JP6698395B2 - Probe guide member and manufacturing method thereof - Google Patents

Probe guide member and manufacturing method thereof Download PDF

Info

Publication number
JP6698395B2
JP6698395B2 JP2016060746A JP2016060746A JP6698395B2 JP 6698395 B2 JP6698395 B2 JP 6698395B2 JP 2016060746 A JP2016060746 A JP 2016060746A JP 2016060746 A JP2016060746 A JP 2016060746A JP 6698395 B2 JP6698395 B2 JP 6698395B2
Authority
JP
Japan
Prior art keywords
less
mass
parts
guide member
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016060746A
Other languages
Japanese (ja)
Other versions
JP2017173179A (en
Inventor
西川 正人
正人 西川
剛春 永田
剛春 永田
稔男 田中
稔男 田中
光永 敏勝
敏勝 光永
康人 伏井
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016060746A priority Critical patent/JP6698395B2/en
Publication of JP2017173179A publication Critical patent/JP2017173179A/en
Application granted granted Critical
Publication of JP6698395B2 publication Critical patent/JP6698395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体素子の検査工程に好適な窒化ホウ素−サイアロン系複合セラミックスのプローブ案内部材及びその製造方法、並びに該プローブ案内部材を用いたプローブガイド加工品及びプローブカード製品に関するものである。   The present invention relates to a boron nitride-sialon-based composite ceramics probe guide member suitable for a semiconductor element inspection process, a method for manufacturing the same, and a probe guide processed product and a probe card product using the probe guide member.

ICやLSI等の半導体素子の回路の良否を判定する検査工程では、プローブカードと呼ばれる測定装置ユニットが広く使用されている。   A measuring device unit called a probe card is widely used in an inspection process for determining the quality of a circuit of a semiconductor element such as an IC or an LSI.

プローブカードは、導電性の触針(プローブともいう)を、プローブ案内部品(プローブガイド部品、または単にプローブガイドともいう)に設けられた多数の貫通孔に通すようにして作製された剣山状の構造を有し、各プローブの先端を、シリコンウエハー上に形成されているLSI等の電気回路配線に圧接して通電検査し、電気回路の導通性または絶縁性などの良否を判定するために使用する測定装置ユニットである。   A probe card is a sword-shaped probe made by passing a conductive stylus (also referred to as a probe) through a large number of through holes provided in a probe guide component (also referred to as a probe guide component or simply a probe guide). It has a structure, and the tip of each probe is pressed against the electrical circuit wiring of LSI etc. formed on a silicon wafer and used for electrical inspection, and it is used to judge the continuity or insulation property of the electrical circuit. It is a measuring device unit that does.

このプローブガイド製品に用いられる材料、即ちプローブ案内部材は、各プローブ間の電気的絶縁性を保つため、そのもの自体は電気絶縁性に優れる材料であることが求められている。また該部材の熱膨張係数は、通電検査時の発熱や、加熱下での測定時に発生する、シリコンウエハー上のプローブ接触予定位置と、実際にプローブ先端が圧接する位置とのズレを最小限に抑えるため、シリコンウエハー、即ち高純度シリコンの熱膨張係数にほぼ等しい材料であることが望ましい。近年ではシリコンウエハーの大型化、回路の高集積化の進行に伴い、本特性はますます重要な要素となってきている。さらに、該プローブ案内部材は、十分な機械的強度を有することと共に、割れや欠けが生じずに高精度で微細な加工を施すことが可能であること、また他方では工具摩耗の少ない材料(即ち快削性の材料)であることも望まれている。   The material used for the probe guide product, that is, the probe guide member, is required to be a material having excellent electric insulation itself in order to maintain the electric insulation between the probes. The coefficient of thermal expansion of the member minimizes the heat generated during energization inspection and the deviation between the probe contact position on the silicon wafer and the position where the probe tip actually presses, which occurs during measurement under heating. In order to suppress it, it is desirable that the material is substantially equal to the thermal expansion coefficient of the silicon wafer, that is, high-purity silicon. In recent years, these characteristics have become more and more important factors as the size of silicon wafers and the integration of circuits have increased. Further, the probe guide member has sufficient mechanical strength and is capable of performing fine processing with high accuracy without cracking or chipping. It is also desired to be a free-cutting material).

電気的絶縁性を有する快削性セラミックスとしては、窒化ホウ素が一般的に良く知られている。しかしながら、窒化ホウ素は代表的な難焼結性材料で、高密度の焼結体を得ることが困難であり、層間剥離しやすい材料でもあるため、それ単独では強度が低く、高精度で微細な加工には適さないという課題があった。これらの課題を解決するために、他のセラミックスと組み合わせる技術が多数提供されており、プローブ案内部材としても、特許文献1〜6に記載の窒化ホウ素と窒化珪素及び/またはジルコニアとを組み合わせた複合セラミックスが知られている。また、窒化ホウ素とサイアロンとを含む組み合わせである複合セラミックスとして特許文献7、8に記載のものが知られている。   Boron nitride is generally well known as a free-cutting ceramic having an electrically insulating property. However, since boron nitride is a typical non-sinterable material, it is difficult to obtain a high-density sintered body, and it is also a material that easily undergoes delamination. Therefore, it alone has low strength, high precision and fineness. There was a problem that it was not suitable for processing. In order to solve these problems, many techniques for combining with other ceramics are provided, and as a probe guide member, a composite of boron nitride and silicon nitride and/or zirconia described in Patent Documents 1 to 6 is also provided. Ceramics are known. Further, as composite ceramics which are a combination containing boron nitride and sialon, those described in Patent Documents 7 and 8 are known.

特開2000−327402号公報JP 2000-327402A 特開2001−354480号公報JP 2001-354480 A 特開2002−356374号公報JP 2002-356374 A 特開2003−286076号公報JP, 2003-286076, A 特開2005−119941号公報JP-A-2005-119941 特開2007−332025号公報JP, 2007-332025, A 特開平05−201771号公報Japanese Patent Laid-Open No. 05-201771 特開平06−263544号公報JP, 06-263544, A

窒化ホウ素−サイアロン系複合セラミックスそれ自体は公知の材料であるが、これまで溶融金属に対する耐食性、耐熱衝撃性の改良を目的としていたため、プローブ案内部材としての適正は検討されておらず、課題となっていた。本発明の目的は、十分な機械的強度を有すると共に、シリコンウエハーにほぼ等しい熱膨張係数を有し、高精度で微細な加工を施すことが可能で、工具摩耗の少ない、窒化ホウ素−サイアロン系複合セラミックス系のプローブ案内部材及びその製造方法、並びに該プローブ案内部材を用いたプローブガイド加工品及び該プローブガイド加工品を用いたプローブカード製品を提供することである。   Boron nitride-SiAlON-based composite ceramics itself is a known material, but since it has been aimed at improving the corrosion resistance against molten metal and the thermal shock resistance so far, its suitability as a probe guide member has not been examined, and it is a problem. Was becoming. The object of the present invention is to provide a boron nitride-sialon system which has sufficient mechanical strength, has a coefficient of thermal expansion almost equal to that of a silicon wafer, can perform fine processing with high precision, and has little tool wear. It is an object of the present invention to provide a composite ceramic probe guide member, a method for manufacturing the same, a probe guide processed product using the probe guide member, and a probe card product using the probe guide processed product.

本発明者らは、窒化ホウ素とサイアロン、並びに焼結助剤の配合比率に関して鋭意検討した結果、プローブ案内部材として適切な窒化ホウ素−サイアロン系複合セラミックスを見出した。   As a result of intensive studies on the blending ratio of boron nitride, sialon, and a sintering aid, the present inventors have found a boron nitride-sialon composite ceramic suitable as a probe guide member.

即ち本発明の実施形態が提供するのは、窒化ホウ素40質量部以上60質量部以下と、(式1)で示されるサイアロン25質量部以上58質量部以下と、焼結助剤2質量部以上15質量部以下との合計100質量部を含む組成物からなり、相対密度が90%以上で且つJIS R1601:2008に従って測定する3点曲げ強さが250MPa以上である複合セラミックスであることを特徴とするプローブ案内部材である。
Si6-ZAlZZ8-Z、但しZは0.2以上1.5以下の範囲の数、好ましくは0.2以上1.0以下の範囲の数である (式1)
That is, the embodiment of the present invention provides 40 parts by mass or more and 60 parts by mass or less of boron nitride, 25 parts by mass or more and 58 parts by mass or less of sialon represented by (Formula 1), and 2 parts by mass or more of a sintering aid. A composite ceramic comprising a composition containing 15 parts by mass or less and a total of 100 parts by mass, having a relative density of 90% or more and a three-point bending strength of 250 MPa or more measured according to JIS R1601:2008. It is a probe guide member.
Si 6-Z Al Z O Z N 8-Z , where Z is a number in the range of 0.2 to 1.5, preferably 0.2 to 1.0 (formula 1)

また本発明の実施形態は、焼結助剤が希土類酸化物、アルミナ、およびマグネシアならびにこれらの複合酸化物からなる群から選ばれる1種以上であるプローブ案内部材も提供することができる。   The embodiment of the present invention can also provide a probe guide member in which the sintering aid is at least one selected from the group consisting of rare earth oxides, alumina, magnesia, and composite oxides thereof.

さらに本発明の実施形態は、比表面積20m2/g以上の窒化ホウ素粉末と、比表面積6.0m2/g以上のサイアロン粉末及び/または比表面積6.0m2/g以上の窒化珪素、窒化アルミニウム、アルミナ、シリカから選ばれる1種以上の化合物粉末と、焼結助剤粉末とを含む混合粉末を、圧力10MPa以上50MPa以下、温度1510℃以上1780℃以下、保持時間1時間以上5時間以下の条件下でホットプレス焼成することを特徴とする、該プローブ案内部材の製造方法も提供する。 Further embodiments of the present invention, the specific surface area and 20 m 2 / g or more boron nitride powders, a specific surface area of 6.0 m 2 / g or more sialon powder and / or a specific surface area of 6.0 m 2 / g or more nitride, silicon nitride A mixed powder containing one or more compound powders selected from aluminum, alumina and silica and a sintering aid powder is pressure 10 MPa or more and 50 MPa or less, temperature 1510° C. or more and 1780° C. or less, holding time 1 hour or more and 5 hours or less. Also provided is a method for manufacturing the probe guide member, which is characterized in that hot-press firing is performed under the condition of.

さらにまた本発明の実施形態は、本発明のプローブ案内部材を用いたプローブガイド加工品も提供でき、またさらに該プローブガイド加工品を用いたプローブカード製品も提供できる。   Furthermore, the embodiment of the present invention can provide a probe guide processed product using the probe guide member of the present invention, and can also provide a probe card product using the probe guide processed product.

本発明によれば、高純度シリコンに近い熱膨張係数を有し、かつ精密加工性と、加工時における工具摩耗の少ないプローブ案内部材を得ることができ、また本発明のプローブ案内部材を用いたプローブガイド加工品及びプローブカード製品を得ることができる。   According to the present invention, it is possible to obtain a probe guide member having a thermal expansion coefficient close to that of high-purity silicon, precision workability, and less tool wear during processing, and the probe guide member of the present invention is used. Processed probe guides and probe card products can be obtained.

本発明において、窒化ホウ素−サイアロン系複合セラミックスを焼成するための原料としていう窒化ホウ素(原料窒化ホウ素という)粉末の比表面積は、粉体の混合性の観点から20m2/g以上であることが好ましい。なおハンドリング性の観点からは、当該比表面積は200m2/g以下であることが好ましい。 In the present invention, the specific surface area of the boron nitride (referred to as raw material boron nitride) powder referred to as a raw material for firing the boron nitride-sialon-based composite ceramics is 20 m 2 /g or more from the viewpoint of powder mixing property. preferable. From the viewpoint of handleability, the specific surface area is preferably 200 m 2 /g or less.

また、本発明において、窒化ホウ素−サイアロン系複合セラミックスを焼成するための原料としていうサイアロンは、(式1)の化学式で示される化学組成を有するサイアロン(原料サイアロンという)であるか、または焼成後に(式1)の化学式を満たすように窒化珪素(Si34)、窒化アルミニウム(AlN)、酸化アルミニウム(Al23)、酸化珪素(SiO2)の少なくとも2種類以上を予め含めて組み合わせたもの(まとめて原料サイアロン前駆体という)、もしくは、該原料サイアロンと該原料サイアロン前駆体の組み合わせでも良い。 Further, in the present invention, the sialon referred to as a raw material for firing the boron nitride-sialon-based composite ceramics is a sialon having a chemical composition represented by the chemical formula (Formula 1) (referred to as raw sialon), or after firing. A combination of at least two types of silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ) that are included in advance so as to satisfy the chemical formula (Formula 1). It may be a mixture (collectively referred to as a raw material sialon precursor) or a combination of the raw material sialon and the raw material sialon precursor.

なお、(式1)の化学式において、Z=0.2未満となると、得られるプローブ案内部材の加工において切削工具が摩耗しやすくなり、例えば1本のドリル刃で削孔できる数が少なくなり、実用的ではなくなる。またZ=1.5を超えると、窒化ホウ素−サイアロン系複合セラミックス中におけるサイアロン粒子が大きく成長するため、部分的に強度が低下し、削孔した穴間の壁厚が薄いところでは欠けや割れが発生しやすくなり歩留まりが低下する。(式1)の化学式において、好ましいZ値の範囲は、Z=0.2以上1.5以下、好ましくは0.2以上1.0以下、より好ましくは0.3以上0.9以下である。   In the chemical formula of (Equation 1), when Z is less than 0.2, the cutting tool is easily worn in the processing of the obtained probe guide member, and, for example, the number of holes that can be drilled by one drill blade decreases, It becomes impractical. If Z=1.5 is exceeded, the sialon particles in the boron nitride-sialon-based composite ceramic grow large, so that the strength is partially reduced, and chipping or cracking occurs where the wall thickness between the drilled holes is thin. Is more likely to occur and the yield is reduced. In the chemical formula (Formula 1), the range of Z value is preferably Z=0.2 or more and 1.5 or less, preferably 0.2 or more and 1.0 or less, and more preferably 0.3 or more and 0.9 or less. ..

また、該原料サイアロン及び該原料サイアロン前駆体の粉末の比表面積は、それぞれ粉体の混合性の観点から6.0m2/g以上であることが好ましい。当該比表面積は、JIS R1626:1996に従ってBET法で測定するものである。 Further, the specific surface area of the powder of the raw material sialon and the raw material sialon precursor is preferably 6.0 m 2 /g or more from the viewpoint of the mixing property of the powder. The specific surface area is measured by the BET method according to JIS R1626:1996.

さらに、本発明の実施形態に係る窒化ホウ素−サイアロン系複合セラミックスは、窒化ホウ素40質量部以上60質量部以下、好ましくは41質量部以上59質量部以下、より好ましくは42質量部以上58質量部以下と、(式1)で示されるサイアロン25質量部以上58質量部以下、好ましくは26質量部以上57質量部以下、より好ましくは27質量部以上56質量部以下と、焼結助剤2質量部以上15質量部以下との合計100質量部を含む組成物を焼成することにより得られる。このとき、窒化ホウ素の量が40質量部未満であったり、サイアロンの量が58質量部を超える場合、最終的に得られるプローブ案内部材の硬度は高くなりすぎる。また、窒化ホウ素の量が60質量部を超える場合、またはサイアロンの量が25質量部未満の場合、プローブ案内部材の強度が不足するため、削孔加工に耐えられずに欠けや割れが発生する。なお成分中の窒化ホウ素に関しては、保存中にまたは加熱により酸化ホウ素を形成して揮発することが知られているが、その揮発分による組成の差異は実用上問題にならない程度(通常約1%程度)である。このため、当該技術分野においては、焼結体(焼成体)中の元素組成比を、その原料の配合比を以って表すことが通常行われていることに留意されたい。   Further, the boron nitride-sialon-based composite ceramics according to the embodiment of the present invention has a boron nitride content of 40 parts by mass or more and 60 parts by mass or less, preferably 41 parts by mass or more and 59 parts by mass or less, and more preferably 42 parts by mass or more and 58 parts by mass. 25 parts by mass or more and 58 parts by mass or less of sialon represented by (Equation 1), preferably 26 parts by mass or more and 57 parts by mass or less, more preferably 27 parts by mass or more and 56 parts by mass or less, and sintering aid 2 parts by mass. It is obtained by firing a composition containing 100 parts by mass or more and 15 parts by mass or less in total. At this time, if the amount of boron nitride is less than 40 parts by mass or the amount of sialon exceeds 58 parts by mass, the hardness of the finally obtained probe guide member will be too high. Further, when the amount of boron nitride exceeds 60 parts by mass or when the amount of sialon is less than 25 parts by mass, the strength of the probe guide member is insufficient, so that chipping or cracking occurs without being able to withstand drilling. .. Regarding boron nitride in the components, it is known that boron oxide forms and volatilizes during storage or by heating, but the difference in the composition due to the volatile content does not pose a practical problem (usually about 1%). Degree). Therefore, it should be noted that in the technical field, the elemental composition ratio in the sintered body (fired body) is usually expressed by the mixing ratio of the raw materials.

本発明の実施形態で使用できる焼結助剤の種類は特に限定はないが、希土類酸化物やアルミナ、マグネシアやこれらの複合酸化物などを好ましく用いることができる。安定した焼結体を得る観点から好ましくは、希土類酸化物を用いることができ、より好ましくはイットリアを効果的に使用できる。   The type of sintering aid that can be used in the embodiment of the present invention is not particularly limited, but rare earth oxides, alumina, magnesia, and composite oxides thereof can be preferably used. From the viewpoint of obtaining a stable sintered body, a rare earth oxide can be preferably used, and yttria can be effectively used.

本発明の実施形態に係る窒化ホウ素−サイアロン系複合セラミックス全体を100質量部としたときの、焼結助剤の割合は2質量部以上15質量部以下である。焼結助剤の量が2質量部未満の場合は、高密度な焼結体を得ることは難しく、強度が低く、穴間の壁の最小厚みが薄くなると欠けや割れが発生する。焼結助剤の量が15質量部を超える場合、焼結体の結晶粒径が大きくなり、同様に強度低下や精密加工性に劣る。なお、焼結助剤のさらに好ましい範囲は3質量部以上14質量部以下、より好ましくは3質量部以上12質量部以下とすることができる。   The ratio of the sintering aid is 2 parts by mass or more and 15 parts by mass or less when the total amount of the boron nitride-sialon-based composite ceramics according to the embodiment of the present invention is 100 parts by mass. If the amount of the sintering aid is less than 2 parts by mass, it is difficult to obtain a high-density sintered body, the strength is low, and when the minimum thickness of the wall between the holes becomes thin, chipping or cracking occurs. When the amount of the sintering aid exceeds 15 parts by mass, the crystal grain size of the sintered body becomes large, and similarly the strength is lowered and the precision workability is deteriorated. A more preferable range of the sintering aid is 3 parts by mass or more and 14 parts by mass or less, and more preferably 3 parts by mass or more and 12 parts by mass or less.

なお、本発明の実施形態で用いる原料窒化ホウ素、原料サイアロン、原料サイアロン前駆体、焼結助剤、その他必要に応じて添加する化学物質(これらを全てまとめて原材料という)は、高純度であるのが好ましい。本発明に係るプローブカードが半導体素子に接する検査装置に用いられることからも、金属不純物は少ない方が好ましい。   The raw material boron nitride, the raw material sialon, the raw material sialon precursor, the sintering aid, and other chemical substances added as necessary (all of them are collectively referred to as raw materials) used in the embodiment of the present invention have high purity. Is preferred. From the viewpoint that the probe card according to the present invention is used in the inspection device in contact with the semiconductor element, it is preferable that the metal impurities are small.

原材料の粉末を混合する方法にも特に限定はなく、原材料のみをそのまま混合する乾式方式であっても、原材料に液体成分を加えて混合する湿式方式であっても特に制限はない。湿式方式の場合、溶媒としては例えばエタノールが好ましく用いられる。さらに混合装置も公知のものを用いることも可能である。   The method of mixing the raw material powder is also not particularly limited, and there is no particular limitation whether it is a dry method in which only the raw material is mixed as it is or a wet method in which a liquid component is added to the raw material and mixed. In the case of the wet method, ethanol is preferably used as the solvent. Further, a known mixing device can also be used.

本発明の実施形態において、窒化ホウ素−サイアロン系複合セラミックスを得るための焼成に用いる焼成法や焼成装置の種類に特に限定はなく、セラミックスの分野で一般に用いられる焼成法、焼成装置を用いることができる。但し、一般的に緻密な焼成体を得るためには加圧焼成が好ましい。加圧焼成の方法としては、さらにホットプレス焼成、放電プラズマ焼成、超高圧焼成、ガス圧縮による熱間等方加圧焼成などが挙げられる。   In the embodiment of the present invention, there is no particular limitation on the type of firing method or firing apparatus used for firing to obtain the boron nitride-sialon-based composite ceramics, and it is possible to use a firing method or firing apparatus generally used in the field of ceramics. it can. However, in general, pressure firing is preferable in order to obtain a dense fired body. Examples of the pressure firing method include hot press firing, discharge plasma firing, ultra-high pressure firing, hot isostatic pressure firing by gas compression, and the like.

焼成する際に、原料窒化ホウ素、原料サイアロン及び/または原料サイアロン前駆体、並びに焼結助剤を入れる容器や型の材質や形状に関しては、特に得られる窒化ホウ素−サイアロン系複合セラミックスの組成に影響を及ぼしたり、また焼成環境中において変質、変形や破損などしなければ特に限定はない。この点を考慮して、黒鉛製の容器や型が好ましく用いられる。   When firing, the material and shape of the raw material boron nitride, the raw material sialon and/or the raw material sialon precursor, and the container and the mold that contain the sintering aid have an influence on the composition of the obtained boron nitride-sialon composite ceramics. There is no particular limitation as long as it does not affect the quality of the product or change the properties in the firing environment. In consideration of this point, a graphite container or mold is preferably used.

本発明の実施形態において窒化ホウ素−サイアロン系複合セラミックスを得るための、好ましい焼成温度は1510℃以上1780℃以下の範囲である。当該焼成温度範囲は、より好ましくは1520℃以上1760℃以下の範囲、さらに好ましくは1540℃以上1740℃以下の範囲とすることができる。焼成温度が1510℃未満では、十分に焼結が進行した焼結体が得られず、焼結体密度が90%未満となり、3点曲げ強度も250MPa未満の低いものとなる。一方、1780℃を超えるとサイアロンの結晶粒子が大きくなり、加工時の工具摩耗が大きくなる傾向がある。   In the embodiment of the present invention, a preferable firing temperature for obtaining the boron nitride-sialon-based composite ceramic is in the range of 1510°C or higher and 1780°C or lower. The firing temperature range can be more preferably 1520° C. or more and 1760° C. or less, and further preferably 1540° C. or more and 1740° C. or less. If the firing temperature is lower than 1510° C., a sintered body in which the sintering has progressed sufficiently cannot be obtained, the sintered body density becomes less than 90%, and the three-point bending strength also becomes as low as less than 250 MPa. On the other hand, if the temperature exceeds 1780° C., the crystal particles of sialon become large, and the tool wear during processing tends to increase.

また、加圧焼成する場合にかける圧力としては、10MPa以上50MPa以下の範囲であることが好ましく、より好ましくは11MPa以上45MPa以下の範囲、さらに好ましくは13MPa以上40MPa以下の範囲である。圧力10MPa未満では、十分に焼結した密度の焼結体が得られず、相対密度は90%未満となり、曲げ強度250MPa未満の低いものとなる。圧力50MPaを超えると設備が大きくなり、コスト的に不利となる。   Further, the pressure applied in the case of pressure firing is preferably in the range of 10 MPa or more and 50 MPa or less, more preferably in the range of 11 MPa or more and 45 MPa or less, and further preferably in the range of 13 MPa or more and 40 MPa or less. If the pressure is less than 10 MPa, a sintered body having a sufficiently sintered density cannot be obtained, the relative density is less than 90%, and the bending strength is low, less than 250 MPa. If the pressure exceeds 50 MPa, the equipment becomes large, which is disadvantageous in terms of cost.

焼成時間(加圧保持時間も同じ)は1時間以上5時間以下の範囲であることが好ましく、より好ましくは1.5時間以上4.5時間以下の範囲、さらに好ましくは1.5時間以上4時間以下の範囲である。保持時間1時間未満では、焼結体内の特性の分布が大きくなり易いという問題がある。保持時間5時間を超えると、本発明の窒化ホウ素−サイアロン複合セラミックス内部におけるサイアロンの結晶粒子が大きくなり、加工時の工具摩耗が大きくなる傾向がある。   The firing time (also the pressure holding time) is preferably 1 hour or more and 5 hours or less, more preferably 1.5 hours or more and 4.5 hours or less, and further preferably 1.5 hours or more 4 It is within the time range. If the holding time is less than 1 hour, there is a problem that the distribution of characteristics in the sintered body tends to be large. If the holding time exceeds 5 hours, the crystal particles of sialon inside the boron nitride-sialon composite ceramic of the present invention become large, and the tool wear during processing tends to increase.

本発明の実施形態に係るプローブ案内部材に削孔する細穴は、通常直径40μm以上100μm以下の場合が多いが、更に細いかまたは太いものであってもよい。また、一つのプローブ案内部材には、約500〜20,000個の穴の加工を施してプローブガイド加工品を製作することができる。なお本明細書で言う「精密加工性」とは、具体的には、穴そのものの形状の精度(即ち直径の誤差、及び真円度)、削孔位置の精度、穴間に破損がない等で判断される。プローブ案内部材の、削孔工具(通常はドリル刃)の摩耗性に及ぼす評価は、例えば1本のドリル刃で、要求される精密加工性を保持しつつ削孔できた穴数で評価することができる。即ち、1本のドリル刃で開けられる穴数が多くなるほど、プローブガイド加工品の製作コストを抑えられると肯定的に評価することができる。   The small holes drilled in the probe guide member according to the embodiment of the present invention are usually 40 μm or more and 100 μm or less in diameter in most cases, but may be thinner or thicker. Further, one probe guide member can be processed into about 500 to 20,000 holes to manufacture a probe guide processed product. The "precision workability" referred to in the present specification specifically means the accuracy of the shape of the holes themselves (that is, the diameter error and the roundness), the accuracy of the drilling position, and the fact that there is no damage between the holes, etc. It is judged by. To evaluate the wearability of the probe guide member on the drilling tool (usually a drill blade), evaluate with the number of holes that can be drilled with one drill blade while maintaining the required precision workability. You can That is, it can be affirmatively evaluated that the manufacturing cost of the probe guide processed product can be suppressed as the number of holes drilled by one drill blade increases.

本発明の実施形態に係るプローブ案内部材には精密加工を施すため、粒子間等の空隙は少ない方が好ましい。粒子間の空隙の多寡は相対密度の大小で判断することができるが、本発明の実施形態に係るプローブ案内部材の相対密度は90%以上であることが好ましく、より好ましくは相対密度は91%以上、さらに好ましくは92%以上である。相対密度90%以上では、粒子間の連通細孔が殆どなくなり、精密加工を施しても欠損が生じ難いという利点が得られる。しかし相対密度が90%未満であると、機械的強度が低くなり、穴間の壁の最小厚みが薄くなると欠けや割れが発生するため、プローブ案内部材として精密加工性面での適正が不足する問題がある。   Since the probe guide member according to the embodiment of the present invention is subjected to precision processing, it is preferable that there are few voids between particles and the like. The amount of voids between particles can be determined by the relative density, but the relative density of the probe guide member according to the embodiment of the present invention is preferably 90% or more, more preferably 91%. Or more, More preferably, it is 92% or more. When the relative density is 90% or more, there are almost no communicating pores between particles, and there is an advantage that defects are less likely to occur even if precision processing is performed. However, if the relative density is less than 90%, the mechanical strength becomes low, and if the minimum thickness of the wall between the holes becomes thin, chipping or cracking occurs, so that the probe guide member is insufficient in terms of precision workability. There's a problem.

相対密度は、理論密度に対する実測の密度の割合で求められるものであり、密度の測定は、簡便には形状と重量を測定し求められるが、より正確な値は、JIS R1634:1998に準拠して、適切に選んだ試験片を空気中と水中で秤量し、空気中の質量を浮力で除することにより求めることができる(アルキメデス法)。なお、理論密度は、窒化ホウ素とサイアロン及び焼結助剤の各個別成分の理論密度を加重平均して算出することができる。   The relative density is obtained by the ratio of the actually measured density to the theoretical density, and the density can be easily obtained by measuring the shape and weight, but a more accurate value is based on JIS R1634:1998. Then, a properly selected test piece is weighed in air and water, and the mass in air is divided by the buoyancy to obtain the value (Archimedes method). The theoretical density can be calculated by weighted averaging the theoretical densities of the individual components of boron nitride, sialon, and the sintering aid.

本発明の実施形態に係るプローブ案内部材は、シリコンウエハー上に形成された電気回路配線の間隔に合わせて、プローブを圧接するためのガイドであるので、プローブ案内部材の熱膨張係数も高純度シリコンの熱膨張係数に近い方が圧接時の位置ズレ等は生じ難くなる。上記のように規定する窒化ホウ素とサイアロンの組成範囲内であれば、両者の熱膨張係数はほぼ同等となる。なお、熱膨張係数の測定はJIS R1618:2002に示されている方法に準拠して測定することができる。   Since the probe guide member according to the embodiment of the present invention is a guide for press-contacting the probe in accordance with the interval of the electric circuit wiring formed on the silicon wafer, the thermal expansion coefficient of the probe guide member is also high-purity silicon. If the coefficient of thermal expansion is close to, the positional deviation during pressure contact is less likely to occur. Within the composition range of boron nitride and sialon defined as described above, the thermal expansion coefficients of both are almost the same. The coefficient of thermal expansion can be measured according to the method described in JIS R1618:2002.

プローブ案内部材の曲げ強さが250MPa未満の場合、削孔した穴間の壁の破損につながってしまう。そのため焼結体の曲げ強さは、250MPa以上であることが好ましい。またプローブ案内部材のショアー硬度が55未満の場合、加工工具の摩耗は少ないが、強度が低くなり、穴間の壁の破損につながる。ショアー硬度が75を超えると、工具の摩耗が大きくなり、ドリル刃の折れ等が発生しやすくなる傾向がある。   If the bending strength of the probe guide member is less than 250 MPa, the wall between the drilled holes will be damaged. Therefore, the bending strength of the sintered body is preferably 250 MPa or more. If the Shore hardness of the probe guide member is less than 55, the working tool will wear less, but the strength will be lower, and the wall between the holes will be damaged. If the Shore hardness is more than 75, the wear of the tool is increased and the drill blade tends to be broken.

以下実施例により、本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(実施例1〜16)
まず原料混合粉末は以下の方法で調整した。即ち、六方晶窒化ホウ素粉末(比表面積41m2/g、20m2/g)、4種のサイアロン粉末(Z=0.2、比表面積16m2/g、)、(Z=0.5、比表面積15m2/g)、(Z=0.9、比表面積16m2/g)、(Z=1.5、比表面積15m2/g)、さらに焼結助剤としてイットリア(純度99質量%、平均粒径0.4μm)、及びアルミナ(比表面積14m2/g、純度99.99質量%以上)を、表1に示す所定の割合に混合した。また、サイアロンの原材料として窒化ケイ素(α化率92%、比表面積14m2/g、純度99質量%以上)、(α化率91%、比表面積6m2/g、純度99質量%以上)、AlN(比表面積6m2/g)、Al23(比表面積14m2/g、純度99.99質量%以上)を使用し配合した。混合は、エタノールを使用し、ボールミルにて混合し、さらに真空乾燥して混合粉を得た。以上をまとめて表1に示す。
(Examples 1 to 16)
First, the raw material mixed powder was prepared by the following method. That is, the hexagonal boron nitride powder (specific surface area 41m 2 / g, 20m 2 / g), 4 types of sialon powder (Z = 0.2, specific surface area 16m 2 /g,),(Z=0.5, the ratio surface area 15m 2 /g),(Z=0.9, specific surface area 16m 2 /g),(Z=1.5, a specific surface area of 15 m 2 / g), further yttria (purity 99% by weight as a sintering aid, An average particle size of 0.4 μm) and alumina (specific surface area: 14 m 2 /g, purity: 99.99 mass% or more) were mixed in a predetermined ratio shown in Table 1. Further, as a raw material of sialon, silicon nitride (α conversion rate 92%, specific surface area 14 m 2 /g, purity 99 mass% or more), (α conversion rate 91%, specific surface area 6 m 2 /g, purity 99 mass% or more), AlN (specific surface area 6 m 2 /g) and Al 2 O 3 (specific surface area 14 m 2 /g, purity 99.99 mass% or more) were used and blended. For mixing, ethanol was used, and the mixture was mixed by a ball mill and further vacuum dried to obtain a mixed powder. The above is summarized in Table 1.

各混合粉を内径が直径80mmの黒鉛製のダイスにセットしてホットプレス焼結した。ホットプレス(HP)焼結条件を表1に示す。焼結体は取り出した後、外形を1mm程度研削し、アルキメデス法で相対密度を算出した。   Each mixed powder was set in a graphite die having an inner diameter of 80 mm and hot pressed and sintered. Table 1 shows the hot press (HP) sintering conditions. After taking out the sintered body, the outer shape was ground by about 1 mm, and the relative density was calculated by the Archimedes method.

該焼結体を幅4mm×厚さ4mm×長さ20mmに加工して、RIGAKU社製のTMA8301を用いて、25℃〜600℃の熱膨張係数を測定した。   The sintered body was processed into a width of 4 mm, a thickness of 4 mm, and a length of 20 mm, and a thermal expansion coefficient of 25° C. to 600° C. was measured using TMA8301 manufactured by RIGAKU.

また、該焼結体を幅4mm×厚さ3mm×長さ40mmに加工して、JIS R1601:2008に準じ3点曲げ強さを測定した。   Further, the sintered body was processed into a width of 4 mm, a thickness of 3 mm and a length of 40 mm, and the three-point bending strength was measured according to JIS R1601:2008.

さらに該焼結体を幅40mm×長さ40mm×厚さ1mmのサンプルを加工し、さらに該サンプルの中心部に幅5mm×長さ5mm×厚さ200μmのザグリ部を設けた後、該ザグリ部に、マシニングセンターで直径40μmの超硬マイクロドリル刃を用い、回転数15,000rpmにて削孔加工を乾式で行った。60μmピッチ(穴−穴の隔壁設定値20μm、深さ200μm)の穴を400個開けて、穴径と穴位置をCNC光学測定器を用いて測定した。穴径と位置が±4μmの規格に入っているものを合格と評価(○)し、規格外を不合格(×)とした。また穴間の壁の割れと欠けの無いものを合格(○)とし、割れ欠けが発生した場合を不合格(×)とした。さらに1本のドリル刃で加工できた穴数を測定し、400個の穴が開いたものを合格(○)とし、穴が400個未満であった場合を不合格(×)とした。これらの結果を表2に示す。   Further, the sintered body is processed into a sample having a width of 40 mm, a length of 40 mm and a thickness of 1 mm, and a counterbore portion having a width of 5 mm, a length of 5 mm and a thickness of 200 μm is further provided at the center of the sample, and then the counterbore portion is formed. In addition, using a super hard micro-drill blade having a diameter of 40 μm at the machining center, drilling was performed by dry method at a rotation speed of 15,000 rpm. 400 holes with a 60 μm pitch (hole-hole partition wall setting value 20 μm, depth 200 μm) were opened, and the hole diameter and hole position were measured using a CNC optical measuring device. Those having hole diameters and positions within the standard of ±4 μm were evaluated as pass (◯), and those out of the standard were rejected (x). In addition, the case where there was no cracking or chipping of the wall between the holes was judged as pass (◯), and the case where cracking occurred was judged as fail (x). Further, the number of holes that could be machined with one drill blade was measured, and the one having 400 holes was judged as pass (◯), and the case where there were less than 400 holes was regarded as fail (x). The results are shown in Table 2.

(比較例1〜13)
比較例1〜13として、実施例と同じく表1に示す条件で配合、焼結した。評価結果を表2に示した。
(Comparative Examples 1 to 13)
As Comparative Examples 1 to 13, compounding and sintering were performed under the conditions shown in Table 1 as in the example. The evaluation results are shown in Table 2.

Figure 0006698395
Figure 0006698395

Figure 0006698395
Figure 0006698395

実施例のホットプレス焼結体は、窒化ホウ素−サイアロン系複合セラミクックスであることをX線回折により確認した。又、サイアロンのZ値は、格子定数により確認した。   It was confirmed by X-ray diffraction that the hot pressed sintered bodies of the examples were boron nitride-sialon-based composite ceramics. The Z value of sialon was confirmed by the lattice constant.

表2の測定結果から明らかなように、本発明の実施例では、いずれも相対密度90%以上、曲げ強さ250MPa以上、ショアー硬度55〜75、熱膨張係数1〜3×10-6/℃と比較的高密度かつ高強度でありながら、加工時の工具摩耗が少なく1本のドリル刃で削孔可能な穴数が多く、プローブガイドのような精密加工部品に好適であった。又シリコンの熱膨張率に近く、適切な熱膨張係数を有するものであった。 As is clear from the measurement results of Table 2, in the examples of the present invention, the relative density is 90% or more, the bending strength is 250 MPa or more, the Shore hardness is 55 to 75, and the thermal expansion coefficient is 1 to 3×10 −6 /° C. Although it has a relatively high density and high strength, it has little tool wear during machining, and has a large number of holes that can be drilled with one drill blade, and was suitable for precision machining parts such as probe guides. Further, it had an appropriate coefficient of thermal expansion close to that of silicon.

適切な組成・条件範囲に入っていない比較例においては、窒化ホウ素が過剰な場合、強度が低く、穴壁の欠けが発生、窒化ホウ素が少ない場合は、1本のドリル刃で削孔可能な穴数が少なく、刃が折れるため精密加工性に劣るものであった。また、サイアロンのZ値が0.2未満の場合やZ値が1.5を超えても、同様に精密加工性に欠けていた。具体的には結晶粒径が大きくかつ低強度であり、穴壁に欠けが発生してしまった。   In Comparative Examples that do not fall within the appropriate composition/condition range, when boron nitride is excessive, strength is low, hole wall chipping occurs, and when there is little boron nitride, it is possible to drill with one drill blade. Since the number of holes was small and the blade was broken, precision workability was poor. Further, even if the Z value of sialon was less than 0.2 or the Z value exceeded 1.5, the precision workability was similarly lacking. Specifically, the crystal grain size was large and the strength was low, and chipping occurred in the hole wall.

本発明のプローブ案内部材は、精密加工性に優れ、適切な熱膨張係数を有しているため、従来材料に比べて安価に作製することが可能で、正確に半導体素子の検査を行うことが出来る。特に今後、更に大型のシリコンウエハーを使って更に微細な電極構造を持った素子が普及することが予想されるため、本発明のプローブ案内部材の必要性が益々高まって行く。   Since the probe guide member of the present invention is excellent in precision workability and has an appropriate coefficient of thermal expansion, it can be manufactured at a lower cost than conventional materials, and it is possible to accurately inspect semiconductor elements. I can. In particular, since it is expected that elements having a finer electrode structure using a larger silicon wafer will become widespread in the future, the need for the probe guide member of the present invention will increase more and more.

Claims (6)

窒化ホウ素40質量部以上60質量部以下と、下記の式1で示されるサイアロン25質量部以上58質量部以下と、焼結助剤2質量部以上15質量部以下との合計100質量部を含む組成物からなり、相対密度が90%以上で且つJIS R1601:2008に従って測定する3点曲げ強さが250MPa以上、下式に示すサイアロン組成のZ値が0.2以上1.5以下の、窒化ホウ素−サイアロン系複合セラミックス焼結体であることを特徴とするプローブ案内部材。
Si6-ZAlZZ8-Z、但しZ=0.2〜1.5 (式1)
Includes a total of 100 parts by mass of boron nitride 40 parts by mass or more and 60 parts by mass or less, sialon represented by the following formula 1 of 25 parts by mass or more and 58 parts by mass or less, and sintering aid 2 parts by mass or more and 15 parts by mass or less. Nitriding of a composition having a relative density of 90% or more, a three-point bending strength measured according to JIS R1601:2008 of 250 MPa or more, and a Z value of the sialon composition represented by the following formula of 0.2 or more and 1.5 or less. A probe guide member, which is a boron-sialon-based composite ceramics sintered body.
Si 6-Z Al Z O Z N 8-Z , where Z=0.2 to 1.5 (Equation 1)
サイアロン組成のZ値が0.2以上1.0以下である、請求項1記載のプローブ案内部材。   The probe guide member according to claim 1, wherein the Z value of the sialon composition is 0.2 or more and 1.0 or less. 焼結助剤がアルミナおよびイットリアの組み合わせであることを特徴とする、請求項1または2記載のプローブ案内部材。 Characterized in that it is a combination of sintering aids there Rumi na us and yttria, claim 1 or 2 snorkel guide member according. 比表面積20m2/g以上の窒化ホウ素粉末と、比表面積6.0m2/g以上のサイアロン粉末及び/または比表面積6.0m2/g以上の窒化珪素、窒化アルミニウム、アルミナ、シリカから選ばれる1種以上の化合物粉末と、焼結助剤粉末とを含む混合粉末を、圧力10MPa以上50MPa以下、温度1510℃以上1780℃以下、保持時間1時間以上5時間以下の条件下でホットプレス焼成することを特徴とする、請求項1〜3記載のプローブ案内部材の製造方法。 Boron nitride powder having a specific surface area of 20 m 2 /g or more, sialon powder having a specific surface area of 6.0 m 2 /g or more and/or silicon nitride, aluminum nitride, alumina or silica having a specific surface area of 6.0 m 2 /g or more is selected. A mixed powder containing one or more compound powders and a sintering aid powder is hot-press fired under the conditions of a pressure of 10 MPa or more and 50 MPa or less, a temperature of 1510° C. or more and 1780° C. or less, and a holding time of 1 hour or more and 5 hours or less. The method for manufacturing a probe guide member according to claim 1, wherein the probe guide member is manufactured. 請求項1〜3記載のプローブ案内部材を用いたプローブガイド加工品。   A probe guide processed product using the probe guide member according to claim 1. 請求項5記載のプローブガイドを用いたプローブカード製品。   A probe card product using the probe guide according to claim 5.
JP2016060746A 2016-03-24 2016-03-24 Probe guide member and manufacturing method thereof Active JP6698395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060746A JP6698395B2 (en) 2016-03-24 2016-03-24 Probe guide member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060746A JP6698395B2 (en) 2016-03-24 2016-03-24 Probe guide member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017173179A JP2017173179A (en) 2017-09-28
JP6698395B2 true JP6698395B2 (en) 2020-05-27

Family

ID=59970882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060746A Active JP6698395B2 (en) 2016-03-24 2016-03-24 Probe guide member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6698395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6864513B2 (en) * 2017-03-22 2021-04-28 デンカ株式会社 Composite sintered body
JP7148472B2 (en) * 2019-09-27 2022-10-05 株式会社フェローテックマテリアルテクノロジーズ Ceramic part and method for manufacturing ceramic part

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2933943B2 (en) * 1989-03-27 1999-08-16 日本鋼管株式会社 Break ring for horizontal continuous casting
DE4120423A1 (en) * 1991-06-20 1992-12-24 Kempten Elektroschmelz Gmbh METHOD FOR THE PRODUCTION OF REACTION-SINED BORNITRIDE-COMPOSITORS AND MOLDED BODIES FROM THESE COMPOSITIONS, AND COMPOUNDS CONTAINING BORN NITRIDE-CONTAINING MATERIALS BY THE PROCESS
JP2766445B2 (en) * 1993-03-11 1998-06-18 品川白煉瓦株式会社 Sialon composite sintered body and method for producing the same
US20030104921A1 (en) * 2000-12-06 2003-06-05 Ceramtec Ag Innovative Ceramic Engineering Silicon nitride ceramic with a high mechanical strength at room temperature and at elevated temperature
JP3697942B2 (en) * 1999-05-13 2005-09-21 住友金属工業株式会社 Ceramic processed parts and manufacturing method thereof
JP4066591B2 (en) * 2000-06-09 2008-03-26 住友金属工業株式会社 Probe guide
EP1322572A2 (en) * 2000-10-02 2003-07-02 Indexable Cutting Tools of Canada Limited Sialon material and cutting tools made thereof
JP3938359B2 (en) * 2003-01-21 2007-06-27 電気化学工業株式会社 Lead glass softening jig
JP4400360B2 (en) * 2003-09-25 2010-01-20 株式会社フェローテックセラミックス Free-cutting ceramics, manufacturing method thereof, and probe guide parts
US7829491B2 (en) * 2004-11-26 2010-11-09 Kyocera Corporation Silicon nitride sintered body and manufacturing method thereof, member for molten metal, member for hot working, and member for digging
JP2009209005A (en) * 2008-03-05 2009-09-17 Denki Kagaku Kogyo Kk Probe guiding member
JP2010083749A (en) * 2008-09-03 2010-04-15 Toto Ltd Free-cutting ceramic composite material
JP2010180105A (en) * 2009-02-06 2010-08-19 Denki Kagaku Kogyo Kk Probe guiding member
JP2011073942A (en) * 2009-09-30 2011-04-14 Hitachi Metals Ltd Silicon nitride sintered compact and method for production thereof
US8723538B2 (en) * 2011-06-17 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. Probe head formation methods employing guide plate raising assembly mechanism

Also Published As

Publication number Publication date
JP2017173179A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
US9079800B2 (en) Composite ceramic body, and component member for semiconductor manufacturing apparatus
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP6961008B2 (en) Probe guide parts, probe cards and sockets for package inspection
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
WO2019235594A1 (en) Plate-like silicon nitride sintered body and production method thereof
JP6698395B2 (en) Probe guide member and manufacturing method thereof
JP5087339B2 (en) Method for producing free-cutting ceramics
JP6253554B2 (en) Composite refractory and method for producing the same
JP5303345B2 (en) Conductive zirconia sintered body
JP2009209005A (en) Probe guiding member
JP5421092B2 (en) Alumina sintered body
JP4624690B2 (en) Cutting tool insert and method of manufacturing the same
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
KR20160129458A (en) Composition used for preparing electrically conductive SiC-BN composite ceramic and method for preparing electrically conductive SiC-BN composite ceramic using the same
KR101852040B1 (en) Machinable ceramic composite material and manufacturing method of the same
JP5368053B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP2010180105A (en) Probe guiding member
JP6864513B2 (en) Composite sintered body
JP2005029458A (en) Aluminum nitride sintered compact, method of manufacturing aluminum nitride and method of evaluating aluminum nitride
JP2008297134A (en) Boron carbide based sintered compact and protective member
JP2008024530A (en) Free-cutting ceramic sintered compact and probe guiding component
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
KR101649551B1 (en) SiC-TiN ceramic composites
JP2009263148A (en) Stock material for probe card and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250