雰囲気圧力を高くすることなく製造することができる。 According to the present invention, a plate-shaped silicon nitride sintered body having both high thermal conductivity and excellent mechanical properties (strength and fracture toughness) is provided, and the plate-shaped silicon nitride sintered body is still available. It can be manufactured without increasing the atmospheric pressure at the time of sintering.

窒化ケイ素質焼結体においては、格子振動(フォノン)により熱伝達される。このため、異なるイオンによるフォノン散乱は熱伝導率低下の原因となる。また、窒化ケイ素質焼結体は、窒化ケイ素粒子相とその粒界相とから構成されている。粒界相の熱伝導率が低いため、粒界相量が増えると熱伝導率が低下する。さらに、窒化ケイ素質焼結体内に残存する気孔は熱伝導率を著しく低下させるので緻密な焼結体であることが必要である。 In the silicon nitride sintered body, heat is transferred by lattice vibration (phonon). Therefore, phonon scattering by different ions causes a decrease in thermal conductivity. Further, the silicon nitride sintered body is composed of a silicon nitride particle phase and a grain boundary phase thereof. Since the thermal conductivity of the grain boundary phase is low, the thermal conductivity decreases as the amount of grain boundary phase increases. Further, since the pores remaining in the silicon nitride sintered body significantly reduce the thermal conductivity, it is necessary to use a dense sintered body.

このため、高熱伝導率の窒化ケイ素質焼結体を得るためには、窒化ケイ素粉末に焼結助剤として、アルカリ土類金属酸化物と希土類金属酸化物との重量比が0.40≦アルカリ土類金属酸化物/希土類金属酸化物≦2.0を満足するような配合比で、アルカリ土類金属酸化物および希土類金属酸化物を、窒化ケイ素粉末と焼結助剤の合計重量を基準として3.2~7.0wt%添加して、シート成形プロセスにより作製された板状の成形体を雰囲気ガス圧力3MPa以下で焼結し、焼結体としての実測アルカリ土類金属含有量と実測希土類金属含有量の比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、実測アルミニウム含有量が50ppm未満であって、相対密度が98%以上の焼結体とする。 Therefore, in order to obtain a silicon nitride sintered body having high thermal conductivity, the weight ratio of the alkaline earth metal oxide to the rare earth metal oxide is 0.40 ≤ alkali as a sintering aid in the silicon nitride powder. Alkaline earth metal oxide and rare earth metal oxide are prepared based on the total weight of silicon nitride powder and sintering aid in a compounding ratio that satisfies earth metal oxide / rare earth metal oxide ≤ 2.0. By adding 3.2 to 7.0 wt%, the plate-shaped molded body produced by the sheet molding process is sintered at an atmospheric gas pressure of 3 MPa or less, and the measured alkaline earth metal content and measured rare earth as the sintered body. The metal content ratio is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal content ≤ 1.30, the measured aluminum content is less than 50 ppm, and the relative density is 98% or more. The body.

ここで、焼結体としての実測アルカリ土類金属含有量と実測希土類金属含有量の比率を、酸化物基準で焼結体中のアルカリ土類金属酸化物と希土類金属酸化物との重量比に換算すると、0.34≦アルカリ土類金属酸化物/希土類金属酸化物≦1.95である。 Here, the ratio of the measured alkaline earth metal content to the measured rare earth metal content as a sintered body is calculated as the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide in the sintered body based on the oxide. In terms of conversion, 0.34 ≤ alkaline earth metal oxide / rare earth metal oxide ≤ 1.95.

さらに、窒化ケイ素質焼結体の板面に垂直な切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに500個以上10000個以下であり、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における、柱状β型窒化ケイ素粒子の配向割合を示す配向度faが0.08以上0.25以下となり、さらに表面から0.08mm以上内側まで研削して得られた内部の面における配向度faが前記の表面における配向度faより小さくなるように、窒化ケイ素原料の性状、シート成形条件および焼結条件を高度に制御することにより、所望の特性を有する板状の窒化ケイ素質焼結体を得ることができる。なお、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、下記の<配向度faの算出方法>に記載された式(1)で表される配向度faである。Furthermore, when observing the cut surface perpendicular to the plate surface of the silicon nitride sintered body, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm was 500 per 1 mm 2 . The degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface polished to 10,000 or less and the arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less is 0.08 or more and 0.25. The properties of the silicon nitride raw material, sheet forming conditions, and baking so that the degree of orientation fa on the inner surface obtained by further grinding from the surface to the inside by 0.08 mm or more is smaller than the degree of orientation fa on the above surface. By highly controlling the forming conditions, a plate-shaped silicon nitride sintered body having desired characteristics can be obtained. The degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles is the degree of orientation fa represented by the formula (1) described in the following <Method for calculating the degree of orientation fa>.

<配向度faの算出方法>
板状の窒化ケイ素質焼結体の表面および内部における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、以下のようにして求める。
<Calculation method of orientation degree fa>
The degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface and inside of the plate-shaped silicon nitride sintered body, is obtained as follows.

表面における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面のX線回折測定を行って求める。表面の算術平均粗さRaがこの範囲内にないと、配向度faの正確な測定ができない。窒化ケイ素質焼結体の表面の算術平均粗さRaが0.05μm以上0.5μm以下であるときは、焼結体のその表面でX線回折測定を行ってよい。窒化ケイ素質焼結体の表面の算術平均粗さRaがこの範囲内にないときは、焼結体の表面を算術平均粗さRaが0.05μm以上0.5μm以下になるように研磨して、その研磨した表面でX線回折測定を行う。表面の算術平均粗さRaを0.05μm以上0.5μm以下にするための研磨方法は特に限定されず、研磨量は上記の算術平均粗さRaを実現するために必要な最低限でよく、一般的に、深さ方向に例えば約10μm前後で十分である。X線回折測定においては、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度を測定する。内部における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、表面の配向度fa測定を行った算術平均粗さRaが0.05μm以上0.5μm以下に研磨された前記表面から、焼結体の0.08mm以上内側まで研削して、得られた面のX線回折測定を行い、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度を測定する。前記の0.08mm以上内側まで研削して得られる面は、同じく測定を正確にするために、算術平均粗さRaが0.05μm以上0.5μm以下となるように研磨する。 The degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface, is obtained by performing X-ray diffraction measurement of the surface polished to an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less. If the arithmetic average roughness Ra of the surface is not within this range, the degree of orientation fa cannot be accurately measured. When the arithmetic mean roughness Ra of the surface of the silicon nitride sintered body is 0.05 μm or more and 0.5 μm or less, X-ray diffraction measurement may be performed on the surface of the sintered body. When the arithmetic average roughness Ra of the surface of the silicon nitride sintered body is not within this range, the surface of the sintered body is polished so that the arithmetic average roughness Ra is 0.05 μm or more and 0.5 μm or less. , X-ray diffraction measurement is performed on the polished surface. The polishing method for reducing the arithmetic average roughness Ra of the surface to 0.05 μm or more and 0.5 μm or less is not particularly limited, and the polishing amount may be the minimum necessary to realize the above arithmetic average roughness Ra. Generally, for example, about 10 μm in the depth direction is sufficient. In the X-ray diffraction measurement, the (110) plane, the (200) plane, the (101) plane, the (210) plane, the (201) plane, the (310) plane, the (320) plane, and the (002) plane X-ray. Measure the diffraction pattern intensity. The degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles inside, is obtained from the surface whose surface roughness Ra is polished to 0.05 μm or more and 0.5 μm or less. After grinding to the inside of the sintered body by 0.08 mm or more, X-ray diffraction measurement of the obtained surface was performed, and the (110) surface, the (200) surface, the (101) surface, the (210) surface, and the (201) surface were measured. , (310) plane, (320) plane, and (002) plane X-ray diffraction pattern intensity is measured. The surface obtained by grinding to the inside of 0.08 mm or more is polished so that the arithmetic average roughness Ra is 0.05 μm or more and 0.5 μm or less in order to make the measurement accurate.

六方晶系の柱状粒子の配向度はF.K.Lotgerlingによって提案された以下の式(1)で表される(F.K.Lotgerling,J.Inorg.Nucl.Chem.,9(1959)113~123ページ参照)。そこで、表面および内部の面のX線回折測定の結果に基づき、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faを、以下の式(1)で表される式から計算した。
fa=(P-P)/(1-P) ・・・・(1)
この式(1)において、Pは以下の式(2)で表され、I(110)、I(200)、I(210)、I(310)、I(320)、I(101)、I(201)、I(002)はβ型窒化ケイ素の(110)面、(200)面、(210)面、(310)面、(320)面、(101)面、(201)面、(002)面のX線回折ピーク強度をそれぞれ意味する。
また、Pは以下の式(3)で表され、I(110)、I(200)、I(101)、I(210)、I(201)、I(310)、I(320)、およびI(002)は、等方的なβ型窒化ケイ素粉末におけるβ型窒化ケイ素の(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度から算出される。
P=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(2)
=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(3)
The degree of orientation of the hexagonal columnar particles is F.I. K. It is expressed by the following equation (1) proposed by Lotgerling (see F.K. Lotgerling, J. Inorg. Nucl. Chem., 9 (1959), pp. 113-123). Therefore, based on the results of the X-ray diffraction measurement of the surface and the inner surface, the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles was calculated from the formula represented by the following formula (1).
fa = (P-P 0 ) / (1-P 0 ) ... (1)
In this formula (1), P is represented by the following formula (2), and I (110), I (200), I (210), I (310), I (320), I (101), I. (201) and I (002) are the (110) plane, (200) plane, (210) plane, (310) plane, (320) plane, (101) plane, (201) plane, and (. 002) It means the X-ray diffraction peak intensity of each surface.
Further, P 0 is represented by the following equation (3), I 0 (110), I 0 (200), I 0 (101), I 0 (210), I 0 (201), I 0 (310). , I 0 (320), and I 0 (002) are the (110), (200), (101), and (210) planes of the β-type silicon nitride in the isotropic β-type silicon nitride powder. It is calculated from the X-ray diffraction pattern intensity of the (201) plane, the (310) plane, the (320) plane, and the (002) plane.
P = (I (110) + I (200) + I (210) + I (310) + I (320)) / (I (110) + I (200) + I (101) + I (210) + I (201) + I (310) + I (320) + I (002)) ... (2)
P 0 = (I 0 (110) + I 0 (200) + I 0 (210) + I 0 (310) + I 0 (320)) / (I 0 (110) + I 0 (200) + I 0 (101) + I 0 ( 210) + I 0 (201) + I 0 (310) + I 0 (320) + I 0 (002)) ... (3)

なお、窒化ケイ素質焼結体の配向度faは、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面において測定されるが、本発明の窒化ケイ素質焼結体の表面は、算術平均粗さRaが0.05μm以上0.5μm以下である必要はなく、研磨されていても研磨されていなくてもよい。 The degree of orientation fa of the silicon nitride sintered body is measured on a surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less, and the surface of the silicon nitride sintered body of the present invention is measured. The arithmetic mean roughness Ra does not have to be 0.05 μm or more and 0.5 μm or less, and may or may not be polished.

配合組成におけるアルカリ土類金属酸化物と希土類金属酸化物との重量比(アルカリ土類金属酸化物/希土類金属酸化物)が0.40未満では、希土類金属酸化物の割合が増大するために、焼結過程において粒界相の溶融温度が上昇する。このため、多量のシリカ(SiO)を添加しない限り、焼結体の相対密度が低下し、緻密な焼結体が得られない。また、アルカリ土類金属酸化物と希土類金属酸化物との重量比を表すアルカリ土類金属酸化物/希土類金属酸化物が0.40未満であっても、2.0を超える値であっても機械的特性(強度および破壊靭性)が低下するので好ましくない。さらに、配合組成におけるアルカリ土類金属酸化物/希土類金属酸化物の重量比は、0.43以上、0.45以上、0.50以上、また1.40以下、1.00以下、0.66以下であってよい。If the weight ratio of the alkaline earth metal oxide to the rare earth metal oxide (alkali earth metal oxide / rare earth metal oxide) in the composition is less than 0.40, the ratio of the rare earth metal oxide increases. The melting temperature of the grain boundary phase rises in the sintering process. Therefore, unless a large amount of silica (SiO 2 ) is added, the relative density of the sintered body decreases, and a dense sintered body cannot be obtained. Further, even if the alkaline earth metal oxide / rare earth metal oxide representing the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide is less than 0.40 or more than 2.0. It is not preferable because it reduces mechanical properties (strength and breaking toughness). Furthermore, the weight ratio of alkaline earth metal oxide / rare earth metal oxide in the compounding composition is 0.43 or more, 0.45 or more, 0.50 or more, and 1.40 or less, 1.00 or less, 0.66. It may be as follows.

アルカリ土類金属酸化物および希土類金属酸化物の添加量が3.2wt%未満では高密度な焼結体が得られないため、熱伝導率が低下し、機械的特性(強度および破壊靭性)も低下する。アルカリ土類金属酸化物および希土類金属酸化物の添加量が7.0wt%を超えても、機械的特性(強度および破壊靭性)はほとんど低下しないが、熱伝導率が低下するので好ましくない。アルカリ土類金属酸化物および希土類金属酸化物の添加量は4.0wt%以上6.0wt%以下であることが好ましい。なお、アルカリ土類金属酸化物の添加量は2.9wt%以下であることがより好ましい。 If the amount of alkaline earth metal oxide and rare earth metal oxide added is less than 3.2 wt%, a high-density sintered body cannot be obtained, so that the thermal conductivity is lowered and the mechanical properties (strength and fracture toughness) are also improved. descend. Even if the amount of the alkaline earth metal oxide and the rare earth metal oxide added exceeds 7.0 wt%, the mechanical properties (strength and fracture toughness) hardly decrease, but the thermal conductivity decreases, which is not preferable. The amount of the alkaline earth metal oxide and the rare earth metal oxide added is preferably 4.0 wt% or more and 6.0 wt% or less. The amount of the alkaline earth metal oxide added is more preferably 2.9 wt% or less.

窒化ケイ素質成形体の焼結は窒素雰囲気中または窒素含有不活性雰囲気中で行われるため、焼結過程においては、焼結助剤として添加したアルカリ土類金属酸化物および希土類金属酸化物の一部が、窒化ケイ素原料中のシリカ成分と共に蒸発により揮散してしまう。このため、窒化ケイ素質焼結体の主として粒界に含まれる焼結助剤の含有量は、出発原料の配合組成と異なってくる。本発明においては、焼結体としての実測アルカリ土類金属含有量と実測希土類金属含有量との比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、実測アルミニウム含有量が50ppm未満である。実測アルカリ土類金属含有量/実測希土類金属含有量が0.26未満では、焼結体の相対密度が低下している。また、実測アルカリ土類金属含有量/実測希土類金属含有量が0.26未満であっても、1.30を超える値であっても機械的特性(強度および破壊靭性)が低下していて、好ましくない。さらに、焼結体の実測アルカリ土類金属含有量/実測希土類金属含有量の重量比は、0.30以上、0.37以上、また0.80以下、0.55以下であってもよい。 Since the silicon nitride molded product is sintered in a nitrogen atmosphere or a nitrogen-containing inert atmosphere, it is one of the alkaline earth metal oxides and rare earth metal oxides added as sintering aids in the sintering process. The portion volatilizes due to evaporation together with the silica component in the silicon nitride raw material. Therefore, the content of the sintering aid mainly contained in the grain boundaries of the silicon nitride sintered body differs from the compounding composition of the starting material. In the present invention, the ratio of the measured alkaline earth metal content to the measured rare earth metal content as a sintered body is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal content ≤ 1.30. , The measured aluminum content is less than 50 ppm. When the measured alkaline earth metal content / measured rare earth metal content is less than 0.26, the relative density of the sintered body decreases. Further, even if the measured alkaline earth metal content / measured rare earth metal content is less than 0.26 or more than 1.30, the mechanical properties (strength and fracture toughness) are deteriorated. Not preferred. Further, the weight ratio of the measured alkaline earth metal content / the measured rare earth metal content of the sintered body may be 0.30 or more, 0.37 or more, and 0.80 or less, 0.55 or less.

窒化ケイ素質焼結体の実測酸素含有量は1.4重量%以上2.9重量%以下であり、好ましくは1.4重量%以上2.4重量%以下であり、さらに好ましくは1.75重量%以上2.10重量%以下である。実測酸素含有量が1.4重量%未満となるような配合組成および焼結条件では、焼結体の相対密度が98%未満となってしまう。さらに、板状の窒化ケイ素質焼結体の粒界に結晶相が析出して、色調ムラが発生するので好ましくない。一方、実測酸素含有量が2.9重量%を超える板状の窒化ケイ素質焼結体は熱伝導率が低下しているので好ましくない。さらに、銅、アルミニウムなどの金属板と直接接合した際に、接合界面にボイドが発生して、接合強度が低下するので好ましくない。 The measured oxygen content of the silicon nitride sintered body is 1.4% by weight or more and 2.9% by weight or less, preferably 1.4% by weight or more and 2.4% by weight or less, and more preferably 1.75% by weight. It is 2% by weight or more and 2.10% by weight or less. Under the compounding composition and sintering conditions such that the measured oxygen content is less than 1.4% by weight, the relative density of the sintered body becomes less than 98%. Further, the crystal phase is precipitated at the grain boundaries of the plate-shaped silicon nitride sintered body, which causes uneven color tone, which is not preferable. On the other hand, a plate-shaped silicon nitride sintered body having an actually measured oxygen content of more than 2.9% by weight is not preferable because the thermal conductivity is lowered. Further, when directly bonded to a metal plate such as copper or aluminum, voids are generated at the bonding interface and the bonding strength is lowered, which is not preferable.

アルカリ土類金属酸化物としては酸化マグネシウムが、希土類金属酸化物としては酸化イットリウム、酸化エルビウム、酸化スカンジウムおよび酸化ルテチウムから選ばれる少なくとも一種の酸化物が好適に用いられる。なお、酸化マグネシウムに代えて、酸窒化マグネシウムまたは窒化マグネシウムを使用しても良い。 Magnesium oxide is preferably used as the alkaline earth metal oxide, and at least one oxide selected from yttrium oxide, erbium oxide, scandium oxide and lutetium oxide is preferably used as the rare earth metal oxide. In addition, magnesium oxynitride or magnesium nitride may be used instead of magnesium oxide.

配合組成における酸化マグネシウムと希土類金属酸化物との重量比は0.40≦酸化マグネシウム/希土類金属酸化物≦1.4であることが好ましく、さらに0.40≦酸化マグネシウム/希土類金属酸化物<1.0であることがより好ましい。さらに0.40≦酸化マグネシウム/希土類金属酸化物≦0.66であることが、特に好ましい。あるいは、0.45≦酸化マグネシウム/希土類金属酸化物≦0.66であってもよい。 The weight ratio of magnesium oxide to the rare earth metal oxide in the compounding composition is preferably 0.40 ≤ magnesium oxide / rare earth metal oxide ≤ 1.4, and further 0.40 ≤ magnesium oxide / rare earth metal oxide <1. It is more preferably 0.0. Further, it is particularly preferable that 0.40 ≦ magnesium oxide / rare earth metal oxide ≦ 0.66. Alternatively, 0.45 ≦ magnesium oxide / rare earth metal oxide ≦ 0.66 may be used.

このような酸化マグネシウムと希土類金属酸化物との重量比の設定と焼結条件の選択との両方の効果により、焼結体としての実測マグネシウム含有量と実測希土類金属含有量の比率が0.26≦実測マグネシウム含有量/実測希土類金属含有量≦1.05とすることが好ましく、さらに0.26≦実測マグネシウム含有量/実測希土類金属含有量≦0.75であることがより好ましい。さらに0.26≦実測マグネシウム含有量/実測希土類金属含有量≦0.49であることが、特に好ましい。 Due to the effects of both setting the weight ratio of magnesium oxide and rare earth metal oxide and selecting the sintering conditions, the ratio of the measured magnesium content and the measured rare earth metal content as a sintered body is 0.26. ≤ Measured magnesium content / Measured rare earth metal content ≤ 1.05, and more preferably 0.26 ≤ Measured magnesium content / Measured rare earth metal content ≤ 0.75. Further, it is particularly preferable that 0.26 ≦ actually measured magnesium content / actually measured rare earth metal content ≦ 0.49.

前記のように窒化ケイ素質成形体の焼結過程においては、焼結助剤として添加した酸化マグネシウムや希土類金属酸化物の一部が、窒化ケイ素原料中のシリカ成分と共に蒸発により揮散してしまう。さらに、高温において溶融状態にある粒界相に窒素が溶解する。このため、焼結後の降温過程において、YSi(N-メリライト)、Y10Si23(H相)、YSi(J相)、YSiON(K相)などの結晶相が析出して、取り出した板状の窒化ケイ素質焼結体に結晶相析出に伴う色調ムラを生じる。前記の析出結晶相は、一般に非晶質相よりも真密度が高いため、収縮により析出結晶相の周辺部にマイクロポアの密集領域を生ずる。マイクロポアの密集領域は繰り返し応力や熱サイクルによる負荷に伴うキ裂成長の起点となり、疲労破壊や熱サイクル破壊の原因となる。また、析出結晶相の成長面の配向とマイクロポア密集領域の存在とが相俟って、焼結体表面に色調ムラを発生させる。本発明の板状の窒化ケイ素質焼結体は色調ムラが抑制されているという特徴がある。色調ムラが抑制されてということは、応力サイクルや熱サイクルの印加による劣化が起こり難く、信頼性の高い材料であることを意味する。As described above, in the sintering process of the silicon nitride molded product, a part of magnesium oxide and rare earth metal oxide added as a sintering aid is volatilized by evaporation together with the silica component in the silicon nitride raw material. Further, nitrogen dissolves in the grain boundary phase which is in a molten state at high temperature. Therefore, in the temperature lowering process after sintering, Y 2 Si 3 O 3 N 4 (N-merylite), Y 10 Si 7 O 23 N 4 (H phase), Y 4 Si 2 O 7 N 2 (J phase). , YSiO 2N (K phase) or the like precipitates, and the plate-shaped silicon nitride sintered body taken out causes uneven color tone due to the precipitation of the crystal phase. Since the precipitated crystal phase generally has a higher true density than the amorphous phase, shrinkage causes a dense region of micropores in the peripheral portion of the precipitated crystal phase. The dense region of micropores becomes the starting point of crack growth due to repeated stress and load due to thermal cycle, and causes fatigue fracture and thermal cycle fracture. In addition, the orientation of the growth surface of the precipitated crystal phase and the presence of the micropore dense region cause uneven color tone on the surface of the sintered body. The plate-shaped silicon nitride sintered body of the present invention is characterized in that uneven color tone is suppressed. Suppressing color unevenness means that the material is highly reliable because it is less likely to deteriorate due to the application of stress cycle or thermal cycle.

さらに、本発明の板状の窒化ケイ素質焼結体の粒界にはMgSiN等からなるMg化合物の結晶相が、実質的に含まれていない。ここで、MgSiNからなる結晶相が、実質的に含まれていないとは、前記MgSiN結晶相の(121)のX線回折ピーク強度が窒化ケイ素質焼結体を構成するβ型窒化ケイ素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)面のX線回折ピーク強度の和の0.0005倍未満であることを意味する。Further, the grain boundaries of the plate-shaped silicon nitride sintered body of the present invention do not substantially contain the crystal phase of the Mg compound made of MgSiN2 or the like. Here, the fact that the crystal phase composed of MgSiN 2 is not substantially contained means that the X-ray diffraction peak intensity of (121) of the MgSiN 2 crystal phase constitutes a silicon nitride sintered body. Less than 0.0005 times the sum of the X-ray diffraction peak intensities of the (110), (200), (101), (210), (201), (310), (320) and (002) planes of the crystal particles of. Means that

本発明においては、窒化ケイ素質焼結体の粒界にMgSiN等からなるMg化合物の結晶相が生成すると、窒化ケイ素質焼結体の機械的特性(曲げ強度と破壊靭性)が低下する傾向にある。具体的には、本発明における4点曲げ強度が室温において900MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが7.6MPa√m以上である板状の窒化ケイ素質焼結体が得られなくなるので、好ましくない。In the present invention, when a crystal phase of an Mg compound composed of MgSiN 2 or the like is generated at the grain boundaries of the silicon nitride sintered body, the mechanical properties (bending strength and fracture toughness) of the silicon nitride sintered body tend to decrease. It is in. Specifically, the four-point bending strength in the present invention is 900 MPa or more at room temperature, and the fracture toughness value KIC measured by the IF method (indentation method) is 7.6 MPa√m or more. It is not preferable because a sintered body cannot be obtained.

本発明の板状の窒化ケイ素質焼結体の製造においては、好ましくは焼結助剤として酸化マグネシウムおよび酸化イットリウムを添加し、その添加量は4.0wt%以上6.0wt%以下、その重量比が0.40≦酸化マグネシウム/酸化イットリウム≦1.4を満足するように添加した後、シート成形プロセスにより作製された板状の成形体(グリーンシート)を雰囲気ガス圧力3MPa以下で焼結して、相対密度が98%以上の焼結体を得る。特に、窒素含有ガス圧力が0.15~0.9MPaの加圧雰囲気下、最高保持温度が1790℃以上1880℃以下の温度範囲で6~20時間保持することによって焼結し、相対密度が98%以上、好ましくは99.0%以上の焼結体を得る。焼結時には、1520℃から最高保持温度までの温度範囲を150℃/hr未満の速度で昇温することが、より好ましい。また、1520℃から最高保持温度までの温度範囲において、一定温度に一定時間保持することも、残留気孔を低減する上で効果がある。例えば、1520℃~1670℃の範囲の所定の温度において1~3時間保持する。緻密で残留気孔の少ない板状の窒化ケイ素質焼結体を製造することは、本発明の必須要件の一つである。 In the production of the plate-shaped silicon nitride sintered body of the present invention, magnesium oxide and yttrium oxide are preferably added as sintering aids, and the amount thereof is 4.0 wt% or more and 6.0 wt% or less, and the weight thereof. After adding so as to satisfy the ratio of 0.40 ≤ magnesium oxide / yttrium oxide ≤ 1.4, the plate-shaped molded body (green sheet) produced by the sheet forming process is sintered at an atmospheric gas pressure of 3 MPa or less. Therefore, a sintered body having a relative density of 98% or more is obtained. In particular, it is sintered by holding for 6 to 20 hours in a temperature range where the maximum holding temperature is 1790 ° C. or higher and 1880 ° C. or lower under a pressurized atmosphere where the nitrogen-containing gas pressure is 0.15 to 0.9 MPa, and the relative density is 98. % Or more, preferably 99.0% or more of sintered body is obtained. At the time of sintering, it is more preferable to raise the temperature range from 1520 ° C. to the maximum holding temperature at a rate of less than 150 ° C./hr. Further, holding at a constant temperature for a certain period of time in the temperature range from 1520 ° C. to the maximum holding temperature is also effective in reducing residual pores. For example, it is held at a predetermined temperature in the range of 1520 ° C to 1670 ° C for 1 to 3 hours. It is one of the essential requirements of the present invention to produce a plate-shaped silicon nitride sintered body that is dense and has few residual pores.

シート成形法はテープ成形法とも呼ばれ、原料粉末100質量部に対して、例えば8質量部以上の有機バインダーまたは樹脂バインダーを含むスラリーを、ドクターブレードやダイコーターなどの装置を用いて、キャリアフィルム上に所定の厚みでキャストしてグリーンシートを作製する。押出し成形法や射出成型法によるグリーンシート作製もシート成形法に含まれるが、本発明においては、CIP成形法や金型プレス成形法はシート成形法には含まれない。特に、有機バインダーや樹脂バインダーを添加せず、厚さ3mm以上のバルクのCIP成形体を焼結した後、得られた窒化ケイ素質焼結体を切削・研磨加工することで得られる試験片の曲げ強度を、本発明の板状の窒化ケイ素質焼結体の曲げ強度と比較することはできない。 The sheet molding method is also called a tape molding method, and a slurry containing, for example, 8 parts by mass or more of an organic binder or a resin binder is applied to 100 parts by mass of raw material powder using a device such as a doctor blade or a die coater to form a carrier film. A green sheet is prepared by casting it on top to a predetermined thickness. Green sheet production by an extrusion molding method or an injection molding method is also included in the sheet molding method, but in the present invention, the CIP molding method and the mold press molding method are not included in the sheet molding method. In particular, the test piece obtained by sintering a bulk CIP molded body having a thickness of 3 mm or more without adding an organic binder or a resin binder, and then cutting and polishing the obtained silicon nitride sintered body. The bending strength cannot be compared with the bending strength of the plate-shaped silicon nitride sintered body of the present invention.

シート成形法自体は知られており、本発明でも公知のシート成形法を用いてよい。窒化ケイ素粉末と、焼結助剤と、ポリビニルブチラール(PVB)などの有機バインダーと、必要に応じて、アルキルポリアミン系組成物などの分散剤、ジメチルフタレ-トなどの可塑剤、トルエン-イソプロパノール-キシレン混合溶媒などの溶剤とを含むグリーンシート成形用スラリーを調整し、ドクターブレードやダイコーターなどの装置を用いて、キャリアフィルム上に所定の厚みでキャストしてグリーンシートを作製する。シート成形における塗工速度と焼結後のβ型窒化ケイ素粒子の配向との間に相関が認められる。グリーンシートの塗工速度は、スラリー組成やシート厚さなど他の製造条件とも関係するが、一般的には、例えば、0.02~0.5m/分、さらには0.05~0.3m/分、0.14~0.3m/分あるいは0.1~0.2m/分としてよい。ただし、本発明の板状の窒化ケイ素質焼結体を製造する際のシート成形及び焼結の条件は、β型窒化ケイ素粒子の配向度及び10μm超の柱状のβ型窒化ケイ素粒子の個数が本発明の所定の範囲内になるように選択されるので、それとの関係でグリーンシートの具体的な塗工速度は選択される。グリーンシートは、焼結後の厚さを考慮して、積層グリーンシートとすることができる。シート成形法で作製したグリーンシートあるいは積層グリーンシート(以下、単にグリーンシートという。)は、通常、切断して所定の形状の成形体にされる。 The sheet forming method itself is known, and a known sheet forming method may be used in the present invention. Silicon nitride powder, sintering aid, organic binder such as polyvinyl butyral (PVB), dispersant such as alkylpolyamine-based composition, plasticizer such as dimethylphthalate, toluene-isopropanol-xylene, if necessary. A green sheet forming slurry containing a solvent such as a mixed solvent is prepared and cast on a carrier film to a predetermined thickness using a device such as a doctor blade or a die coater to prepare a green sheet. A correlation is observed between the coating speed in sheet molding and the orientation of β-type silicon nitride particles after sintering. The coating speed of the green sheet is related to other production conditions such as slurry composition and sheet thickness, but generally, for example, 0.02 to 0.5 m / min and further 0.05 to 0.3 m. It may be 0.14 to 0.3 m / min or 0.1 to 0.2 m / min. However, the conditions for sheet forming and sintering in producing the plate-shaped silicon nitride sintered body of the present invention are the degree of orientation of the β-type silicon nitride particles and the number of columnar β-type silicon nitride particles exceeding 10 μm. Since it is selected so as to be within the predetermined range of the present invention, the specific coating speed of the green sheet is selected in relation to it. The green sheet can be a laminated green sheet in consideration of the thickness after sintering. A green sheet or a laminated green sheet (hereinafter, simply referred to as a green sheet) produced by a sheet molding method is usually cut into a molded product having a predetermined shape.

グリーンシートの成形体を焼結するに当たって、特に1.5mm以下、さらには1.0mm以下の薄い板状の窒化ケイ素質焼結体を製造するときは、従来より、薄板の反り抑制、破損防止、ハンドリング性、生産効率等を考慮して、複数のグリーンシート成形体を、間に分離材(代表的には粒径約4~20μmの窒化ホウ素粉末)を介在させて、重ねた状態で、脱脂及び焼結されている。複数のグリーンシート成形体を、重ねて、窒化ホウ素などの容器に入れ、空気中100℃/時程度の昇温速度で400~600℃まで昇温し、同温度で2~5時間加熱することにより、予め添加した有機バインダー成分等を十分に脱脂(除去)することができる。次いで、この脱脂体を後述のように熱処理して焼結体を製造する。その後室温まで冷却し、得られる窒化ケイ素質焼結体を分離材層で剥離して、板状の窒化ケイ素質焼結体を得る。得られる板状の窒化ケイ素質焼結体は、通常、ブラスト研磨加工し、所望の表面粗さを有する基板用の窒化ケイ素質焼結体とされる。ブラスト研磨加工による除去厚みは、例えば、平均値で約20μm以下でよい。ブラスト研磨後に、あるいはブラスト研磨なしで、ラップ研磨加工などをしてもよい。 When sintering a green sheet molded product, especially when producing a thin plate-shaped silicon nitride sintered body having a thickness of 1.5 mm or less and further 1.0 mm or less, warpage of the thin plate is suppressed and damage is prevented. In consideration of handleability, production efficiency, etc., a plurality of green sheet compacts are laminated with a separating material (typically boron nitride powder having a particle size of about 4 to 20 μm) interposed therebetween. Degreased and sintered. A plurality of green sheet molded bodies are stacked and placed in a container such as boron nitride, heated to 400 to 600 ° C. in air at a heating rate of about 100 ° C./hour, and heated at the same temperature for 2 to 5 hours. Therefore, the organic binder component and the like added in advance can be sufficiently degreased (removed). Next, this degreased body is heat-treated as described later to produce a sintered body. After that, it is cooled to room temperature, and the obtained silicon nitride sintered body is peeled off with a separating material layer to obtain a plate-shaped silicon nitride sintered body. The obtained plate-shaped silicon nitride sintered body is usually blast-polished to obtain a silicon nitride sintered body for a substrate having a desired surface roughness. The thickness removed by the blast polishing process may be, for example, about 20 μm or less on average. Wrap polishing may be performed after blast polishing or without blast polishing.

有機バインダーや樹脂バインダーを使用した成形体(グリーンシート)においては、バインダーの凝集により成形体内に粗大な気孔を生成し易いばかりでなく、脱脂後も成形体内に微量の炭素が残存し、残存炭素が焼結過程における粒成長に影響するため、得られる窒化ケイ素質焼結体の機械的特性(曲げ強度と破壊靭性)が悪化してしまう。特に板状の窒化ケイ素質焼結体においてはその影響が顕著である。さらに、窒化ケイ素質焼結体においては、焼結体表面と内部で微細構造(粒子の大きさとアスペクト比、粒界相の組成と結晶相)が異なることが知られている。このため、気孔、キ裂などの欠陥が生成し易い表層部を0.2mm以上研削除去した試験片の曲げ強度は表層部を残した試験片の曲げ強度よりも高くなる。このように、窒化ケイ素質焼結体の曲げ強度は、有機バインダーまたは樹脂バインダーの使用量や試験片作製時の切削・研磨加工によって変化することが知られており、切削・研磨加工することに得られた試験片の曲げ強度が既に開示されていたとしても、本発明における板状の窒化ケイ素質焼結体の曲げ強度と同等ということは言えず、また、同等の曲げ強度の値が既に開示されていたということにはならない。 In a molded product (green sheet) using an organic binder or a resin binder, not only is it easy to generate coarse pores in the molded body due to the aggregation of the binder, but also a small amount of carbon remains in the molded body even after degreasing, and residual carbon remains. Affects grain growth in the sintering process, which deteriorates the mechanical properties (bending strength and fracture toughness) of the obtained silicon nitride sintered body. The effect is particularly remarkable in the plate-shaped silicon nitride sintered body. Further, it is known that the silicon nitride sintered body has different microstructures (particle size and aspect ratio, grain boundary phase composition and crystal phase) between the surface and the inside of the sintered body. Therefore, the bending strength of the test piece obtained by grinding and removing the surface layer portion where defects such as pores and cracks are likely to occur by 0.2 mm or more is higher than the bending strength of the test piece in which the surface layer portion remains. As described above, it is known that the bending strength of the silicon nitride sintered body changes depending on the amount of the organic binder or the resin binder used and the cutting / polishing process at the time of preparing the test piece. Even if the bending strength of the obtained test piece is already disclosed, it cannot be said that it is equivalent to the bending strength of the plate-shaped silicon nitride sintered body in the present invention, and the equivalent bending strength value is already obtained. It does not mean that it was disclosed.

本発明における板状の窒化ケイ素質焼結体は、シート成形プロセスにより作製できるものであるが、厚さが1.5mm以下、好ましくは1.0mm以下であり、厚さ/面積比が0.015(1/mm)以下であるものを言う。研削または研磨加工による厚み方向に垂直な板面表層部の除去量は、好ましくは、片面当たり0.02mm以下である。シート成形プロセスにより作製された板状の成形体を、分離材層を介して重ねて焼結した場合には、この分離材層で剥離して得られる、厚さが1.5mm以下、好ましくは1.0mm以下の板状の窒化ケイ素質焼結体のことであり、厚さ/面積比が0.015(1/mm)以下であり、研削または研磨加工による厚み方向に垂直な板面表層部の除去量が片面当たり0.02mm以下のものであってよい。例えば、パワーモジュール用高熱伝導窒化ケイ素基板としては、厚み0.32±0.05mmのものが求められている。 The plate-shaped silicon nitride sintered body in the present invention can be produced by a sheet forming process, but has a thickness of 1.5 mm or less, preferably 1.0 mm or less, and a thickness / area ratio of 0. It means the one which is 015 (1 / mm) or less. The amount of the surface layer portion of the plate surface perpendicular to the thickness direction by grinding or polishing is preferably 0.02 mm or less per surface. When the plate-shaped molded body produced by the sheet forming process is laminated and sintered via the separating material layer, the thickness obtained by peeling with the separating material layer is preferably 1.5 mm or less, preferably. A plate-shaped silicon nitride sintered body of 1.0 mm or less, having a thickness / area ratio of 0.015 (1 / mm) or less, and a plate surface surface layer perpendicular to the thickness direction by grinding or polishing. The amount of the portion removed may be 0.02 mm or less per side. For example, a high thermal conductive silicon nitride substrate for a power module is required to have a thickness of 0.32 ± 0.05 mm.

焼結過程において、成形体(グリーンシート)が収縮して緻密化してゆくと、成形体(グリーンシート)内の開気孔が徐々に減少し、数%の閉気孔のみが残存した状態となる。さらに緻密化が進むと、この閉気孔も消滅してゆくが、雰囲気ガス圧力が3MPaより高いと、前記の閉気孔内に高圧の窒素ガスが取り込まれてしまう。いったん取り込まれた高圧の窒素ガスは焼結体の外に出ることが出来ないため、焼結後に残存する気孔周辺に残留応力を生じ、窒化ケイ素質焼結体の高温での機械的特性や熱サイクル特性に悪影響を与える。また、雰囲気ガス圧力は等方的に作用するため、本発明のような柱状のβ型窒化ケイ素粒子が配向した焼結体は得られない。具体的には、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faがゼロ近傍の小さな値となるので、熱伝導率と機械的特性のバランス上、好ましくない。さらに、雰囲気ガス圧力を3MPaよりも高めるには、高圧下で使用できる特殊な焼結炉が必要となり、設備費が著しく高くなるので好ましくない。 In the sintering process, when the molded body (green sheet) shrinks and becomes densified, the open pores in the molded body (green sheet) gradually decrease, and only a few percent of the closed pores remain. As the densification progresses, the closed pores disappear, but if the atmospheric gas pressure is higher than 3 MPa, high-pressure nitrogen gas is taken into the closed pores. Since the high-pressure nitrogen gas once taken in cannot go out of the sintered body, residual stress is generated around the pores remaining after sintering, and the mechanical properties and heat of the silicon nitride sintered body at high temperature are generated. It adversely affects the cycle characteristics. Further, since the atmospheric gas pressure acts isotropically, a sintered body in which columnar β-type silicon nitride particles are oriented as in the present invention cannot be obtained. Specifically, the degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less, becomes a small value near zero. , Not preferable due to the balance between thermal conductivity and mechanical properties. Further, in order to raise the atmospheric gas pressure to more than 3 MPa, a special sintering furnace that can be used under high pressure is required, which is not preferable because the equipment cost is remarkably high.

特許文献3では、雰囲気ガス圧力40、60、100および2000気圧で、高い熱伝導率と高い曲げ強度を実現しているが、表1に掲載されたデータは、厚さ3mm以上のバルクのCIP成形体を焼結した後、得られた窒化ケイ素質焼結体を切削・研磨加工して得られた試験片の特性を測定したものであって、有機バインダーを多量に添加するシート成形プロセスで得られた板状の窒化ケイ素質焼結体の特性値ではない。さらに、MgO添加量が0.9~1.0重量%、Y添加量が3.1~3.0重量%(MgO/Y重量比が0.29~0.33)という緻密化にとって厳しい焼結条件であるため、緻密化の進行する温度が高くなり、実際に表2に記載された焼結温度も高いので、長軸の長さが10μmを超える柱状β型窒化ケイ素粒子の個数が、1mm当たりに15223~19022個という大きな値となっている。このように柱状β型窒化ケイ素粒子の個数が多くなると、この粗大粒子が破壊の起点として作用するために破壊靭性が低下するばかりでなく、板状の窒化ケイ素質焼結体の表面が荒れ、通常のブラスト研磨加工では算術平均粗さRaが0.06μm以上0.4μm以下という表面状態を実現し難い。算術平均粗さRaが0.4μmを超えると、活性金属ロウ材を用いない直接接合法(DBC法)による銅板やアルミニウム板との接合が困難となる。また、接合できたとしても、耐熱サイクル試験における繰り返し熱サイクルで剥離や基板割れが起こってしまうので、好ましくない。前記の金属との接合体は-40℃から180℃までの昇温・降温サイクルを繰り返した場合に、2000サイクル以上の耐久性を有することが好ましい。また、コストアップとなるラップ研磨等により所望の表面粗さを実現出来たとしても、算術平均粗さRaが0.06μm以上0.4μm以下に研磨された表面における開気孔率が大きくて、開気孔の最大開口径が1.0μmを超える値となるので、好ましくない。Patent Document 3 realizes high thermal conductivity and high bending strength at atmospheric gas pressures of 40, 60, 100 and 2000 atm, but the data shown in Table 1 shows bulk CIPs with a thickness of 3 mm or more. After sintering the molded body, the characteristics of the test piece obtained by cutting and polishing the obtained silicon nitride sintered body are measured, and it is a sheet molding process in which a large amount of organic binder is added. It is not the characteristic value of the obtained plate-shaped silicon nitride sintered body. Further, the amount of MgO added is 0.9 to 1.0% by weight, and the amount of Y2O3 added is 3.1 to 3.0 % by weight ( MgO / Y2O3 weight ratio is 0.29 to 0.33). Because of the strict sintering conditions for densification, the temperature at which densification progresses becomes high, and the sintering temperature actually shown in Table 2 is also high, so that the length of the major axis exceeds 10 μm, and the columnar β-type silicon nitride The number of silicon particles is a large value of 15223 to 19022 per 1 mm 2 . When the number of columnar β-type silicon nitride particles is increased in this way, not only the fracture toughness is lowered because the coarse particles act as the starting point of fracture, but also the surface of the plate-shaped silicon nitride sintered body is roughened. It is difficult to realize a surface condition in which the arithmetic average roughness Ra is 0.06 μm or more and 0.4 μm or less by ordinary blast polishing. If the arithmetic average roughness Ra exceeds 0.4 μm, it becomes difficult to join a copper plate or an aluminum plate by a direct joining method (DBC method) that does not use an active metal brazing material. Further, even if the bonding is possible, it is not preferable because peeling and cracking of the substrate occur in the repeated heat cycle in the heat resistance cycle test. It is preferable that the bonded body with the metal has a durability of 2000 cycles or more when the temperature raising / lowering cycle from −40 ° C. to 180 ° C. is repeated. Further, even if the desired surface roughness can be achieved by lap polishing or the like, which increases the cost, the open porosity on the surface polished to an arithmetic average roughness Ra of 0.06 μm or more and 0.4 μm or less is large, and the surface is opened. It is not preferable because the maximum opening diameter of the pores exceeds 1.0 μm.

一方、窒素含有ガス圧力が0.15MPa未満では、焼結時の最高保持温度を1790℃以上に上げることが出来ない。最高保持温度が1790℃未満では、焼結の進行速度が遅く、相対密度が98%以上となる緻密な板状の窒化ケイ素質焼結体を得ることが難しい。あるいは、最高保持温度1790℃未満で、緻密な窒化ケイ素質焼結体が得られたとしても、柱状のβ型窒化ケイ素粒子の成長が不十分であり、低い熱伝導率の窒化ケイ素質焼結体しか得られないので、板状の窒化ケイ素質焼結体の熱伝導率を90W/(m・K)以上に上げることは困難である。最高保持温度が1880℃を超えると、柱状のβ型窒化ケイ素粒子の成長が著しく速くなり、長軸の長さが10μmを超えるものの個数が、1mm当たりに10000個を超えてしまうので、好ましくない。さらに、最高保持温度は、1800℃以上、あるいは1850℃以下であってよい。On the other hand, if the nitrogen-containing gas pressure is less than 0.15 MPa, the maximum holding temperature at the time of sintering cannot be raised to 1790 ° C. or higher. If the maximum holding temperature is less than 1790 ° C., the progress rate of sintering is slow, and it is difficult to obtain a dense plate-shaped silicon nitride sintered body having a relative density of 98% or more. Alternatively, even if a dense silicon nitride sintered body is obtained at a maximum holding temperature of less than 1790 ° C., the growth of columnar β-type silicon nitride particles is insufficient, and the silicon nitride sintered body has a low thermal conductivity. Since only the body can be obtained, it is difficult to raise the thermal conductivity of the plate-shaped silicon nitride sintered body to 90 W / (m · K) or more. When the maximum holding temperature exceeds 1880 ° C., the growth of columnar β-type silicon nitride particles becomes remarkably fast, and the number of particles having a major axis length of more than 10 μm exceeds 10,000 per 1 mm 2 . not. Further, the maximum holding temperature may be 1800 ° C. or higher, or 1850 ° C. or lower.

1790℃以上1880℃以下の温度範囲における保持時間が6時間未満であると、所望の相対密度、所望の柱状β型窒化ケイ素粒子を有する板状の窒化ケイ素質焼結体を得ることが難しい。1790℃以上1880℃以下の温度範囲における保持時間が20時間を超えると、柱状のβ型窒化ケイ素粒子の成長が進み過ぎるばかりでなく、板状の窒化ケイ素質焼結体製造に長時間を要し、コストアップに繋がるので好ましくない。特に、1880℃を超える最高保持温度、20時間を超える保持時間という、柱状のβ型窒化ケイ素粒子の成長が著しく速い焼結条件で得られる板状の窒化ケイ素質焼結体は、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく多くなっており、熱伝導率は高いものの機械的特性が著しく劣っている。例えば、曲げ強度が700MPa未満に低下する。さらには、上記温度範囲における保持時間は、8時間以上や、14時間以下であってよい。 When the holding time in the temperature range of 1790 ° C. or higher and 1880 ° C. or lower is less than 6 hours, it is difficult to obtain a plate-shaped silicon nitride sintered body having a desired relative density and desired columnar β-type silicon nitride particles. If the holding time in the temperature range of 1790 ° C. or higher and 1880 ° C. or lower exceeds 20 hours, not only the growth of the columnar β-type silicon nitride particles proceeds excessively, but also a long time is required to manufacture the plate-shaped silicon nitride sintered body. However, it is not preferable because it leads to an increase in cost. In particular, the plate-shaped silicon nitride sintered body obtained under the sintering conditions of a maximum holding temperature of over 1880 ° C. and a holding time of over 20 hours, in which the growth of columnar β-type silicon nitride particles is remarkably fast, has a long axis. The number of β-type silicon nitride particles having a length of more than 10 μm is remarkably large, and although the thermal conductivity is high, the mechanical properties are remarkably inferior. For example, the bending strength is reduced to less than 700 MPa. Further, the holding time in the above temperature range may be 8 hours or more or 14 hours or less.

上記の焼結を行った後の冷却過程においては、1500℃までを350℃/hr以上の速度で降温することが好適である。逆に、粒界での前記のMgSiN結晶相の生成を抑制できる範囲内において、1000℃までを200℃/hr以下の降温速度で徐冷するか、または、1450℃~1650℃の範囲の温度で一定時間保持することによって熱伝導率および機械的特性の更なる改善を行うことも可能である。In the cooling process after the above sintering, it is preferable to lower the temperature up to 1500 ° C. at a rate of 350 ° C./hr or more. On the contrary, within the range in which the formation of the MgSiN2 crystal phase at the grain boundaries can be suppressed, the temperature is gradually cooled down to 1000 ° C. at a temperature lowering rate of 200 ° C./hr or less, or in the range of 1450 ° C. to 1650 ° C. It is also possible to further improve the thermal conductivity and mechanical properties by keeping at temperature for a certain period of time.

窒化ケイ素質焼結体中のβ型窒化ケイ素粒子の性状を最適化することにより、熱伝導率および曲げ強度を高めることができる。本発明の板状の窒化ケイ素質焼結体の製造においては、シート成形における塗工速度と焼結後のβ型窒化ケイ素粒子の配向との間に相関が認められた。本発明は塗工速度を調整することにより焼結後のβ型窒化ケイ素粒子の配向を制御したものである。即ち、本発明の板状の窒化ケイ素質焼結体は、算術平均粗さRaが0.05μm以上0.5μm以下、さらには0.40μm以下、さらには0.30μm以下に研磨された表面における、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faが0.08以上、0.25以下であり、さらに表面から0.08mm以上内側まで研削して得られた内部の面における配向度faが前記の表面における配向度faより小さくなることが好ましい。なお、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、前述の<配向度faの算出方法>に記載された式(1)で表される配向度faである。本発明の板状の窒化ケイ素質焼結体は、算術平均粗さRaが0.05μm以上0.5μm以下、さらには0.05μm以上、0.40μm以下、さらには0.30μm以下に研磨された表面における、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faが、0.08以上0.25以下、さらに0.10以上0.20以下であることができる。 By optimizing the properties of the β-type silicon nitride particles in the silicon nitride sintered body, the thermal conductivity and bending strength can be improved. In the production of the plate-shaped silicon nitride sintered body of the present invention, a correlation was observed between the coating speed in sheet forming and the orientation of β-type silicon nitride particles after sintering. In the present invention, the orientation of β-type silicon nitride particles after sintering is controlled by adjusting the coating speed. That is, the plate-shaped silicon nitride sintered body of the present invention has an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less, further 0.40 μm or less, and further on a surface polished to 0.30 μm or less. The degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles is 0.08 or more and 0.25 or less, and the degree of orientation on the inner surface obtained by grinding from the surface to the inside by 0.08 mm or more. It is preferable that the fa is smaller than the degree of orientation fa on the surface. The degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles is the degree of orientation fa represented by the formula (1) described in the above-mentioned <method for calculating the degree of orientation fa>. The plate-shaped silicon nitride sintered body of the present invention is polished to an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less, further 0.05 μm or more, 0.40 μm or less, and further 0.30 μm or less. The degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface can be 0.08 or more and 0.25 or less, and further 0.10 or more and 0.20 or less.

窒化ケイ素原料は不可避的に少量の微細なβ型窒化ケイ素粒子を含んでいる。この微細β型窒化ケイ素粒子は柱状であるため、シート成形時の塗工速度を上げると基板の厚み方向に垂直な方向に傾く傾向がある。焼結過程においては、このように配向した微細β型窒化ケイ素粒子を核として柱状のβ型窒化ケイ素粒子が成長するため、塗工速度を変えることによって、焼結後に得られる柱状β型窒化ケイ素粒子の配向度を制御できるようになる。本発明は塗工速度を調整することにより焼結後のβ型窒化ケイ素粒子の配向を制御したものである。さらに、本発明の板状の窒化ケイ素質焼結体は表面から0.08mm以上内側まで研削して得られた面における内部の柱状β型窒化ケイ素粒子の配向割合を示す配向度faが0.01以上0.16未満であり、好ましくは、前記の表面における配向度faより小さいことを特徴とする。特許文献6の実施例及び比較例に掲載された表面配向度faはすべて0.27~0.40であり、実施例に掲載された内部配向度faはすべて0.18~0.29である。本発明の板状の窒化ケイ素質焼結体の表面配向度faは特許文献6に開示された前記の値よりも小さな値である。同時に、内部配向度faも特許文献6に開示された前記の値よりも小さな値であり、本発明の板状の窒化ケイ素質焼結体は、表面から内部まで全域に渡って特許文献6よりも小さな配向度faを有している。なお、表面配向度faと内部配向度faとの差異は0.03以上0.08以下であることが、さらに好ましい。 The silicon nitride raw material inevitably contains a small amount of fine β-type silicon nitride particles. Since these fine β-type silicon nitride particles are columnar, they tend to tilt in a direction perpendicular to the thickness direction of the substrate when the coating speed during sheet molding is increased. In the sintering process, columnar β-type silicon nitride particles grow around the fine β-type silicon nitride particles oriented in this way as nuclei. Therefore, by changing the coating speed, columnar β-type silicon nitride obtained after sintering is obtained. It becomes possible to control the degree of orientation of particles. In the present invention, the orientation of β-type silicon nitride particles after sintering is controlled by adjusting the coating speed. Further, the plate-shaped silicon nitride sintered body of the present invention has an orientation degree fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface obtained by grinding 0.08 mm or more from the surface to the inside. It is 01 or more and less than 0.16, preferably smaller than the degree of orientation fa on the surface. The surface orientation fas described in Examples and Comparative Examples of Patent Document 6 are all 0.27 to 0.40, and the internal orientation fas described in Examples are all 0.18 to 0.29. .. The surface orientation fa of the plate-shaped silicon nitride sintered body of the present invention is smaller than the above-mentioned value disclosed in Patent Document 6. At the same time, the degree of internal orientation fa is also smaller than the above-mentioned value disclosed in Patent Document 6, and the plate-shaped silicon nitride sintered body of the present invention is described in Patent Document 6 over the entire area from the surface to the inside. Also has a small degree of orientation fa. It is more preferable that the difference between the surface orientation degree fa and the internal orientation degree fa is 0.03 or more and 0.08 or less.

一般に、板状の窒化ケイ素質焼結体は粗大な柱状粒子と微細な柱状粒子を主たる成分として構成されており、柱状粒子の配向度faは粗大な柱状粒子の影響を大きく受ける。この配向度faは-1から1までの値を取り得るが、配向度faが0とは、柱状粒子が無秩序に配置されていることを表わす。配向度faが0より大きい場合には、板状の窒化ケイ素質焼結体の表面に平行な方向(厚さ方向に垂直な方向)に対する柱状粒子の長軸の傾きが45度以内である柱状粒子をより多く含んでいる。さらに、配向度faの値が1に近付くと、表面に平行な方向に対する柱状粒子の長軸の傾きが0度に近くなっていることを示している。表面に平行な方向に対する柱状粒子の長軸の傾きを小さくすることは高強度の実現に有利である。 Generally, a plate-shaped silicon nitride sintered body is composed mainly of coarse columnar particles and fine columnar particles, and the degree of orientation fa of the columnar particles is greatly affected by the coarse columnar particles. The degree of orientation fa can take a value from -1 to 1, and a degree of orientation fa of 0 means that the columnar particles are arranged in a disorderly manner. When the degree of orientation fa is greater than 0, the inclination of the long axis of the columnar particles with respect to the direction parallel to the surface of the plate-shaped silicon nitride sintered body (direction perpendicular to the thickness direction) is within 45 degrees. Contains more particles. Further, when the value of the degree of orientation fa approaches 1, it is shown that the inclination of the long axis of the columnar particles with respect to the direction parallel to the surface is close to 0 degrees. Reducing the inclination of the major axis of the columnar particles with respect to the direction parallel to the surface is advantageous for achieving high strength.

したがって、本発明の板状の窒化ケイ素質焼結体は、表面から内部まで、焼結体の表面に平行な方向(厚さ方向に垂直な方向)に対する柱状粒子の長軸の傾きが、特許文献6に開示された窒化ケイ素質焼結体よりも大きな値となっている。表面に対する柱状粒子の長軸の傾きが大きいと、板状焼結体の厚み方向の熱伝導率が高くなるので、絶縁基板用途に適している。特に、内部配向度faを0.01以上0.16未満に制御することによって、柱状粒子の粗大化を抑制しても高い熱伝導率を実現できる。一方、表面配向度faを0.08以上0.25以下に制御することによって、優れた機械的特性(高い強度と高い破壊靭性)と高い熱伝導率の両方を満足することができる。 Therefore, in the plate-shaped silicon nitride sintered body of the present invention, the inclination of the long axis of the columnar particles with respect to the direction parallel to the surface of the sintered body (direction perpendicular to the thickness direction) from the surface to the inside is patented. The value is larger than that of the silicon nitride sintered body disclosed in Document 6. When the inclination of the major axis of the columnar particles with respect to the surface is large, the thermal conductivity in the thickness direction of the plate-shaped sintered body becomes high, which is suitable for an insulating substrate application. In particular, by controlling the internal orientation degree fa to 0.01 or more and less than 0.16, high thermal conductivity can be realized even if the coarsening of the columnar particles is suppressed. On the other hand, by controlling the surface orientation degree fa to 0.08 or more and 0.25 or less, both excellent mechanical properties (high strength and high fracture toughness) and high thermal conductivity can be satisfied.

特許文献9には、柱状のβ窒化ケイ素粒子のc軸が基板の厚み方向に配向していることを特徴とする窒化ケイ素セラミックスが開示されている。同公報には、前記β窒化ケイ素粒子のうち90%以上の粒子が基板の厚み方向に対するc軸の傾きが±20度以内であり、前記β窒化ケイ素粒子のうち50%以上の粒子が基板の厚み方向に対するc軸の傾きが±5度以内である窒化ケイ素セラミックスの熱伝導率が高いことが記載されている。しかしながら、同公報の開示内容に反して、本発明においては、必ずしもβ型窒化ケイ素粒子が厚み方向と平行に整列・配向しておらず、窒化ケイ素質焼結体の表面における柱状のβ型窒化ケイ素粒子の配向割合を示す前記の(1)で表される表面の配向度faが0.08以上0.25以下であっても、内部の配向度faを小さくすることによって、高い熱伝導率を実現できるばかりでなく、後述のごとく柱状粒子の粒成長を制御して、長軸の長さが10μmを超えるものの個数が1mm当たりに10000個以下にすることで、機械的特性(曲げ強度と破壊靭性値)を高めることができることを知得した。Patent Document 9 discloses silicon nitride ceramics characterized in that the c-axis of columnar β-silicon nitride particles is oriented in the thickness direction of the substrate. In the same publication, 90% or more of the β-silicon nitride particles have a c-axis inclination of ± 20 degrees or less with respect to the thickness direction of the substrate, and 50% or more of the β-silicon nitride particles are the substrate. It is described that the thermal conductivity of the silicon nitride ceramics in which the inclination of the c-axis with respect to the thickness direction is within ± 5 degrees is high. However, contrary to the disclosure contents of the same publication, in the present invention, the β-type silicon nitride particles are not necessarily aligned and oriented in parallel with the thickness direction, and the columnar β-type nitride on the surface of the silicon nitride sintered body is formed. Even if the surface orientation fa represented by (1) above, which indicates the orientation ratio of the silicon particles, is 0.08 or more and 0.25 or less, the internal orientation fa is reduced to achieve high thermal conductivity. As will be described later, by controlling the grain growth of columnar particles and reducing the number of particles having a major axis length of more than 10 μm to 10,000 or less per 1 mm2 , mechanical properties (bending strength) can be achieved. And it was found that the breaking toughness value) can be increased.

これに対して、前記の表面配向度faが0.08未満の値になると、機械的特性(曲げ強度と破壊靭性値)が低下するので好ましくない。表面における柱状のβ型窒化ケイ素粒子の前記の配向度faのより好ましい範囲は0.10~0.20である。さらに、前記の配向度faは、0.12以上、0.14以上、0.18以下であってよい。 On the other hand, if the surface orientation degree fa is less than 0.08, the mechanical properties (bending strength and fracture toughness value) are lowered, which is not preferable. A more preferable range of the degree of orientation fa of the columnar β-type silicon nitride particles on the surface is 0.10 to 0.20. Further, the degree of orientation fa may be 0.12 or more, 0.14 or more, and 0.18 or less.

ここで、研磨された表面とは、例えばバレル研磨、ホーニング加工、ラップ研磨、ポリッシング研磨およびバフ研磨によって得られる面である。 Here, the polished surface is a surface obtained by, for example, barrel polishing, honing processing, lapping polishing, polishing polishing and buffing.

さらに、本発明の窒化ケイ素質焼結体のミクロ組織は、マトリックスに良熱伝導体である粒子の長軸長さが10μm以上である柱状のβ型窒化ケイ素粒子を含んでいる。この柱状のβ型窒化ケイ素粒子の長軸の長さは、原料として使用するSi粉末の酸素含有量と焼結条件(昇温速度、最高保持温度および最高保持温度での保持時間)を調整することによって制御することができる。Further, the microstructure of the silicon nitride sintered body of the present invention contains columnar β-type silicon nitride particles having a major axis length of 10 μm or more, which is a good thermal conductor, in the matrix. The length of the major axis of the columnar β-type silicon nitride particles is the oxygen content and sintering conditions (heating rate, holding time at maximum holding temperature and holding time at maximum holding temperature) of the Si 3N 4 powder used as a raw material. Can be controlled by adjusting.

走査型電子顕微鏡等で窒化ケイ素質焼結体の切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに500個以上10000個以下である場合に、曲げ強度および破壊靭性値が著しく高くなる。長軸の長さが10μmを超える柱状β型窒化ケイ素粒子の個数が、1mm当たりに800個以上9000個以下であることが好ましく、さらに、1mm当たりに1000個以上5000個以下であることがより好ましい。これに対して、焼結時の最高保持温度が高過ぎて、長軸の長さが10μmを超える粒子が、1mm2当たりに10000個を超えた場合には、組織中に導入されたこの粗大粒子が破壊の起点として作用するために破壊靭性が大きく低下し、室温における4点曲げ強度が900MPa未満となるので、窒化ケイ素質焼結体を基板用途等に適用するには不十分な特性となる。従来、長軸の長さが10μmを超えるものの個数が1mm当たりに10000個を超える値とすることで高熱伝導性を実現してきたが、粗大な柱状粒子の存在は機械的特性(強度と破壊靱性)に悪影響を及ぼす。本発明においては、表面配向度faを0.08以上0.25以下に、内部配向度faを0.01以上0.16未満に制御することによって、柱状粒子の粗大化を抑制しつつ、高い熱伝導率と優れた機械的特性(強度と破壊靱性)を両立させることができた。一方、焼結時の最高保持温度が低過ぎて、長軸の長さが10μmを超えるものの個数が1mm2当たりに500個未満となると、熱伝導率が低下するばかりでなく、破壊靭性値が低下するので好ましくない。When observing the cut surface of the silicon nitride sintered body with a scanning electron microscope or the like, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is 500 or more per 1 mm 2 . When the number is 10,000 or less, the bending strength and the fracture toughness value are significantly increased. The number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is preferably 800 or more and 9000 or less per 1 mm 2 , and more preferably 1000 or more and 5000 or less per 1 mm 2 . Is more preferable. On the other hand, when the maximum holding temperature at the time of sintering is too high and the number of particles having a major axis length exceeding 10 μm exceeds 10,000 particles per 1 mm 2 , this coarseness is introduced into the structure. Since the particles act as the starting point of fracture, the fracture toughness is greatly reduced, and the four-point bending strength at room temperature is less than 900 MPa. Become. Conventionally, high thermal conductivity has been achieved by setting the number of long shafts exceeding 10 μm to a value exceeding 10,000 per 1 mm 2 , but the presence of coarse columnar particles has mechanical properties (strength and fracture). It has an adverse effect on toughness). In the present invention, by controlling the surface orientation fa to 0.08 or more and 0.25 or less and the internal orientation fa to 0.01 or more and less than 0.16, the coarsening of columnar particles is suppressed and high. It was possible to achieve both thermal conductivity and excellent mechanical properties (strength and fracture toughness). On the other hand, if the maximum holding temperature at the time of sintering is too low and the number of long shafts exceeding 10 μm is less than 500 per 1 mm 2 , not only the thermal conductivity is lowered, but also the fracture toughness value is lowered. It is not preferable because it decreases.

本発明の板状の窒化ケイ素質焼結体においては、表面は研磨されていなくてもよいが、表面が研磨されていること、表面の算術平均粗さRaを0.06μm以上0.4μm以下、さらには0.30μm以下、0.20μm以下とすることが好ましい。算術平均粗さRaが0.06μm未満では、加工時の残留応力等により板状の窒化ケイ素質焼結体の曲げ強度が低下する。逆に、算術平均粗さRaが0.4μmを超えると、回路形成用の金属板との接合が困難となるので好ましくない。特に、活性金属ロウ材を用いない直接接合法(DBC法)による銅板やアルミニウム板との接合が困難となる。 In the plate-shaped silicon nitride sintered body of the present invention, the surface may not be polished, but the surface is polished and the arithmetic mean roughness Ra of the surface is 0.06 μm or more and 0.4 μm or less. Further, it is preferably 0.30 μm or less and 0.20 μm or less. If the arithmetic average roughness Ra is less than 0.06 μm, the bending strength of the plate-shaped silicon nitride sintered body decreases due to residual stress during processing and the like. On the contrary, if the arithmetic average roughness Ra exceeds 0.4 μm, it becomes difficult to join the metal plate for forming a circuit, which is not preferable. In particular, it becomes difficult to join a copper plate or an aluminum plate by a direct joining method (DBC method) that does not use an active metal brazing material.

前記算術平均粗さRaが0.06μm以上0.4μm以下に研磨された表面における開気孔率は1.0%以下であり、開気孔の最大開口径が1.0μm以下であることが好ましい。表面における開気孔の最大開口径が1.0μm以下であると優れた電気特性を期待できる。特に、表面における開気孔の最大開口径が0.5μm以下であることがより好適である。このような緻密で残留気孔の少ない板状の窒化ケイ素質焼結体は絶縁抵抗や絶縁耐圧が優れているので、絶縁基板、回路基板などの電子基板用途に適している。 It is preferable that the open porosity on the surface polished to have an arithmetic average roughness Ra of 0.06 μm or more and 0.4 μm or less is 1.0% or less, and the maximum opening diameter of the open pores is 1.0 μm or less. Excellent electrical characteristics can be expected when the maximum opening diameter of the open pores on the surface is 1.0 μm or less. In particular, it is more preferable that the maximum opening diameter of the open pores on the surface is 0.5 μm or less. Since such a plate-shaped silicon nitride sintered body having a high density and few residual pores has excellent insulation resistance and withstand voltage, it is suitable for electronic substrate applications such as an insulating substrate and a circuit board.

研磨された表面における最大開口径および開気孔率は、以下のようにして算出した。まず、走査型電子顕微鏡(SEM)を用いて、観察倍率2000倍にて、窒化ケイ素質焼結体の研磨された表面から、1観察視野当たり60μm×44μmに設定した領域の5観察視野の画像を取り込んだ。画像解析装置((株)マウンテック製Mac-View)により、5観察視野・測定総面積13200μmの中で最も大きい開気孔の径を測定することで最大開口径を求めた。次に、同画像解析装置により、画像内の1視野の測定面積を400μm,測定視野数を12,つまり測定総面積を4800μmとして、当該測定総面積における開気孔の面積を求めた。当該開気孔の面積を測定総面積で除して、測定総面積における当該開気孔の面積の割合を表面の開気孔率とした。これにより、表面における開気孔率を算出することができた。The maximum opening diameter and open porosity on the polished surface were calculated as follows. First, using a scanning electron microscope (SEM), an image of 5 observation fields in a region set to 60 μm × 44 μm per observation field from the polished surface of the silicon nitride sintered body at an observation magnification of 2000 times. Was taken in. The maximum opening diameter was determined by measuring the diameter of the largest open pore in 5 observation fields / measurement total area 13200 μm 2 with an image analyzer (Mac-View manufactured by Mountech Co., Ltd.). Next, using the same image analysis device, the measurement area of one field in the image was 400 μm 2 , the number of measurement fields was 12, that is, the total measurement area was 4800 μm 2 , and the area of the open pores in the total measurement area was obtained. The area of the open pores was divided by the total measured area, and the ratio of the area of the open pores to the total measured area was taken as the open pore ratio on the surface. This made it possible to calculate the open porosity on the surface.

窒化ケイ素原料として、酸素含有量が1.2重量%以上2.3重量%以下である窒化ケイ素粉末を使用する。比表面積が13.0m/g以上である窒化ケイ素粉末を使用する。好ましくは、窒化ケイ素原料として、比表面積が13.0m/g以上、酸素含有量が1.2重量%以上2.3重量%以下であり、アルミニウム含有量が50ppm未満である窒化ケイ素粉末を使用する。より好ましい窒化ケイ素原料は、比表面積が13.5m/g~25.0m/g、酸素含有量は1.25重量%以上2.2重量%以下である。特に好ましくは、比表面積は15.1m/g~25.0m/g、酸素含有量は1.3重量%以上2.0重量%以下である。窒化ケイ素原料に含まれる酸素は、粒子表面から粒子表面直下3nmまでに存在する表面酸素と粒子表面直下3nmから内側に存在する内部酸素に区分される。前記の酸素含有量は、表面酸素の含有割合と内部酸素の含有割合との和である。表面酸素の含有割合をFSO(重量%)とし、内部酸素の含有割合をFIO(重量%)としたとき、窒化ケイ素原料としては、FSOが0.76~1.10重量%であることが、より好ましい。さらに、FSOが0.80~1.00重量%であることが特に好ましい。As the silicon nitride raw material, silicon nitride powder having an oxygen content of 1.2% by weight or more and 2.3% by weight or less is used. Use silicon nitride powder having a specific surface area of 13.0 m 2 / g or more. Preferably, as the silicon nitride raw material, a silicon nitride powder having a specific surface area of 13.0 m 2 / g or more, an oxygen content of 1.2% by weight or more and 2.3% by weight or less, and an aluminum content of less than 50 ppm is used. use. A more preferable silicon nitride raw material has a specific surface area of 13.5 m 2 / g to 25.0 m 2 / g and an oxygen content of 1.25% by weight or more and 2.2% by weight or less. Particularly preferably, the specific surface area is 15.1 m 2 / g to 25.0 m 2 / g, and the oxygen content is 1.3% by weight or more and 2.0% by weight or less. Oxygen contained in the silicon nitride raw material is classified into surface oxygen existing from the particle surface to 3 nm directly below the particle surface and internal oxygen existing from 3 nm directly below the particle surface to the inside. The oxygen content is the sum of the surface oxygen content and the internal oxygen content. When the content ratio of surface oxygen is FSO (% by weight) and the content ratio of internal oxygen is FIO (% by weight), the FSO of the silicon nitride raw material is 0.76 to 1.10% by weight. More preferred. Further, it is particularly preferable that the FSO is 0.80 to 1.00% by weight.

本発明に使用される、比表面積が13.0m/g以上、酸素含有量が1.2重量%以上2.3重量%以下であり、アルミニウム含有量が50ppm未満である窒化ケイ素粉末は、例えば、特許文献8に開示された方法により製造することができ、粒子表面から粒子表面直下3nmまでに存在する酸素の含有割合をFSO(質量%)とし、粒子表面直下3nmから内側に存在する酸素の含有割合をFIO(質量%)とし、比表面積をFS(m/g)とした場合に、FSO/FSが0.04~0.125((g・質量%)/m)であり、FIO/FSが0.045((g・質量%)/m)以下であるが、これに限定される訳ではない。ここで、質量%と重量%は同じ値である。なお、前記のFSO/FSは0.4~1.25(mg/m)と表記することもでき、前記のFIO/FSは0.45(mg/m2)以下と表記することもできる。窒化ケイ素粉末のアルミニウム含有量を50ppm未満に低減することは、窒化ケイ素粉末の製造原料におけるアルミニウム含有量を低減するとともに、窒化ケイ素粉末の製造過程における酸化アルミニウムの混入(例えば、粉砕媒体からの混入)を制限することで可能である。The silicon nitride powder used in the present invention having a specific surface area of 13.0 m 2 / g or more, an oxygen content of 1.2% by mass or more and 2.3% by mass or less, and an aluminum content of less than 50 ppm is used. For example, it can be produced by the method disclosed in Patent Document 8, and the content ratio of oxygen existing from the particle surface to 3 nm directly below the particle surface is defined as FSO (mass%), and the oxygen existing from 3 nm directly below the particle surface to the inside is defined as FSO (mass%). When the content ratio of is FIO (mass%) and the specific surface area is FS (m 2 / g), the FSO / FS is 0.04 to 0.125 ((g · mass%) / m 2 ). , FIO / FS is 0.045 ((g · mass%) / m 2 ) or less, but is not limited to this. Here, mass% and weight% are the same value. The FSO / FS may be expressed as 0.4 to 1.25 (mg / m 2 ), and the FIO / FS may be expressed as 0.45 (mg / m 2) or less. Reducing the aluminum content of the silicon nitride powder to less than 50 ppm reduces the aluminum content in the raw material for producing the silicon nitride powder, and at the same time, mixes aluminum oxide in the process of manufacturing the silicon nitride powder (for example, mixing from a pulverizing medium). ) Is possible.

また、比表面積が13.0m/g以上、かつ酸素含有量が1.2重量%以上2.3重量%以下であれば、粒度分布を制御するため、比表面積の異なる2種類の窒化ケイ素粉末を混合しても良い。例えば、比表面積が10.0m/g以下で酸素含有量が1.2重量%未満の窒化ケイ素粉末と比表面積が13.5m/g以上で酸素含有量が1.3重量%以上の窒化ケイ素粉末を混合した原料を使用したとしても、混合後の窒化ケイ素原料の比表面積が13.0m/g以上、酸素含有量が1.2重量%以上2.3重量%以下であり、アルミニウム含有量が50ppm未満であれば、本発明の効果は得られる。If the specific surface area is 13.0 m 2 / g or more and the oxygen content is 1.2% by weight or more and 2.3% by weight or less, two types of silicon nitride having different specific surface areas are used to control the particle size distribution. The powder may be mixed. For example, a silicon nitride powder having a specific surface area of 10.0 m 2 / g or less and an oxygen content of less than 1.2% by weight and a silicon nitride powder having a specific surface area of 13.5 m 2 / g or more and an oxygen content of 1.3% by weight or more. Even if a raw material mixed with silicon nitride powder is used, the specific surface area of the mixed silicon nitride raw material is 13.0 m 2 / g or more, and the oxygen content is 1.2% by weight or more and 2.3% by weight or less. If the aluminum content is less than 50 ppm, the effect of the present invention can be obtained.

窒化ケイ素粉末の比表面積が13.0m/g未満になると、焼結の駆動力が低下するので、焼結助剤の添加量が7.0重量%を超える量に増やさないと高密度な板状の窒化ケイ素質焼結体を得ることが難しい。同様に、酸素含有量が1.2重量%未満となっても、焼結の進行が著しく遅くなり、焼結助剤の添加量が7.0重量%を超える量に増やさないと高密度な板状の窒化ケイ素質焼結体を得ることが難しい。一方、焼結助剤の添加量が7.0wt%を超えると、熱伝導率が低下するので好ましくない。If the specific surface area of the silicon nitride powder is less than 13.0 m 2 / g, the driving force for sintering decreases, so the density must be increased to an amount exceeding 7.0% by weight of the sintering aid. It is difficult to obtain a plate-shaped silicon nitride sintered body. Similarly, even if the oxygen content is less than 1.2% by weight, the progress of sintering is significantly slowed down, and the density is high unless the amount of the sintering aid added is increased to more than 7.0% by weight. It is difficult to obtain a plate-shaped silicon nitride sintered body. On the other hand, if the amount of the sintering aid added exceeds 7.0 wt%, the thermal conductivity decreases, which is not preferable.

さらに、酸素含有量が1.2重量%未満の場合には、算術平均粗さRaが0.06μm以上0.4μm以下に研磨された表面における開気孔率が1.0%を超え、開気孔の最大開口径が1.0μmを超える大きな値になるので好ましくない。特に、比表面積が13.0m/g未満かつ酸素含有量が1.2重量%未満の場合には、開気孔の最大開口径がさらに大きな値となるので好ましくない。開気孔率が大きくなると機械的特性(強度および靭性)が悪化する。また、最大開口径が1.0μmを超える大きな値になると、絶縁抵抗や絶縁耐圧が悪化し、絶縁基板や回路基板などの電気絶縁材料用途への適用が難しくなる。酸素含有量が2.3重量%を超えると、高密度な板状の窒化ケイ素質焼結体は得られるものの、熱伝導率および機械的特性(強度、破壊靭性)が低下するので好ましくない。特に、熱伝導率の低下が著しい。Further, when the oxygen content is less than 1.2% by weight, the open porosity on the surface polished to an arithmetic average roughness Ra of 0.06 μm or more and 0.4 μm or less exceeds 1.0%, and the open pores are formed. It is not preferable because the maximum opening diameter of is a large value exceeding 1.0 μm. In particular, when the specific surface area is less than 13.0 m 2 / g and the oxygen content is less than 1.2% by weight, the maximum opening diameter of the open pores becomes a larger value, which is not preferable. As the open porosity increases, the mechanical properties (strength and toughness) deteriorate. Further, when the maximum opening diameter becomes a large value exceeding 1.0 μm, the insulation resistance and the withstand voltage are deteriorated, and it becomes difficult to apply it to the electric insulating material application such as an insulating substrate and a circuit board. If the oxygen content exceeds 2.3% by weight, a high-density plate-shaped silicon nitride sintered body can be obtained, but thermal conductivity and mechanical properties (strength, fracture toughness) are deteriorated, which is not preferable. In particular, the decrease in thermal conductivity is remarkable.

アルミニウム含有量が50ppm以上である窒化ケイ素粉末を使用すると、焼結後に、β型窒化ケイ素粒子内部に固溶するアルミニウムが増加する。固溶したアルミニウムイオンによるフォノン散乱は熱伝導率低下の原因となり、得られる板状の窒化ケイ素質焼結体の熱伝導率が90W/(m・K)未満に低下するので好ましくない。実測したアルミニウム含有量のより好ましい範囲は40ppm以下であり、本発明の実験条件の範囲内においては、アルミニウム含有量が40ppm以下の窒化ケイ素粉末を使用した場合には、アルミニウム含有量が板状の窒化ケイ素質焼結体の特性に及ぼす影響は目立たなかった。 When silicon nitride powder having an aluminum content of 50 ppm or more is used, the amount of aluminum that dissolves in the β-type silicon nitride particles after sintering increases. Phonon scattering by solid-dissolved aluminum ions causes a decrease in thermal conductivity, and the thermal conductivity of the obtained plate-shaped silicon nitride sintered body decreases to less than 90 W / (m · K), which is not preferable. A more preferable range of the measured aluminum content is 40 ppm or less, and within the range of the experimental conditions of the present invention, when the silicon nitride powder having an aluminum content of 40 ppm or less is used, the aluminum content is plate-like. The effect on the properties of the silicon nitride sintered body was not noticeable.

本発明によれば、従来は熱伝導性と機械的特性の両面で性能不足であったシート成形プロセスによって、高熱伝導性と優れた機械的特性とを兼ね備えた板状の窒化ケイ素質焼結体を製造することが出来るので、製造コスト面で有利である。即ち、本発明によれば、熱伝導率が室温において90W/(m・K)以上であり、4点曲げ強度が室温において900MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが7.6MPa√m以上である、高熱伝導性と優れた機械的特性とを兼ね備えた板状の窒化ケイ素質焼結体を製造することができ、熱伝導性と機械的特性とのバランスの取れた板状の窒化ケイ素質焼結体として、絶縁基板、回路基板などの電子基板用途に供することができる。According to the present invention, a plate-shaped silicon nitride sintered body having both high thermal conductivity and excellent mechanical properties by a sheet forming process, which has conventionally lacked performance in terms of both thermal conductivity and mechanical properties. Is advantageous in terms of manufacturing cost because it can be manufactured. That is, according to the present invention, the thermal conductivity is 90 W / (m · K) or more at room temperature, the four-point bending strength is 900 MPa or more at room temperature, and the breaking toughness value measured by the IF method (indentation method). It is possible to manufacture a plate-shaped silicon nitride sintered body having both high thermal conductivity and excellent mechanical properties, which has a KIC of 7.6 MPa√m or more, and has both thermal conductivity and mechanical properties. As a well-balanced plate-shaped silicon nitride sintered body, it can be used for electronic substrates such as insulating substrates and circuit substrates.

さらに、本発明によれば、熱伝導率が室温において100W/(m・K)以上であり、4点曲げ強度が室温において1000MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが9.0MPa√m以上である、高熱伝導性と優れた機械的特性とを兼ね備えた板状の窒化ケイ素質焼結体を製造することができる。Further, according to the present invention, the thermal conductivity is 100 W / (m · K) or more at room temperature, the four-point bending strength is 1000 MPa or more at room temperature, and the fracture toughness value measured by the IF method (indentation method). It is possible to produce a plate-shaped silicon nitride sintered body having a KIC of 9.0 MPa√m or more, which has both high thermal conductivity and excellent mechanical properties.

以下に具体例を挙げて、本発明をさらに詳しく説明するが、本発明は、それらの実施例により限定されるものではない。 The present invention will be described in more detail with reference to specific examples below, but the present invention is not limited to those examples.

(実施例1)
焼結助剤として酸化マグネシウム(MgO)粉末(比表面積3m/g、高純度化学研究所製)、酸化イットリウム(Y23)粉末(比表面積3m/g、信越化学工業製)を用意した。
(Example 1)
Magnesium oxide (MgO) powder (specific surface area 3 m 2 / g, manufactured by High Purity Chemical Laboratory) and yttrium oxide (Y 2 O 3 ) powder (specific surface area 3 m 2 / g, manufactured by Shinetsu Chemical Industry Co., Ltd.) are used as sintering aids. I prepared it.

粉砕媒体である窒化ケイ素製ボールは通常、数%のAlを含有しており、ボールミル処理時の摩耗量も多いため、原料調整後の配合粉には20ppm前後のAlが混入している。このため、本実施例においては、Al含有量が1.9wt%前後であり、特に耐摩耗性に優れた窒化ケイ素製ボールを使用して、原料調製時のAl混入量を最小限に抑えた。Silicon nitride balls, which are the crushing medium, usually contain a few percent of Al 2 O 3 , and the amount of wear during ball mill processing is large. Therefore, the compounded powder after adjusting the raw materials contains around 20 ppm of Al 2 O 3 . It is mixed. Therefore, in this embodiment, the Al 2 O 3 content is around 1.9 wt%, and a silicon nitride ball having particularly excellent wear resistance is used, and the amount of Al 2 O 3 mixed in when preparing the raw material. Was minimized.

比表面積18.5m/g、酸素含有量1.77wt%、β型窒化ケイ素含有割合3.5質量%の窒化ケイ素(Si34)粉末94.5質量部に、焼結助剤として前記の酸化イットリウム3.5質量部および前記の酸化マグネシウム2質量部を配合し、ソルビタンエステル系の分散剤を粉末に対して2質量部溶解したトルエン-イソプロパノール-キシレン溶媒および粉砕媒体である窒化ケイ素製ボールと共にボールミル用樹脂製ポットに投入して、24時間湿式混合した。得られたスラリーを目開き44μmの篩に通した後、前記樹脂製ポット中の混合粉末100質量部に対しPVB系樹脂バインダー16質量部および可塑剤(ジメチルフタレ-ト)4質量部を溶解したトルエン-イソプロパノール-キシレン溶媒を添加し、さらに24時間湿式混合して、シート成形用スラリーを得た。この成形用スラリーの粘度が50ポイズ程度となるよう真空脱泡して溶媒量を調整後、ドクターブレード装置を使用して、得られた混合粉末スラリーをキャリアフィルム上に所定の厚みでキャストして、シート成形されたグリーンシートを得た。As a sintering aid in 94.5 parts by mass of silicon nitride (Si 3 N 4 ) powder having a specific surface area of 18.5 m 2 / g, an oxygen content of 1.77 wt%, and a β-type silicon nitride content of 3.5% by mass. A toluene-isopropanol-xylene solvent obtained by blending 3.5 parts by mass of the above-mentioned yttrium oxide and 2 parts by mass of the above-mentioned magnesium oxide and dissolving 2 parts by mass of a sorbitan ester-based dispersant in a powder and silicon nitride as a pulverizing medium. It was put into a resin pot for a ball mill together with a ball-making ball, and wet-mixed for 24 hours. After passing the obtained slurry through a sieve having an opening of 44 μm, 16 parts by mass of a PVB-based resin binder and 4 parts by mass of a plasticizer (dimethyl phthalate) were dissolved in 100 parts by mass of the mixed powder in the resin pot. -Isopropanol-xylene solvent was added and wet-mixed for another 24 hours to obtain a sheet-forming slurry. After vacuum defoaming to adjust the amount of solvent so that the viscosity of this molding slurry is about 50 poise, the obtained mixed powder slurry is cast on a carrier film to a predetermined thickness using a doctor blade device. , A sheet-molded green sheet was obtained.

さらに、得られたグリーンシートを温度120℃、所定の圧力で3枚積層圧着処理して、焼き上がり寸法が0.35mm程度の厚みとなる積層成形体シートを作製した。作製した積層成形体シートに対して、外観検査を行い、クラックの有無を確認した。そして、この積層成形体シートを60mm×70mmに切断し、寸法、平均厚さならびに重量を測定して成形体密度を算出した。本実施例における積層成形体シート密度は1.76g/cmであった。また、焼結体の嵩密度測定および熱伝導率測定のために、前記のグリーンシートの積層枚数を増やし、焼き上がり寸法が直径10mm、厚さ1.0mmとなるように円盤状試験片用の成形体シートを切り出した。Further, the obtained green sheet was laminated and crimped at a temperature of 120 ° C. and a predetermined pressure to prepare a laminated molded sheet having a baked size of about 0.35 mm. The produced laminated molded sheet was visually inspected to confirm the presence or absence of cracks. Then, this laminated molded body sheet was cut into 60 mm × 70 mm, and the dimensions, average thickness and weight were measured to calculate the molded body density. The laminated molded sheet sheet density in this example was 1.76 g / cm 3 . Further, for measuring the bulk density and the thermal conductivity of the sintered body, the number of laminated green sheets is increased, and the size of the green sheet is 10 mm in diameter and 1.0 mm in thickness for a disk-shaped test piece. A molded sheet was cut out.

次いで、この積層成形体シートを、分離材を介して、重ねて窒化ホウ素製容器に入れ、空気中400~600℃で2~5時間加熱することにより、予め添加した有機バインダー成分等を十分に脱脂(除去)した。次いで、この脱脂体を、0.8MPaの窒素雰囲気下で、1520℃まで加熱し、1520℃から1800℃までの昇温速度を120℃/hrとして、1800℃まで加熱し、さらに1800℃で10時間保持して焼結した。その後、1500℃までの冷却速度を350℃/hrとして、その後室温まで冷却し、得られた窒化ケイ素質焼結体を分離材層で剥離して、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体をブラスト研磨加工し、所望の表面粗さを有する基板用の窒化ケイ素質焼結体とした。ブラスト研磨加工による除去厚みは、平均値で10μm以下であった。 Next, the laminated molded sheet was placed in a boron nitride container in layers via a separating material and heated in air at 400 to 600 ° C. for 2 to 5 hours to sufficiently add the organic binder component and the like added in advance. Degreased (removed). Next, this degreased body is heated to 1520 ° C. under a nitrogen atmosphere of 0.8 MPa, heated to 1800 ° C. at a heating rate of 120 ° C./hr from 1520 ° C. to 1800 ° C., and further heated to 1800 ° C. at 1800 ° C. It was held for a long time and sintered. Then, the cooling rate to 1500 ° C. was set to 350 ° C./hr, and then the mixture was cooled to room temperature, and the obtained silicon nitride sintered body was peeled off by a separating material layer to obtain a plate-shaped silicon nitride sintered body. rice field. The obtained plate-shaped silicon nitride sintered body was blast-polished to obtain a silicon nitride sintered body for a substrate having a desired surface roughness. The thickness removed by the blast polishing process was 10 μm or less on average.

本発明に使用した窒化ケイ素粉末の全酸素含有量FTOと表面酸素含有量FSOは、以下の方法により測定した。まず、窒化ケイ素粉末を秤量し、窒化ケイ素粉末の表面酸素と内部酸素の合計である全酸素含有量FTOをJIS R1603-10酸素の定量方法に準拠した不活性ガス融解-二酸化炭素赤外線吸収法(LECO社製、TC-136型)で測定した。次に、秤量した窒化ケイ素粉末を、窒化ケイ素粉末1質量部に対しフッ化水素が5質量部となるように、窒化ケイ素粉末とフッ酸水溶液とを混合し、室温で3時間攪拌した。これを吸引濾過し、得られた固形物を120℃で1時間真空乾燥した後、このフッ酸処理粉末の重量と酸素含有量を測定した。この値を補正前FIO(フッ酸処理粉末に対する質量%)とした。内部酸素量FIO(窒化ケイ素粉末に対する質量%)は下記の式(4)から算出し、表面酸素量FSO(窒化ケイ素粉末に対する質量%)を下記の式(5)から算出した。このようにして求めた表面酸素量が、粒子表面から粒子表面直下3nmの範囲に存在する酸素に起因することは、前記のフッ酸処理前後における窒化ケイ素粉末のX線光電子スペクトルのデプス・プロファイル及び処理前後の粉末重量変化より確認した。
FIO(質量%)=((フッ酸処理粉末の重量)(g))/(窒化ケイ素粉末重量(g))×補正前FIO(質量%)・・・・(4)
FSO(質量%)=FTO(質量%)-FIO(質量%)・・・・(5)
The total oxygen content FTO and the surface oxygen content FSO of the silicon nitride powder used in the present invention were measured by the following methods. First, the silicon nitride powder is weighed, and the total oxygen content FTO, which is the total of the surface oxygen and the internal oxygen of the silicon nitride powder, is determined by the inert gas melting-carbon dioxide infrared absorption method based on the quantification method of JIS R1603-10 oxygen. It was measured with a TC-136 type manufactured by LECO. Next, the weighed silicon nitride powder was mixed with the silicon nitride powder and the hydrofluoric acid aqueous solution so that hydrogen fluoride was 5 parts by mass with respect to 1 part by mass of the silicon nitride powder, and the mixture was stirred at room temperature for 3 hours. This was suction-filtered, and the obtained solid matter was vacuum-dried at 120 ° C. for 1 hour, and then the weight and oxygen content of the hydrofluoric acid-treated powder were measured. This value was taken as FIO (mass% with respect to hydrofluoric acid-treated powder) before correction. The internal oxygen amount FIO (mass% with respect to the silicon nitride powder) was calculated from the following formula (4), and the surface oxygen amount FSO (mass% with respect to the silicon nitride powder) was calculated from the following formula (5). The fact that the amount of surface oxygen thus determined is due to the oxygen existing in the range of 3 nm below the particle surface from the particle surface is the depth profile of the X-ray photoelectron spectrum of the silicon nitride powder before and after the hydrofluoric acid treatment. It was confirmed from the change in powder weight before and after the treatment.
FIO (mass%) = ((hydrofluoric acid-treated powder weight) (g)) / (silicon nitride powder weight (g)) × pre-correction FIO (mass%) ... (4)
FSO (mass%) = FTO (mass%) -FIO (mass%) ... (5)

得られた板状の窒化ケイ素質焼結体の外観検査を行い、目視により色調ムラの有無を判定すると共に、CCDカメラにより色調の異なる模様の有無を確認した。 The appearance of the obtained plate-shaped silicon nitride sintered body was inspected, and the presence or absence of color tone unevenness was visually determined, and the presence or absence of patterns having different color tones was confirmed by a CCD camera.

得られた板状の窒化ケイ素質焼結体の嵩密度は、細線に吊るした試験片の重量と浮力を測定するアルキメデス法により測定した。嵩密度から相対密度(配合組成に基づく理論密度に対する比率)を求めた。 The bulk density of the obtained plate-shaped silicon nitride sintered body was measured by the Archimedes method for measuring the weight and buoyancy of the test piece suspended from the thin wire. The relative density (ratio to the theoretical density based on the compounding composition) was obtained from the bulk density.

得られた板状の窒化ケイ素質焼結体のX線回折パターン測定には、(株)リガク製RINT-TTRIII型広角X線回折装置を使用した。X線源はCuKα線であり、β型窒化ケイ素の各回折ピーク((110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面)のピーク強度を調べると共に、MgSiNに起因する回折ピークの有無を調べた。さらに、β型窒化ケイ素、MgSiN以外にも焼結助剤成分に起因する結晶相が粒界に析出しているのか否かを確認した。A RINT-TTRIII type wide-angle X-ray diffractometer manufactured by Rigaku Co., Ltd. was used for measuring the X-ray diffraction pattern of the obtained plate-shaped silicon nitride sintered body. The X-ray source is CuKα ray, and each diffraction peak ((110) plane, (200) plane, (101) plane, (210) plane, (201) plane, (310) plane, (320) plane of β-type silicon nitride. The peak intensities of the (plane) and (002) planes) were examined, and the presence or absence of a diffraction peak caused by MgSiN 2 was examined. Further, it was confirmed whether or not the crystal phase caused by the sintering aid component was precipitated at the grain boundaries in addition to β-type silicon nitride and MgSiN 2 .

得られた板状の窒化ケイ素質焼結体表面の算術平均粗さRaはJIS B 0601-2001(ISO4287-1997)に準拠して測定した。触針式の表面粗さ計を用い、窒化ケイ素質焼結体の研磨された表面に、触針先端半径が2μmの触針を当て、測定長さを5mm、触針の走査速度を0.5mm/秒に設定して表面粗さを測定し、この測定で得られた5箇所の平均値を算術平均粗さRaの値とした。 The arithmetic average roughness Ra of the surface of the obtained plate-shaped silicon nitride sintered body was measured according to JIS B 0601-2001 (ISO4287-197). Using a stylus type surface roughness meter, a stylus with a stylus tip radius of 2 μm is applied to the polished surface of the silicon nitride sintered body, the measurement length is 5 mm, and the scanning speed of the stylus is 0. The surface roughness was measured by setting it to 5 mm / sec, and the average value of the five points obtained by this measurement was taken as the value of the arithmetic mean roughness Ra.

得られた板状の窒化ケイ素質焼結体の曲げ強度測定には、幅4.0mm×厚さ0.35mm×長さ40mmの曲げ試験片を使用した。インストロン社製万能材料試験機を用いて、試験片の厚み(0.35mmt)が異なる以外は、JIS R1601に準拠した方法で、内スパン10mm、外スパン30mmの四点曲げ試験冶具により、室温の四点曲げ強度を測定した。 A bending test piece having a width of 4.0 mm, a thickness of 0.35 mm, and a length of 40 mm was used for measuring the bending strength of the obtained plate-shaped silicon nitride sintered body. Using a universal material tester manufactured by Instron, the method conforms to JIS R1601 except that the thickness (0.35 mmt) of the test piece is different. The four-point bending strength of was measured.

得られた板状の窒化ケイ素質焼結体の破壊靱性値測定は、JIS-R1607:2015に準拠したIF法で測定した。板状の窒化ケイ素質焼結体の鏡面研磨された表面にビッカース圧子を所定の圧子押込み荷重(5kgf(49N))で15秒間押し込み、ビッカース圧痕の一方の対角線が板状の窒化ケイ素質焼結体の厚さ方向と垂直になるようにして、ビッカース圧痕の対角線の長さと対角線の延長上に発生する亀裂長さを測定した。得られた測定長さから破壊靱性値KICを算出した。The fracture toughness value of the obtained plate-shaped silicon nitride sintered body was measured by the IF method based on JIS-R1607: 2015. A Vickers indenter is pushed into the mirror-polished surface of the plate-shaped silicon nitride sintered body with a predetermined indenter pressing load (5 kgf (49N)) for 15 seconds, and one diagonal of the Vickers indentation is a plate-shaped silicon nitride sintered body. The length of the diagonal line of the Vickers indentation and the length of the crack generated on the extension of the diagonal line were measured so as to be perpendicular to the thickness direction of the body. The fracture toughness value KIC was calculated from the obtained measured length.

得られた板状の窒化ケイ素質焼結体の熱伝導率測定用に、前記の方法で、直径10mmφ×厚さ1mmtの円盤状試験片を作製した。この円盤状試験片を用いて、JIS R1611に準拠したフラッシュ法により熱伝導率を室温で測定した。 For the thermal conductivity measurement of the obtained plate-shaped silicon nitride sintered body, a disk-shaped test piece having a diameter of 10 mmφ and a thickness of 1 mmt was produced by the above method. Using this disk-shaped test piece, the thermal conductivity was measured at room temperature by the flash method conforming to JIS R1611.

また、走査型電子顕微鏡(SEM)を用いて、観察倍率1000倍にて、板状の窒化ケイ素質焼結体の切断面の0.01mm(1mm2の1/100)の領域を任意に3箇所観察し、その領域中に存在する長軸の長さが10μmを超える柱状のβ型窒化ケイ素粒子の個数を調べ、1mm2当たりの個数に換算した後、その平均値を求めた。Further, using a scanning electron microscope (SEM), an area of 0.01 mm 2 (1/100 of 1 mm 2 ) of the cut surface of the plate-shaped silicon nitride sintered body can be arbitrarily formed at an observation magnification of 1000 times. After observing three places, the number of columnar β-type silicon nitride particles having a major axis length exceeding 10 μm in the region was examined, converted into the number per 1 mm 2 , and then the average value was obtained.

<配向度faの算出方法>
板状の窒化ケイ素質焼結体の表面および内部における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faは、以下のようにして求めた。
<Calculation method of orientation degree fa>
The degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface and inside of the plate-shaped silicon nitride sintered body, was determined as follows.

表面における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faを求めるために、算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面のX線回折測定を行った。窒化ケイ素質焼結体の表面の算術平均粗さRaが0.05μm以上0.5μm以下でないときは、表面を研磨して算術平均粗さRaを0.05μm以上0.5μm以下に調整した。X線回折測定は、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度を測定した。内部における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faを求めるためには、表面の配向度fa測定を行った算術平均粗さRaが0.05μm以上0.5μm以下に研磨された前記表面から、さらに焼結体の約0.10mm内側まで研削して、得られた面のX線回折測定を行い、(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度を測定した。前記の約0.10mm内側までの研削は、粗研磨に#150前後の砥粒を使用し、仕上げ研磨に#400前後の砥粒を使用して、算術平均粗さRaが0.05μm以上0.5μm以下となるように研磨した。 In order to obtain the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface, X-ray diffraction measurement of the surface polished to an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less was performed. When the arithmetic mean roughness Ra of the surface of the silicon nitride sintered body was not 0.05 μm or more and 0.5 μm or less, the surface was polished to adjust the arithmetic mean roughness Ra to 0.05 μm or more and 0.5 μm or less. The X-ray diffraction measurement is performed on the (110) plane, the (200) plane, the (101) plane, the (210) plane, the (201) plane, the (310) plane, the (320) plane, and the (002) plane. The pattern intensity was measured. In order to obtain the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles inside, the arithmetic average roughness Ra obtained by measuring the degree of orientation fa on the surface was polished to 0.05 μm or more and 0.5 μm or less. The surface is further ground to the inside of about 0.10 mm of the sintered body, and the X-ray diffraction measurement of the obtained surface is performed, and the (110) surface, the (200) surface, the (101) surface, and the (210) surface are measured. , (201) plane, (310) plane, (320) plane, and (002) plane X-ray diffraction pattern intensity was measured. For the above-mentioned grinding to the inside of about 0.10 mm, abrasive grains of about # 150 are used for rough polishing, and abrasive grains of about # 400 are used for finish polishing, and the arithmetic average roughness Ra is 0.05 μm or more and 0. Polished to 1.5 μm or less.

六方晶系の柱状粒子の配向度はF.K.Lotgerlingによって提案された以下の式(1)で表される(F.K.Lotgerling,J.Inorg.Nucl.Chem.,9(1959)113~123ページ参照)。そこで、表面および内部の面のX線回折測定の結果に基づき、柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faを、以下の式(1)で表される式から計算した。
fa=(P-P)/(1-P) ・・・・(1)
この式(1)において、Pは以下の式(2)で表され、I(110)、I(200)、I(210)、I(310)、I(320)、I(101)、I(201)、I(002)はβ型窒化ケイ素の(110)面、(200)面、(210)面、(310)面、(320)面、(101)面、(201)面、(002)面のX線回折ピーク強度をそれぞれ意味する。
また、Pは以下の式(3)で表され、I(110)、I(200)、I(101)、I(210)、I(201)、I(310)、I(320)、およびI(002)は、等方的なβ型窒化ケイ素粉末におけるβ型窒化ケイ素の(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度から算出される。本発明においては、β型窒化ケイ素粉末のPの測定値は0.65であった。
P=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(2)
=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(3)
The degree of orientation of the hexagonal columnar particles is F.I. K. It is expressed by the following equation (1) proposed by Lotgerling (see F.K. Lotgerling, J. Inorg. Nucl. Chem., 9 (1959), pp. 113-123). Therefore, based on the results of the X-ray diffraction measurement of the surface and the inner surface, the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles was calculated from the formula represented by the following formula (1).
fa = (P-P 0 ) / (1-P 0 ) ... (1)
In this formula (1), P is represented by the following formula (2), and I (110), I (200), I (210), I (310), I (320), I (101), I. (201) and I (002) are the (110) plane, (200) plane, (210) plane, (310) plane, (320) plane, (101) plane, (201) plane, and (. 002) It means the X-ray diffraction peak intensity of each surface.
Further, P 0 is represented by the following equation (3), I 0 (110), I 0 (200), I 0 (101), I 0 (210), I 0 (201), I 0 (310). , I 0 (320), and I 0 (002) are the (110), (200), (101), and (210) planes of the β-type silicon nitride in the isotropic β-type silicon nitride powder. It is calculated from the X-ray diffraction pattern intensity of the (201) plane, the (310) plane, the (320) plane, and the (002) plane. In the present invention, the measured value of P0 of the β-type silicon nitride powder was 0.65.
P = (I (110) + I (200) + I (210) + I (310) + I (320)) / (I (110) + I (200) + I (101) + I (210) + I (201) + I (310) + I (320) + I (002)) ... (2)
P 0 = (I 0 (110) + I 0 (200) + I 0 (210) + I 0 (310) + I 0 (320)) / (I 0 (110) + I 0 (200) + I 0 (101) + I 0 ( 210) + I 0 (201) + I 0 (310) + I 0 (320) + I 0 (002)) ... (3)

研磨された表面における最大開口径および開気孔率は、以下のようにして算出した。まず、走査型電子顕微鏡(SEM)を用いて、観察倍率2000倍にて、窒化ケイ素質焼結体の研磨された表面から、1観察視野当たり60μm×44μmに設定した領域の5観察視野の画像を取り込んだ。画像解析装置((株)マウンテック製Mac-View)により、5観察視野・測定総面積13200μmの中で最も大きい開気孔の径を測定することで最大開口径を求めた。次に、同画像解析装置により、画像内の1視野の測定面積を400μm,測定視野数を12,つまり測定総面積を4800μmとして、当該測定総面積における開気孔の面積を求めた。当該開気孔の面積を測定総面積で除して、測定総面積における当該開気孔の面積の割合を表面の開気孔率とした。これにより、表面における開気孔率を算出することができた。The maximum opening diameter and open porosity on the polished surface were calculated as follows. First, using a scanning electron microscope (SEM), an image of 5 observation fields in a region set to 60 μm × 44 μm per observation field from the polished surface of the silicon nitride sintered body at an observation magnification of 2000 times. Was taken in. The maximum opening diameter was determined by measuring the diameter of the largest open pore in 5 observation fields / measurement total area 13200 μm 2 with an image analyzer (Mac-View manufactured by Mountech Co., Ltd.). Next, using the same image analysis device, the measurement area of one field in the image was 400 μm 2 , the number of measurement fields was 12, that is, the total measurement area was 4800 μm 2 , and the area of the open pores in the total measurement area was obtained. The area of the open pores was divided by the total measured area, and the ratio of the area of the open pores to the total measured area was taken as the open pore ratio on the surface. This made it possible to calculate the open porosity on the surface.

得られた板状の窒化ケイ素質焼結体を破砕・解砕し、目開き250μmの篩を通した。JIS R1603-10酸素の定量方法に準拠した不活性ガス融解-二酸化炭素赤外線吸収法(LECO社製、TC-136型)により、解砕物試料の酸素含有量を測定した。 The obtained plate-shaped silicon nitride sintered body was crushed and crushed, and passed through a sieve having an opening of 250 μm. The oxygen content of the crushed product sample was measured by an inert gas melting-carbon dioxide infrared absorption method (manufactured by LECO, TC-136 type) based on the JIS R1603-10 oxygen quantification method.

前記の解砕物試料0.5gを硝酸およびフッ化水素酸と共に分析用のテフロン(登録商標)製加圧分解容器に入れ、マイクロ波を照射して加熱分解した後、超純水で定容して検液とした。次に、島津製作所製ICPE-9820型誘導結合プラズマ発光分光分析(ICP-AES)装置により検液中の各金属元素(アルミニウム、イットリウム、マグネシウム、スカンジウム、エルビウム、ルテチウム)の定量分析を行った。 0.5 g of the above-mentioned crushed product sample is placed in a Teflon (registered trademark) pressure decomposition container for analysis together with nitric acid and hydrofluoric acid, and after being heated and decomposed by irradiating with microwaves, the volume is fixed with ultrapure water. It was used as a test solution. Next, quantitative analysis of each metal element (aluminum, yttrium, magnesium, scandium, erbium, lutetium) in the test solution was performed by an ICPE-9820 type inductively coupled plasma emission spectroscopic analysis (ICP-AES) apparatus manufactured by Shimadzu Corporation.

前記の窒化ケイ素質焼結体の製造に使用した原料粉末の組成と性状、シート成形における塗工条件および窒化ケイ素質焼結体の製造条件の概略ならびに得られた板状の窒化ケイ素質焼結体の化学組成と特性に関する前記の評価項目の測定結果を表1、表2および表3に示す。表1~表3において、実施例1~52は本発明例であり、比較例1~21は本発明に対する比較例である。室温での曲げ強度とは4点曲げ強度、粗大β粒子個数とは窒化ケイ素質焼結体の板面に垂直な切断面の1mm2の領域に観察される、β型窒化ケイ素粒子の長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数を表わす。The composition and properties of the raw material powder used in the production of the silicon nitride sintered body, the outline of the coating conditions in sheet molding and the production conditions of the silicon nitride sintered body, and the obtained plate-shaped silicon nitride sintered body. The measurement results of the above evaluation items regarding the chemical composition and characteristics of the body are shown in Tables 1, 2 and 3. In Tables 1 to 3, Examples 1 to 52 are examples of the present invention, and Comparative Examples 1 to 21 are comparative examples to the present invention. The bending strength at room temperature is the 4-point bending strength, and the number of coarse β particles is the long axis of the β-type silicon nitride particles observed in the 1 mm 2 region of the cut surface perpendicular to the plate surface of the silicon nitride sintered body. Represents the number of β-type silicon nitride particles having a length of more than 10 μm.

Figure 0007062230000001
Figure 0007062230000001
Figure 0007062230000002
Figure 0007062230000002
Figure 0007062230000003
Figure 0007062230000003

Figure 0007062230000004
Figure 0007062230000004
Figure 0007062230000005
Figure 0007062230000005
Figure 0007062230000006
Figure 0007062230000006

Figure 0007062230000007
Figure 0007062230000007
Figure 0007062230000008
Figure 0007062230000008
Figure 0007062230000009
Figure 0007062230000009

(実施例2)
焼結温度を1850℃に上げた以外は、実施例1と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。焼結条件と得られた板状の窒化ケイ素質焼結体の化学組成を表2に、得られた板状の窒化ケイ素質焼結体の特性を表3に示す。焼結温度を上げることで、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が増加し、熱伝導率が上昇した。
(Example 2)
A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 1 except that the sintering temperature was raised to 1850 ° C. Table 2 shows the sintering conditions and the chemical composition of the obtained plate-shaped silicon nitride sintered body, and Table 3 shows the characteristics of the obtained plate-shaped silicon nitride sintered body. By increasing the sintering temperature, the number of β-type silicon nitride particles having a major axis length of more than 10 μm increased, and the thermal conductivity increased.

(実施例3および4)
焼結時の最高温度での保持時間を変えた以外は、実施例1と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例3では、最高温度での保持時間が6時間であったためか、焼結体の酸素含有量がやや高く、粗大β粒子の個数が減少して、熱伝導率と破壊靭性値が若干低下した。
(Examples 3 and 4)
A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 1 except that the holding time at the maximum temperature during sintering was changed. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 3, probably because the holding time at the maximum temperature was 6 hours, the oxygen content of the sintered body was slightly high, the number of coarse β particles decreased, and the thermal conductivity and fracture toughness value decreased slightly. bottom.

(実施例5)
窒化ケイ素原料(比表面積16.9m/g、酸素含有量1.50wt%、β型窒化ケイ素含有割合3.0質量%)と最高温度での保持時間を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。窒化ケイ素(Si34)粉末の比表面積が16.9m/g、酸素含有量が1.50wt%の場合にも、高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。
(Example 5)
Example 2 except that the silicon nitride raw material (specific surface area 16.9 m 2 / g, oxygen content 1.50 wt%, β-type silicon nitride content ratio 3.0% by mass) and the holding time at the maximum temperature were changed. Similarly, a plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. High thermal conductivity and excellent mechanical properties (bending strength and breaking toughness value) even when the specific surface area of silicon nitride (Si 3 N 4 ) powder is 16.9 m 2 / g and the oxygen content is 1.50 wt%. )showed that.

(実施例6)
ドクターブレード装置を使用したシート成形における塗工速度と最高温度での保持時間を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。最高温度での保持時間を延ばすことで粗大β粒子の個数が増加して、熱伝導率が上昇した。
(Example 6)
Plate-shaped nitriding Kay under the conditions shown in Tables 1 and 2 in the same manner as in Example 2 except that the coating speed and the holding time at the maximum temperature in sheet forming using the doctor blade device were changed. A raw sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. By extending the holding time at the maximum temperature, the number of coarse β particles increased and the thermal conductivity increased.

(実施例7~9)
窒化ケイ素原料(実施例7および8:比表面積13.7m/g、酸素含有量1.25wt%、β型窒化ケイ素含有割合2.2質量%、実施例9:比表面積14.0m/g、酸素含有量1.30wt%、β型窒化ケイ素含有割合2.3質量%)およびドクターブレード装置を使用したシート成形における塗工速度を変え、表1および表2に記載された条件にて、実施例1と同様にして、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。窒化ケイ素原料を変えることで、実施例7および8の積層成形体シート密度は1.97g/cmへ、実施例9の積層成形体シート密度は1.95g/cmに上昇した。実施例7および9では、焼結体の酸素含有量がやや高くなったためか、熱伝導率と破壊靭性値が若干低下した。
(Examples 7 to 9)
Silicon Nitride Raw Materials (Examples 7 and 8: Specific Surface Area 13.7 m 2 / g, Oxygen Content 1.25 wt%, β-Type Silicon Nitride Content 2.2 Mass%, Example 9: Specific Surface Area 14.0 m 2 / g, oxygen content 1.30 wt%, β-type silicon nitride content ratio 2.3 mass%) and the coating speed in sheet forming using the doctor blade device were changed under the conditions shown in Tables 1 and 2. , A plate-shaped silicon nitride sintered body was obtained in the same manner as in Example 1. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. By changing the silicon nitride raw material, the laminated molded body sheet density of Examples 7 and 8 increased to 1.97 g / cm 3 , and the laminated molded body sheet density of Example 9 increased to 1.95 g / cm 3 . In Examples 7 and 9, the thermal conductivity and the fracture toughness value were slightly lowered probably because the oxygen content of the sintered body was slightly high.

(実施例10~12)
焼結条件を変えた以外は、実施例7と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例12では、1850℃で20時間保持したことにより破壊靭性値KICが9.5MPa√mに上昇した。
(Examples 10 to 12)
A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 7 except that the sintering conditions were changed. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 12, the fracture toughness value KIC increased to 9.5 MPa√m by holding at 1850 ° C. for 20 hours.

(実施例13)
酸化マグネシウムと希土類酸化物との重量比(酸化マグネシウム/希土類酸化物)および焼結時の最高保持温度での保持時間を変えたこと以外は、実施例3と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。焼結体の酸素含有量がやや高く、粗大β粒子の個数が減少して、熱伝導率が若干低下した。
(Example 13)
Tables 1 and 2 are the same as in Example 3 except that the weight ratio of magnesium oxide to the rare earth oxide (magnesium oxide / rare earth oxide) and the holding time at the maximum holding temperature at the time of sintering are changed. A plate-shaped silicon nitride sintered body was obtained under the conditions described in 1. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. The oxygen content of the sintered body was rather high, the number of coarse β particles decreased, and the thermal conductivity decreased slightly.

(実施例14~16)
希土類酸化物をSc、またはEr、あるいはLuに変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例16では曲げ強度が上昇した。
(Examples 14 to 16)
Plate-like nitriding under the conditions described in Tables 1 and 2 in the same manner as in Example 2 except that the rare earth oxide was changed to Sc 2 O 3 , or Er 2 O 3 , or Lu 3 O 3 . A siliconic sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 16, the bending strength increased.

(実施例17)
酸化マグネシウムと希土類金属酸化物との重量比、およびドクターブレード装置を使用したシート成形における塗工速度を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。酸化マグネシウムと希土類金属酸化物との重量比を変えても、高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。
(Example 17)
The conditions shown in Tables 1 and 2 are the same as in Example 2 except that the weight ratio of magnesium oxide to the rare earth metal oxide and the coating speed in the sheet forming using the doctor blade device are changed. A plate-shaped silicon nitride sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Even when the weight ratio of magnesium oxide and rare earth metal oxide was changed, it showed high thermal conductivity and excellent mechanical properties (bending strength and fracture toughness value).

(実施例18)
酸化マグネシウムと希土類金属酸化物との重量比、および昇温過程において1550℃で2時間保持し、1550℃~最高保持温度までの昇温速度を140℃/hrに変えたこと以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。1550℃での2時間保持により、配合組成に比べて、焼結体の酸素含有量が減少して、高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。
(Example 18)
Examples except that the weight ratio of magnesium oxide and rare earth metal oxide was maintained at 1550 ° C. for 2 hours in the heating process, and the heating rate from 1550 ° C. to the maximum holding temperature was changed to 140 ° C./hr. In the same manner as in 2, a plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. By holding at 1550 ° C. for 2 hours, the oxygen content of the sintered body was reduced as compared with the compounding composition, and high thermal conductivity and excellent mechanical properties (bending strength and fracture toughness value) were exhibited.

(実施例19)
窒化ケイ素原料(比表面積16.9m/g、酸素含有量1.50wt%、β型窒化ケイ素含有割合3.0質量%)および酸化マグネシウムと希土類金属酸化物との重量比を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。酸化マグネシウムと希土類酸化物との重量比を酸化マグネシウム/希土類酸化物=1.4に変えたために、破壊靱性値が若干低下した。
(Example 19)
Except for changing the weight ratio of the silicon nitride raw material (specific surface area 16.9 m 2 / g, oxygen content 1.50 wt%, β-type silicon nitride content 3.0% by mass) and magnesium oxide to rare earth metal oxides. , A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Since the weight ratio of magnesium oxide to the rare earth oxide was changed to magnesium oxide / rare earth oxide = 1.4, the fracture toughness value was slightly lowered.

(実施例20)
酸化マグネシウムと希土類金属酸化物との重量比を変えた以外は、実施例4と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。酸化マグネシウムと希土類酸化物との重量比が酸化マグネシウム/希土類酸化物=0.62の場合にも、高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。
(Example 20)
A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 4 except that the weight ratio of magnesium oxide and the rare earth metal oxide was changed. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Even when the weight ratio of magnesium oxide to rare earth oxide was magnesium oxide / rare earth oxide = 0.62, high thermal conductivity and excellent mechanical properties (bending strength and breaking toughness value) were exhibited.

(実施例21および22)
焼結助剤である酸化マグネシウム(MgO)と酸化イットリウム(Y)の添加量およびその重量比を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例22では、焼結助剤の添加量が多いためか、焼結体の実測酸素含有量がやや高く、熱伝導率と破壊靭性値が若干低下した。
(Examples 21 and 22)
It is shown in Tables 1 and 2 in the same manner as in Example 2 except that the addition amounts and weight ratios of magnesium oxide ( MgO) and yttrium oxide (Y2O3), which are sintering aids, were changed. Under the conditions, a plate-shaped silicon nitride sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 22, probably because the amount of the sintering aid added was large, the measured oxygen content of the sintered body was slightly high, and the thermal conductivity and the fracture toughness value were slightly lowered.

(実施例23)
焼結時のガス圧力を0.4MPaに下げた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。ガス圧力0.4MPaでは0.8MPaの場合とほぼ同等の特性を有する窒化ケイ素質焼結体が得られた。
(Example 23)
A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 2 except that the gas pressure at the time of sintering was lowered to 0.4 MPa. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. At a gas pressure of 0.4 MPa, a silicon nitride sintered body having almost the same characteristics as that at 0.8 MPa was obtained.

(実施例24~26)
焼結助剤の添加量を6.5重量%とし、酸化マグネシウムと酸化イットリウムとの重量比を0.4に、ドクターブレード装置を使用したシート成形における塗工速度、および焼結条件(最高温度での保持時間)を変えた。さらに、実施例24では昇温過程において1550℃で2時間保持した後、1550℃~最高保持温度までの昇温速度を120℃/hr(実施例25および26では、1520℃から1880℃までの昇温速度は120℃/hr)にし、実施例26では窒化ケイ素原料(比表面積13.7m/g、酸素含有量1.25wt%、β型窒化ケイ素含有割合2.2質量%)を変えた。表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例24では、粗大β粒子の個数が3800であるため、高い熱伝導率と優れた機械的特性(強度および破壊靭性値)を示した。実施例25では、粗大β粒子の個数が増加したためか、機械的特性(強度および破壊靭性値)が若干低下した。実施例26では、焼結体としての実測マグネシウム含有量と前記の実測希土類金属含有量との比率が実測マグネシウム含有量/実測希土類金属含有量=0.27に下がっており、粗大β粒子の個数がさらに増加したためか、若干ではあるが、機械的特性(強度および破壊靭性値)がさらに低下した。
(Examples 24 to 26)
The amount of the sintering aid added is 6.5% by weight, the weight ratio of magnesium oxide and yttrium oxide is 0.4, the coating speed in sheet molding using the doctor blade device, and the sintering conditions (maximum temperature). (Retention time at) was changed. Further, in Example 24, after holding at 1550 ° C. for 2 hours in the heating process, the heating rate from 1550 ° C. to the maximum holding temperature was 120 ° C./hr (in Examples 25 and 26, from 1520 ° C. to 1880 ° C. The temperature rise rate was 120 ° C./hr), and in Example 26, the silicon nitride raw material (specific surface area 13.7 m 2 / g, oxygen content 1.25 wt%, β-type silicon nitride content ratio 2.2 mass%) was changed. rice field. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 24, since the number of coarse β particles was 3800, high thermal conductivity and excellent mechanical properties (strength and fracture toughness value) were exhibited. In Example 25, the mechanical properties (strength and fracture toughness value) were slightly lowered probably because the number of coarse β particles was increased. In Example 26, the ratio of the measured magnesium content as the sintered body to the measured rare earth metal content is lowered to the measured magnesium content / measured rare earth metal content = 0.27, and the number of coarse β particles. The mechanical properties (strength and fracture toughness value) were further reduced, although it was slightly increased.

(実施例27)
窒化ケイ素原料(比表面積16.4m/g、酸素含有量1.46wt%、β型窒化ケイ素含有割合2.7質量%)を変え、アルミニウム含有量が40ppmの窒化ケイ素粉末を使用した以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。焼結体の実測アルミニウム含有量43ppmまでは特性低下はほとんど認められなかった。
(Example 27)
Except for changing the silicon nitride raw material (specific surface area 16.4 m 2 / g, oxygen content 1.46 wt%, β-type silicon nitride content 2.7 mass%) and using silicon nitride powder having an aluminum content of 40 ppm. , A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Almost no deterioration in characteristics was observed up to the measured aluminum content of 43 ppm in the sintered body.

(実施例28および29)
得られた板状の窒化ケイ素質焼結体の表面研磨加工の条件を変え、実施例29ではさらに窒化ケイ素原料(比表面積16.9m/g、酸素含有量1.50wt%、β型窒化ケイ素含有割合3.0質量%)を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。表3に記載された表面粗さの範囲までは特性低下はほとんど認められず、高い熱伝導率と高い曲げ強度を示した。
(Examples 28 and 29)
The conditions for surface polishing of the obtained plate-shaped silicon nitride sintered body were changed, and in Example 29, a silicon nitride raw material (specific surface area 16.9 m 2 / g, oxygen content 1.50 wt%, β-type nitriding) was further changed. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2 in the same manner as in Example 2 except that the silicon content ratio (3.0% by mass) was changed. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Almost no deterioration in characteristics was observed up to the range of surface roughness shown in Table 3, and high thermal conductivity and high bending strength were exhibited.

(実施例30~32)
ドクターブレード装置を使用したシート成形における塗工速度を変えると共に、焼結条件(最高保持温度での保持時間)を変え、表1および表2に記載された条件にて、実施例4と同様にして、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実施例30では、焼結体の酸素含有量がやや高いためか、実施例31と比べて、熱伝導率が若干低下した。実施例32では逆に、焼結体の酸素含有量がやや低いためか、実施例31と比べて、機械的特性(強度および破壊靭性値)が若干低下した。
(Examples 30 to 32)
The coating speed in sheet molding using the doctor blade device was changed, and the sintering conditions (holding time at the maximum holding temperature) were changed, and the conditions shown in Tables 1 and 2 were the same as in Example 4. A plate-shaped silicon nitride sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. In Example 30, the thermal conductivity was slightly lower than that in Example 31, probably because the oxygen content of the sintered body was slightly high. On the contrary, in Example 32, the mechanical properties (strength and fracture toughness value) were slightly lower than those in Example 31, probably because the oxygen content of the sintered body was slightly low.

(実施例33)
実施例33は焼結時のガス圧力を2.0MPaに上げた例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。ガス圧力2.0MPaにおいても0.8MPaの場合と同等の特性が得られるが、ガス圧力が高いことによって酸化マグネシウムの蒸発が抑制されたことにより、焼結体の酸素含有量がやや高くなって、ガス圧力を2.0MPaに上げたことの顕著な特性向上効果は認められなかった。
(Example 33)
Example 33 is an example in which the gas pressure at the time of sintering is increased to 2.0 MPa. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. Even at a gas pressure of 2.0 MPa, the same characteristics as in the case of 0.8 MPa can be obtained, but the evaporation of magnesium oxide is suppressed by the high gas pressure, so that the oxygen content of the sintered body becomes slightly higher. No significant effect of improving the characteristics was observed by increasing the gas pressure to 2.0 MPa.

(実施例34および35)
実施例34では、ブラスト研磨の後にラップ研磨加工を行った。ドクターブレード装置を使用したシート成形における塗工速度、および得られた板状の窒化ケイ素質焼結体の表面研磨加工の条件を変えた以外は、実施例2と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。表3に記載された表面粗さでは、機械的特性(強度および破壊靭性値)がやや低下傾向にあることが分かった。
(Examples 34 and 35)
In Example 34, the lap polishing process was performed after the blast polishing. Table 1 and Table are the same as in Example 2 except that the coating speed in sheet forming using the doctor blade device and the conditions for surface polishing of the obtained plate-shaped silicon nitride sintered body are changed. A plate-shaped silicon nitride sintered body was obtained under the conditions described in 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. It was found that the mechanical properties (strength and fracture toughness value) tended to decrease slightly in the surface roughness shown in Table 3.

(実施例36)
酸化マグネシウムと酸化イットリウムとの重量比を0.60に変更した以外は、実施例6と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。酸化マグネシウムと希土類酸化物との重量比が酸化マグネシウム/希土類酸化物=0.60の場合にも、高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。
(Example 36)
A plate-shaped silicon nitride sintered body was prepared under the conditions shown in Tables 1 and 2 in the same manner as in Example 6 except that the weight ratio of magnesium oxide and yttrium oxide was changed to 0.60. Obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Even when the weight ratio of magnesium oxide to rare earth oxide was magnesium oxide / rare earth oxide = 0.60, high thermal conductivity and excellent mechanical properties (bending strength and breaking toughness value) were exhibited.

(実施例37および38)
酸化マグネシウムと酸化イットリウムとの重量比、ドクターブレード装置を使用したシート成形における塗工速度、および焼結条件(最高保持温度と保持時間)を変更した以外は、実施例8と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。最高保持温度での保持時間の影響か、β型窒化ケイ素粒子の粒成長がやや不十分であり、熱伝導率が若干低下した。
(Examples 37 and 38)
The table is the same as in Example 8 except that the weight ratio of magnesium oxide and yttrium oxide, the coating speed in sheet forming using the doctor blade device, and the sintering conditions (maximum holding temperature and holding time) are changed. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in 1 and Table 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Due to the influence of the holding time at the maximum holding temperature, the grain growth of the β-type silicon nitride particles was slightly insufficient, and the thermal conductivity was slightly lowered.

(実施例39)
窒化ケイ素原料およびドクターブレード装置を使用したシート成形における塗工速度を変えた以外は、実施例6と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Example 39)
Plate-shaped silicon nitride firing under the conditions shown in Tables 1 and 2 in the same manner as in Example 6 except that the coating speed in the sheet forming using the silicon nitride raw material and the doctor blade device was changed. I got a unity. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

比表面積15.5m/g、酸素含有量1.4重量%(表面酸素量0.98重量%)、β型窒化ケイ素含有割合2.5質量%の窒化ケイ素原料に変更しても、実施例6に匹敵する高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。Even if the material is changed to a silicon nitride raw material with a specific surface area of 15.5 m 2 / g, an oxygen content of 1.4% by mass (surface oxygen content of 0.98% by mass), and a β-type silicon nitride content of 2.5% by mass. It showed high thermal conductivity and excellent mechanical properties (bending strength and breaking toughness value) comparable to Example 6.

実施例40~46では、特に酸化マグネシウムと酸化イットリウムとの重量比の影響に注目して、得られる板状の窒化ケイ素質焼結体の化学組成と特性を詳細に調べた。 In Examples 40 to 46, the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body were investigated in detail, paying particular attention to the influence of the weight ratio of magnesium oxide and yttrium oxide.

(実施例40~42)
焼結助剤の添加量を5.9重量%とし、酸化マグネシウムと酸化イットリウムとの重量比、ドクターブレード装置を使用したシート成形における塗工速度を変え、さらに実施例42では焼結条件(最高保持温度と同温度での保持時間)を変えた以外は、実施例2と同様にして。表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Examples 40 to 42)
The amount of the sintering aid added was 5.9% by weight, the weight ratio of magnesium oxide and yttrium oxide was changed, the coating speed in sheet molding using the doctor blade device was changed, and in Example 42, the sintering conditions (maximum) were changed. The same as in Example 2 except that the holding time at the same temperature as the holding temperature was changed. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

酸化マグネシウム/酸化イットリウム=0.97、1.11(実施例40および41)では、焼結体の実測酸素含有量がやや高いためか、熱伝導率が若干低下した。一方、酸化マグネシウム/酸化イットリウム=0.44(実施例42)では高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示した。実施例42における、焼結体としての実測マグネシウム含有量と実測イットリウム含有量の質量比は、実測マグネシウム含有量/実測イットリウム含有量=0.31であった。 In magnesium oxide / yttrium oxide = 0.97, 1.11 (Examples 40 and 41), the thermal conductivity was slightly lowered probably because the measured oxygen content of the sintered body was slightly high. On the other hand, magnesium oxide / yttrium oxide = 0.44 (Example 42) showed high thermal conductivity and excellent mechanical properties (bending strength and fracture toughness value). In Example 42, the mass ratio of the measured magnesium content and the measured yttrium content as the sintered body was the measured magnesium content / the measured yttrium content = 0.31.

(実施例43~45)
焼結助剤の添加量を5.5重量%とし、酸化マグネシウムと酸化イットリウムとの重量比、ドクターブレード装置を使用したシート成形における塗工速度、および焼結条件(窒素ガス圧力、最高保持温度と同温度での保持時間)を変えた。これらの変更点以外は、実施例2と同様にして。表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Examples 43 to 45)
The amount of the sintering aid added is 5.5% by weight, the weight ratio of magnesium oxide and yttrium oxide, the coating speed in sheet forming using the doctor blade device, and the sintering conditions (nitrogen gas pressure, maximum holding temperature). (Retention time at the same temperature) was changed. Except for these changes, the same as in Example 2. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

酸化マグネシウム/酸化イットリウム=0.64(実施例43)では高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を示し、酸化マグネシウム/酸化イットリウム=0.60、0.57(実施例44および45)でも、実施例43にほぼ匹敵する特性を示した。実施例43~45における、焼結体としての実測マグネシウム含有量と実測イットリウム含有量の質量比は、それぞれ、実測マグネシウム含有量/実測イットリウム含有量=0.46、0.43および0.43であった。 Magnesium oxide / yttrium oxide = 0.64 (Example 43) shows high thermal conductivity and excellent mechanical properties (bending strength and breaking toughness value), and magnesium oxide / yttrium oxide = 0.60, 0.57 (eg). Examples 44 and 45) also showed characteristics substantially comparable to those of Example 43. The mass ratios of the measured magnesium content and the measured yttrium content as the sintered body in Examples 43 to 45 are the measured magnesium content / measured yttrium content = 0.46, 0.43 and 0.43, respectively. there were.

なお、酸化マグネシウム/酸化イットリウム=0.57で高い熱伝導率と優れた機械的特性(曲げ強度および破壊靭性値)を実現できることは、実施例2、4~6、8、10、12および16、28、31および39で検証済である。 It should be noted that high thermal conductivity and excellent mechanical properties (bending strength and fracture toughness value) can be realized with magnesium oxide / yttrium oxide = 0.57 in Examples 2, 4 to 6, 8, 10, 12 and 16. , 28, 31 and 39.

(実施例46)
焼結助剤の添加量を5.5重量%とし、酸化マグネシウムと酸化イットリウムとの重量比、および焼結条件(最高保持温度)を変えた以外は、実施例8と同様にして。表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Example 46)
The same as in Example 8 except that the amount of the sintering aid added was 5.5% by weight, the weight ratio of magnesium oxide and yttrium oxide, and the sintering conditions (maximum holding temperature) were changed. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

酸化マグネシウム/酸化イットリウム=1.75(焼結体としての実測マグネシウム含有量と実測イットリウム含有量の質量比が実測マグネシウム含有量/実測イットリウム含有量=1.23)では、粗大β粒子の個数がやや多いためか、機械的特性(強度および破壊靭性値)が若干低下した。 At magnesium oxide / yttrium oxide = 1.75 (the mass ratio between the measured magnesium content as a sintered body and the measured yttrium content is the measured magnesium content / the measured yttrium content = 1.23), the number of coarse β particles is The mechanical properties (strength and breaking toughness value) were slightly reduced, probably because it was a little high.

実施例40~46の検討結果より、配合組成における酸化マグネシウムと酸化イットリウムとの重量比を0.40≦酸化マグネシウム/希土類金属酸化物≦0.66とし、焼結体としての実測マグネシウム含有量と実測イットリウム含有量の質量比率が0.26≦実測マグネシウム含有量/実測イットリウム含有量≦0.49であることがより好適であることを確認できた。 From the examination results of Examples 40 to 46, the weight ratio of magnesium oxide and yttrium oxide in the compounding composition was 0.40 ≤ magnesium oxide / rare earth metal oxide ≤ 0.66, and the measured magnesium content as a sintered body was obtained. It was confirmed that it is more preferable that the mass ratio of the measured yttrium content is 0.26 ≤ measured magnesium content / measured yttrium content ≤ 0.49.

(実施例47~49)
焼結助剤の添加量をそれぞれ4.1重量%、3.5重量%および6.5重量%とした。酸化マグネシウムと酸化イットリウムとの重量比、ドクターブレード装置を使用したシート成形における塗工速度、および焼結条件(最高保持温度と同温度での保持時間)を変えた。これらの変更点以外は、実施例6と同様にして。表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Examples 47 to 49)
The amount of the sintering aid added was 4.1% by weight, 3.5% by weight, and 6.5% by weight, respectively. The weight ratio of magnesium oxide to yttrium oxide, the coating speed in sheet forming using the doctor blade device, and the sintering conditions (holding time at the same temperature as the maximum holding temperature) were changed. Except for these changes, the same as in Example 6. A plate-shaped silicon nitride sintered body was obtained under the conditions shown in Tables 1 and 2. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

実施例47では焼結助剤の添加量がより好適な範囲内(焼結体としての実測マグネシウム含有量と実測イットリウム含有量とを合計した助剤由来の金属元素含有量は2.52重量%)であるため、実施例6にほぼ匹敵する熱伝導率と機械的特性(強度および破壊靭性値)を示した。一方、実施例48では、焼結助剤の添加量が4.0重量%よりもやや少ないため機械的時性(強度および破壊靭性値)が若干低下し、実施例49では、焼結助剤の添加量が6.0重量%よりもやや多いため熱伝導率が若干低下した。また、実施例48および49では、最大開口径もやや大きかった。 In Example 47, the amount of the sintering aid added is within a more preferable range (the content of the metal element derived from the auxiliary agent, which is the sum of the actually measured magnesium content and the actually measured yttrium content as the sintered body, is 2.52% by weight. ), The thermal conductivity and mechanical properties (strength and breaking toughness value) almost comparable to those of Example 6 were shown. On the other hand, in Example 48, since the amount of the sintering aid added was slightly less than 4.0% by weight, the mechanical time (strength and fracture toughness value) was slightly lowered, and in Example 49, the sintering aid was added. Since the amount of the addition was slightly larger than 6.0% by weight, the thermal conductivity was slightly lowered. Further, in Examples 48 and 49, the maximum opening diameter was also slightly large.

(実施例50)
窒化ケイ素原料(比表面積15.5m/g、酸素含有量1.40wt%、β型窒化ケイ素含有割合2.5質量%)、焼結条件(最高温度での保持時間)、および得られた板状の窒化ケイ素質焼結体の表面研磨加工の条件を変えた以外は、実施例33と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。表面研磨加工におけるブラスト研磨の程度を弱くしたため、算術平均表面粗さRaは0.46μmとなり、機械的時性(強度および破壊靭性値)が若干低下した。また最大開口径もやや大きかった。
(Example 50)
Silicon nitride raw material (specific surface area 15.5 m 2 / g, oxygen content 1.40 wt%, β-type silicon nitride content ratio 2.5% by mass), sintering conditions (holding time at maximum temperature), and obtained. Plate-shaped silicon nitride sintered body under the conditions shown in Tables 1 and 2 in the same manner as in Example 33, except that the conditions for surface polishing of the plate-shaped silicon nitride sintered body were changed. I got a body. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body. Since the degree of blast polishing in the surface polishing process was weakened, the arithmetic average surface roughness Ra was 0.46 μm, and the mechanical time properties (strength and fracture toughness value) were slightly lowered. The maximum opening diameter was also slightly large.

(実施例51および52)
実施例51および52は、焼結助剤である酸化マグネシウム(MgO)と酸化イットリウム(Y)の添加量を変えた例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。実測酸素含有量は実施例51では2.82重量%、実施例52では2.98重量%であり、焼結助剤の添加量が多くなると、酸素含有量が増加して、熱伝導率がやや低下した。さらに実施例52では、機械的特性(曲げ強度および破壊靭性値)も若干低下した。
(Examples 51 and 52)
Examples 51 and 52 are examples in which the addition amounts of magnesium oxide ( MgO) and yttrium oxide ( Y2O3), which are sintering aids, are changed. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. The measured oxygen content was 2.82% by weight in Example 51 and 2.98% by weight in Example 52. As the amount of the sintering aid added increased, the oxygen content increased and the thermal conductivity increased. It dropped a little. Further, in Example 52, the mechanical properties (bending strength and fracture toughness value) were also slightly reduced.

比表面積が13.7~14.0m/gの窒化ケイ素原料を使用した場合、実施例7、9、11、26、37、38および46では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が若干低下していた。When a silicon nitride raw material having a specific surface area of 13.7 to 14.0 m 2 / g was used, in Examples 7, 9, 11, 26, 37, 38 and 46, the thermal conductivity or mechanical properties (bending strength and bending strength and) were used. Fracture toughness value) was slightly reduced.

焼結助剤の添加量を3.5重量%または6.5重量%とした場合(焼結体としての助剤由来の金属元素含有量が2.01重量%または4.03~4.52重量%の場合)、実施例22、25、26、48および49では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が若干低下していた。配合組成における酸化マグネシウムと酸化イットリウムとの重量比を酸化マグネシウム含有量/希土類金属酸化物含有量=1.75(焼結体としての実測マグネシウム含有量/実測希土類金属含有量=1.23)とした実施例46では、熱伝導率および機械的特性(曲げ強度および破壊靭性値)が若干低下していた。 When the addition amount of the sintering aid is 3.5% by weight or 6.5% by weight (the content of the metal element derived from the auxiliary agent as a sintered body is 2.01% by weight or 4.03 to 4.52). In the case of% by weight), in Examples 22, 25, 26, 48 and 49, the thermal conductivity or mechanical properties (bending strength and fracture toughness value) were slightly reduced. The weight ratio of magnesium oxide and yttrium oxide in the composition is magnesium oxide content / rare earth metal oxide content = 1.75 (measured magnesium content as a sintered body / measured rare earth metal content = 1.23). In Example 46, the thermal conductivity and mechanical properties (bending strength and breaking toughness value) were slightly reduced.

さらに、焼結助剤の添加量を8.0重量%または8.1重量%とした場合(焼結体としての助剤由来の金属元素含有量が5.18重量%または5.26重量%の場合)、実施例51および52では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が他の実施例よりも低下していた。 Further, when the addition amount of the sintering aid is 8.0% by weight or 8.1% by weight (the content of the metal element derived from the auxiliary agent as a sintered body is 5.18% by weight or 5.26% by weight). In the case of), in Examples 51 and 52, the thermal conductivity or mechanical properties (bending strength and fracture toughness value) were lower than those in the other examples.

焼結体の実測酸素含有量が1.75未満の場合、実施例15、26、32および48では、機械的特性(曲げ強度および破壊靭性値)が若干低下していた。また、焼結体の実測酸素含有量が2.10を超える場合、実施例3、7、9、11、13、14、19、22、23、25、27、30、33~35、37、40、41、45、46、49および50では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が若干低下していた。さらに、実測酸素含有量が2.8重量%を超える実施例51および52では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が、他の実施例よりも低下していた。 When the measured oxygen content of the sintered body was less than 1.75, the mechanical properties (bending strength and fracture toughness value) were slightly lowered in Examples 15, 26, 32 and 48. When the measured oxygen content of the sintered body exceeds 2.10, Examples 3, 7, 9, 11, 13, 14, 19, 22, 23, 25, 27, 30, 33 to 35, 37, At 40, 41, 45, 46, 49 and 50, the thermal conductivity or mechanical properties (bending strength and fracture toughness value) were slightly reduced. Furthermore, in Examples 51 and 52 in which the measured oxygen content exceeded 2.8% by weight, the thermal conductivity or mechanical properties (bending strength and fracture toughness value) were lower than those in the other examples.

算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における柱状のβ型窒化ケイ素粒子の配向割合を示す表面の配向度faが0.10未満または0.20を超える実施例7、9、11、25,26、30、32、35、37、38、44,47、48および52では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が若干低下していた。 Examples of surface orientation fa indicating the orientation ratio of columnar β-type silicon nitride particles on a surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less is less than 0.10 or more than 0.20. At 7, 9, 11, 25, 26, 30, 32, 35, 37, 38, 44, 47, 48 and 52, the thermal conductivity or mechanical properties (bending strength and fracture toughness value) were slightly reduced. ..

粗大β型窒化ケイ素粒子の個数が800~990個/mmである実施例3、7、9、11、13、30、33、37、38、45および52では、熱伝導率または機械的特性(曲げ強度および破壊靭性値)が若干低下していた。一方、粗大β型窒化ケイ素粒子の個数が5160~8800個/mmである実施例25、26、32、46、48および50では、機械的特性(曲げ強度および破壊靭性値)が若干低下していた。In Examples 3, 7, 9, 11, 13, 30, 33, 37, 38, 45 and 52, where the number of coarse β-type silicon nitride particles is 800 to 990 particles / mm 2 , the thermal conductivity or mechanical properties (Bending strength and fracture toughness value) were slightly reduced. On the other hand, in Examples 25, 26, 32, 46, 48 and 50 in which the number of coarse β-type silicon nitride particles is 5160 to 8800 particles / mm 2 , the mechanical properties (bending strength and fracture toughness value) are slightly lowered. Was there.

なお、実施例1から52までの全ての実施例において、熱伝導率測定用の円盤状試験片を除く板状の窒化ケイ素質焼結体の厚さは0.33~0.48mm、厚さ/面積比は1.0x10-4~1.9x10-4(1/mm)、厚み方向に垂直な板面表層部の除去量は片面当たり0.008~0.03mmであった。In all the examples from Examples 1 to 52, the thickness of the plate-shaped silicon nitride sintered body excluding the disk-shaped test piece for measuring the thermal conductivity is 0.33 to 0.48 mm. The / area ratio was 1.0x10 -4 to 1.9x10 -4 (1 / mm), and the amount of the surface layer of the plate surface perpendicular to the thickness direction was 0.008 to 0.03 mm per side.

外観検査では、全ての実施例において色調ムラは観察されなかった。窒化ケイ素質焼結体板面のX線回折測定では、MgSiN等のMg化合物の結晶相は検出されなかった。さらに、N-メリライト、H相、J相、K相などの希土類金属化合物の結晶相も検出されなかった。In the visual inspection, no color unevenness was observed in all the examples. The crystal phase of the Mg compound such as MgSiN 2 was not detected by the X-ray diffraction measurement of the silicon nitride sintered body plate surface. Furthermore, the crystal phases of rare earth metal compounds such as N-merilite, H phase, J phase, and K phase were not detected.

(比較例1および2)
比較例1および2は、窒化ケイ素原料として、比表面積が低い粉末または酸素含有量が低い粉末を使用した例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。比表面積または酸素含有量が低下することにより、得られた板状の窒化ケイ素質焼結体の相対密度が低下し、その結果として、熱伝導率、曲げ強度、破壊靭性値などの特性が低下した。
(Comparative Examples 1 and 2)
Comparative Examples 1 and 2 are examples in which a powder having a low specific surface area or a powder having a low oxygen content is used as a raw material for silicon nitride. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. As the specific surface area or oxygen content decreases, the relative density of the obtained plate-shaped silicon nitride sintered body decreases, and as a result, properties such as thermal conductivity, bending strength, and fracture toughness value decrease. bottom.

(比較例3)
比較例3は、窒化ケイ素原料として、酸素含有量が高過ぎる粉末を使用した例である。最高温度での保持時間は8時間とし、表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。焼結体の実測酸素含有量は2.55重量%であり、窒化ケイ素原料の酸素含有量が高過ぎたせいか、β型窒化ケイ素粒子の粒成長が不足していた(500個/mm未満)。酸素含有量が高過ぎることにより、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が減少し、熱伝導率が低下した。
(Comparative Example 3)
Comparative Example 3 is an example in which a powder having an excessively high oxygen content is used as a raw material for silicon nitride. The holding time at the maximum temperature was 8 hours, and the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2 are shown in Tables 2 and 3. The measured oxygen content of the sintered body was 2.55% by weight, and the grain growth of β-type silicon nitride particles was insufficient probably because the oxygen content of the silicon nitride raw material was too high (500 pieces / mm 2 ). Less than). When the oxygen content was too high, the number of β-type silicon nitride particles having a major axis length of more than 10 μm decreased, and the thermal conductivity decreased.

(比較例4)
窒化ケイ素原料を変え、アルミニウム含有量が50ppmの窒化ケイ素粉末を使用した例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。焼結体の実測アルミニウム含有量が55ppmに上がると、熱伝導率が低下した。
(Comparative Example 4)
This is an example in which a silicon nitride raw material is changed and a silicon nitride powder having an aluminum content of 50 ppm is used. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. When the measured aluminum content of the sintered body increased to 55 ppm, the thermal conductivity decreased.

(比較例5)
比較例5は、焼結助剤である酸化マグネシウム(MgO)と酸化イットリウム(Y)の添加量を変えた例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。焼結助剤の添加量を減らすと、得られた板状の窒化ケイ素質焼結体の相対密度が低下した(比較例5の焼結体の実測酸素含有量は1.34重量%)。
(Comparative Example 5)
Comparative Example 5 is an example in which the addition amounts of magnesium oxide ( MgO) and yttrium oxide ( Y2O3), which are sintering aids, are changed. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. When the amount of the sintering aid added was reduced, the relative density of the obtained plate-shaped silicon nitride sintered body decreased (the measured oxygen content of the sintered body of Comparative Example 5 was 1.34% by weight).

(比較例6および7)
比較例6および7は、アルカリ土類金属酸化物と希土類金属酸化物との重量比を変えた例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。アルカリ土類金属酸化物と希土類金属酸化物との重量比を下げると、得られた板状の窒化ケイ素質焼結体の相対密度が低下した(比較例6)。また、比較例6および7で得られた窒化ケイ素質焼結体の実測マグネシウム含有量と実測希土類金属含有量との重量比(実測マグネシウム含有量/実測希土類金属含有量)は、それぞれ0.15、2.33であったため、配合組成におけるアルカリ土類金属酸化物と希土類金属酸化物との重量比が高過ぎても、低過ぎても、得られた板状の窒化ケイ素質焼結体の特性が低下した。
(Comparative Examples 6 and 7)
Comparative Examples 6 and 7 are examples in which the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide is changed. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. When the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide was lowered, the relative density of the obtained plate-shaped silicon nitride sintered body decreased (Comparative Example 6). The weight ratio (measured magnesium content / measured rare earth metal content) between the measured magnesium content and the measured rare earth metal content of the silicon nitride sintered body obtained in Comparative Examples 6 and 7 was 0.15, respectively. Since it was 2.33, whether the weight ratio of the alkaline earth metal oxide to the rare earth metal oxide in the compounding composition was too high or too low, the obtained plate-shaped silicon nitride sintered body could be obtained. The characteristics have deteriorated.

(比較例8~10)
比較例8~10は、焼結時のガス圧力が低過ぎる、最高保持温度が低過ぎるまたは最高保持温度が高過ぎるなど、焼結条件が不適切な例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。比較例9の焼結体の実測酸素含有量は2.50重量%であった。焼結条件が不適切であると、機械的特性(曲げ強度と破壊靭性値)が低下した。さらに、焼結時のガス圧力が低過ぎる場合や最高保持温度が低過ぎる場合には、焼結体の相対密度が低く、熱伝導率も低下した。
(Comparative Examples 8 to 10)
Comparative Examples 8 to 10 are examples in which the sintering conditions are inappropriate, such as the gas pressure at the time of sintering is too low, the maximum holding temperature is too low, or the maximum holding temperature is too high. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. The measured oxygen content of the sintered body of Comparative Example 9 was 2.50% by weight. Inappropriate sintering conditions reduced mechanical properties (bending strength and fracture toughness). Further, when the gas pressure at the time of sintering is too low or the maximum holding temperature is too low, the relative density of the sintered body is low and the thermal conductivity is also lowered.

(比較例11および12)
比較例11および12は、焼結時の最高温度での保持時間が短過ぎる、または長過ぎる例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。比較例11の焼結体の実測酸素含有量は2.48重量%であり、β型窒化ケイ素粒子の粒成長が不足していた(500個/mm未満)。焼結条件(最高温度での保持時間が短過ぎる、または長過ぎる場合)が不適切であると、機械的特性(曲げ強度と破壊靭性値)が低下した。また、最高温度での保持時間が短過ぎる場合には、熱伝導率が低下した。
(Comparative Examples 11 and 12)
Comparative Examples 11 and 12 are examples in which the holding time at the maximum temperature during sintering is too short or too long. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. The measured oxygen content of the sintered body of Comparative Example 11 was 2.48% by weight, and the grain growth of the β-type silicon nitride particles was insufficient (500 pieces / mm less than 2 ). Inappropriate sintering conditions (holding time at maximum temperature too short or too long) reduced mechanical properties (bending strength and fracture toughness values). Moreover, when the holding time at the maximum temperature was too short, the thermal conductivity decreased.

(比較例13)
比較例13は、シート成形条件を変えて、表面における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faがゼロ近く(若干負の値)になった例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。β型窒化ケイ素粒子が厚み方向に対して無秩序に整列・配向すると、機械的特性(曲げ強度と破壊靭性値)が低下した。
(Comparative Example 13)
Comparative Example 13 is an example in which the degree of orientation fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface, becomes close to zero (slightly negative value) by changing the sheet forming conditions. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. When the β-type silicon nitride particles were randomly aligned and oriented in the thickness direction, the mechanical properties (bending strength and fracture toughness value) deteriorated.

(比較例14)
比較例14は、アルカリ土類金属酸化物と希土類金属酸化物との重量比を変えた例である。最高温度での保持時間は25時間とし、表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。アルカリ土類金属酸化物と希土類金属酸化物との重量比が高過ぎると、表2に記載された焼結条件(最高温度と同温度での保持時間)では、得られた窒化ケイ素質焼結体の実測マグネシウム含有量と実測希土類金属含有量との重量比(実測マグネシウム含有量/実測希土類金属含有量)は1.40であった。粒成長が進み過ぎ、長さが10μmを超える粗大なβ型窒化ケイ素粒子の個数が10000個/mmを超えたため、熱伝導率は上がったものの、機械的特性(曲げ強度と破壊靭性値)が低下した。
(Comparative Example 14)
Comparative Example 14 is an example in which the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide is changed. The holding time at the maximum temperature was 25 hours, and Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. If the weight ratio of the alkaline earth metal oxide to the rare earth metal oxide is too high, the obtained silicon nitride sintering under the sintering conditions (holding time at the same temperature as the maximum temperature) shown in Table 2. The weight ratio (measured magnesium content / measured rare earth metal content) between the measured magnesium content and the measured rare earth metal content of the body was 1.40. Since the grain growth progressed too much and the number of coarse β-type silicon nitride particles exceeding 10 μm exceeded 10,000 / mm 2 , the thermal conductivity increased, but the mechanical properties (bending strength and breaking toughness value). Has decreased.

(比較例15)
比較例15は、アルカリ土類金属酸化物と希土類金属酸化物との重量比が小さくて、焼結時の最高温度が高過ぎ、その保持時間が長過ぎる例である。アルカリ土類金属酸化物と希土類金属酸化物との重量比が小さ過ぎると、窒素ガス圧力を上げ、最高保持温度を上げ、その保持時間を長くしないと高密度な窒化ケイ素質焼結体が得られない。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。得られた窒化ケイ素質焼結体の実測マグネシウム含有量と実測希土類金属含有量との重量比(実測マグネシウム含有量/実測希土類金属含有量)は0.23であった。助剤組成が不適切なため、より厳しい焼結条件を設定した場合には、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく増加し(16000個/mm)、機械的特性(曲げ強度と破壊靭性値)が著しく低下した。
また、窒素ガス圧力が高いことと最高保持温度が高いこととが相俟って、取り出した板状の窒化ケイ素質焼結体には析出結晶相の成長に伴う著しい色調ムラが発生していた。
(Comparative Example 15)
Comparative Example 15 is an example in which the weight ratio of the alkaline earth metal oxide and the rare earth metal oxide is small, the maximum temperature at the time of sintering is too high, and the holding time is too long. If the weight ratio of the alkaline earth metal oxide to the rare earth metal oxide is too small, the nitrogen gas pressure is raised to raise the maximum holding temperature, and if the holding time is not lengthened, a high-density silicon nitride sintered body can be obtained. I can't. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. The weight ratio (measured magnesium content / measured rare earth metal content) between the measured magnesium content and the measured rare earth metal content of the obtained silicon nitride sintered body was 0.23. Due to the improper composition of the auxiliary agent, when stricter sintering conditions are set, the number of β-type silicon nitride particles having a major axis length of more than 10 μm increases significantly (16000 / mm 2 ), and the machine Specific properties (bending strength and fracture toughness value) were significantly reduced.
In addition, due to the high nitrogen gas pressure and the high maximum holding temperature, the plate-shaped silicon nitride sintered body taken out had remarkable color unevenness due to the growth of the precipitated crystal phase. ..

(比較例16)
比較例16は、シート成形条件を変えて、焼結体表面および内部における柱状のβ型窒化ケイ素粒子の配向割合を示す配向度faを大きくした例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。配向度は制御できたものの、1800℃における保持時間がやや短いことおよび焼結体の実測酸素含有量がやや高いことと相俟って、粒成長が不足しており、柱状β型窒化ケイ素粒子の板面方向への配向により熱伝導率が低下した。
(Comparative Example 16)
Comparative Example 16 is an example in which the sheet forming conditions are changed to increase the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface and inside of the sintered body. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. Although the degree of orientation could be controlled, the grain growth was insufficient due to the slightly short holding time at 1800 ° C. and the slightly high measured oxygen content of the sintered body, and the columnar β-type silicon nitride particles. The thermal conductivity decreased due to the orientation of the particles toward the plate surface.

(比較例17)
比較例17は、焼結時の最高温度での保持時間が短過ぎる例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。1800℃における保持時間が短過ぎると、窒化ケイ素質焼結体の相対密度が低下するばかりでなく、焼結過程における焼結助剤(酸化マグネシウムと希土類金属酸化物)や窒化ケイ素原料中のシリカ(SiO)成分の蒸発が抑制された。このため、焼結体の実測酸素含有量は2.42重量%であった。保持時間が短過ぎるため、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく減少し(460個/mm)、熱伝導率および機械的特性(曲げ強度と破壊靭性値)の両方が低下した。
(Comparative Example 17)
Comparative Example 17 is an example in which the holding time at the maximum temperature at the time of sintering is too short. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. If the holding time at 1800 ° C is too short, not only the relative density of the silicon nitride sintered body decreases, but also the sintering aid (magnesium oxide and rare earth metal oxide) in the sintering process and silica in the silicon nitride raw material. Evaporation of the (SiO 2 ) component was suppressed. Therefore, the measured oxygen content of the sintered body was 2.42% by weight. Since the holding time is too short, the number of β-type silicon nitride particles having a major axis length exceeding 10 μm is significantly reduced (460 / mm 2 ), and the thermal conductivity and mechanical properties (bending strength and breaking toughness value) are significantly reduced. Both have declined.

(比較例18)
窒化ケイ素原料として、比表面積が8.9m/g、酸素含有量が0.94重量%、体積基準の粒度分布測定により得られるメディアン径D50が0.87μmであり、最小粒子径が0.10μm、最大粒子径が6.5μmであり、同粒度分布測定における頻度分布曲線が二つのピークを有し、該ピークの小粒径側のピークトップが0.45μm、前記ピークトップの大粒径側のピークトップが1.5μmであって、前記小粒径側のピークトップの頻度と前記大粒径側のピークトップ頻度との比(粒子径0.45μmのピークトップの頻度/粒子径1.5μmのピークトップの頻度)が0.5である窒化ケイ素粉末を用いた。ドクターブレード装置を使用したシート成形における塗工速度、および焼結条件(最高保持温度と同温度での保持時間)を変えた以外は実施例2と同様にして、表1および表2に記載された条件にて、板状の窒化ケイ素質焼結体を得た。得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。
(Comparative Example 18)
As a raw material for silicon nitride, the specific surface area is 8.9 m 2 / g, the oxygen content is 0.94% by weight, the median diameter D 50 obtained by volume-based particle size distribution measurement is 0.87 μm, and the minimum particle size is 0. The maximum particle size is .10 μm, the maximum particle size is 6.5 μm, the frequency distribution curve in the same particle size distribution measurement has two peaks, the peak top on the small particle size side of the peak is 0.45 μm, and the large particle of the peak top. The peak top on the diameter side is 1.5 μm, and the ratio of the frequency of the peak top on the small particle size side to the peak top frequency on the large particle size side (frequency of the peak top with a particle size of 0.45 μm / particle size). A silicon nitride powder having a peak top frequency of 1.5 μm) of 0.5 was used. It is shown in Tables 1 and 2 in the same manner as in Example 2 except that the coating speed in sheet forming using the doctor blade device and the sintering conditions (holding time at the same temperature as the maximum holding temperature) were changed. Under these conditions, a plate-shaped silicon nitride sintered body was obtained. Tables 2 and 3 show the chemical composition and characteristics of the obtained plate-shaped silicon nitride sintered body.

比表面積が低くて、酸素含有量も少ないため、焼結時の緻密化速度が遅く、最高保持温度1900℃、同温度での保持時間22時間という、高温-長時間の厳しい焼結条件でないと高密度な焼結体が得られなかった。このため、得られた窒化ケイ素質焼結体の実測マグネシウム含有量と実測希土類金属含有量との重量比(実測マグネシウム含有量/実測希土類金属含有量)は0.25、実測酸素含有量は1.09重量%であった。より厳しい焼結条件が設定されたため、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく増加し(20000個/mm)、破壊靭性値は低かった。また、研磨された表面における開気孔率は1.8%、最大開気孔径は2.5μmであり、絶縁基板や回路基板への適用が難しいものであった。Since the specific surface area is low and the oxygen content is low, the densification rate during sintering is slow, and the maximum holding temperature is 1900 ° C and the holding time at the same temperature is 22 hours. A high-density sintered body could not be obtained. Therefore, the weight ratio (measured magnesium content / measured rare earth metal content) between the measured magnesium content and the measured rare earth metal content of the obtained silicon nitride sintered body is 0.25, and the measured oxygen content is 1. It was 0.9% by weight. Since the stricter sintering conditions were set, the number of β-type silicon nitride particles having a major axis length of more than 10 μm increased significantly (20,000 particles / mm 2 ), and the fracture toughness value was low. Further, the open porosity on the polished surface was 1.8%, and the maximum open pore diameter was 2.5 μm, which made it difficult to apply to an insulating substrate or a circuit board.

(比較例19および20)
比較例19および20は、窒化ケイ素原料として、低比表面積で低酸素含有量または高比表面積で高酸素含有量の粉末を使用した例である。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。低比表面積で低酸素含有量の窒化ケイ素原料の場合には、得られる窒化ケイ素質焼結体の相対密度が低下し、その結果として、熱伝導率および機械的特性(曲げ強度と破壊靭性値)の両方が低下した。高比表面積で高酸素含有量の窒化ケイ素原料の場合には、得られる窒化ケイ素質焼結体の相対密度は高くなったが、焼結体の実測酸素含有量は3.04重量%であり、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく減少し(475個/mm)。その結果として熱伝導率が低下した。機械的特性(曲げ強度と破壊靭性値)も低目の値であった。比較例20で得られた板状の窒化ケイ素質焼結体については、ブラスト研磨の後にラップ研磨加工を行い、算術平均表面粗さRaを0.04μmに下げた。
(Comparative Examples 19 and 20)
Comparative Examples 19 and 20 are examples in which powders having a low specific surface area and a low oxygen content or a high specific surface area and a high oxygen content are used as the silicon nitride raw material. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. In the case of a silicon nitride raw material with a low specific surface area and low oxygen content, the relative density of the resulting silicon nitride sintered body is reduced, resulting in thermal conductivity and mechanical properties (bending strength and fracture toughness values). ) Both decreased. In the case of a silicon nitride raw material having a high specific surface area and a high oxygen content, the relative density of the obtained silicon nitride sintered body was high, but the measured oxygen content of the sintered body was 3.04% by weight. , The number of β-type silicon nitride particles having a major axis length of more than 10 μm is significantly reduced (475 / mm 2 ). As a result, the thermal conductivity decreased. The mechanical properties (bending strength and fracture toughness value) were also low. The plate-shaped silicon nitride sintered body obtained in Comparative Example 20 was subjected to lap polishing after blast polishing to reduce the arithmetic average surface roughness Ra to 0.04 μm.

(比較例21)
比較例21は、酸化マグネシウムと希土類金属酸化物との重量比を2.20に変えた例であり、酸化マグネシウムの添加量が増えている。焼結時の最高温度での保持時間を極度に短くして、3時間に設定した。表1および表2に記載された条件にて得られた板状の窒化ケイ素質焼結体の化学組成と特性を表2および表3に示す。酸化マグネシウムの添加量が多いため、得られた窒化ケイ素質焼結体の実測マグネシウム含有量と実測希土類金属含有量との重量比(実測マグネシウム含有量/実測希土類金属含有量)は1.65で、実測酸素含有量は2.60重量%であった。焼結体の相対密度は上がったが、保持時間が短過ぎるため、長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数が著しく減少した(300個/mm)。その結果として熱伝導率が低下した。機械的特性(曲げ強度と破壊靭性値)も低目の値であった。
(Comparative Example 21)
Comparative Example 21 is an example in which the weight ratio of magnesium oxide and the rare earth metal oxide is changed to 2.20, and the amount of magnesium oxide added is increasing. The holding time at the maximum temperature at the time of sintering was extremely shortened and set to 3 hours. Tables 2 and 3 show the chemical composition and characteristics of the plate-shaped silicon nitride sintered body obtained under the conditions shown in Tables 1 and 2. Due to the large amount of magnesium oxide added, the weight ratio (measured magnesium content / measured rare earth metal content) between the measured magnesium content and the measured rare earth metal content of the obtained silicon nitride sintered body is 1.65. The measured oxygen content was 2.60% by weight. Although the relative density of the sintered body increased, the holding time was too short, so that the number of β-type silicon nitride particles having a major axis length of more than 10 μm was significantly reduced (300 / mm 2 ). As a result, the thermal conductivity decreased. The mechanical properties (bending strength and fracture toughness value) were also low.

以上のように、比較例7、10、12、15および18以外の比較例では熱伝導率が著しく低下し、比較例4以外の比較例では機械的特性(曲げ強度と破壊靭性値)が低下した。 As described above, the thermal conductivity is remarkably lowered in the comparative examples other than Comparative Examples 7, 10, 12, 15 and 18, and the mechanical properties (bending strength and fracture toughness value) are lowered in the comparative examples other than Comparative Example 4. bottom.

算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における柱状β型窒化ケイ素粒子の配向割合を示す配向度faが0.28である比較例16では、熱伝導率が著しく低下しており、表面における柱状β型窒化ケイ素粒子の配向割合を示す配向度faが0.04以下である比較例10、13、および15では、機械的特性(曲げ強度および破壊靭性値)が著しく低下していた。 In Comparative Example 16 in which the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less is 0.28, the thermal conductivity is remarkably high. In Comparative Examples 10, 13, and 15 in which the degree of orientation fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface is 0.04 or less, the mechanical properties (bending strength and breaking toughness value) are reduced. It was significantly reduced.

粗大β型窒化ケイ素粒子の個数が500個/mm未満である比較例3、11、17、20および21では、熱伝導率が著しく低下していた。一方、粗大β型窒化ケイ素粒子の個数が10000個/mmを超える比較例10、12、14、15および18では、熱伝導率は高いものの、機械的特性(曲げ強度および破壊靭性値)が低下していた。In Comparative Examples 3, 11, 17, 20 and 21 in which the number of coarse β-type silicon nitride particles was less than 500 / mm 2 , the thermal conductivity was significantly reduced. On the other hand, in Comparative Examples 10, 12, 14, 15 and 18 in which the number of coarse β-type silicon nitride particles exceeds 10,000 / mm 2 , the mechanical properties (bending strength and fracture toughness value) are high, although the thermal conductivity is high. It was declining.

また、相対密度が98%未満の比較例1、2、5、6、8、9および19、ならびに10μmを超える粗大粒子の個数が10000個を超える比較例15および18では、開気孔率が1.0%を超え、最大開口径も1.0μmを超えていた。 Further, in Comparative Examples 1, 2, 5, 6, 8, 9 and 19 having a relative density of less than 98%, and Comparative Examples 15 and 18 in which the number of coarse particles exceeding 10 μm exceeds 10,000, the open porosity is 1. It exceeded 0.0% and the maximum opening diameter also exceeded 1.0 μm.

表1、表2および表3の結果から明らかなように、本発明の実施例は、焼結助剤であるアルカリ土類金属酸化物(例えば酸化マグネシウム)および希土類金属酸化物(例えば酸化イットリウム)の合計添加量が3.2wt%以上、7.0wt%以下で、その重量比が、0.40≦アルカリ土類金属酸化物/希土類金属酸化物≦2.0を満足する。さらに、実測アルミニウム含有量が50ppm未満であり、相対密度が98.6%以上であり、窒化ケイ素質焼結体内の長軸の長さが10μmを超える柱状のβ型窒化ケイ素粒子が1mm2当たりに500個以上10000個以下含まれおり、さらに焼結体表面における柱状β型窒化ケイ素粒子の配向割合を示す表面配向度faが0.08以上0.25以下であって、表面から0.08mm以上内側まで研削して得られた面における柱状β型窒化ケイ素粒子の配向割合を示す内部配向度faが0.01以上0.16未満であるため、室温における熱伝導率が90W/(m・K)以上、4点曲げ強度が900MPa以上、破壊靭性値KICが7.6MPa√m以上という優れた熱的・機械的特性を有しており、安定した放熱性と優れた耐久性を発揮できることが分かった。特に高い熱伝導率と高い機械的強度および靭性を併せ持っていることから、絶縁基板および回路基板として用いるのに好適である。As is clear from the results in Tables 1, 2 and 3, the embodiments of the present invention include alkaline earth metal oxides (eg magnesium oxide) and rare earth metal oxides (eg yttrium oxide) which are sintering aids. The total amount added is 3.2 wt% or more and 7.0 wt% or less, and the weight ratio thereof satisfies 0.40 ≦ alkaline earth metal oxide / rare earth metal oxide ≦ 2.0. Further, columnar β-type silicon nitride particles having an actually measured aluminum content of less than 50 ppm, a relative density of 98.6% or more, and a length of the major axis in the silicon nitride sintered body of more than 10 μm per 1 mm 2 . The surface orientation degree fa, which indicates the orientation ratio of the columnar β-type silicon nitride particles on the surface of the sintered body, is 0.08 or more and 0.25 or less, and 0.08 mm from the surface. Since the internal orientation degree fa indicating the orientation ratio of the columnar β-type silicon nitride particles on the surface obtained by grinding to the inside is 0.01 or more and less than 0.16, the thermal conductivity at room temperature is 90 W / (m. K) and above, it has excellent thermal and mechanical properties such as a 4-point bending strength of 900 MPa or more and a breaking toughness value of 7.6 MPa√m or more, and exhibits stable heat dissipation and excellent durability. I found that I could do it. In particular, it has high thermal conductivity, high mechanical strength and toughness, and is therefore suitable for use as an insulating substrate and a circuit board.

さらに、本発明の実施例では、相対密度が99.0%以上であるため,熱伝導率が室温において100W/(m・K)以上であって、高い熱伝導率を確保しており、安定した放熱性を発揮できる。また、本発明の板状の窒化ケイ素質焼結体は4点曲げ強度が1000MPa以上,破壊靭性値KICが9.0MPa√m以上であり、特に高い熱伝導率と高い機械的強度および靭性を併せ持っていることから、絶縁基板および回路基板として用いるのに好適である。Further, in the embodiment of the present invention, since the relative density is 99.0% or more, the thermal conductivity is 100 W / (m · K) or more at room temperature, ensuring high thermal conductivity and being stable. It can demonstrate the heat dissipation. Further, the plate-shaped silicon nitride sintered body of the present invention has a four-point bending strength of 1000 MPa or more and a fracture toughness value of 9.0 MPa√m or more, and has a particularly high thermal conductivity, high mechanical strength and toughness. Therefore, it is suitable for use as an insulating substrate and a circuit substrate.

以上に記述の通り、本発明の板状の窒化ケイ素質焼結体は、焼結体を構成する柱状のβ型窒化ケイ素粒子の長軸の長さとその配向状態が高度に制御されたミクロ組織を有しているため、窒化ケイ素質焼結体が本来有する高強度/高靱性という機械的特性に加えて、高い熱伝導率を具備している。高い熱伝導率と高い機械的強度および靭性を併せ持っているので、絶縁基板や回路基板として用いた場合に、基板の割れの発生を抑制できるばかりでなく、耐熱衝撃性ならびに耐冷熱サイクル性の著しい向上を期待できる。 As described above, the plate-shaped silicon nitride sintered body of the present invention has a microstructure in which the length of the major axis of the columnar β-type silicon nitride particles constituting the sintered body and its orientation state are highly controlled. In addition to the mechanical properties of high strength / high toughness inherent in the silicon nitride sintered body, it has high thermal conductivity. Since it has high thermal conductivity and high mechanical strength and toughness, it not only can suppress the occurrence of cracks in the substrate when used as an insulating substrate or circuit board, but also has remarkable thermal shock resistance and cold heat cycle resistance. You can expect improvement.

Claims (18)

板状の窒化ケイ素質焼結体であって、
焼結体としての実測アルカリ土類金属含有量と実測希土類金属含有量との比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、
実測アルミニウム含有量が50ppm未満であり、
相対密度が98%以上であり、
窒化ケイ素質焼結体の板面に垂直な切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに500個以上10000個以下であり、
算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における、柱状のβ型窒化ケイ素粒子の配向割合を示す下記の式(1)で表される配向度faが0.08以上0.25以下であることを特徴とする板状の窒化ケイ素質焼結体。
fa=(P-P)/(1-P) ・・・・(1)
この式(1)において、Pは以下の式(2)で表され、I(110)、I(200)、I(210)、I(310)、I(320)、I(101)、I(201)、I(002)はβ型窒化ケイ素の(110)面、(200)面、(210)面、(310)面、(320)面、(101)面、(201)面、(002)面のX線回折ピーク強度をそれぞれ意味する。
また、Pは以下の式(3)で表され、I(110)、I(200)、I(101)、I(210)、I(201)、I(310)、I(320)、およびI(002)は、等方的なβ型窒化ケイ素粉末におけるβ型窒化ケイ素の(110)面、(200)面、(101)面、(210)面、(201)面、(310)面、(320)面、および(002)面のX線回折パターン強度から算出される。
P=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(2)
=(I(110)+I(200)+I(210)+I(310)+I(320))/(I(110)+I(200)+I(101)+I(210)+I(201)+I(310)+I(320)+I(002)) ・・・・(3)
It is a plate-shaped silicon nitride sintered body,
The ratio of the measured alkaline earth metal content to the measured rare earth metal content as a sintered body is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal content ≤ 1.30.
The measured aluminum content is less than 50 ppm,
Relative density is 98% or more,
When observing the cut surface perpendicular to the plate surface of the silicon nitride sintered body, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is 500 or more per 1 mm 2 10,000. Less than or equal to
The degree of orientation fa represented by the following formula (1), which indicates the orientation ratio of columnar β-type silicon nitride particles on a surface polished to an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less, is 0.08. A plate-shaped silicon nitride sintered body having a value of 0.25 or less.
fa = (P-P 0 ) / (1-P 0 ) ... (1)
In this formula (1), P is represented by the following formula (2), and I (110), I (200), I (210), I (310), I (320), I (101), I. (201) and I (002) are the (110) plane, (200) plane, (210) plane, (310) plane, (320) plane, (101) plane, (201) plane, and (. 002) It means the X-ray diffraction peak intensity of each surface.
Further, P 0 is represented by the following equation (3), I 0 (110), I 0 (200), I 0 (101), I 0 (210), I 0 (201), I 0 (310). , I 0 (320), and I 0 (002) are the (110), (200), (101), and (210) planes of the β-type silicon nitride in the isotropic β-type silicon nitride powder. It is calculated from the X-ray diffraction pattern intensity of the (201) plane, the (310) plane, the (320) plane, and the (002) plane.
P = (I (110) + I (200) + I (210) + I (310) + I (320)) / (I (110) + I (200) + I (101) + I (210) + I (201) + I (310) + I (320) + I (002)) ... (2)
P 0 = (I 0 (110) + I 0 (200) + I 0 (210) + I 0 (310) + I 0 (320)) / (I 0 (110) + I 0 (200) + I 0 (101) + I 0 ( 210) + I 0 (201) + I 0 (310) + I 0 (320) + I 0 (002)) ... (3)
板状の窒化ケイ素質焼結体が、厚さが1.5mm以下で、厚さ/面積比が0.015(1/mm)以下であることを特徴とする請求項1に記載の板状の窒化ケイ素質焼結体。 The plate-shaped silicon nitride sintered body according to claim 1, wherein the plate-shaped silicon nitride sintered body has a thickness of 1.5 mm or less and a thickness / area ratio of 0.015 (1 / mm) or less. Silicon nitride sintered body. 前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面から0.08mm以上内側まで研削して得られた面における内部の柱状β型窒化ケイ素粒子の配向割合を示す前記の配向度faが0.01以上0.16未満であることを特徴とする請求項1または2に記載の板状の窒化ケイ素質焼結体。 The above shows the orientation ratio of the columnar β-type silicon nitride particles inside on the surface obtained by grinding from the surface polished to the arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less to the inside by 0.08 mm or more. The plate-shaped silicon nitride sintered body according to claim 1 or 2, wherein the degree of orientation fa of the above is 0.01 or more and less than 0.16. 実測酸素含有量が1.4重量%以上2.9重量%以下であることを特徴とする請求項1~3のいずれか一項に記載の板状の窒化ケイ素質焼結体。 The plate-shaped silicon nitride sintered body according to any one of claims 1 to 3, wherein the measured oxygen content is 1.4% by weight or more and 2.9% by weight or less. アルカリ土類金属酸化物が酸化マグネシウムであり、希土類金属酸化物が酸化イットリウム、酸化エルビウム、酸化スカンジウムおよび酸化ルテチウムから選ばれる少なくとも一種の酸化物であることを特徴とする請求項1~4のいずれか一項に記載の板状の窒化ケイ素質焼結体。 Any of claims 1 to 4, wherein the alkaline earth metal oxide is magnesium oxide, and the rare earth metal oxide is at least one oxide selected from yttrium oxide, erbium oxide, scandium oxide and lutetium oxide. The plate-shaped silicon nitride sintered body according to item 1. 焼結体としての実測マグネシウム含有量と前記の実測希土類金属含有量とを合計した焼結助剤由来の金属元素含有量が1.8重量%~5.0重量%であることを特徴とする請求項5に記載の板状の窒化ケイ素質焼結体。 It is characterized in that the metal element content derived from the sintering aid, which is the sum of the measured magnesium content as the sintered body and the measured rare earth metal content, is 1.8% by weight to 5.0% by weight. The plate-shaped silicon nitride sintered body according to claim 5. 算術平均粗さRaが0.06μm以上0.4μm以下に研磨された表面を有し、かつ前記表面における開気孔率が1.0%以下であり、開気孔の最大開口径が1.0μm以下であることを特徴とする請求項6に記載の板状の窒化ケイ素質焼結体。 Arithmetic mean roughness Ra has a surface polished to 0.06 μm or more and 0.4 μm or less, the open porosity on the surface is 1.0% or less, and the maximum opening diameter of open pores is 1.0 μm or less. The plate-shaped silicon nitride sintered body according to claim 6, wherein the silicon nitride sintered body has a plate shape. 熱伝導率が室温において90W/(m・K)以上であり、4点曲げ強度が室温において900MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが7.6MPa√m以上であることを特徴とする請求項6または7に記載の板状の窒化ケイ素質焼結体。 The thermal conductivity is 90 W / (m · K) or more at room temperature, the four-point bending strength is 900 MPa or more at room temperature, and the fracture toughness value K IC measured by the IF method (indentation method) is 7.6 MPa √ m. The plate-shaped silicon nitride sintered body according to claim 6 or 7, wherein the above is the above. 焼結体としての実測マグネシウム含有量と前記の実測希土類金属含有量との比率が0.26≦実測マグネシウム含有量/実測希土類金属含有量≦1.05であり、前記の実測マグネシウム含有量と前記の実測希土類金属含有量とを合計した焼結助剤由来の金属元素含有量が2.4重量%~4.0重量%であることを特徴とする請求項6~8のいずれか一項に記載の板状の窒化ケイ素質焼結体。 The ratio of the measured magnesium content as the sintered body to the measured rare earth metal content is 0.26 ≤ measured magnesium content / measured rare earth metal content ≤ 1.05, and the measured magnesium content and the above According to any one of claims 6 to 8, the metal element content derived from the sintering aid, which is the sum of the actually measured rare earth metal contents, is 2.4% by weight to 4.0% by weight. The plate-shaped silicon nitride sintered body described. 窒化ケイ素質焼結体の板面に垂直な切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものの個数が、1mm当たりに1000個以上5000個以下であることを特徴とする請求項6~9のいずれか一項に記載の板状の窒化ケイ素質焼結体。 When observing the cut surface perpendicular to the plate surface of the silicon nitride sintered body, the number of columnar β-type silicon nitride particles having a major axis length of more than 10 μm is 1000 or more per 1 mm 2 . The plate-shaped silicon nitride sintered body according to any one of claims 6 to 9, wherein the number is not more than one. 前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面における柱状のβ型窒化ケイ素粒子の配向割合を示す前記の配向度faが0.10以上0.20以下であることを特徴とする請求項6~10のいずれか一項に記載の板状の窒化ケイ素質焼結体。 The degree of orientation fa, which indicates the orientation ratio of columnar β-type silicon nitride particles on a surface polished to an arithmetic mean roughness Ra of 0.05 μm or more and 0.5 μm or less, is 0.10 or more and 0.20 or less. The plate-shaped silicon nitride sintered body according to any one of claims 6 to 10, wherein the silicon nitride sintered body has a plate shape. 前記の算術平均粗さRaが0.05μm以上0.5μm以下に研磨された表面から0.08mm以上内側まで研削して得られた面における前記の配向度faが0.01以上0.13以下であることを特徴とする請求項6~11のいずれか一項に記載の板状の窒化ケイ素質焼結体。 The degree of orientation fa on the surface obtained by grinding from a surface polished to an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less to the inside by 0.08 mm or more is 0.01 or more and 0.13 or less. The plate-shaped silicon nitride sintered body according to any one of claims 6 to 11, wherein the plate-shaped silicon nitride sintered body is characterized by the above. 熱伝導率が室温において100W/(m・K)以上であり、4点曲げ強度が室温において1000MPa以上であり、IF法(インデンテーション法)により測定した破壊靭性値KICが9.0MPa√m以上であることを特徴とする請求項9~12のいずれか一項に記載の板状の窒化ケイ素質焼結体。 The thermal conductivity is 100 W / (m · K) or more at room temperature, the 4-point bending strength is 1000 MPa or more at room temperature, and the fracture toughness value K IC measured by the IF method (indentation method) is 9.0 MPa√m. The plate-shaped silicon nitride sintered body according to any one of claims 9 to 12, wherein the plate-shaped silicon nitride sintered body is characterized by the above. 窒化ケイ素原料として、比表面積が13.0m/g以上、酸素含有量が1.2重量%以上2.3重量%以下、表面酸素の含有割合FSOが0.76~1.10重量%であり、アルミニウム含有量が50ppm未満である窒化ケイ素粉末を含み、焼結助剤として、アルカリ土類金属酸化物と希土類金属酸化物との重量比が0.40≦アルカリ土類金属酸化物/希土類金属酸化物≦2.0を満足するような配合比で、アルカリ土類金属酸化物および希土類金属酸化物を、窒化ケイ素粉末と焼結助剤の合計重量を基準として3.2~7.0wt%含む出発組成物を調整し、
出発組成物から、塗工速度が0.05~0.3m/分に調整されたシート成形プロセスによりグリーンシートを作製し、
グリーンシートを、窒素含有ガス圧力が0.15~3MPaの加圧雰囲気下、最高保持温度が1790℃以上1880℃以下の温度範囲で6時間~20時間保持することによって焼結して、板状の窒化ケイ素質焼結体を得ること、
得られる板状の窒化ケイ素質焼結体は、実測アルカリ土類金属含有量と実測希土類金属含有量との比率が0.26≦実測アルカリ土類金属含有量/実測希土類金属含有量≦1.30であり、実測アルミニウム含有量が50ppm未満であり、相対密度が98%以上であることを特徴とする板状の窒化ケイ素質焼結体の製造方法。
As a raw material for silicon nitride, the specific surface area is 13.0 m 2 / g or more, the oxygen content is 1.2% by weight or more and 2.3% by weight or less, and the surface oxygen content ratio FSO is 0.76 to 1.10% by weight. Yes, it contains silicon nitride powder with an aluminum content of less than 50 ppm, and as a sintering aid, the weight ratio of alkaline earth metal oxide to rare earth metal oxide is 0.40 ≤ alkaline earth metal oxide / rare earth. With a blending ratio that satisfies the metal oxide ≤ 2.0, the alkaline earth metal oxide and the rare earth metal oxide are 3.2 to 7.0 wt based on the total weight of the silicon nitride powder and the sintering aid. % To adjust the starting composition,
From the starting composition, a green sheet was prepared by a sheet forming process in which the coating speed was adjusted to 0.05 to 0.3 m / min .
The green sheet is sintered by holding it in a pressurized atmosphere with a nitrogen-containing gas pressure of 0.15 to 3 MPa in a temperature range of 1790 ° C. or higher and 1880 ° C. or lower for 6 to 20 hours to form a plate. To obtain a silicon nitride sintered body,
In the obtained plate-shaped silicon nitride sintered body, the ratio of the measured alkaline earth metal content to the measured rare earth metal content is 0.26 ≤ measured alkaline earth metal content / measured rare earth metal content ≤ 1. A method for producing a plate-shaped silicon nitride sintered body, which is 30 and has an actually measured aluminum content of less than 50 ppm and a relative density of 98% or more.
窒化ケイ素質焼結体の実測酸素含有量が1.4重量%以上2.9重量%以下であることを特徴とする請求項14に記載の板状の窒化ケイ素質焼結体の製造方法。 The method for producing a plate-shaped silicon nitride sintered body according to claim 14, wherein the measured oxygen content of the silicon nitride sintered body is 1.4% by weight or more and 2.9% by weight or less. アルカリ土類金属酸化物が酸化マグネシウムであり、希土類金属酸化物が酸化イットリウム、酸化エルビウム、酸化スカンジウムおよび酸化ルテチウムから選ばれる少なくとも一種の酸化物であることを特徴とする請求項14または15に記載の板状の窒化ケイ素質焼結体の製造方法。 13. Claim 14 or 15, wherein the alkaline earth metal oxide is magnesium oxide, and the rare earth metal oxide is at least one oxide selected from yttrium oxide, erbium oxide, scandium oxide and lutetium oxide. Method for manufacturing a plate-shaped silicon nitride sintered body. 焼結助剤として、酸化マグネシウムと希土類金属酸化物との重量比が0.40≦酸化マグネシウム/希土類金属酸化物≦1.4を満足するような配合比で、酸化マグネシウムおよび希土類金属酸化物を窒化ケイ素粉末と焼結助剤の合計質量を基準として4.0~6.0wt%添加すること、
シート成形プロセスにより作製されたグリーンシートを、窒素含有ガス圧力が0.15~0.9MPaの加圧雰囲気下、最高保持温度が1790℃以上1880℃以下の温度範囲で、当該最高保持温度にて6時間~20時間保持して焼結すること、
実測マグネシウム含有量と実測希土類金属含有量との比率が0.26≦実測マグネシウム含有量/実測希土類金属含有量≦1.05であり、実測アルミニウム含有量が50ppm未満であり、相対密度が98%以上である板状の窒化ケイ素質焼結体を製造することを特徴とする請求項16に記載の板状の窒化ケイ素質焼結体の製造方法。
As a sintering aid, magnesium oxide and rare earth metal oxides are used in a blending ratio such that the weight ratio of magnesium oxide and rare earth metal oxides satisfies 0.40 ≤ magnesium oxide / rare earth metal oxides ≤ 1.4. Add 4.0 to 6.0 wt% based on the total mass of the magnesium oxide powder and the sintering aid.
The green sheet produced by the sheet forming process is subjected to a pressurized atmosphere having a nitrogen-containing gas pressure of 0.15 to 0.9 MPa, a maximum holding temperature of 1790 ° C. or higher and 1880 ° C. or lower, at the maximum holding temperature. Sintering by holding for 6 to 20 hours,
The ratio of the measured magnesium content to the measured rare earth metal content is 0.26 ≤ measured magnesium content / measured rare earth metal content ≤ 1.05, the measured aluminum content is less than 50 ppm, and the relative density is 98%. The method for producing a plate-shaped silicon nitride sintered body according to claim 16, wherein the plate-shaped silicon nitride sintered body is produced as described above.
請求項1~13のいずれか一項に記載の板状の窒化ケイ素質焼結体を用いることを特徴とする絶縁基板または回路基板。 An insulating substrate or a circuit board, wherein the plate-shaped silicon nitride sintered body according to any one of claims 1 to 13 is used.
JP2020523188A 2018-06-07 2019-06-06 Plate-shaped silicon nitride sintered body and its manufacturing method Active JP7062230B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018109755 2018-06-07
JP2018109755 2018-06-07
JP2018185627 2018-09-28
JP2018185627 2018-09-28
PCT/JP2019/022623 WO2019235594A1 (en) 2018-06-07 2019-06-06 Plate-like silicon nitride sintered body and production method thereof

Publications (2)

Publication Number Publication Date
JPWO2019235594A1 JPWO2019235594A1 (en) 2021-02-12
JP7062230B2 true JP7062230B2 (en) 2022-05-06

Family

ID=68769863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523188A Active JP7062230B2 (en) 2018-06-07 2019-06-06 Plate-shaped silicon nitride sintered body and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7062230B2 (en)
WO (1) WO2019235594A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201103B2 (en) * 2019-12-11 2023-01-10 Ube株式会社 Plate-like silicon nitride sintered body and manufacturing method thereof
JP7434208B2 (en) * 2020-07-29 2024-02-20 日本ファインセラミックス株式会社 Silicon nitride substrate and its manufacturing method
CN116134608A (en) * 2020-07-29 2023-05-16 日本精细陶瓷有限公司 Silicon nitride substrate and method for manufacturing same
WO2023190299A1 (en) * 2022-03-28 2023-10-05 株式会社 東芝 Boron nitride plate surface treatment method, method for producing ceramic sintered body, and method for producing boron nitride plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002029850A (en) 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Sintered silicon nitride compact and method for manufacturing the same
WO2006118003A1 (en) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2011216577A (en) 2010-03-31 2011-10-27 Hitachi Metals Ltd Method of manufacturing silicon nitride substrate, silicon nitride substrate, and circuit board using the same
JP2019052072A (en) 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310771A (en) * 1987-06-12 1988-12-19 Toyota Motor Corp Silicon nitride sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002029850A (en) 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Sintered silicon nitride compact and method for manufacturing the same
WO2006118003A1 (en) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2011216577A (en) 2010-03-31 2011-10-27 Hitachi Metals Ltd Method of manufacturing silicon nitride substrate, silicon nitride substrate, and circuit board using the same
JP2019052072A (en) 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate

Also Published As

Publication number Publication date
JPWO2019235594A1 (en) 2021-02-12
WO2019235594A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP6822362B2 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
KR101751531B1 (en) Method for producing silicon nitride substrate
TWI746750B (en) Aligned AlN sintered body and its manufacturing method
JP4903431B2 (en) Silicon nitride sintered body and manufacturing method thereof, semiconductor manufacturing apparatus member and liquid crystal manufacturing apparatus member using the same
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
KR102557205B1 (en) Transparent AlN sintered body and its manufacturing method
JPWO2019163710A1 (en) Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
KR102371925B1 (en) Aluminium nitride sintered body having excellent thermophysical properties and manufacturing method of the same
JP2018070436A (en) Production method of silicon nitride sintered body
JP7339980B2 (en) Manufacturing method of silicon nitride sintered body
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
JP7278325B2 (en) Silicon nitride sintered body
JP6721793B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP7201734B2 (en) Silicon nitride sintered body
WO2024084631A1 (en) Silicon nitride sintered body
CN107840664A (en) Sialon sintered body, its preparation method, composite base plate and electronic device
JP2007169118A (en) Silicon nitride sintered compact, and member for semiconductor manufacturing unit and member for liquid crystal manufacturing unit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7062230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150