JPH09268069A - Highly heat conductive material and its production - Google Patents

Highly heat conductive material and its production

Info

Publication number
JPH09268069A
JPH09268069A JP8077845A JP7784596A JPH09268069A JP H09268069 A JPH09268069 A JP H09268069A JP 8077845 A JP8077845 A JP 8077845A JP 7784596 A JP7784596 A JP 7784596A JP H09268069 A JPH09268069 A JP H09268069A
Authority
JP
Japan
Prior art keywords
silicon nitride
oxide
periodic table
amount
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8077845A
Other languages
Japanese (ja)
Inventor
Kenichi Tajima
健一 田島
Toru Matsuoka
徹 松岡
Makoto Yoshida
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8077845A priority Critical patent/JPH09268069A/en
Publication of JPH09268069A publication Critical patent/JPH09268069A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a material having both a high strength at high temperatures and a high thermal conductivity. SOLUTION: This highly heat conductive material is obtained by baking a formed compact, consisting essentially of silicon nitride and containing a group IIIa element (RE) of the periodic table in an amount of 3-5mol% expressed in terms of RE2 O3 at 0.9-3.0molar ratio SiO2 /RE2 O3 of the amount of impure oxygen in the sintered compact expressed in terms of SiO2 to the amount of the RE2 O3 and having <=0.2wt.% Al content expressed in terms of an oxide at 1,500-1,800 deg.C under atmospheric pressure, subsequently baking the compact at >=2,000 deg.C temperature under >=1.5atom of nitrogen pressure and further carrying out the crystallizing treatment at 1,000-1,400 deg.C. The resultant material has >=5μm average crystal grain diameter of the silicon nitride, the grain boundary composed of the crystal phase containing at least RE, Si and O, further >=70W/m.K thermal conductivity and >=400 MPa strength at 1,300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ケイ素を主体
とする焼結体からなる高熱伝導性材料とその製造方法に
係わるものであり、詳細には、ガスタービン、エンジン
部品、セラミックスヒータ、核融合炉用部品、マイクロ
波加熱装置用部材などの高温で使用される耐熱部材や、
半導体用や電子部品用の各種放熱基板、さらには切削工
具として最適な高熱伝導性材料に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly heat-conductive material composed of a sintered body containing silicon nitride as a main component and a method for producing the same, and more particularly to a gas turbine, an engine part, a ceramic heater, and a nucleus. Heat-resistant members used at high temperatures, such as fusion reactor parts and microwave heating device members,
The present invention relates to various heat dissipation substrates for semiconductors and electronic parts, as well as high thermal conductivity materials most suitable as cutting tools.

【0002】[0002]

【従来技術】従来より、窒化ケイ素は、室温から高温ま
での高強度特性、耐摩耗性、高破壊靭性、高硬度等の優
れた機械的特性に加え、低熱膨張性、耐熱衝撃性に優れ
かつ軽量であることから、これまで様々な用途、例えば
自動車エンジン、ガスタービン等高温構造部品、ベアリ
ング、粉砕機、定盤、ガイド、切削工具等耐摩耗部品、
さらには溶融金属に対する耐食性から金属溶湯部品等に
様々な用途に展開されている。
2. Description of the Related Art Conventionally, silicon nitride has excellent mechanical properties such as high strength characteristics from room temperature to high temperature, wear resistance, high fracture toughness, and high hardness, as well as low thermal expansion and thermal shock resistance. Since it is lightweight, it has been used in various applications up to now, such as automobile engines, high-temperature structural parts such as gas turbines, bearings, crushers, surface plates, guides, wear-resistant parts such as cutting tools, etc.
Furthermore, due to its corrosion resistance to molten metal, it has been applied to various applications such as molten metal parts.

【0003】最近に至り、自動車エンジン部品、ガスタ
ービン部品等の高温構造用部品では、熱機関の出力及び
熱効率の向上を図る観点から使用温度の高温化が検討さ
れ、それに伴い、それに用いる部品の高熱伝導化が望ま
れている。また、セラミック製切削工具においても高速
切削化による刃先の高温化が進み、高熱伝導性を有する
セラミック切削工具も望まれている。
In recent years, in high temperature structural parts such as automobile engine parts and gas turbine parts, increasing the operating temperature has been studied from the viewpoint of improving the output and thermal efficiency of the heat engine. High thermal conductivity is desired. Further, in the cutting tool made of ceramics, the cutting edge has become higher in temperature due to high-speed cutting, and a ceramic cutting tool having high thermal conductivity is also desired.

【0004】また、半導体用のパッケージや電子部品等
においても、近年の急速な半導体素子の高密度、高性能
化による高温化に伴い、それらに用いられる材料として
も高熱伝導化が望まれている。
Also, in the case of semiconductor packages, electronic parts, etc., along with the recent rapid increase in the density and performance of semiconductor elements, the high heat conductivity has been demanded as the material used for them. .

【0005】これまで、高熱伝導性セラミックス材料と
しては、従来より、窒化アルミ、炭化ケイ素、酸化ベリ
リウム等が知られており、特に、半導体パッケージや電
子部品などの放熱用部材としては窒化アルミニウム焼結
体が最も用いられている。
Hitherto, aluminum nitride, silicon carbide, beryllium oxide and the like have been known as high thermal conductive ceramic materials, and in particular, aluminum nitride sintered as a heat radiating member for semiconductor packages and electronic parts. The body is the most used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウム、炭化ケイ素などの従来の高熱伝導材料は、
熱伝導性の観点からはある程度の特性を有するものの、
機械的な強度が不十分であるという問題があり、特にそ
の使用温度が1000℃を越えるようなエンジン部品、
ガスタービン用部品など高温で使用される部材には到底
使用することができず、その用途が非常に限られてい
た。
However, conventional high thermal conductivity materials such as aluminum nitride and silicon carbide are
Although it has some properties from the viewpoint of thermal conductivity,
There is a problem that mechanical strength is insufficient, especially engine parts whose operating temperature exceeds 1000 ° C,
It could not be used at all for members used at high temperatures such as parts for gas turbines, and its applications were very limited.

【0007】また、高温構造材料として知られる窒化ケ
イ素質焼結体は、高温強度においては非常に優れた特性
を有するものの、その熱伝導率はせいぜい30〜60W
/m・K程度であり、高熱伝導性が要求される部材とし
ては満足できるものではなかった。
The silicon nitride sintered material, which is known as a high temperature structural material, has very excellent characteristics in high temperature strength, but its thermal conductivity is at most 30 to 60 W.
/ M · K, which is not satisfactory as a member requiring high thermal conductivity.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題に対して検討を重ねた結果、焼結助剤として周期律表
第3a族元素酸化物を含む窒化ケイ素質焼結体におい
て、窒化ケイ素結晶の平均結晶粒径を大きくすると熱伝
導性が高くなること、Al(アルミニウム)は窒化ケイ
素結晶中に固溶して熱伝導性を低下させること、窒化ケ
イ素結晶の粒界に少なくとも周期律表第3a族元素、珪
素、酸素および窒素を含む結晶相を存在させると、熱伝
導率を向上できることを見いだし本発明に至った。
As a result of repeated studies on the above problems, the present inventors have found that in a silicon nitride sintered body containing a Group 3a element oxide of the periodic table as a sintering aid. , Increasing the average crystal grain size of the silicon nitride crystal increases the thermal conductivity, Al (aluminum) forms a solid solution in the silicon nitride crystal to reduce the thermal conductivity, and at least the grain boundary of the silicon nitride crystal The present inventors have found that the presence of a crystal phase containing a Group 3a element of the periodic table, silicon, oxygen and nitrogen can improve the thermal conductivity, and have reached the present invention.

【0009】即ち、本発明の高熱伝導性材料は、窒化ケ
イ素を主成分とし、周期律表第3a族元素(RE)を酸
化物(RE2 3 )換算で3〜5モル%、前記周期律表
第3a族元素の酸化物換算量と焼結体中の不純物的酸素
のSiO2 換算量とのSiO2 /RE2 3 で表される
モル比が0.9〜3.3、アルミニウム含有量が酸化物
換算で0.2重量%以下の組成からなるとともに、窒化
ケイ素結晶の平均粒径が5μm以上であり、その粒界が
少なくとも周期律表第3a族元素、珪素および酸素を含
む結晶相により構成され、且つ熱伝導率が70W/m・
K以上、1300℃における抗折強度が400MPa以
上であることを特徴とするものである。
That is, the highly heat-conductive material of the present invention contains silicon nitride as a main component, and the group 3a element (RE) of the periodic table is 3 to 5 mol% in terms of oxide (RE 2 O 3 ) in the above-mentioned period. The molar ratio represented by SiO 2 / RE 2 O 3 between the oxide equivalent of Group 3a element in the table and the SiO 2 equivalent of impurity oxygen in the sintered body is 0.9 to 3.3, and aluminum. The composition has a content of 0.2 wt% or less in terms of oxide, the silicon nitride crystal has an average grain size of 5 μm or more, and the grain boundaries include at least a Group 3a element of the periodic table, silicon, and oxygen. It is composed of a crystalline phase and has a thermal conductivity of 70 W / m
It is characterized in that the bending strength at K or higher and 1300 ° C. is 400 MPa or higher.

【0010】また、高熱伝導性材料の製造方法として、
窒化ケイ素を主成分とし、周期律表第3a族元素酸化物
を3〜5モル%、前記周期律表第3a族元素の酸化物換
算量と焼結体中の不純物的酸素のSiO2 換算量とのS
iO2 /RE2 3 で表されるモル比が0.9〜3.
3、アルミニウム含有量が酸化物換算で0.2重量%以
下の組成からなる成形体を作製する工程と、該成形体を
窒素を含む常圧下で1500〜1800℃で焼成する第
1焼成工程と、第1焼成工程に引き続き、窒素圧1.5
気圧以上の2000℃以上の温度で焼成し、窒化ケイ素
結晶の平均粒径を5μm以上まで成長させる第2焼成工
程と、第2焼成工程によって得られた焼結体を1000
℃〜1400℃の非酸化性雰囲気で熱処理を行い粒界を
結晶化する工程とを具備することを特徴とするものであ
る。
Further, as a method for producing a high thermal conductive material,
Silicon nitride as a main component, 3 to 5 mol% of Group 3a element oxide of the periodic table, oxide conversion amount of the Group 3a element of the periodic table, and SiO 2 conversion amount of impurity oxygen in the sintered body. And S
The molar ratio represented by iO 2 / RE 2 O 3 is 0.9 to 3.
3. A step of producing a molded body having a composition in which the aluminum content is 0.2% by weight or less in terms of oxide, and a first firing step of firing the molded body at 1500 to 1800 ° C. under normal pressure containing nitrogen. , Nitrogen pressure of 1.5 after the first firing step
A second firing step of firing at a temperature of 2000 ° C. or more, which is equal to or higher than atmospheric pressure, to grow the average grain size of silicon nitride crystals to 5 μm or more, and 1000 sintered bodies obtained by the second firing step are performed.
And a step of crystallizing the grain boundaries by performing a heat treatment in a non-oxidizing atmosphere at a temperature of ℃ to 1400 ℃.

【0011】[0011]

【発明の実施の形態】本発明の高熱伝導性材料は、組成
上、窒化ケイ素を主成分とするものであり、他の成分と
して、周期律表第3a族元素を酸化物換算で3〜5モル
%の割合で含有する。周期律表第3a族元素としては、
Y、Sc、Sm、Gd、Nd、Dy,Ho,Er,T
m,Yb,Lu等が挙げられるが、これらの中でもD
y,Ho,Er,Tm,Yb,Luの重希土類元素が高
温強度、熱伝導性を高める上で望ましい。なお、この周
期律表第3a族元素の量を上記の量に限定したのは、3
モル%より少ないと緻密不足になり熱伝導率、機械的特
性共に著しく劣化するからである。また、含有量が5モ
ル%を越えると粒界相量が多くなり熱伝導率が70W/
mK以下になるからである。本発明品における緻密度
は、理論密度比で99%以上が必要で、特には99.5
%以上が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The high thermal conductive material of the present invention is composed of silicon nitride as a main component in terms of composition, and as another component, a Group 3a element of the periodic table in an amount of 3 to 5 in terms of oxide. It is contained at a ratio of mol%. As a Group 3a element of the periodic table,
Y, Sc, Sm, Gd, Nd, Dy, Ho, Er, T
m, Yb, Lu, etc., but among these, D
Heavy rare earth elements such as y, Ho, Er, Tm, Yb, and Lu are preferable in order to improve high temperature strength and thermal conductivity. The amount of the Group 3a element of the periodic table is limited to the above amount by 3
If it is less than mol%, the compactness will be insufficient and the thermal conductivity and mechanical properties will be significantly deteriorated. Further, if the content exceeds 5 mol%, the amount of grain boundary phase increases and the thermal conductivity becomes 70 W /
This is because mK or less. The density of the product of the present invention needs to be 99% or more in terms of theoretical density ratio, and particularly 99.5.
% Or more is desirable.

【0012】また、本発明においては、窒化ケイ素結晶
粒の粒界が少なくとも周期律表第3a族元素(RE)、
ケイ素、酸素および窒素を構成元素として含む結晶相か
ら構成されることが重要である。具体的な結晶相として
はRE2 Si2 7 、RE2SiO5 等の酸化物結晶、
RE4 Si2 2 7 、RE10Si6 2 9 、RE2
Si3 4 3 、RE2 Si3 2 5 等酸窒化物結晶
が挙げられる。これらの中でもRE4 Si2 2 7
RE10Si6 2 9 、RE2 Si2 7 のうちの少な
くとも1種が析出するのが高温強度および高熱伝導性の
点で望ましい。
Further, in the present invention, the grain boundaries of the silicon nitride crystal grains are at least a Group 3a element (RE) of the periodic table,
It is important to be composed of a crystalline phase containing silicon, oxygen and nitrogen as constituent elements. Specific crystal phases include oxide crystals such as RE 2 Si 2 O 7 and RE 2 SiO 5 ,
RE 4 Si 2 N 2 O 7 , RE 10 Si 6 N 2 O 9 , RE 2
Examples include oxynitride crystals such as Si 3 N 4 O 3 and RE 2 Si 3 N 2 O 5 . Among these, RE 4 Si 2 N 2 O 7 ,
Precipitation of at least one of RE 10 Si 6 N 2 O 9 and RE 2 Si 2 O 7 is desirable from the viewpoint of high temperature strength and high thermal conductivity.

【0013】このように粒界を結晶化にさせることによ
り、ガラス相に比較して粒界の融点が高くなるために高
温での強度が高くなると同時に、熱伝達の観点からガラ
ス相よりも結晶相の方が熱の伝達性に優れるために焼結
体全体としての高熱伝導化を図ることができるためであ
る。
By crystallizing the grain boundaries in this manner, the melting point of the grain boundaries becomes higher than that of the glass phase, so that the strength at high temperature becomes high, and at the same time, from the viewpoint of heat transfer, the crystal phase is higher than that of the glass phase. This is because the phase has a higher heat transfer property, and thus the high thermal conductivity of the entire sintered body can be achieved.

【0014】上記粒界に上記の結晶を析出させる上で、
焼結体中に含まれる周期律表第3a族元素の酸化物換算
量と、焼結体中の不純物的酸素のSiO2 換算量とのS
iO2 /RE2 3 で表されるモル比が0.9〜3.
3、特に1.5〜2.5の範囲であることが重要であ
る。ここで、不純物的酸素とは、焼結体中に含まれる全
酸素量から周期律表第3a族元素酸化物などの焼結助剤
として混入する酸素分を差し引いた残りの酸素量であ
り、例えば、窒化ケイ素粉末中の不可避的不純物として
の酸素や、製造工程中での酸化作用により付着する酸素
分などによるもので、これらの不純物的酸素はSiと結
合しているものと推察される。なお、上記モル比を上記
の範囲に限定したのは、上記範囲を逸脱すると、粒界の
結晶化に際して、粒界結晶相以外にガラス相が発生しや
すくなり、これらのガラス相が熱伝導性や高温特性を劣
化させるためである。
In precipitating the above crystals at the above grain boundaries,
S of the oxide conversion amount of the Group 3a element of the periodic table contained in the sintered body and the SiO 2 conversion amount of the impurity oxygen in the sintered body
The molar ratio represented by iO 2 / RE 2 O 3 is 0.9 to 3.
3, especially in the range of 1.5 to 2.5 is important. Here, the impurity oxygen is the remaining oxygen amount obtained by subtracting the oxygen component mixed as a sintering aid such as the oxide of the Group 3a element of the periodic table from the total oxygen amount contained in the sintered body, For example, it is presumed that oxygen as unavoidable impurities in the silicon nitride powder and oxygen components adhering due to the oxidative action during the manufacturing process, and these impurity oxygens are bonded to Si. Note that the above-mentioned molar ratio is limited to the above range. When it deviates from the above range, a glass phase is likely to be generated in addition to the grain boundary crystal phase during crystallization of the grain boundary, and these glass phases have thermal conductivity. And to deteriorate the high temperature characteristics.

【0015】また、本発明によれば、焼結体中のアルミ
ニウムの含有量が酸化物換算で0.2重量%以下である
ことも重要である。これは、アルミニウムは酸化物、窒
化物として窒化ケイ素結晶中に固溶しサイアロン結晶
(SiAlON)を形成する。
According to the present invention, it is also important that the content of aluminum in the sintered body is 0.2% by weight or less in terms of oxide. This is because aluminum is dissolved as an oxide or a nitride in a silicon nitride crystal to form a sialon crystal (SiAlON).

【0016】このサイアロンはイオン結合性が強く、共
有結合に起因するフォノンを散乱させることから、窒化
ケイ素結晶自体の熱伝導率を低下させる結果、焼結体の
熱伝導性を低下させるためである。しかもアルミニウム
の存在は粒界の結晶化を阻害する要因となる。このよう
な理由からアルミニウム含有量が、0.2重量%を越え
ると70W/m・K以上の熱伝導率が達成されず、かか
る理由から極力少ない方が好ましく、アルミニウムは酸
化物換算で0.1重量%以下が望ましい。
This sialon has a strong ionic bond and scatters phonons due to covalent bonds, so that the thermal conductivity of the silicon nitride crystal itself is reduced, and as a result, the thermal conductivity of the sintered body is reduced. . Moreover, the presence of aluminum becomes a factor that hinders the crystallization of grain boundaries. For this reason, when the aluminum content exceeds 0.2% by weight, the thermal conductivity of 70 W / m · K or more cannot be achieved, and for this reason, the thermal conductivity is preferably as low as possible. It is preferably 1% by weight or less.

【0017】また、粒界の結晶化に関連して、焼結体中
において窒化ケイ素、周期律表第3a族元素以外の金属
元素量は、酸化物換算で1000ppm以下、特に50
0ppm以下であることが望ましく、これらの金属元素
量が1000ppmを越えると粒界の結晶化を阻害する
場合がある。
Further, in relation to the crystallization of grain boundaries, the amount of metal elements other than silicon nitride and Group 3a elements of the periodic table in the sintered body is 1000 ppm or less, particularly 50 ppm in terms of oxide.
It is preferably 0 ppm or less, and when the amount of these metal elements exceeds 1000 ppm, crystallization of grain boundaries may be hindered.

【0018】さらに、本発明によれば、焼結体の主結晶
相を構成する窒化ケイ素結晶粒の平均結晶粒径が5μm
以上であることも重要である。ここでの平均結晶粒径は
針状の結晶形や等軸状の結晶形であっても、その結晶の
2次元断面の組織から算出した結晶の面積を円形状に変
換したときの直径を指すもので、具体的な測定方法とし
ては、走査型電子顕微鏡等の写真を基に画像解析装置を
用いて算出することができる。これは、結晶粒と結晶粒
との界面が多く存在するほどフォノン拡散が大きくなり
熱伝達の効率が低下するため、結晶粒を大きくすること
により、粒界相によるフォノンの散乱が低減されるため
である。従って、平均結晶粒径が5μmより小さいと所
望の高熱伝導性が得られないのである。望ましくは、5
〜30μm、さらに望ましくは10〜20μmであるこ
とが望ましい。次に、本発明の高熱伝導性材料の製造方
法について説明する。窒化ケイ素原料粉末に対して周期
律表第3a族元素酸化物を3〜5モル%の割合で添加す
る。ここで用いられる窒化ケイ素原料粉末は、α型でも
β型でも問題ないが、コストの面からβ型が好ましい。
また、原料の製法についてもイミド分解法でもシリコン
直接窒化法のどちらでも良いが純度99%以上の原料が
望ましい。窒化ケイ素原料の一次粒径は特に微粉である
必要はないが、焼結性の面から平均粒径1μm程度の微
粉末が好ましい。また、窒化ケイ素表面の不純物酸素量
は1.5重量%以下であることが望ましい。また、焼結
助剤として周期律表第3a族元素酸化物を2〜5モル%
の割合で添加する。周期律表第3a族元素としては、
Y、Sc、Sm、Gd、Nd、Dy,Ho,Er,T
m,Yb,Lu等が挙げられ、これらの中でもDy,H
o,Er,Tm,Yb,Luが好適に使用される。
Further, according to the present invention, the average crystal grain size of the silicon nitride crystal grains constituting the main crystal phase of the sintered body is 5 μm.
It is also important that this is done. The average crystal grain size here means the diameter when the area of the crystal calculated from the structure of the two-dimensional cross section of the crystal is converted into a circular shape, even if the crystal shape is acicular or equiaxed. As a specific measuring method, it can be calculated by using an image analyzer based on a photograph of a scanning electron microscope or the like. This is because the phonon diffusion increases and the heat transfer efficiency decreases as the number of interfaces between the crystal grains increases, so that the phonon scattering due to the grain boundary phase is reduced by increasing the crystal grains. Is. Therefore, if the average crystal grain size is smaller than 5 μm, the desired high thermal conductivity cannot be obtained. Desirably 5
It is desirable that the thickness is -30 μm, and more desirably 10-20 μm. Next, a method for manufacturing the high thermal conductive material of the present invention will be described. The Group 3a element oxide of the periodic table is added to the silicon nitride raw material powder in a proportion of 3 to 5 mol%. The silicon nitride raw material powder used here may be either α type or β type, but β type is preferable from the viewpoint of cost.
The raw material may be produced by either the imide decomposition method or the silicon direct nitriding method, but a raw material having a purity of 99% or more is desirable. The primary particle size of the silicon nitride raw material is not particularly required to be a fine powder, but a fine powder having an average particle size of about 1 μm is preferable from the viewpoint of sinterability. Further, it is desirable that the amount of impurity oxygen on the surface of silicon nitride is 1.5% by weight or less. Moreover, 2 to 5 mol% of a Group 3a element oxide of the periodic table is used as a sintering aid.
At the same rate. As a Group 3a element of the periodic table,
Y, Sc, Sm, Gd, Nd, Dy, Ho, Er, T
m, Yb, Lu, etc., among them, Dy, H
O, Er, Tm, Yb and Lu are preferably used.

【0019】窒化ケイ素原料に対して、周期律表第3a
族元素酸化物を上記の範囲で添加し、これをボールミル
などにより十分に混合した後、その混合物を所望の成形
手段、例えば、金型プレス,冷間静水圧プレス,押出し
成形等により任意の形状に成形する。本発明によれば、
このようにして作製した成形体の組成において、前記周
期律表第3a族元素の酸化物換算量と焼結体中の不純物
的酸素のSiO2 換算量とのSiO2 /RE2 3 で表
されるモル比が0.9〜3.3、アルミニウム含有量が
酸化物換算で0.2重量%以下の組成からなることが重
要である。
For the silicon nitride raw material, the periodic table 3a is used.
After adding the group element oxide in the above range and thoroughly mixing it with a ball mill or the like, the mixture is formed into a desired shape by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding or the like. To mold. According to the present invention,
In the composition of the molded body produced in this manner, it is represented by SiO 2 / RE 2 O 3 which is the oxide equivalent of the Group 3a element of the periodic table and the SiO 2 equivalent of the impurity oxygen in the sintered body. It is important that the molar ratio is 0.9 to 3.3 and the aluminum content is 0.2% by weight or less in terms of oxide.

【0020】不純物的酸素量は、窒化ケイ素原料中の不
純物酸素量と別途酸化ケイ素の添加によって容易に制御
できる。また、アルミニウム量は原料中の不純物量と混
合時のボール等からの混入分も加味して調整することが
必要である。
The amount of impurity oxygen can be easily controlled by adding silicon oxide separately from the amount of impurity oxygen in the silicon nitride raw material. Further, it is necessary to adjust the amount of aluminum in consideration of the amount of impurities in the raw material and the amount mixed from balls and the like during mixing.

【0021】次に、上記のようにして得た成形体を窒素
等の非酸化性雰囲気中で焼成する。
Next, the molded body obtained as described above is fired in a non-oxidizing atmosphere such as nitrogen.

【0022】このとき、本発明では、第1焼成工程とし
て、窒素を含む常圧下で1500〜1800℃で焼成す
る。この第1焼成工程は、窒化ケイ素のα型からβ型へ
の相転移を完了させ、結晶粒の核になるβ窒化ケイ素粒
子を数多く析出させるための工程であり、最高温度で5
〜10時間程度保持するのが望ましい。
At this time, in the present invention, the first firing step is firing at 1500 to 1800 ° C. under normal pressure containing nitrogen. This first firing step is a step for completing the phase transition of α-type to β-type of silicon nitride and precipitating a large number of β-silicon nitride particles serving as nuclei of crystal grains.
It is desirable to hold it for about 10 hours.

【0023】次に、第1焼成工程に引き続き、第2焼成
工程として、2000℃以上の窒素中で焼成する。この
時の雰囲気は窒化ケイ素が分解しないように窒素圧1.
5気圧以上、特に10気圧以上の高圧窒素中で焼成する
のがよい。この第2焼成工程は、この工程は理論密度比
99%以上の緻密体を作製すると同時に窒化ケイ素結晶
を結晶成長させ、平均結晶粒径5μm以上の組織に粒成
長させるために必要な工程である。そのためには、最高
温度で5〜10時間程度の保持するのが適当である。
Next, following the first firing step, as the second firing step, firing is performed in nitrogen at 2000 ° C. or higher. At this time, the atmosphere has a nitrogen pressure of 1. so that the silicon nitride is not decomposed.
It is preferable to perform firing in high-pressure nitrogen of 5 atm or more, particularly 10 atm or more. This second firing step is a step necessary for producing a dense body having a theoretical density ratio of 99% or more, and at the same time, crystal growth of silicon nitride crystals and grain growth into a structure having an average crystal grain size of 5 μm or more. . For that purpose, it is suitable to maintain the maximum temperature for about 5 to 10 hours.

【0024】さらに、第2焼成工程後の冷却時または一
旦冷却させた後、1000〜1400℃の窒素などの非
酸化性または大気中で粒界相の結晶化熱処理を行う。温
度は析出させる粒界結晶相の種類により若干変化する
が、通常融点の高い粒界相ほど高い温度で行うのが効果
が大きい。熱処理時間は結晶化度が平衡に達する時間で
十分だが、通常5時間以上が必要である。結晶化処理後
の冷却は特に特性に影響しない。
Further, at the time of cooling after the second firing step or after cooling once, a crystallization heat treatment of the grain boundary phase is performed at 1000 to 1400 ° C. in a non-oxidizing atmosphere such as nitrogen or in the atmosphere. Although the temperature slightly changes depending on the kind of the grain boundary crystal phase to be precipitated, it is usually more effective to carry out the higher temperature for the grain boundary phase having a higher melting point. The heat treatment time is sufficient for the crystallinity to reach equilibrium, but it is usually required to be 5 hours or longer. Cooling after the crystallization treatment does not particularly affect the properties.

【0025】[0025]

【実施例】シリコン直接窒化法により作製されたβ型窒
化ケイ素原料(A原料;酸素量1.2重量%、平均粒径
1μm)とイミド分解法で作製されたα型窒化ケイ素原
料(B原料;酸素量1.0重量%、平均粒径0.7μ
m)に、純度99.9%以上の周期律表第3a族元素酸
化物粉末、所望により酸化ケイ素粉末を添加した後、こ
の調合原料を500mlのポリエチレン製ポットに窒化
ケイ素製粉砕ボールとエタノールとバインダーを入れ、
回転ミルにて混合粉砕し、その後スプレードライを施し
造粒粉末を得た。成形は直径60mm、厚さ10mmの
形状になるように1ton/cm2 の成形圧で金型プレ
ス成形した。成形体組成は表1、2の通りである。な
お、試料No.12〜14についてはAl量と特性の関係
を調査するためにAl2O3 を添加し調整した。
Example A β-type silicon nitride raw material produced by the silicon direct nitriding method (A raw material; oxygen content 1.2% by weight, average particle diameter 1 μm) and an α-type silicon nitride raw material produced by imide decomposition method (B raw material) ; Oxygen content 1.0% by weight, average particle size 0.7μ
m) is added with an oxide powder of a Group 3a element of the periodic table having a purity of 99.9% or more and, if desired, a silicon oxide powder, and the prepared raw material is added to a 500 ml polyethylene pot with a silicon nitride grinding ball and ethanol. Put the binder,
The mixture was pulverized by a rotary mill and then spray-dried to obtain a granulated powder. Molding was performed by die press molding under a molding pressure of 1 ton / cm 2 so as to form a shape having a diameter of 60 mm and a thickness of 10 mm. The molding composition is shown in Tables 1 and 2. For samples Nos. 12 to 14, Al 2 O 3 was added and adjusted in order to investigate the relationship between the amount of Al and the characteristics.

【0026】次に、成形体を500℃、大気中で5時間
の保持を行い脱脂した後、表1に示す条件で焼成した。
なお、第1焼成工程は常圧下で最高温度5時間の保持で
焼成し、第2焼成工程はいずれも50気圧窒素中で最高
温度5時間の保持で焼成した。焼成後の焼結体をさらに
表1、2の熱処理温度で常圧の窒素中で5時間処理し
た。
Next, the molded body was held at 500 ° C. in the atmosphere for 5 hours to be degreased and then fired under the conditions shown in Table 1.
The first baking step was carried out at a maximum temperature of 5 hours under normal pressure and the second baking step was carried out at 50 atmospheres of nitrogen at a maximum temperature of 5 hours. The sintered body after firing was further treated for 5 hours in nitrogen at atmospheric pressure at the heat treatment temperatures shown in Tables 1 and 2.

【0027】得られた焼結体を切断加工し、3×4×4
0mmのテストピースをJISR1601に準じて室温
及び1300℃で各5本ずつ4点曲げ強度試験を行いそ
の平均値を強度値として求めた。またアルキメデス法に
よる密度測定を行い、調合時の理論密度との理論密度比
を算出した。また、試料を粉砕し、結晶相をX線回折に
より求め、直径10mm、厚さ2mmの形状に加工し、
室温における熱伝導率をレーザーフラッシュ法で測定し
た。また、試験片の鏡面を走査電子顕微鏡で1000倍
の組織写真からルーゼックス装置により画像解析し、窒
化ケイ素結晶の平均結晶粒径を求めた。結果を併せて表
1、2に示す。
The resulting sintered body is cut and processed into 3 × 4 × 4
A 0 mm test piece was subjected to a 4-point bending strength test at room temperature and 1300 ° C. according to JIS R1601, and five points each were subjected to a 4-point bending strength test, and an average value thereof was determined as a strength value. The density was measured by the Archimedes method, and the theoretical density ratio with the theoretical density at the time of preparation was calculated. In addition, the sample was crushed, the crystal phase was determined by X-ray diffraction, and processed into a shape with a diameter of 10 mm and a thickness of 2 mm,
The thermal conductivity at room temperature was measured by the laser flash method. Further, the mirror surface of the test piece was image-analyzed by a Luzex apparatus from a structure photograph of 1000 times with a scanning electron microscope to determine the average crystal grain size of the silicon nitride crystal. The results are also shown in Tables 1 and 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1および表2の結果から明らかなよう
に、周期律表第3a族元素の酸化物換算量が3モル%よ
り少ない試料No.8では緻密化不足により強度、熱伝導
性ともに低いものであり、5モル%を越える試料No.7
では、高温強度は高いが熱伝導性が低い。
As is clear from the results of Tables 1 and 2, the sample No. 8 in which the oxide conversion amount of the Group 3a element of the periodic table is less than 3 mol% has low strength and low thermal conductivity due to insufficient densification. Sample No. 7 exceeding 5 mol%
, The high temperature strength is high, but the thermal conductivity is low.

【0031】第2焼成温度が2000℃より低い試料N
o.17、第1焼成工程のない試料No.19ではSi3
4 平均結晶粒径が5μmより小さく、いずれも高温強度
は優れるが熱伝導性が低いものであった。
Sample N whose second firing temperature is lower than 2000 ° C.
o.17, sample No. 19 without the first firing step is Si 3 N
4 The average crystal grain size was smaller than 5 μm, and all had excellent high temperature strength but low thermal conductivity.

【0032】Al量については、試料No.10、13、
14、15の比較から、Al量が0.2重量%よりも多
くなると、粒界にガラス相が生成しやすくなり、高温強
度が低下すると同時に熱伝導率が低下することがわか
る。
Regarding the amount of Al, samples No. 10, 13,
From the comparison of Nos. 14 and 15, it can be seen that when the amount of Al is more than 0.2% by weight, a glass phase is likely to be formed in the grain boundary, the high temperature strength is lowered, and at the same time the thermal conductivity is lowered.

【0033】また、SiO2 /RE2 3 比が0.9よ
り低い試料No.27、3.3より大きい試料No.28で
は、いずれも粒界にガラス相の生成が認められ、その結
果、熱伝導性および高温強度ともに低下した。
Further, in the sample No. 27 having a SiO 2 / RE 2 O 3 ratio of lower than 0.9, and the sample No. 28 having a ratio of more than 3.3, formation of a glass phase was observed at the grain boundaries, and as a result, , The thermal conductivity and the high temperature strength both decreased.

【0034】これらの比較例に対して、本発明品は、い
ずれも室温強度600MPa以上、1300℃強度40
0MPa以上、熱伝導率70W/m・K以上が達成さ
れ、とりわけ、周期律表第3a族元素として、Dy、H
o、Er、Tm、Yb、Luからなるとともに、Al量
が0.1重量%以下の試料No.5、6、9〜12、1
6、18、20〜24では、室温強度700MPa以
上、1300℃強度500MPa以上、熱伝導率80W
/m・K以上が達成された。
In contrast to these comparative examples, the products of the present invention each have a room temperature strength of 600 MPa or more and a 1300 ° C. strength of 40 MPa.
A thermal conductivity of 0 MPa or more and a thermal conductivity of 70 W / m · K or more are achieved. In particular, as a Group 3a element of the periodic table, Dy, H
o, Er, Tm, Yb, Lu, and Samples Nos. 5, 6, 9 to 12 and 1 having an Al content of 0.1 wt% or less.
6, 18, 20 to 24, room temperature strength 700 MPa or more, 1300 ° C. strength 500 MPa or more, thermal conductivity 80 W
/ M · K or higher was achieved.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明による高熱伝
導性材料は、1300℃において高い強度を有するとと
もに、高い熱伝導性を有することから、各種ガスタービ
ンやエンジン部品などの耐熱材料はもちろんのこと、セ
ラミックヒータ、切削工具、半導体等の放熱基板なとし
てあらゆる分野に応用することができる。
As described in detail above, the high thermal conductivity material according to the present invention has high strength at 1300 ° C. and high thermal conductivity, and therefore, it is of course suitable for heat resistant materials such as various gas turbines and engine parts. Therefore, it can be applied to various fields such as ceramic heaters, cutting tools, and heat dissipation boards for semiconductors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化ケイ素を主成分とし、周期律表第3a
族元素(RE)を酸化物(RE2 3 )換算で3〜5モ
ル%、前記周期律表第3a族元素の酸化物換算量と焼結
体中の不純物的酸素のSiO2 換算量とのSiO2 /R
2 3 で表されるモル比が0.9〜3.3、アルミニ
ウム含有量が酸化物換算で0.2重量%以下の組成から
なるとともに、窒化ケイ素結晶の平均粒径が5μm以上
であり、その粒界が少なくとも周期律表第3a族元素、
珪素および酸素を含む結晶相により構成され、且つ熱伝
導率が70W/m・K以上、1300℃における抗折強
度が400MPa以上であることを特徴とする高熱伝導
性材料。
1. A periodic table 3a containing silicon nitride as a main component.
3 to 5 mol% of the group element (RE) in terms of oxide (RE 2 O 3 ), the amount of oxide of the group 3a element of the periodic table and the amount of impurity oxygen in the sintered body, converted to SiO 2 SiO 2 / R
When the molar ratio represented by E 2 O 3 is 0.9 to 3.3, the aluminum content is 0.2% by weight or less in terms of oxide, and the average grain size of the silicon nitride crystals is 5 μm or more. And its grain boundary is at least an element of Group 3a of the periodic table,
A high thermal conductivity material which is composed of a crystal phase containing silicon and oxygen and has a thermal conductivity of 70 W / m · K or more and a bending strength at 1300 ° C. of 400 MPa or more.
【請求項2】窒化ケイ素を主成分とし、周期律表第3a
族元素酸化物を3〜5モル%、前記周期律表第3a族元
素の酸化物換算量と焼結体中の不純物的酸素のSiO2
換算量とのSiO2 /RE2 3 で表されるモル比が
0.9〜3.3、アルミニウム含有量が酸化物換算で
0.2重量%以下の組成からなる成形体を作製する工程
と、該成形体を窒素を含む常圧下で1500〜1800
℃で焼成する第1焼成工程と、第1焼成工程に引き続
き、窒素圧1.5気圧以上の2000℃以上の温度で焼
成し、窒化ケイ素結晶の平均粒径を5μm以上まで成長
させる第2焼成工程と、第2焼成工程によって得られた
焼結体を1000℃〜1400℃の非酸化性雰囲気で熱
処理を行い粒界を結晶化する工程とを具備することを特
徴とする高熱伝導性材料の製造方法。
2. A periodic table 3a containing silicon nitride as a main component.
SiO 2 of 3 to 5 mol% of group element oxide, the oxide conversion amount of the group 3a element of the periodic table, and impurity oxygen in the sintered body.
A step of producing a molded product having a composition in which a molar ratio represented by SiO 2 / RE 2 O 3 with a converted amount is 0.9 to 3.3 and an aluminum content is 0.2% by weight or less in terms of oxide. And the molded body under a normal pressure containing nitrogen at 1500 to 1800
The first firing step of firing at ℃, and the second firing that follows the first firing step, firing at a temperature of 2000 ° C. or higher with a nitrogen pressure of 1.5 atm or higher to grow the average grain size of silicon nitride crystals to 5 μm or higher. And a step of crystallizing grain boundaries by heat-treating the sintered body obtained by the second firing step in a non-oxidizing atmosphere at 1000 ° C to 1400 ° C. Production method.
JP8077845A 1996-03-29 1996-03-29 Highly heat conductive material and its production Pending JPH09268069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8077845A JPH09268069A (en) 1996-03-29 1996-03-29 Highly heat conductive material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8077845A JPH09268069A (en) 1996-03-29 1996-03-29 Highly heat conductive material and its production

Publications (1)

Publication Number Publication Date
JPH09268069A true JPH09268069A (en) 1997-10-14

Family

ID=13645399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8077845A Pending JPH09268069A (en) 1996-03-29 1996-03-29 Highly heat conductive material and its production

Country Status (1)

Country Link
JP (1) JPH09268069A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and its manufacture
EP0940377A1 (en) * 1998-03-05 1999-09-08 Sumitomo Electric Industries, Ltd. Si3N4 Sintered body with high thermal conductivity and method for producing the same
EP0941976A1 (en) * 1998-03-12 1999-09-15 Sumitomo Electric Industries, Ltd. Highly heat-conductive silicon nitride-base sintered-body and method for fabricating the same
JP2000247748A (en) * 1999-02-22 2000-09-12 Kyocera Corp High-toughness silicon nitride-based sintered compact
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
US6617272B2 (en) 1998-03-05 2003-09-09 Sumitomo Electric Industries, Ltd. Si3N4 sintered body with high thermal conductivity and method for producing the same
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2012092006A (en) * 2010-09-29 2012-05-17 Kyocera Corp Silicon nitride sintered compact, circuit board using this and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and its manufacture
EP0940377A1 (en) * 1998-03-05 1999-09-08 Sumitomo Electric Industries, Ltd. Si3N4 Sintered body with high thermal conductivity and method for producing the same
JPH11314969A (en) * 1998-03-05 1999-11-16 Sumitomo Electric Ind Ltd High heat conductivity trisilicon tetranitride sintered compact and its production
US6617272B2 (en) 1998-03-05 2003-09-09 Sumitomo Electric Industries, Ltd. Si3N4 sintered body with high thermal conductivity and method for producing the same
EP0941976A1 (en) * 1998-03-12 1999-09-15 Sumitomo Electric Industries, Ltd. Highly heat-conductive silicon nitride-base sintered-body and method for fabricating the same
JP2000247748A (en) * 1999-02-22 2000-09-12 Kyocera Corp High-toughness silicon nitride-based sintered compact
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
US7915533B2 (en) 2005-04-28 2011-03-29 Hitachi Metals, Ltd. Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module
JP2012092006A (en) * 2010-09-29 2012-05-17 Kyocera Corp Silicon nitride sintered compact, circuit board using this and electronic device

Similar Documents

Publication Publication Date Title
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
EP1414580B1 (en) Multication doped alpha-beta sialon ceramics
JPH09268069A (en) Highly heat conductive material and its production
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JPH0797266A (en) Silicon nitride-based sintered material and its production
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
Chen et al. Microstructure of (Y+ Sm)–α-sialon with a-sialon seeds
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH09165264A (en) Silicon nitride sintetred product and its production
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JPH06287066A (en) Silicon nitride sintered compact and its production
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2022032638A (en) Aluminium nitride sintered compact and manufacturing method therefor
JPH02233560A (en) High-strength calcined sialon-based compact
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH0686331B2 (en) High-strength sialon-based sintered body
JPH0559074B2 (en)
JP3207065B2 (en) Silicon nitride sintered body
JP2783711B2 (en) Silicon nitride sintered body
JPH0840774A (en) Silicon nitride sintered product
JP2000247749A (en) Silicon nitride-silicon carbide-based composite sintered compact and its production