JP2007169118A - Silicon nitride sintered compact, and member for semiconductor manufacturing unit and member for liquid crystal manufacturing unit using the same - Google Patents

Silicon nitride sintered compact, and member for semiconductor manufacturing unit and member for liquid crystal manufacturing unit using the same Download PDF

Info

Publication number
JP2007169118A
JP2007169118A JP2005370703A JP2005370703A JP2007169118A JP 2007169118 A JP2007169118 A JP 2007169118A JP 2005370703 A JP2005370703 A JP 2005370703A JP 2005370703 A JP2005370703 A JP 2005370703A JP 2007169118 A JP2007169118 A JP 2007169118A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
volume
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005370703A
Other languages
Japanese (ja)
Other versions
JP4936724B2 (en
Inventor
Teppei Kayama
哲平 香山
Takehiro Oda
武廣 織田
Kazuyoshi Oshima
和喜 大嶋
Kazuaki Takigawa
和明 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005370703A priority Critical patent/JP4936724B2/en
Publication of JP2007169118A publication Critical patent/JP2007169118A/en
Application granted granted Critical
Publication of JP4936724B2 publication Critical patent/JP4936724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride sintered compact having a practically large mechanical strength and a small coefficient of thermal expansion, and small grinding resistance. <P>SOLUTION: This silicon nitride sintered compact is mainly composed of β-Si<SB>3</SB>N<SB>4</SB>, and it contains 5-30 vol% Si<SB>2</SB>N<SB>2</SB>O (silicon oxynitride) and 1-10 vol% β-RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>(RE is an element in the group III of the periodical table). The sintered compact keeps a strong mechanical strength due to a composition composed mainly of β-Si<SB>3</SB>N<SB>4</SB>, and has a small grinding resistance due to a composition having 5-30 vol% Si<SB>2</SB>N<SB>2</SB>O and also has a small coefficient of thermal expansion of the grain boundary layer and a small residual stress in the sintered compact due to a composition having the range of 1-10 vol% β-RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>, and further the sintered compact exhibits excellent processability allowing a smooth grinding process and the working of high dimensional accuracy due to its small grinding force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化珪素質焼結体に関し、特に研削抵抗が小さく、加工性に優れた窒化珪素質焼結体と、これを用いた半導体製造装置用部材、並びに液晶製造装置用部材に関する。   The present invention relates to a silicon nitride-based sintered body, and particularly to a silicon nitride-based sintered body having a small grinding resistance and excellent workability, a member for a semiconductor manufacturing apparatus, and a member for a liquid crystal manufacturing apparatus using the same.

窒化珪素質焼結体は、半導体製造工程あるいは液晶パネル製造工程で用いられる基板処理装置用部材、例えば、露光装置用のレチクルステージ、ウェハステージ、位置決め用のミラーとして用いられている。これらの部材には次のような特性が求められている。   A silicon nitride sintered body is used as a member for a substrate processing apparatus used in a semiconductor manufacturing process or a liquid crystal panel manufacturing process, for example, a reticle stage for an exposure apparatus, a wafer stage, or a positioning mirror. These members are required to have the following characteristics.

第1に、半導体製造工程や液晶パネル製造工程で機械的応力がかかっても割れや欠けが生じないように実用上十分大きな機械的強度を有することが求められている。第2に、これらの部材はその寸法精度を高めるために砥石等を用いた研削加工を経て製造されており、単位時間当たりの研削加工量を増加させて製造コストを低減させるため、研削抵抗が小さなことが求められている。第3に、超音波モータを用いた摩擦駆動により駆動されているため、摩擦駆動に伴って発生する熱や部材周囲の温度変化によって部材温度が変化した場合でも、部材の寸法変化を小さくする必要があり、焼結体の熱膨張係数が小さなことが求められている。特に、粒界相の熱膨張が大きくなると焼結体中の残留応力が大きくなり、研削加工時の研削抵抗が大きくなるため、粒界相の熱膨張係数が小さなことが求められている。   First, it is required to have a sufficiently large mechanical strength for practical use so that cracking and chipping do not occur even when mechanical stress is applied in a semiconductor manufacturing process or a liquid crystal panel manufacturing process. Secondly, these members are manufactured through grinding using a grindstone or the like in order to increase the dimensional accuracy, and the grinding resistance is reduced by increasing the amount of grinding per unit time and reducing the manufacturing cost. Small things are required. Thirdly, since it is driven by friction drive using an ultrasonic motor, it is necessary to reduce the dimensional change of the member even when the member temperature changes due to the heat generated by the friction drive or the temperature change around the member. The sintered body is required to have a small coefficient of thermal expansion. In particular, when the thermal expansion of the grain boundary phase increases, the residual stress in the sintered body increases and the grinding resistance during grinding increases, so that the thermal expansion coefficient of the grain boundary phase is required to be small.

これら窒化珪素質焼結体として、例えば、特許文献1にはYSi相、ErSi相、YbSi相のうち少なくとも1つのダイシリケート相、酸窒化珪素(SiO)相、β−Si相、及び平均粒径0.05μm以下の球状SiC微粒子からなることから、高温での耐酸化性と耐熱衝撃性を向上できるものが示されている。 As these silicon nitride sintered bodies, for example, Patent Document 1 discloses at least one disilicate phase of Y 2 Si 2 O 7 phase, Er 2 Si 2 O 7 phase, and Yb 2 Si 2 O 7 phase, oxynitriding Since it is composed of a silicon (Si 2 N 2 O) phase, a β-Si 3 N 4 phase, and spherical SiC fine particles having an average particle size of 0.05 μm or less, one that can improve oxidation resistance and thermal shock resistance at high temperatures. It is shown.

また、特許文献2には、粒界にSiOおよびRESi結晶が析出し、かつ該結晶の平均粒径が0.3μm以下であることから、機械的強度の大きな窒化珪素質焼結体が示されている。
特開2004−59346号公報 特開平6−287065号公報
In Patent Document 2, since Si 2 N 2 O and RE 2 Si 2 O 7 crystals are precipitated at the grain boundaries, and the average grain size of the crystals is 0.3 μm or less, the mechanical strength is high. A silicon nitride sintered body is shown.
JP 2004-59346 A JP-A-6-287065

しかし、特許文献1、2の窒化珪素質焼結体は十分大きな機械的強度を有するものの次のような問題を有していた。   However, although the silicon nitride sintered bodies of Patent Documents 1 and 2 have a sufficiently large mechanical strength, they have the following problems.

特許文献1の窒化珪素質焼結体は、焼成の冷却過程においてγ型のダイシリケート相からなる結晶がβ−Siと酸窒化珪素の結晶よりも大きく収縮しようとするため、γ型のダイシリケート相からなる結晶がβ−SiやSiOの結晶を強く拘束して残留応力が大きくなり、その結果、研削抵抗が大きくなるという問題を有していた。さらに、SiC粒子が結晶核となっているため、熱膨張係数の大きなγ型のダイシリケート相が粒界相として生成しやすく、熱膨張係数の小さなβ型のダイシリケート相が生成しにくいため、熱膨張係数を十分に小さくすることができないという問題を有していた。 Since the silicon nitride sintered body of Patent Document 1 tends to shrink larger than the crystal of β-Si 3 N 4 and silicon oxynitride in the cooling process of firing, the crystal composed of γ-type disilicate phase is γ-type. The crystal composed of the disilicate phase strongly restrains the β-Si 3 N 4 or Si 2 N 2 O crystal to increase the residual stress, resulting in a problem that the grinding resistance increases. Furthermore, since SiC particles are crystal nuclei, a γ-type disilicate phase having a large thermal expansion coefficient is easily generated as a grain boundary phase, and a β-type disilicate phase having a low thermal expansion coefficient is difficult to generate. There was a problem that the thermal expansion coefficient could not be made sufficiently small.

これにより、これら窒化硅素質焼結体を半導体や液晶パネルの製造装置用部材として用いた場合、超音波モータ等の摩擦駆動にともなって発生する熱や部材周囲の温度変化によって部材に寸法変化が生じてしまうという問題を有していた。また、粒界相の熱膨張係数が大きく、焼結体中の残留応力が大きくなり、研削抵抗が大きくなりやすいという問題を有していた。   As a result, when these silicon nitride sintered bodies are used as members for semiconductor or liquid crystal panel manufacturing equipment, the member undergoes dimensional changes due to heat generated by friction drive of an ultrasonic motor or the like, or temperature changes around the member. It had the problem of occurring. Further, the thermal expansion coefficient of the grain boundary phase is large, the residual stress in the sintered body is increased, and the grinding resistance is liable to increase.

また、特許文献2の窒化珪素質焼結体は、SiO(酸窒化珪素)の含有量が少なく、γ−RESiの含有量が多いため、研削抵抗が大きいという問題があった。また、熱膨張係数の大きなγ−RESiを粒界相として多く含有しているため焼結体の熱膨張係数が大きくなり、半導体や液晶パネルの製造装置用部材として用いた場合に前記特許文献1と同様に超音波モータ等の摩擦駆動に伴って発生する熱や部材周囲の温度変化によって部材に寸法変化が生じてしまうという問題を有していた。この窒化珪素質焼結体中にγ−RESiの含有量が多いのは、y型からβ型へ転移する相転移温度Ttと粒界相の融点温度の間で保持して作製されていることに起因すると考えられる。特に、窒化珪素質焼結体を作製する過程で、冷却中に降温速度を遅くすると、γ−RESi結晶が多く生成するため、得られる窒化珪素質焼結体の熱膨張係数が特に大きくなりやすいという問題があった。 In addition, the silicon nitride sintered body of Patent Document 2 has a small grinding resistance because it contains a small amount of Si 2 N 2 O (silicon oxynitride) and a large amount of γ-RE 2 Si 2 O 7. There was a problem. In addition, since the sintered body contains a large amount of γ-RE 2 Si 2 O 7 having a large thermal expansion coefficient as a grain boundary phase, the thermal expansion coefficient of the sintered body becomes large, and when used as a member for a semiconductor or liquid crystal panel manufacturing apparatus In addition, similar to Patent Document 1, there is a problem in that a dimensional change occurs in the member due to heat generated by friction drive of an ultrasonic motor or the like and a temperature change around the member. The content of γ-RE 2 Si 2 O 7 in the silicon nitride sintered body is high between the phase transition temperature Tt at which the y-type transitions to the β-type and the melting point temperature of the grain boundary phase. It is thought that it originates in having been produced. In particular, in the process of producing a silicon nitride-based sintered body, if the temperature drop rate is slowed during cooling, a large amount of γ-RE 2 Si 2 O 7 crystals are generated. There was a problem that was particularly likely to become large.

本発明は、前記問題点に鑑み、実用上十分大きな機械的強度と小さな熱膨張係数を有し、研削抵抗が小さな窒化珪素質焼結体を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a silicon nitride sintered body having a practically sufficiently large mechanical strength and a small thermal expansion coefficient and a small grinding resistance.

本発明の窒化珪素質焼結体は、β−Siを主成分とし、SiO(酸窒化珪素)を5体積%以上、30体積%以下、およびβ−RESi(REは周期律表第3族元素)を1体積%以上、10体積%以下の範囲でそれぞれ含有することを特徴とする。 The silicon nitride-based sintered body of the present invention contains β-Si 3 N 4 as a main component, Si 2 N 2 O (silicon oxynitride) in an amount of 5% by volume to 30% by volume, and β-RE 2 Si 2. O 7 (RE is a Group 3 element of the Periodic Table) is contained in a range of 1% by volume to 10% by volume, respectively.

また、前記REがEr、Yb、Luのうち少なくとも1種であることを特徴とする。   The RE is at least one of Er, Yb, and Lu.

本発明の半導体製造装置用部材は、処理室内に載置された半導体ウェハに処理を施すための半導体製造装置に用いられ、前記窒化珪素質焼結体からなることを特徴とする。   A member for a semiconductor manufacturing apparatus according to the present invention is used in a semiconductor manufacturing apparatus for processing a semiconductor wafer placed in a processing chamber, and is made of the silicon nitride sintered body.

本発明の液晶製造装置用部材は、液晶パネルを製造する工程に用いられる液晶製造装置に用いられ、前記窒化珪素質焼結体からなることを特徴とする。   The member for a liquid crystal manufacturing apparatus according to the present invention is used in a liquid crystal manufacturing apparatus used in a process for manufacturing a liquid crystal panel, and is characterized by comprising the silicon nitride sintered body.

本発明の窒化硅素質焼結体によれば、β−Siを主成分とし、SiO(酸窒化珪素)を5体積%以上、30体積%以下、およびβ−RESi(REは周期律表第3族元素)を1体積%以上、10体積%以下の範囲でそれぞれ含有することから、β−Siを主成分として十分大きな機械的強度を保持したまま、SiOを5体積%以上、30体積%以下の範囲で含有させることで研削抵抗を小さくすることができ、β−RESi(REは周期律表第3族元素)を1体積%以上、10体積%以下の範囲で含有することで粒界相の熱膨張係数を小さくすることができる。これにより、焼結体中の残留応力が小さくできるため、研削加工を円滑に行うことができるとともに、研削抵抗が小さいため寸法精度の高い加工を行うことできる加工性の優れた焼結体を得ることができる。 According to the silicon nitride sintered body of the present invention, β-Si 3 N 4 is the main component, Si 2 N 2 O (silicon oxynitride) is 5% by volume to 30% by volume, and β-RE 2. Since Si 2 O 7 (RE is a Group 3 element of the Periodic Table) is contained in a range of 1% by volume to 10% by volume, β-Si 3 N 4 as a main component has a sufficiently large mechanical strength. The grinding resistance can be reduced by containing Si 2 N 2 O in the range of 5% by volume or more and 30% by volume or less while being held, and β-RE 2 Si 2 O 7 (RE is a periodic table) The thermal expansion coefficient of the grain boundary phase can be reduced by containing the Group 3 element) in the range of 1% by volume or more and 10% by volume or less. As a result, since the residual stress in the sintered body can be reduced, grinding can be performed smoothly, and a sintered body having excellent workability capable of performing processing with high dimensional accuracy because of low grinding resistance is obtained. be able to.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の窒化珪素質焼結体は、β−Siを主成分とし、SiO(酸窒化珪素)を5体積%以上、30体積%以下、およびβ−RESi(REは周期律表第3族元素)を1体積%以上、10体積%以下の範囲でそれぞれ含有するものである。 The silicon nitride-based sintered body of the present invention contains β-Si 3 N 4 as a main component, Si 2 N 2 O (silicon oxynitride) in an amount of 5% by volume to 30% by volume, and β-RE 2 Si 2. Each of them contains O 7 (RE is a Group 3 element of the Periodic Table) in a range of 1% by volume to 10% by volume.

主成分を成すβ−Siは、機械的強度を高める作用を、SiOは研削抵抗を小さくする作用を、β−RESiは熱膨張係数を小さくする作用をそれぞれ成し、β−Si、SiOおよびβ−RESiの各結晶を含む多結晶焼結体からなり、機械的強度が500MPa以上、熱膨張係数が1.5×10−6/K以下のものである。 Β-Si 3 N 4 constituting the main component has an effect of increasing mechanical strength, Si 2 N 2 O has an effect of reducing grinding resistance, and β-RE 2 Si 2 O 7 has an effect of reducing the thermal expansion coefficient. Each of which is made of a polycrystalline sintered body containing crystals of β-Si 3 N 4 , Si 2 N 2 O and β-RE 2 Si 2 O 7 , having a mechanical strength of 500 MPa or more and a thermal expansion coefficient of 1.5 × 10 −6 / K or less.

β−Siが主成分であることは、本発明の窒化珪素質焼結体表面または研磨面を高倍率で観察し、この観察面に占める窒化珪素の結晶の面積割合が50%以上であることによって確認することができる。 The fact that β-Si 3 N 4 is the main component is that the surface of the silicon nitride sintered body or the polished surface of the present invention is observed at a high magnification, and the area ratio of silicon nitride crystals in the observed surface is 50% or more. Can be confirmed.

次に、本発明の窒化珪素質焼結体は、SiOを5体積%以上、30体積%以下の範囲で含有することが重要であり、砥石等により焼結体を研削加工する際、SiOは焼結体の粒界の破壊を促進する作用を成すため、砥石等が受ける研削抵抗を低減させることができる。 Next, it is important for the silicon nitride sintered body of the present invention to contain Si 2 N 2 O in a range of 5% by volume to 30% by volume, and the sintered body is ground by a grindstone or the like. At this time, since Si 2 N 2 O functions to promote the destruction of the grain boundaries of the sintered body, the grinding resistance received by the grindstone or the like can be reduced.

詳細は、β−Siを主成分とする焼結体の破壊靱性値は6MPa・m1/2程度であるのに対して、SiOを主成分とする焼結体の破壊靱性値は4MPa・m1/2程度と小さい。これにより砥石等により局所的な応力がSiOを含む窒化珪素質焼結体に加わった場合、SiOからなる結晶が破壊して容易に削れるため、研削抵抗が小さくなるものと考えられる。SiOが5体積%未満となると、研削加工時に焼結体中の破壊源が不足するために研削抵抗が大きくなり、一方、30体積%を超えると、β−Siの含有量が低下するため機械的強度が小さくなり、焼結体に応力が加わった際にSiOの結晶が破壊源となりやすいため、さらに機械的強度が小さくなると考えられる。さらには、SiOを8体積%以上、18体積%以下の範囲で含有することがより好ましく、研削抵抗を小さくするとともに、曲げ機械的強度をさらに高めることができる。 Specifically, the fracture toughness value of the sintered body mainly composed of β-Si 3 N 4 is about 6 MPa · m 1/2 , whereas the sintered body mainly composed of Si 2 N 2 O The fracture toughness value is as small as about 4 MPa · m 1/2 . Thereby, when a local stress is applied to the silicon nitride sintered body containing Si 2 N 2 O by a grindstone or the like, the crystal made of Si 2 N 2 O is broken and easily scraped, so that the grinding resistance is reduced. It is considered a thing. When Si 2 N 2 O is less than 5% by volume, the grinding resistance increases due to a lack of fracture sources in the sintered body during grinding. On the other hand, when it exceeds 30% by volume, β-Si 3 N 4 Since the content is lowered, the mechanical strength is reduced, and when stress is applied to the sintered body, the crystal of Si 2 N 2 O tends to be a fracture source, so that it is considered that the mechanical strength is further reduced. Furthermore, it is more preferable to contain Si 2 N 2 O in the range of 8% by volume or more and 18% by volume or less, and it is possible to reduce the grinding resistance and further increase the bending mechanical strength.

なお、研削抵抗とは、一定条件下で焼結体に穴開け加工等の研削加工を行う際の研削抵抗(N)を水晶圧電式動力計により検出するものである。   The grinding resistance is to detect a grinding resistance (N) when performing grinding processing such as drilling on a sintered body under a certain condition by using a crystal piezoelectric dynamometer.

また、本発明の窒化珪素質焼結体は、β−RESiを1体積%以上、10体積%以下の範囲で含有する。RESiは、α、β、γ、δ、yなどの型があり、このうちβ型のRESiであるβ−RESiは、β−Siの結晶の粒界に粒界相として主に存在し、β−RESiはα、γ、δ、yなどの型のRESiの熱膨張係数よりも小さいため、β−RESiを1体積%以上、10体積%以下の範囲で含有させることにより、窒化珪素質焼結体の熱膨張係数を1.5×10−6/K以下と小さくし、残留応力を小さくできるためさらに研削抵抗を小さくすることができる。残留応力を小さくすると、研削抵抗を小さくすることができるのは、粒界相のβ−RESiがβ−Siの結晶を拘束しようとする応力が小さいため、砥石等で焼結体を研削加工する際、β−Siの結晶が砥石等により破壊されやすいためと考えられる。 Moreover, the silicon nitride sintered body of the present invention contains β-RE 2 Si 2 O 7 in a range of 1% by volume to 10% by volume. RE 2 Si 2 O 7 has types such as α, β, γ, δ, and y. Among them, β-RE 2 Si 2 O 7, which is β-type RE 2 Si 2 O 7, is β-Si 3. It exists mainly as a grain boundary phase at the grain boundary of the crystal of N 4 , and β-RE 2 Si 2 O 7 is smaller than the thermal expansion coefficient of RE 2 Si 2 O 7 of types such as α, γ, δ, and y. Therefore, by including β-RE 2 Si 2 O 7 in the range of 1 volume% or more and 10 volume% or less, the thermal expansion coefficient of the silicon nitride-based sintered body is 1.5 × 10 −6 / K or less. Since the residual stress can be reduced by reducing the size, the grinding resistance can be further reduced. When the residual stress is reduced, the grinding resistance can be reduced because the stress at which the grain boundary phase β-RE 2 Si 2 O 7 tries to constrain the β-Si 3 N 4 crystals is small. This is probably because the β-Si 3 N 4 crystals are easily broken by a grindstone or the like when the sintered body is ground.

β−RESiの含有量が1体積%未満となると、窒化珪素質焼結体を緻密にすることができず、研削加工の際に窒化珪素質焼結体に微細なクラックが発生しやすい。一方、10体積%を越えると、研削抵抗は小さくなるものの、熱膨張係数が1.5×10−6/Kを越える大きなものとなり、残留応力が大きくなりやすく研削抵抗を十分に小さくすることができない。さらには、β−RESiの含有量を4体積%以上、8体積%以下の範囲とすることがより好ましく、熱膨張係数を1.35×10−6/K以下とし、十分に緻密化した熱膨張係数のより小さい焼結体を得ることができる。 When the content of β-RE 2 Si 2 O 7 is less than 1% by volume, the silicon nitride sintered body cannot be made dense, and fine cracks are generated in the silicon nitride sintered body during grinding. Likely to happen. On the other hand, if it exceeds 10% by volume, the grinding resistance decreases, but the thermal expansion coefficient exceeds 1.5 × 10 −6 / K, and the residual stress tends to increase, so that the grinding resistance can be sufficiently reduced. Can not. Furthermore, it is more preferable that the content of β-RE 2 Si 2 O 7 is in the range of 4% by volume to 8% by volume, and the thermal expansion coefficient is 1.35 × 10 −6 / K or less, A sintered body with a smaller thermal expansion coefficient can be obtained.

また、β−RESiにおけるREは、周期律表第3族元素であればよいが、その中でもEr、Yb、Luのうち少なくとも一種から選択することが好ましい。 Moreover, RE in β-RE 2 Si 2 O 7 may be any element of Group 3 of the periodic table, but among them, it is preferable to select at least one of Er, Yb, and Lu.

これにより、熱膨張係数を1.3×10−6/K以下とさらに小さくできる。これは、Er、Yb、Luは、周期律表第3族元素の中でイオン半径の小さな元素であるために、他の構成原子(Si、O、N)との結合が強いために、熱エネルギーによる格子振動、体積膨張が小さくなることによって熱膨張係数をより小さくすることができる。特に、REをErとし、β−ErSiの含有量を4体積%以上、8体積%以下の範囲とすることで、さらに熱膨張係数を1.27×10−6/K以下と小さくすることができる。 Thereby, the thermal expansion coefficient can be further reduced to 1.3 × 10 −6 / K or less. This is because Er, Yb, and Lu are elements having a small ionic radius among the Group 3 elements of the Periodic Table, and thus have strong bonds with other constituent atoms (Si, O, N). The thermal expansion coefficient can be further reduced by reducing lattice vibration and volume expansion due to energy. In particular, when RE is Er and the content of β-Er 2 Si 2 O 7 is in the range of 4% by volume to 8% by volume, the thermal expansion coefficient is further 1.27 × 10 −6 / K or less. And can be made smaller.

さらに、本発明の窒化珪素質焼結体は、その相対密度が99%以上であることが好ましい。相対密度を99%以上とすることで、熱膨張係数を小さくし、研削抵抗を小さくできるだけでなく、機械的強度が向上し、例えば室温における点曲げ強度を600MPa以上とさらに高くすることができる。相対密度を99%以上の窒化珪素質焼結体は、後述する高圧GPS(Gas Pressure Sintering)法や熱間等方加圧(HIP:hot isostatic press)法により、ガス圧1〜200MPaで加圧して焼成する方法により製造することができる。   Furthermore, the silicon nitride sintered body of the present invention preferably has a relative density of 99% or more. By setting the relative density to 99% or more, not only the thermal expansion coefficient can be reduced and the grinding resistance can be reduced, but also the mechanical strength can be improved. For example, the point bending strength at room temperature can be further increased to 600 MPa or more. A silicon nitride sintered body having a relative density of 99% or more is pressurized at a gas pressure of 1 to 200 MPa by a high pressure GPS (Gas Pressure Sintering) method or a hot isostatic press (HIP) method described later. It can manufacture by the method of baking.

ここで、本発明の窒化珪素質焼結体の各特性の測定方法について説明する。   Here, a method for measuring each characteristic of the silicon nitride sintered body of the present invention will be described.

本発明の窒化珪素に含まれるβ−Si、SiO、β−RESiの存在は、焼結体を粉砕して得られる粉末を用いてX線回折法により測定する。例えば、焼結体を#200メッシュ以下の粒径に粉砕し、Cu−Kα線(λ=1.54056Å)にてX線回折を行う。β−SiはJCPDS−ICDD(Joint Committee for Powder Diffraction Studies- International Centre for Diffraction Data)のNo.33−1160、SiOは、JCPDS−ICDD No.47−1627、β−RESiはJCPDS−ICDD No.38−0440のデータを用いて同定することができる。なお焼結体がα−RESiやγ−RESiを含有する場合には、α−RESiはJCPDS−ICDD No.38−0223、γ−RESiはJCPDS−ICDD No.48−1623のデータを用いて同定することができる。なお、これらのα、β、γ−RESiのJCPDS−ICDDはREがYのものであるが、REがEr、Yb、Luの場合にも代用できる。REがY、Er、Yb、Lu以外のJCPDS−ICDDについては、公知のX線回折パターンを参照することができる。 The presence of β-Si 3 N 4 , Si 2 N 2 O, and β-RE 2 Si 2 O 7 contained in the silicon nitride of the present invention is determined by X-ray diffraction using a powder obtained by pulverizing a sintered body. Measure with For example, the sintered body is pulverized to a particle size of # 200 mesh or less, and X-ray diffraction is performed with Cu-Kα rays (λ = 1.54056Å). β-Si 3 N 4 is No. of JCPDS-ICDD (Joint Committee for Powder Diffraction Studies-International Center for Diffraction Data). 33-1160, Si 2 N 2 O, JCPDS-ICDD No. 47-1627 and β-RE 2 Si 2 O 7 are JCPDS-ICDD No. The data of 38-0440 can be used for identification. In the case where the sintered body contains α-RE 2 Si 2 O 7 or γ-RE 2 Si 2 O 7 , α-RE 2 Si 2 O 7 is JCPDS-ICDD No. 38-0223 and γ-RE 2 Si 2 O 7 are JCPDS-ICDD No. It can be identified using the data of 48-1623. In addition, although JCPDS-ICDD of these α, β, and γ-RE 2 Si 2 O 7 has Y as RE, it can be substituted when RE is Er, Yb, and Lu. For JCPDS-ICDD in which RE is other than Y, Er, Yb, and Lu, a known X-ray diffraction pattern can be referred to.

β−RESiの含有量は、REがErの場合、例えば次のように測定することができる。まず、検量線を用いてX線回折法により測定する方法について説明する。SiO粉末、Er粉末、Si粉末をそれぞれ64モル%,32モル%,4モル%となるように混合後加圧して圧粉体を作製し、得られた圧粉体をBN(窒化硼素)製のルツボ内に入れて900kPaの窒素雰囲気中1800℃で1時間保持し、さらに800℃まで2時間以内で冷却後、室温まで冷却すると、Er−Si−O−N系の非晶質物質が得られる。この非晶質物質を1300℃で5時間、110kPaの窒素中で熱処理すると、JCPDS−ICDD No.38−0440にて同定されるβ−ErSiの結晶のピークがほぼ100%である化合物が得られる。この化合物を粉砕し、この化合物の粉末とβ−Si粉末を、化合物(β−ErSi)の含有量を0〜100体積%の間で種々変更して、粉末X線回折を行い、得られたX線回折のピーク強度とβ−ErSiの含有量との関係を示す検量線を作成する。ここで、検量線に使用するピーク強度は、β−ErSiの(021)面帰属回折ピーク強度I(E2S)と、β−Si(200)面の回折ピーク強度I(SN)である。このようにして得られる検量線の結果の一例を図1に示す。 The content of β-RE 2 Si 2 O 7 can be measured, for example, as follows when RE is Er. First, a method for measuring by an X-ray diffraction method using a calibration curve will be described. SiO 2 powder, Er 2 O 3 powder, and Si 3 N 4 powder were mixed so as to be 64 mol%, 32 mol%, and 4 mol%, respectively, and pressed to produce a green compact, and the green compact obtained Is put in a crucible made of BN (boron nitride), kept in a nitrogen atmosphere of 900 kPa at 1800 ° C. for 1 hour, further cooled to 800 ° C. within 2 hours, and then cooled to room temperature, the Er—Si—O—N system Amorphous material is obtained. When this amorphous material was heat-treated at 110 ° C. for 5 hours at 1300 ° C., JCPDS-ICDD No. A compound is obtained in which the β-Er 2 Si 2 O 7 crystal peak identified at 38-0440 is approximately 100%. The compound was pulverized, the powder and β-Si 3 N 4 powder of this compound, the content of the compound (β-Er 2 Si 2 O 7) and various changes between 0 and 100 vol%, the powder X Line diffraction is performed, and a calibration curve showing the relationship between the peak intensity of the obtained X-ray diffraction and the content of β-Er 2 Si 2 O 7 is created. Here, the peak intensities used for the calibration curve are the (021) plane assigned diffraction peak intensity I (E2S) of β-Er 2 Si 2 O 7 and the diffraction peak intensity I of the β-Si 3 N 4 (200) plane. (SN) . An example of the result of the calibration curve thus obtained is shown in FIG.

図1に示すように、焼結体中のβ−ErSiの含有量は、焼結体の粉末をX線回折し、β−Siの(200)面帰属X線回折ピーク強度とβ−RESiの(021)面帰属X線回折ピーク強度の比I(E2S)/I(SN)を求め、図1からβ−ErSiの含有量を測定することができる。REがEr以外の元素の場合も同様の方法によりβ−RESiの含有量を測定することができる。 As shown in FIG. 1, the content of β-Er 2 Si 2 O 7 in the sintered body is determined by X-ray diffraction of the powder of the sintered body, and (200) plane attributed X-ray of β-Si 3 N 4. The ratio I (E2S) / I (SN) of the diffraction peak intensity and the (021) plane assigned X-ray diffraction peak intensity of β-RE 2 Si 2 O 7 was determined, and the content of β-Er 2 Si 2 O 7 was obtained from FIG. The amount can be measured. When RE is an element other than Er, the content of β-RE 2 Si 2 O 7 can be measured by the same method.

また、β−RESiの含有量は、上述した検量線による方法の他に透過型電子顕微鏡を用いて焼結体を観察し、観察される個々の結晶の結晶構造を同定し、観察面の面積に占めるβ−RESiの面積割合(%)を便宜的に体積%と見なすこともできる。 Further, the content of β-RE 2 Si 2 O 7 can be determined by observing the sintered body using a transmission electron microscope in addition to the above-described method using the calibration curve, and identifying the crystal structure of each observed crystal. The area ratio (%) of β-RE 2 Si 2 O 7 occupying the area of the observation surface can be regarded as volume% for convenience.

SiOの含有量は、例えば次にようにして測定することができる。 The content of Si 2 N 2 O can be measured, for example, as follows.

焼結体を研磨して得られる鏡面を、走査型電子顕微鏡(SEM)およびX線マイクロアナライザ(EPMA:Electron Probe Micro-Analysis)を用いて倍率1000〜10000倍程度、好ましくは5000倍程度で観察すると、SiOの結晶は、β−Siの結晶よりもO(酸素)を多く含むため、EPMAで観察するとSiOの結晶を特定することができる。ここで、鏡面を、SEMおよびEPMAで50μm×50μm以上の視野で観察し、SEM写真およびEPMA写真を撮ると、観察した面積中に占めるSiOの結晶の面積の割合(%)を求めることができる。このようにして求めたSiOの面積の割合(%)を便宜上SiOの含有量(体積%)とする。 The mirror surface obtained by polishing the sintered body is observed with a scanning electron microscope (SEM) and an X-ray microanalyzer (EPMA) at a magnification of about 1000 to 10,000 times, preferably about 5,000 times. Then, since the crystal of Si 2 N 2 O contains more O (oxygen) than the crystal of β-Si 3 N 4 , the crystal of Si 2 N 2 O can be specified when observed with EPMA. Here, when the mirror surface is observed with a field of view of 50 μm × 50 μm or more with SEM and EPMA, and the SEM photograph and EPMA photograph are taken, the ratio (%) of the area of the crystal of Si 2 N 2 O in the observed area is Can be sought. The ratio (%) of the area of Si 2 N 2 O obtained in this way is taken as the content (volume%) of Si 2 N 2 O for convenience.

機械的強度は、曲げ強度を測定することで求められ、例えばJIS(日本工業規格)R1601(1995年)に準拠して測定することができ、窒化珪素質焼結体を加工した試験片を10個以上作製する。荷重試験機を用いてこの試験片に荷重を印加し、破壊するまでの最大荷重を測定し、曲げ強度を算出する。   The mechanical strength is obtained by measuring the bending strength, and can be measured, for example, according to JIS (Japanese Industrial Standard) R1601 (1995). Make more than one. A load tester is used to apply a load to the test piece, measure the maximum load until breakage, and calculate the bending strength.

また、熱伝導率は、JIS R1611−1997に準拠するレーザーフラッシュ法により23℃の環境下で測定する。本発明でいう熱膨張係数は室温における熱膨張係数、具体的には0〜50℃の範囲での熱膨張係数であり、特に23℃における熱膨張係数に特定することが好ましい。熱膨張係数は、具体的には例えば次のように測定する。熱膨張係数測定用の試料は、本発明の窒化珪素質焼結体またはこれを加工して長さ15〜16mmとし、長さ方向の両端をR状に面取り加工したものとする。次いで、真空理工株式会社製のレーザー熱膨張計を用い、この試料をHeガス中で0〜50℃の範囲で昇温速度1℃/分程度で連続的に昇温しながら、レーザーを用いて試料の長さを計測し、ASTM(The American Society of Testing and Materials) E 289(Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry)に準拠した測定に従って23℃における熱膨張係数を測定する。   Further, the thermal conductivity is measured in a 23 ° C. environment by a laser flash method in accordance with JIS R1611-1997. The thermal expansion coefficient referred to in the present invention is a thermal expansion coefficient at room temperature, specifically, a thermal expansion coefficient in the range of 0 to 50 ° C., and is particularly preferably specified as a thermal expansion coefficient at 23 ° C. Specifically, for example, the thermal expansion coefficient is measured as follows. The sample for measuring the thermal expansion coefficient is obtained by processing the silicon nitride sintered body of the present invention or processing this to a length of 15 to 16 mm, and chamfering both ends in the length direction into an R shape. Next, using a laser thermal dilatometer manufactured by Vacuum Riko Co., Ltd., using a laser while heating the sample continuously in He gas at a temperature rising rate of about 1 ° C./min in the range of 0 to 50 ° C. The length of the sample is measured, and the coefficient of thermal expansion at 23 ° C. is measured according to the measurement according to ASTM (The American Society of Testing and Materials) E 289 (Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry).

研削抵抗の測定は、直径80mm×厚さ10mmの円板状の窒化珪素質焼結体からなる研削抵抗測定用試料を作製し、大阪機工株式会社製のVM4II型立形マシニングセンタにこの試料の一方の主面を固定する。次いで、#120のダイヤモンドを電着した外径5mmのコアドリルを立形マシニングセンタに取り付け、ドリルに注水しながらドリルの回転数2000rpm、送り速度2mm/分で、試料の他方主面に垂直方向に穴開け加工する。この加工中に、ドリルの長手方向の研削抵抗(N)をKISTLER株式会社製の水晶圧電式動力計TYPE9254により検出する。   For the measurement of grinding resistance, a grinding resistance measurement sample made of a disk-shaped silicon nitride sintered body having a diameter of 80 mm and a thickness of 10 mm was prepared, and one of the samples was placed on a VM4II vertical machining center manufactured by Osaka Kiko Co., Ltd. The main surface of is fixed. Next, a core drill with an outer diameter of 5 mm, electrodeposited with # 120 diamond, is attached to the vertical machining center, and while pouring water into the drill, the drill rotates at 2000 rpm and feed rate is 2 mm / min. Open and process. During this processing, the grinding resistance (N) in the longitudinal direction of the drill is detected by a quartz piezoelectric dynamometer TYPE 9254 manufactured by KISTLER.

次いで、本発明の窒化珪素質焼結体の製造方法について説明する。   Next, a method for manufacturing the silicon nitride sintered body of the present invention will be described.

まず、Si粉末とRE粉末とを含有する成形体を空気中600〜800℃で1〜5時間加熱して、成形体に含まれるSi粉末の一部が酸化された酸化成形体を作製する。次いで、酸化成形体をSiOガスを含有する窒素ガス中1700〜2000℃で相対密度96%以上に緻密化した後、8時間以内で800℃以下まで冷却し、800〜1000℃の窒素ガス中に0.1〜5時間保持し、さらに1200〜1500℃で1時間以上保持する。この製造方法により、実用上十分な機械的強度を有し、熱膨張係数が1.5×10−6/K以下と小さく、前記の方法で測定した研削抵抗が400N以下と小さな窒化珪素質焼結体を製造することができる。 First, a compact containing Si 3 N 4 powder and RE 2 O 3 powder is heated in air at 600 to 800 ° C. for 1 to 5 hours, and a part of the Si 3 N 4 powder contained in the compact is oxidized. An oxidized molded body is produced. Subsequently, the oxidized compact was densified to a relative density of 96% or more at 1700 to 2000 ° C. in nitrogen gas containing SiO gas, and then cooled to 800 ° C. or less within 8 hours, and then into 800 to 1000 ° C. nitrogen gas. Hold for 0.1 to 5 hours, and further hold at 1200 to 1500 ° C. for 1 hour or more. By this manufacturing method, a silicon nitride-based firing having a mechanical strength sufficient for practical use, a thermal expansion coefficient as small as 1.5 × 10 −6 / K or less, and a grinding resistance measured by the above method as small as 400 N or less. A knot can be produced.

本発明の窒化珪素質焼結体の製造方法は具体的には次の通りである。   The method for producing the silicon nitride sintered body of the present invention is specifically as follows.

(a)出発原料粉末として、窒化珪素粉末、Er,Yb,Luなどの周期律表第3族元素の酸化物からなるRE粉末を準備する。好ましくは、さらにAl粉末、WO粉末、SiO粉末を準備する。ここで準備する窒化珪素粉末は、α化率が高い窒化珪素原料の方が焼結性に優れるため好ましいものの、α化率がゼロの窒化珪素粉末であっても良い。また、窒化珪素粉末中には、Siの酸化物が不純物として含有されていても良い。RE粉末は純度が99%以上であることが好ましい。各1次原料粉末の粒径は、メジアン径D50が0.5〜30μmであることが好ましい。 (A) As a starting material powder, a RE 2 O 3 powder made of an oxide of a Group 3 element such as silicon nitride powder, Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 is prepared. Preferably, Al 2 O 3 powder, WO 3 powder, and SiO 2 powder are further prepared. The silicon nitride powder prepared here is preferably a silicon nitride raw material having a high α conversion rate because it is superior in sinterability, but may be a silicon nitride powder having a zero α conversion rate. The silicon nitride powder may contain Si oxide as an impurity. The RE 2 O 3 powder preferably has a purity of 99% or more. The particle size of the primary raw material powder is preferably a median diameter D 50 is 0.5 to 30 m.

(b)前記(a)で準備した粉末を窒化珪素粉末60〜99モル%、RE粉末1〜40モル%となるようにして、公知の方法、例えば回転ミル、振動ミル、ビーズミルなどのミルに投入し湿式混合、粉砕し、スラリーを作製する。好ましくは、窒化珪素粉末95〜80モル%、RE粉末1〜5モル%、SiO粉末4〜15モル%とする。特に好ましくは、SiO粉末(準備したSiO粉末と、窒化珪素粉末中に含まれる酸素含有量をSiOに換算したものをSiO粉末と見なしたものとの計)、窒化珪素粉末、およびRE粉末の合計を100質量部とするとき、さらにAl粉末2.5質量部以下、WO粉末0.3〜5質量部を混合、粉砕する。粉砕メディアは、窒化珪素質、ジルコニア質、アルミナ質のものが使用可能であるが、不純物として混入の影響の少ない材質である窒化珪素質のメディアが良い。また、粉砕後の粒度D50を1μm以下となるように微粉砕することが焼結性を向上させるために好ましい。また、1次原料粉末を予め微粉砕させた後、ミルで湿式混合、粉砕しても良い。また、得られるスラリー粘度を下げる目的で粉砕前に分散剤を添加することが好ましい。 (B) The powder prepared in the above (a) is made into silicon nitride powder 60 to 99 mol%, RE 2 O 3 powder 1 to 40 mol%, and known methods such as a rotary mill, a vibration mill, a bead mill, etc. And then wet-mixed and pulverized to produce a slurry. Preferably, the silicon nitride powder is 95 to 80 mol%, the RE 2 O 3 powder is 1 to 5 mol%, and the SiO 2 powder is 4 to 15 mol%. Particularly preferably, SiO 2 powder (and SiO 2 powder were prepared, a total of one oxygen content in the silicon nitride powder were considered SiO 2 powder as converted to SiO 2), silicon nitride powder, and when the RE 2 O 3 total 100 parts by mass of the powder, further Al 2 O 3 powder 2.5 parts by weight, mixed WO 3 powder 0.3 to 5 parts by weight, and ground. As the grinding media, those of silicon nitride, zirconia, and alumina can be used, but silicon nitride media that is a material that is less affected by contamination as impurities is preferable. In order to improve the sinterability, it is preferable to finely pulverize the pulverized particle size D 50 to 1 μm or less. Further, after the primary raw material powder is finely pulverized in advance, it may be wet mixed and pulverized by a mill. Moreover, it is preferable to add a dispersant before pulverization for the purpose of lowering the viscosity of the resulting slurry.

(c)得られた湿式スラリーを乾燥させて乾燥粉体を作製する。この乾燥の前にスラリーを#200より細かいメッシュを通し、さらに磁力を用いて脱鉄するなどの方法で極力異物を除去することが好ましい。また、スラリーにパラフィンワックスやPVA(ポリビニルアルコール)、PEG(ポリエチレングリコール)、PEO(ポリエチレンオキサイド)などの有機バインダーを粉体重量に対して1〜10質量%添加、混合することが後述する成形の際に、成形体のクラックや割れ等の発生を抑制できるので好ましい。スラリーの乾燥方法としては、スラリーを容器に入れて加熱、乾燥させても良いし、スプレードライヤーで乾燥させても良く、または他の方法で乾燥させても何ら問題ない。   (C) The obtained wet slurry is dried to produce a dry powder. Prior to this drying, it is preferable to remove foreign matter as much as possible by passing the slurry through a mesh finer than # 200 and further removing iron using magnetic force. Moreover, 1-10 mass% of organic binders, such as paraffin wax, PVA (polyvinyl alcohol), PEG (polyethylene glycol), and PEO (polyethylene oxide), may be added to the slurry and mixed. In this case, it is preferable because generation of cracks and cracks of the molded body can be suppressed. As a method for drying the slurry, the slurry may be put in a container and heated and dried, or may be dried by a spray dryer, or may be dried by another method.

(d)乾燥粉体を公知の成形方法、例えば金型を用いた粉末加圧成形法、静水圧を利用した等方加圧成形法を用いて、相対密度45〜60%の所望の形状とする。   (D) The dry powder is formed into a desired shape having a relative density of 45 to 60% by using a known molding method, for example, a powder pressure molding method using a mold or an isotropic pressure molding method using hydrostatic pressure. To do.

(e)成形体を空気中で600〜800℃で1〜5時間加熱して、成形体に含まれるSi粉末の一部が酸化された酸化成形体を作製する。成形体に有機バインダーを含む場合には、窒素中500〜900℃に加熱して有機バインダーを脱脂した後、さらに空気中で600〜800℃で1〜5時間加熱する。焼結性を向上させて緻密な窒化珪素質焼結体を作製するためには、脱脂した後の炭素量を0.01重量%以下とすることが好ましい。 (E) The molded body is heated in air at 600 to 800 ° C. for 1 to 5 hours to produce an oxidized molded body in which a part of the Si 3 N 4 powder contained in the molded body is oxidized. When the molded body contains an organic binder, the organic binder is degreased by heating to 500 to 900 ° C. in nitrogen, and further heated in air at 600 to 800 ° C. for 1 to 5 hours. In order to improve the sinterability and produce a dense silicon nitride sintered body, the carbon content after degreasing is preferably 0.01% by weight or less.

(f)酸化成形体を次のように焼成炉を用いて焼成する。   (F) The oxidized molded body is fired using a firing furnace as follows.

焼成炉として黒鉛性の抵抗発熱体により加熱する焼成炉等を用い、この焼成炉中に酸化成形体を載置する。好ましくは、酸化成形体全体を囲うことのできる焼成用容器中に載置する。ここで酸化成形体を焼成炉中に載置する場合、酸化成形体を載置するための焼成用板や、酸化成形体を載置しかつ酸化成形体の周囲を囲うための焼成用容器(以下、これらを焼成用治具と記す。)を用いる。   A firing furnace or the like heated by a graphitic resistance heating element is used as the firing furnace, and the oxidized formed body is placed in the firing furnace. Preferably, it mounts in the container for baking which can surround the whole oxidation molded object. Here, when the oxidized molded body is placed in a firing furnace, a firing plate for placing the oxidized molded body, or a firing container for placing the oxidized molded body and surrounding the oxidized molded body ( These are hereinafter referred to as firing jigs).

焼成中に酸化成形体に含まれるSi成分等の蒸発を抑制し、焼成炉内の雰囲気中等から酸化成形体に付着する可能性のある異物(例えば黒鉛製発熱体や炭素製断熱材から飛散する炭素片や、焼成炉中に組み込まれている他の無機材質製の断熱材の小片等)の付着を防止するためには、焼成用治具の材質を窒化珪素質や炭化珪素質またはこれらの複合物などの材質とすることが好ましく、さらには酸化成形体全体を焼成用治具で囲うことが好ましい。   Suppresses the evaporation of Si components contained in the oxidized molded body during firing, and scatters foreign matter that may adhere to the oxidized molded body from the atmosphere in the firing furnace, etc. (for example, from a graphite heating element or a carbon heat insulating material) In order to prevent adhesion of carbon pieces or other small pieces of heat insulating material made of an inorganic material incorporated in the firing furnace, the material of the firing jig may be silicon nitride, silicon carbide, or the like. It is preferable to use a material such as a composite, and it is preferable to surround the entire oxidized molded body with a firing jig.

酸化成形体全体を焼成用治具で囲って焼成する場合には、酸化成形体中からSi成分の蒸発を抑制するためにSiおよび/またはその酸化物を含む粉末や、この粉末の酸化成形体を焼成用治具中に載置することが好ましい。後述する致密化の過程で、このようなSiの酸化物は例えばSi−Oガスとなって焼成用治具中に蒸発し、酸化成形体からSi成分が蒸発することを抑制するので、得られる焼結体の組成の変動が抑制され、さらに、後述する(j)の再加熱処理の工程でβ−ErSiを焼結体中に特に安定して生成させることができる。 When the entire oxidized molded body is fired by being surrounded by a firing jig, a powder containing Si and / or its oxide to suppress evaporation of Si components from the oxidized molded body, or an oxidized molded body of this powder Is preferably placed in a firing jig. In the process of densification to be described later, such Si oxide is obtained, for example, as Si—O gas, which evaporates in the firing jig and prevents the Si component from evaporating from the oxidized molded body. Variations in the composition of the sintered body are suppressed, and β-Er 2 Si 2 O 7 can be generated particularly stably in the sintered body in the reheating treatment step (j) described later.

(g)焼成用治具に載置した酸化成形体を焼成炉内に配置し、1700〜2000℃で焼成して相対密度96%以上まで緻密化させる。ここで、相対密度とはアルキメデス法により得られた密度を粉体理論密度で割った値をいう。この焼成により、SiOの結晶が5体積%以上、30体積%以下の範囲で生成する。 (G) The oxidized molded body placed on the firing jig is placed in a firing furnace and fired at 1700 to 2000 ° C. to be densified to a relative density of 96% or more. Here, the relative density is a value obtained by dividing the density obtained by the Archimedes method by the theoretical powder density. By this firing, Si 2 N 2 O crystals are generated in the range of 5% by volume to 30% by volume.

相対密度96%以上まで緻密化させるには、より具体的には次のような方法により焼成する。   For densification to a relative density of 96% or higher, more specifically, firing is performed by the following method.

窒素ガス中で昇温し、最高温度1700〜2000℃で保持する。好ましくは、最高温度に達する前に、液相が生成する温度、例えば1500℃以上1700℃未満の温度で保持することが好ましい。最高温度が1800℃未満の場合、窒素分圧は大気圧程度で良いが、最高温度が1800℃以上の場合は窒素分圧を1MPa程度まで高めてSiの分解反応を抑制することが好ましい。また、致密化をより促進するために、開気孔率が5%以下となった段階で、さらに高圧のガスで加圧することが好ましい。この加圧方法としては、高圧GPS(Gas Pressure Sintering)法や熱間等方加圧(HIP:hot isostatic press)法により、ガス圧1〜200MPaで加圧する方法を用いることが好ましく、これによって相対密度を特に99%以上に高めることができる。 The temperature is raised in nitrogen gas and maintained at a maximum temperature of 1700-2000 ° C. Preferably, the temperature is maintained at a temperature at which a liquid phase is generated, for example, 1500 ° C. or more and less than 1700 ° C. before reaching the maximum temperature. When the maximum temperature is less than 1800 ° C., the nitrogen partial pressure may be about atmospheric pressure, but when the maximum temperature is 1800 ° C. or more, the nitrogen partial pressure is increased to about 1 MPa to suppress the decomposition reaction of Si 3 N 4. preferable. In order to further promote the densification, it is preferable to pressurize with a higher pressure gas when the open porosity becomes 5% or less. As this pressurization method, it is preferable to use a method of pressurizing at a gas pressure of 1 to 200 MPa by a high pressure GPS (Gas Pressure Sintering) method or a hot isostatic press (HIP) method, and relative to this. The density can be particularly increased to 99% or more.

(h)800℃以下まで8時間以内で冷却する。これによって、粒界を十分非晶質化することができる。800℃以下まで8時間以内で冷却する理由は次の通りである。   (H) Cool to 800 ° C. or less within 8 hours. Thereby, the grain boundary can be sufficiently amorphized. The reason for cooling to 800 ° C. or lower within 8 hours is as follows.

RESiの結晶核は800〜1000℃で生成し、この結晶核は1000〜1650℃にさらに温度を上げることにより成長させることができる。800℃以下の温度まで8時間以内で冷却するのは、8時間を超えると、冷却中にRESi以外、例えばRE(SiN(アパタイト相)が結晶化しやく、RESiの結晶核を後述する(i)の工程で十分に生成させることができないため、β−RESiの含有量を3体積%以上、20体積%以下の範囲とできなくなるためである。好ましくは、冷却時間を4時間以内とする。 Crystal nuclei of RE 2 Si 2 O 7 are generated at 800 to 1000 ° C., and the crystal nuclei can be grown by further raising the temperature to 1000 to 1650 ° C. When cooling to a temperature of 800 ° C. or less within 8 hours, if it exceeds 8 hours, during the cooling, other than RE 2 Si 2 O 7 , for example, RE 5 (Si 4 ) 3 N (apatite phase) is easily crystallized, Since the crystal nuclei of RE 2 Si 2 O 7 cannot be sufficiently generated in the step (i) described later, the content of β-RE 2 Si 2 O 7 is in the range of 3% by volume to 20% by volume. It is because it becomes impossible. Preferably, the cooling time is within 4 hours.

(i)窒素ガス中で800〜1000℃で0.1〜5時間保持する。この保持によって、β−Siの結晶の粒界にRESiの結晶核を十分に生成させることができる。800℃未満や1000℃を越える場合や、保持時間が、0.1時間未満の場合には、RESiの結晶核が十分に生成しないので、後述する(j)の工程でβ−RESiの含有量が3体積%以上、20体積%以下の範囲で含有する窒化珪素質焼結体を製造することができない。特に保持時間が0.1時間未満の場合は、RESiの以外の結晶核(例:RE(SiN(アパタイト相))が多く生成し、熱膨張係数が大きくなるという問題も生じるおそれがある。また、保持時間が5時間を越える場合には、β−Siの結晶の粒界に存在する非晶質粒界相が軟化し、焼結体が大きく変形するので、寸法精度の非常に悪い窒化珪素質焼結体となり、工業的に使用可能な窒化珪素質焼結体を製造することが困難となる。 (I) Hold at 800 to 1000 ° C. for 0.1 to 5 hours in nitrogen gas. By this holding, the crystal nuclei of RE 2 Si 2 O 7 can be sufficiently generated at the grain boundaries of β-Si 3 N 4 crystals. When the temperature is lower than 800 ° C. or higher than 1000 ° C., or when the holding time is shorter than 0.1 hour, the crystal nuclei of RE 2 Si 2 O 7 are not sufficiently formed, and therefore β in the step (j) described later. The silicon nitride based sintered body containing the content of -RE 2 Si 2 O 7 in the range of 3 vol% or more and 20 vol% or less cannot be produced. In particular, when the retention time is less than 0.1 hour, many crystal nuclei other than RE 2 Si 2 O 7 (eg, RE 5 (Si 4 ) 3 N (apatite phase)) are generated, and the thermal expansion coefficient is large. The problem of becoming may also arise. Further, when the holding time exceeds 5 hours, the amorphous grain boundary phase existing at the grain boundary of the β-Si 3 N 4 crystal is softened, and the sintered body is greatly deformed. It becomes a bad silicon nitride sintered body, and it becomes difficult to produce an industrially usable silicon nitride sintered body.

(j)1200〜1500℃で1時間以上保持する。これにより、前記工程(i)で生成したRESiの結晶核がβ−RESiに転移、成長し、β−RESiの含有量が3体積%以上、20体積%以下の範囲で含有する窒化珪素質焼結体を得ることができる。保持温度が1200℃未満ではβ−RESiの含有量が3体積%未満となる。保持温度が1500℃よりも高いとγ−RESiとなり、β−RESiの含有量が3体積%未満となる。保持時間が1時間未満では、β−RESiの含有量が3体積%未満となる。β−RESiの含有量を5体積%以上、10体積%以下の範囲で含有することによって、熱膨張係数がさらに小さく、熱伝導率がさらに大きな窒化珪素質焼結体を製造するには、保持時間を2〜24時間とすることが好ましい。 (J) Hold at 1200 to 1500 ° C. for 1 hour or longer. Thus, the step (i) generated RE 2 crystal nuclei of Si 2 O 7 is transferred to the β-RE 2 Si 2 O 7, the growing, the content of β-RE 2 Si 2 O 7 is 3 vol% As described above, a silicon nitride-based sintered body containing 20% by volume or less can be obtained. Holding temperature is the content of β-RE 2 Si 2 O 7 is less than 3% by volume less than 1200 ° C.. Holding temperature is high, the γ-RE 2 Si 2 O 7 next than 1500 ° C., the content of β-RE 2 Si 2 O 7 is less than 3% by volume. When the holding time is less than 1 hour, the content of β-RE 2 Si 2 O 7 is less than 3% by volume. By containing the content of β-RE 2 Si 2 O 7 in the range of 5% by volume or more and 10% by volume or less, a silicon nitride sintered body having a smaller thermal expansion coefficient and a larger thermal conductivity is manufactured. For this purpose, the holding time is preferably 2 to 24 hours.

なお、前記工程(i)、(j)は、前記工程(h)と連続的に行ってもよく、断続的に行ってもよいが、作業者のハンドリングによる欠けの発生や製造コスト低減のためには連続して行うことが好ましい。また、前記(i)、(j)で言う保持とは、所定の温度範囲内に滞在した時間の合計を意味し、例えば一定温度で保持する時間や、昇温時間、降温時間が保持時間に含まれる。   In addition, although the said process (i) and (j) may be performed continuously with the said process (h) and may be performed intermittently, it is for generation | occurrence | production of the chip | tip by an operator's handling, and manufacturing cost reduction. It is preferable to carry out continuously. In addition, the holding in the above (i) and (j) means the total time spent in a predetermined temperature range. For example, the holding time, the temperature rising time, and the temperature falling time are set as the holding time. included.

また、出発原料の窒化珪素粉末の一部をシリコン粉末に置き換えることにより、工程(g)において相対密度を向上させることが容易となり、また、成形体の焼成時の収縮を抑制することができるため、得られる窒化珪素質焼結体の寸法精度を向上させることができる。出発原料の窒化珪素粉末の一部をシリコン粉末に置き換えた場合には、前記(g)の工程で最高温度に達する前に、窒素分圧が50kPa〜1.1MPaの雰囲気中で1000〜1400℃で5時間以上保持することが好ましい。   Further, by replacing a part of the starting silicon nitride powder with silicon powder, it becomes easy to improve the relative density in the step (g), and shrinkage at the time of firing the molded body can be suppressed. Thus, the dimensional accuracy of the obtained silicon nitride based sintered body can be improved. When a part of the starting silicon nitride powder is replaced with silicon powder, before reaching the maximum temperature in the step (g), the nitrogen partial pressure is from 1000 to 1400 ° C. in an atmosphere of 50 kPa to 1.1 MPa. For 5 hours or more.

上述のように、本発明の窒化珪素質焼結体は、機械的強度が実用上十分大きく、熱膨張係数が小さく、研削抵抗が小さい。そのため、本発明の窒化珪素質焼結体を半導体製造工程あるいは液晶パネル製造工程で用いられる基板処理装置用部材、例えば、露光装置用のレチクルステージ、ウェハステージ、ウェハ位置決め用のミラーとして用いた場合、次のような効果を奏することができる。   As described above, the silicon nitride sintered body of the present invention has a sufficiently large mechanical strength in practical use, a small thermal expansion coefficient, and a small grinding resistance. Therefore, when the silicon nitride sintered body of the present invention is used as a member for a substrate processing apparatus used in a semiconductor manufacturing process or a liquid crystal panel manufacturing process, for example, a reticle stage for an exposure apparatus, a wafer stage, a wafer positioning mirror The following effects can be achieved.

すなわち、第1に、半導体製造工程や液晶パネル製造工程で機械的応力がかかっても割れや欠けが生じることがない。第2に、超音波モータを用いた摩擦駆動に伴って発生する熱や部材周囲の温度変化によって部材温度が変化した場合でも、部材の寸法変化を極めて小さくできるので、高精度な微細配線が可能となる。第3に、研削抵抗が小さいことから高い寸法精度に研削加工することができるので、得られる部材の寸法精度を高めることができる。このように、本発明の窒化珪素質焼結体は、半導体・液晶製造装置用部材として好適に用いることができる。   That is, first, even when mechanical stress is applied in a semiconductor manufacturing process or a liquid crystal panel manufacturing process, no cracks or chips are generated. Secondly, even when the member temperature changes due to the heat generated by friction drive using an ultrasonic motor or the temperature change around the member, the dimensional change of the member can be made extremely small, enabling highly accurate fine wiring. It becomes. Third, since the grinding resistance is small, grinding can be performed with high dimensional accuracy, so that the dimensional accuracy of the obtained member can be increased. Thus, the silicon nitride sintered body of the present invention can be suitably used as a member for a semiconductor / liquid crystal manufacturing apparatus.

次いで、本発明の実施例について説明する。   Next, examples of the present invention will be described.

各種窒化珪素質焼結体を得るために、窒化珪素粉末(平均粒径10μm、β化率100%、酸素量0.9質量%、Fe不純物量0.3質量%、Al不純物量0.2質量%)、表1に示す如く各種第3族元素酸化物RE粉末(平均粒径5〜10μm)、SiO粉末(平均粒径約2μm)を表1に示す組成になるように秤量した。 In order to obtain various silicon nitride sintered bodies, silicon nitride powder (average particle size 10 μm, β conversion rate 100%, oxygen content 0.9 mass%, Fe impurity content 0.3 mass%, Al impurity content 0.2 Mass%), as shown in Table 1, various Group 3 element oxides RE 2 O 3 powder (average particle size of 5 to 10 μm), SiO 2 powder (average particle size of about 2 μm) so as to have the composition shown in Table 1. Weighed.

SiO粉末の添加量は、得られる焼結体中のSiO換算での含有量を表1に示した量となるよう次のようにして調製した。 The addition amount of the SiO 2 powder was prepared as follows so that the content in terms of SiO 2 in the obtained sintered body was the amount shown in Table 1.

窒化珪素粉末に含まれる酸素はSiOとして含有しているものとみなし、酸素量0.9質量%をSiOに換算することで、窒化珪素粉末中に酸素はSiO換算で1.7質量%含まれると仮定した。表1に示したSiO(モル%)は、窒化珪素粉末中に含まれると仮定したSiO量(1.7質量%)と、秤量したSiO粉末との合計量である。また、各試料について、窒化珪素粉末、RE粉末およびSiO粉末(秤量したSiO粉末と、窒化珪素粉末中に含まれる酸素含有量をSiOに換算したものをSiO粉末と見なしたものとの計)の合計を100質量部とするとき、さらにAl粉末2質量部、WO粉末0.5質量部秤量した。 Oxygen contained in the silicon nitride powder is deemed to contain as SiO 2, by converting the amount of oxygen 0.9 mass% SiO 2, 1.7 mass with oxygen in terms of SiO 2 in the silicon nitride powder % Is assumed to be included. SiO 2 (mol%) shown in Table 1 is the total amount of the SiO 2 amount (1.7% by mass) assumed to be contained in the silicon nitride powder and the weighed SiO 2 powder. See also, for each sample, the silicon nitride powder, and the SiO 2 powder RE 2 O 3 powder and SiO 2 powder (weighed and SiO 2 powder which is the same as the oxygen content in the silicon nitride powder to SiO 2 when the total 100 parts by mass of the total) and those without further Al 2 O 3 powder 2 parts by weight were weighed WO 3 powder 0.5 parts by weight.

秤量した各粉末に純水を加え、粒径D50が0.9μmになるように窒化珪素製メディアを用いたボールミルにて混合、粉砕し、得られたスラリーを脱鉄後、PVA(ポリビニルアルコール),PEG(ポリエチレングリコール)を秤量した粉末100質量部対して、各2質量部添加混合し、スプレードライヤーにて乾燥造粒して造粒粉を作製した。 Pure water is added to each weighed powder, mixed and pulverized in a ball mill using a silicon nitride medium so that the particle size D 50 is 0.9 μm, and the resulting slurry is deironed and then PVA (polyvinyl alcohol). ), 100 parts by mass of PEG (polyethylene glycol), 2 parts by mass of each was added and mixed, and dried and granulated with a spray dryer to prepare granulated powder.

得られた造粒粉を静水圧加圧法により800KPaの圧力で等方加圧して、外形60mm、厚み30mmに成形して成形体を作製し、この成形体を窒素ガス中で800℃で5時間加熱してPVAとPEGを脱脂し、さらに空気中で表1に示す温度および保持時間で保持して酸化し、酸化成形体を作製した。   The obtained granulated powder was isostatically pressed at a pressure of 800 KPa by a hydrostatic pressure method, and formed into an outer shape of 60 mm and a thickness of 30 mm to produce a molded body. This molded body was subjected to nitrogen gas at 800 ° C. for 5 hours. PVA and PEG were degreased by heating, and further oxidized in the air at the temperature and holding time shown in Table 1 to produce an oxidized molded body.

得られた酸化成形体全体を窒化珪素製の容器に載置して囲った。この際、この容器中にSiO粉末を含有した圧粉体を容器内の体積1cm当たり0.1gになるように容器内に配置した。 The entire oxidized molded body thus obtained was placed and enclosed in a silicon nitride container. At this time, the green compact containing the SiO 2 powder was placed in the container so as to be 0.1 g per 1 cm 3 of volume in the container.

酸化成形体を窒化珪素製の容器に入れたまま、焼成炉にセットし、110kPaの窒素分圧中にて1650℃で10Hr、1750℃で10Hr保持後、900kPaの窒素分圧中にて1850℃で10Hr焼成し、最高温度から800℃まで表1に示した時間で冷却し、さらに室温まで冷却して焼結体を得た。得られた焼結体の密度をアルキメデス法により測定した。その結果、全ての試料の相対密度が96%以上であることがわかった。   The oxide molded body was set in a firing furnace while being placed in a silicon nitride container, held at 1650 ° C. for 10 hours and 1750 ° C. for 10 hours in a nitrogen partial pressure of 110 kPa, and then at 1850 ° C. in a nitrogen partial pressure of 900 kPa. Was sintered for 10 hours, cooled from the maximum temperature to 800 ° C. in the time shown in Table 1, and further cooled to room temperature to obtain a sintered body. The density of the obtained sintered body was measured by the Archimedes method. As a result, it was found that the relative density of all the samples was 96% or more.

次に、得られた焼結体を窒化珪素製の容器に配置し、110kPaの窒素分圧中、800℃まで5℃/分で昇温後、800℃から1000℃までを表1に示す時間で昇温し、さらに1000℃から1200℃まで10℃/分で昇温し、1200℃から1500℃で表1に示す時間連続的に昇温後、室温まで冷却し、本発明の試料を得た。   Next, the obtained sintered body was placed in a container made of silicon nitride, heated to 800 ° C. at 5 ° C./min in a nitrogen partial pressure of 110 kPa, and the time shown in Table 1 from 800 ° C. to 1000 ° C. The sample was further heated from 1000 ° C. to 1200 ° C. at a rate of 10 ° C./min, continuously raised from 1200 ° C. to 1500 ° C. for the time shown in Table 1, and then cooled to room temperature to obtain a sample of the present invention. It was.

得られた試料からサンプルを切り出して、実施形態に記載の方法を用いてX線回折法による結晶相、β−RESiの含有量、SEMおよびEPMAを用いて倍率5000倍でSiOの含有量を測定し、各試料の特性として、3点曲げ強度、23℃における熱膨張係数、ドリルを用いた穴開け加工時の研削抵抗の最大値を測定した。 A sample was cut out from the obtained sample, and the crystal phase by X-ray diffraction method using the method described in the embodiment, the content of β-RE 2 Si 2 O 7 , Si at a magnification of 5000 times using SEM and EPMA The content of 2 N 2 O was measured, and as the characteristics of each sample, the three-point bending strength, the thermal expansion coefficient at 23 ° C., and the maximum value of the grinding resistance during drilling using a drill were measured.

次に、酸化処理の条件、焼結後の熱処理条件(800℃までの冷却時間、800〜1000℃の時間、1200〜1500℃の時間)を変更した以外は実施例と同様にして、比較例の試料を作製した。各結果を表1に示す。

Figure 2007169118
Next, a comparative example was carried out in the same manner as in the examples except that the conditions for the oxidation treatment and the heat treatment conditions after sintering (cooling time to 800 ° C., time for 800 to 1000 ° C., time for 1200 to 1500 ° C.) were changed. A sample of was prepared. The results are shown in Table 1.
Figure 2007169118

表1から明らかなように、本発明の試料No.2〜8、11〜17は、SiOの含有量が5体積%以上、30体積%以下、β−RESiの含有量が1体積%以上、10体積%以下となり、3点曲げ強度が522MPa以上と大きなものに保持したま、23℃における熱膨張係数が1.5×10−6/K以下と小さくでき、その結果、研削抵抗を395N以下とすることができ、加工性の高い焼結体を得ることができた。 As is apparent from Table 1, the sample No. 2-8, 11-17, the content of Si 2 N 2 O is 5% by volume or more and 30% by volume or less, and the content of β-RE 2 Si 2 O 7 is 1% by volume or more and 10% by volume or less. The thermal expansion coefficient at 23 ° C. can be reduced to 1.5 × 10 −6 / K or less while maintaining the three-point bending strength as large as 522 MPa or more. As a result, the grinding resistance can be reduced to 395 N or less. A sintered body with high workability could be obtained.

また、β−RESiの含有量が同じ場合には、含有するβ−RESiのうち、REがEr、Yb、Luのいずれかからなる試料(No.4,5,7,11,12,16,17)は、REがYからなる試料(No.2,13〜15)と比べて熱膨張係数が特に小さく、研削抵抗を376N以下とより小さくすることができた。 When the content of β-RE 2 Si 2 O 7 are the same, among β-RE 2 Si 2 O 7 containing, RE is Er, Yb, samples consisting of either Lu (No.4, 5,7,11,12,16,17) has a particularly small thermal expansion coefficient and a grinding resistance of 376 N or less, compared with the sample (No. 2, 13-15) in which RE is Y. did it.

これに対し、本発明の請求範囲外の組成を有する比較例の試料のうち、800℃以上の熱処理を行わず、粒界に結晶相が存在せず粒界が非晶質であり、β−ErSiを含有していない試料No.1は、室温における熱膨張係数が1.62×10−6/Kと非常に大きく、研削抵抗が410Nと大きなものとなった。また、1200〜1500℃における熱処理時間を30時間と長く、粒界のβ−ErSiの含有量が15体積%と多い試料No.9は、曲げ強度が462MPaと小さく、室温における熱膨張係数が1.45×10−6/Kと大きいため、研削抵抗が418Nと大きくなった。 On the other hand, among the samples of comparative examples having compositions outside the scope of claims of the present invention, heat treatment at 800 ° C. or higher is not performed, there is no crystal phase at the grain boundaries, and the grain boundaries are amorphous. Sample No. containing no Er 2 Si 2 O 7 No. 1 had a very large thermal expansion coefficient at room temperature of 1.62 × 10 −6 / K and a grinding resistance of as large as 410 N. Further, as long as 30 hours to a heat treatment time at 1200 to 1500 ° C., the content of β-Er 2 Si 2 O 7 in the grain boundary is large and 15% Sample No. No. 9 had a bending strength as small as 462 MPa and a thermal expansion coefficient at room temperature as large as 1.45 × 10 −6 / K, so that the grinding resistance increased to 418 N.

また、焼成温度から800℃までの冷却時間が12時間と長く、熱処理をしてもアパタイト相が粒界に析出しており、β−ダイシリケートを含有していない試料No.10は、室温における熱膨張係数が1.52×10−6/Kと大きく、研削抵抗が434Nと大きくなった。さらに、酸化処理を行わず、1200〜1500℃での熱処理時間を0.5時間と短くし、SiOの含有量が0.5体積%、β−ErSiの含有量が0.5体積%である試料No.18は、熱膨張係数が1.55×10−6/Kと大きく、研削抵抗が460Nと大きかった。酸化処理を500℃とし、熱処理の際にSiOを含有しない雰囲気とし、SiO、β−ErSiを含有せず、ボラストナイトを含有する試料No.19は、熱膨張係数が1.51×10−6/Kと大きく、研削抵抗が490Nと大きくなった。酸化処理温度を900℃以上とし、SiOの含有量が36体積%と多い試料No.20は、熱膨張係数が1.60×10−6/Kと大きくなった。酸化処理温度を500℃とし、SiOの含有量が3体積%と少ない試料No.21は、研削抵抗は450Nと大きかった。 Further, the cooling time from the firing temperature to 800 ° C. was as long as 12 hours, the apatite phase was precipitated at the grain boundaries even after heat treatment, and no sample No. 6 containing no β-disilicate was obtained. No. 10 had a large thermal expansion coefficient at room temperature of 1.52 × 10 −6 / K and a grinding resistance of 434 N. Furthermore, the oxidation treatment is not performed, the heat treatment time at 1200 to 1500 ° C. is shortened to 0.5 hours, the content of Si 2 N 2 O is 0.5% by volume, and the content of β-Er 2 Si 2 O 7 Sample No. with an amount of 0.5% by volume. 18 had a large thermal expansion coefficient of 1.55 × 10 −6 / K and a grinding resistance of 460 N. Oxidation treatment was performed at 500 ° C., an atmosphere containing no SiO during the heat treatment, Si 2 N 2 O, β-Er 2 Si 2 O 7 not contained, and sample No. containing borastite. 19 had a large thermal expansion coefficient of 1.51 × 10 −6 / K and a grinding resistance of 490 N. Sample No. with an oxidation treatment temperature of 900 ° C. or higher and a high Si 2 N 2 O content of 36% by volume. No. 20 has a thermal expansion coefficient of 1.60 × 10 −6 / K. Sample No. 21 with an oxidation treatment temperature of 500 ° C. and a low Si 2 N 2 O content of 3% by volume had a high grinding resistance of 450 N.

なお、表1でSiO含有雰囲気がありとは、焼成の際に前記圧粉体を容器内に配置して作製したものであり、SiO含有雰囲気がなしとは、前記圧粉体を容器内に配置しなかったことを示す。   In Table 1, “there is an SiO-containing atmosphere” means that the green compact is placed in a container during firing, and no SiO-containing atmosphere means that the green compact is in the container. Indicates no placement.

本発明の窒化珪素質焼結体は、半導体製造工程あるいは液晶パネル製造工程で用いられる基板処理装置用部材、例えば、露光装置用のレチクルステージや試料台、ウェハステージ、位置決め用のミラーなどに好適に使用される。また、各種産業機器部品、例えば耐熱衝撃特性が求められるアルミニウム溶湯用部品などにも好適に使用される。   The silicon nitride sintered body of the present invention is suitable for a substrate processing apparatus member used in a semiconductor manufacturing process or a liquid crystal panel manufacturing process, for example, a reticle stage or sample stage for an exposure apparatus, a wafer stage, a positioning mirror, etc. Used for. Moreover, it is used suitably also for various industrial equipment components, for example, components for molten aluminum that require thermal shock resistance.

β−ErSiの含有量の測定に用いる検量線である。It is a calibration curve used for measurement of the content of β-Er 2 Si 2 O 7 .

Claims (4)

β−Siを主成分とし、SiO(酸窒化珪素)を5体積%以上、30体積%以下、およびβ−RESi(REは周期律表第3族元素)を1体積%以上、10体積%以下の範囲でそれぞれ含有することを特徴とする窒化珪素質焼結体。 β-Si 3 N 4 as a main component, Si 2 N 2 O (silicon oxynitride) at 5 volume% or more and 30 volume% or less, and β-RE 2 Si 2 O 7 (RE is Group 3 of the periodic table) Element) in a range of 1% by volume or more and 10% by volume or less, respectively. 前記REがEr、Yb、Luのうち少なくとも1種であることを特徴とする請求項1に記載の窒化珪素質焼結体。 The silicon nitride based sintered body according to claim 1, wherein the RE is at least one of Er, Yb, and Lu. 処理室内に載置された半導体ウェハに処理を施すための半導体製造装置に用いられ、請求項1または2に記載の窒化珪素質焼結体からなることを特徴とする半導体製造装置用部材。 A member for a semiconductor manufacturing apparatus, which is used in a semiconductor manufacturing apparatus for performing a process on a semiconductor wafer placed in a processing chamber and is made of the silicon nitride sintered body according to claim 1. 液晶パネルを製造する工程に用いられる液晶製造装置に用いられ、請求項1または2に記載の窒化珪素質焼結体からなることを特徴とする液晶製造装置用部材。 A member for a liquid crystal manufacturing apparatus, which is used in a liquid crystal manufacturing apparatus used in a process for manufacturing a liquid crystal panel and is made of the silicon nitride based sintered body according to claim 1.
JP2005370703A 2005-12-22 2005-12-22 Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member Expired - Fee Related JP4936724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370703A JP4936724B2 (en) 2005-12-22 2005-12-22 Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370703A JP4936724B2 (en) 2005-12-22 2005-12-22 Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member

Publications (2)

Publication Number Publication Date
JP2007169118A true JP2007169118A (en) 2007-07-05
JP4936724B2 JP4936724B2 (en) 2012-05-23

Family

ID=38296180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370703A Expired - Fee Related JP4936724B2 (en) 2005-12-22 2005-12-22 Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member

Country Status (1)

Country Link
JP (1) JP4936724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160117A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Silicon nitride ceramic sintered compact and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287066A (en) * 1993-03-31 1994-10-11 Kyocera Corp Silicon nitride sintered compact and its production
JPH06287065A (en) * 1993-03-31 1994-10-11 Kyocera Corp Silicon nitride sintered compact and its production
JP2002206155A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Immersion member for hot-dip metal coating bath, and its manufacturing method
JP2004059346A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Silicon nitride-based ceramic sintered compact, and its production process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287066A (en) * 1993-03-31 1994-10-11 Kyocera Corp Silicon nitride sintered compact and its production
JPH06287065A (en) * 1993-03-31 1994-10-11 Kyocera Corp Silicon nitride sintered compact and its production
JP2002206155A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Immersion member for hot-dip metal coating bath, and its manufacturing method
JP2004059346A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Silicon nitride-based ceramic sintered compact, and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160117A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Silicon nitride ceramic sintered compact and method for producing the same

Also Published As

Publication number Publication date
JP4936724B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
JP3624219B2 (en) Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP4903431B2 (en) Silicon nitride sintered body and manufacturing method thereof, semiconductor manufacturing apparatus member and liquid crystal manufacturing apparatus member using the same
JPS6128627B2 (en)
EP2212074A2 (en) Water-based methods for producing high green density and transparent aluminum oxynitride (alon)
JP2021155293A (en) Laminated structure and semiconductor manufacturing device member
KR20120008427A (en) Silicon nitride-based composite ceramics and process for producing the same
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP4936724B2 (en) Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
TWI759081B (en) Machinable ceramic composite and method for preparing the same
JP6698395B2 (en) Probe guide member and manufacturing method thereof
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JPH09268069A (en) Highly heat conductive material and its production
JP4540598B2 (en) Ceramics for glass molds
JP2008297134A (en) Boron carbide based sintered compact and protective member
JP2008273753A (en) Boron carbide-based sintered compact and protective member
JP4822573B2 (en) Method for producing silicon nitride sintered body
JP2007230788A (en) Silicon nitride sintered compact
KR102141812B1 (en) Sintered aluminum nitride and its manufacturing method
JP2008297135A (en) Boron carbide based sintered compact, its manufacturing method and protective member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees