JP4400360B2 - Free-cutting ceramics, manufacturing method thereof, and probe guide parts - Google Patents

Free-cutting ceramics, manufacturing method thereof, and probe guide parts Download PDF

Info

Publication number
JP4400360B2
JP4400360B2 JP2004224261A JP2004224261A JP4400360B2 JP 4400360 B2 JP4400360 B2 JP 4400360B2 JP 2004224261 A JP2004224261 A JP 2004224261A JP 2004224261 A JP2004224261 A JP 2004224261A JP 4400360 B2 JP4400360 B2 JP 4400360B2
Authority
JP
Japan
Prior art keywords
zirconia
powder
average particle
free
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004224261A
Other languages
Japanese (ja)
Other versions
JP2005119941A (en
Inventor
俊一 衛藤
忠久 荒堀
一政 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferrotec Ceramics Corp
Original Assignee
Ferrotec Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferrotec Ceramics Corp filed Critical Ferrotec Ceramics Corp
Priority to JP2004224261A priority Critical patent/JP4400360B2/en
Publication of JP2005119941A publication Critical patent/JP2005119941A/en
Application granted granted Critical
Publication of JP4400360B2 publication Critical patent/JP4400360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は快削性セラミックス、特に光反射性が少なく均一な色合いを呈し、熱膨張係数が目的用途に好適な範囲に制御された高強度快削性セラミックスに関する。本発明はまた、そのような快削性セラミックスの製造方法と、そのようなセラミックスから切断、研削および/またはドリル加工といった切削加工により製造された、例えばプローブ案内部品などの加工部品に関する。   The present invention relates to a free-cutting ceramic, particularly a high-strength free-cutting ceramic that exhibits a uniform color with little light reflectivity and has a coefficient of thermal expansion controlled within a range suitable for the intended use. The present invention also relates to a method for producing such a free-cutting ceramic and a machined part such as a probe guide part produced from such a ceramic by cutting such as cutting, grinding and / or drilling.

一般に、セラミックス材料は、機械的特性や絶縁性に優れ、さらには高温特性にも優れることから、半導体製造装置の部品用材料として注目されている。しかし、セラミックスは焼結時の収縮が大きく、所望の形状、寸法を高精度で得るには研削のような切削加工が必要となる。しかし、ほとんどのセラミックスは難加工性である。   In general, ceramic materials are attracting attention as component materials for semiconductor manufacturing equipment because they are excellent in mechanical properties and insulation properties, and also in high temperature properties. However, ceramics have a large shrinkage during sintering, and cutting such as grinding is required to obtain a desired shape and size with high accuracy. However, most ceramics are difficult to process.

セラミックスの加工性は、セラミックスに、またはガラスセラミックスの場合にはそのガラスマトリックスに、へき開性を持つ別のセラミックス、例えばマイカや窒化硼素などを分散させることにより改善することができる。この種のセラミックスは一般に快削性セラミックスと呼ばれる。それらは切削性がよいため、高精度な微細加工性と絶縁性とが求められる半導体検査装置用の部品の製造にしばしば利用される。   The workability of ceramics can be improved by dispersing another ceramic having a cleavage property, such as mica or boron nitride, in ceramics or, in the case of glass ceramics, in its glass matrix. This type of ceramic is generally called free-cutting ceramic. Since they have good machinability, they are often used in the manufacture of parts for semiconductor inspection devices that require high-precision fine workability and insulation.

しかし、高精度な微細加工に必要な高強度と優れた加工性、さらにシリコンに近い熱膨張係数とを兼ね備えたセラミックス材料は少ない。また、従来の快削性セラミックスは、色合いが均一でないため外観が劣り、そのため商品価値が低下する。さらに、この種のセラミックスは、光反射性が高い白色系の薄い色合いであるため、それから作製された加工部品の画像処理による検査や測定を正確に行うことが妨げられる。   However, few ceramic materials have both high strength and excellent workability required for high-precision fine processing, and a thermal expansion coefficient close to that of silicon. In addition, the conventional free-cutting ceramics have a poor appearance because the hue is not uniform, and therefore the commercial value is lowered. Further, since this type of ceramic has a white light tint with high light reflectivity, it is difficult to accurately inspect and measure a processed part produced from the processed part by image processing.

例えば、IC、LSIなどの半導体素子の電気的特性は、通常は多数の電極パッドを備えたプローブカードを用いて検査される。検査は、プローブカードの全プローブを半導体素子の電極パッドに同時に接触させることにより行われる。   For example, the electrical characteristics of semiconductor elements such as IC and LSI are usually inspected using a probe card having a large number of electrode pads. The inspection is performed by bringing all probes of the probe card into contact with the electrode pads of the semiconductor element at the same time.

図1(A)は半導体素子の検査に使用する測定用プローブを備えたプローブカードの模式的縦断面図である。セラミックスなどの絶縁材料から形成されたプローブカード1は、そのほぼ中央に、検査する半導体素子とほぼ同寸法か、それより大きい開口部10を備えている。この開口部10は、図示のように朝顔型に上に開いた形状とするのが普通である。プローブカード1の上面には、半導体素子に形成されている電極パッドと同数の測定用プローブ2が、例えば接着剤により取り付けられている。   FIG. 1A is a schematic longitudinal sectional view of a probe card provided with a measurement probe used for inspection of a semiconductor element. A probe card 1 formed of an insulating material such as ceramics has an opening 10 at substantially the same center as or larger than the semiconductor element to be inspected. As shown in the figure, the opening 10 is usually shaped like a morning glory that opens upward. On the upper surface of the probe card 1, the same number of measurement probes 2 as electrode pads formed on a semiconductor element are attached by, for example, an adhesive.

この測定用プローブ2は通常は導電性の金属材料から作られる。プローブ2の先端は、略L字型に折り曲げられ、開口部10を通してプローブカード1の下面から少し突き出ていて、半導体素子の電極パッドと同じ配列パターンを構成するようになっている。図示していないが、プロープ2の他端はプローブカード1の上面に形成された導電回路に半田などで電気的に接続されている。各プローブ2が互いに接触しないように、先端を除いた各プローブ2の周囲を耐熱性樹脂などで被覆しても良い。   The measuring probe 2 is usually made of a conductive metal material. The tip of the probe 2 is bent into a substantially L-shape and protrudes slightly from the lower surface of the probe card 1 through the opening 10 to form the same arrangement pattern as the electrode pads of the semiconductor element. Although not shown, the other end of the probe 2 is electrically connected to a conductive circuit formed on the upper surface of the probe card 1 with solder or the like. You may coat | cover the circumference | surroundings of each probe 2 except the front-end | tip with heat resistant resin so that each probe 2 may not contact mutually.

半導体素子(図示せず)の電気的特性の検査は、プローブカード1を検査する半導体素子の上に載せて押し付けて、開口部10から突き出た測定用プローブ2の先端が半導体素子の電極パッドと接触するようにすることにより行われる。検査を正確に行うためには、多数の測定用プローブの全てが同時にその下に位置する半導体素子の電極パッドと確実に接触することが不可欠である。しかし、プローブは通常細い金属材であって、プローブカード1の押し付け時に撓んで、撓みによりプローブ2の先端の位置がずれやすい。そのため、プローブ2を電極パッドと確実に接触させるのが困難となる。   The electrical characteristics of the semiconductor element (not shown) are inspected by placing the probe card 1 on the semiconductor element to be inspected and pressing it, and the tip of the measurement probe 2 protruding from the opening 10 is the electrode pad of the semiconductor element. This is done by making contact. In order to perform inspection accurately, it is indispensable that all of a large number of measurement probes simultaneously come into contact with the electrode pads of the semiconductor element located thereunder. However, the probe is usually a thin metal material and bends when the probe card 1 is pressed, and the position of the tip of the probe 2 tends to shift due to the bending. For this reason, it is difficult to reliably contact the probe 2 with the electrode pad.

図1(B)に示すように、測定用プローブ2の精密な位置あわせを容易にするために、絶縁性の板材から形成されたプローブ案内部品(プローブガイド)3を、プローブカード1の開口部10をふさぐように開口部10に嵌め込むことができる。プローブ案内部品3は貫通穴12を有し、プローブ2はこの貫通穴12を通って、その先端がプローブ案内部品3の底面から突き出るようになる。貫通穴12は電極パッドと同じパターンで配列されている。プローブ案内部品3は、撓みによるプローブ2の横方向の動きを制限するように作用して、プローブ2が電極パッドとより確実に接触するのを可能にする。   As shown in FIG. 1B, in order to facilitate precise positioning of the measurement probe 2, a probe guide component (probe guide) 3 formed from an insulating plate is used as an opening of the probe card 1. It is possible to fit into the opening 10 so as to block 10. The probe guide part 3 has a through hole 12, and the probe 2 passes through the through hole 12, and its tip protrudes from the bottom surface of the probe guide part 3. The through holes 12 are arranged in the same pattern as the electrode pads. The probe guide part 3 acts to limit the lateral movement of the probe 2 due to bending, allowing the probe 2 to make more reliable contact with the electrode pad.

測定用プローブ2よりやや大きな径の貫通穴12は、プローブ案内部品3に、電極パッドと同じピッチで形成される。最近のLSIは、高密度化の進展により、電極パッドのピッチが100μm以下となることも珍しくない。   The through holes 12 having a slightly larger diameter than the measurement probe 2 are formed in the probe guide component 3 at the same pitch as the electrode pads. In recent LSIs, it is not uncommon for the pitch of electrode pads to become 100 μm or less due to the progress of higher density.

例えば図1(C)および1(D)にそれぞれ平面図および断面図で示すように、電極パッドのピッチが70μmの場合、貫通穴12の径が60μmであると、隣接する貫通穴間の壁厚み(穴間の最少距離)は10μmとなり、壁の厚みが非常に薄くなる。このように微細で薄肉の貫通穴を、例えばドリル加工によって、プローブ案内部品に精度良く形成する必要がある。   For example, as shown in FIGS. 1 (C) and 1 (D) in a plan view and a cross-sectional view, when the electrode pad pitch is 70 μm and the diameter of the through hole 12 is 60 μm, the wall between adjacent through holes is The thickness (minimum distance between holes) is 10 μm, and the wall thickness is very thin. Thus, it is necessary to form such a fine and thin through hole with high accuracy in the probe guide component by, for example, drilling.

別の種類のプローブ案内部品を図2に斜視図で示す。図2において、枠形状のプローブ案内部品3a (これは、一体の絶縁性部品であるか、または絶縁性長板を組合わせて作製されたものでよい) には、枠の少なくとも1辺、通常は2辺または4辺に、検査する半導体素子 (図示せず) の電極パッドと同じピッチで縦方向のスリット14が設けられている。プローブ案内部品3aは、これをプローブカード (図示せず) の開口部の中に下側から挿入することにより、プローブカードの開口部の中に嵌め込むことができる。こうするとプローブカードの各プローブ2は対応するスリット14を通ってプローブカードの開口部の中に突き出ることになる。この場合も、プローブ2の横方向の動きはプローブ案内部品3aのスリット14を通ることによって制限され、プローブを電極パッドとより正確に接触させることができる。   Another type of probe guide component is shown in perspective view in FIG. In FIG. 2, a frame-shaped probe guide part 3a (which may be an integral insulating part or made by combining insulating long plates) has at least one side of the frame, usually Are provided with slits 14 in the vertical direction at the same pitch as the electrode pads of the semiconductor element to be inspected (not shown) on two or four sides. The probe guide component 3a can be fitted into the opening of the probe card by inserting it into the opening of the probe card (not shown) from below. In this way, each probe 2 of the probe card passes through the corresponding slit 14 and protrudes into the opening of the probe card. Also in this case, the lateral movement of the probe 2 is limited by passing through the slit 14 of the probe guide part 3a, and the probe can be brought into more accurate contact with the electrode pad.

図3は、図2に示したようなスリット14を有する枠形状のプローブ案内部品3aの1辺の模式的断面図である。図示のように、スリット14の形状は一般に各スリットの深さおよび幅と、隣接スリット間の距離である壁厚みにより規定される。この種のスリットは深くて細く、壁厚みが薄いのが普通である。例えば、図3に示すように、スリット14は、深さが300μm、幅が40μm、壁厚みが15μmの寸法をとりうる。このようなスリットは、一般に研削砥石を使用したスリット加工により形成される。   FIG. 3 is a schematic cross-sectional view of one side of the frame-shaped probe guide component 3a having the slit 14 as shown in FIG. As shown, the shape of the slit 14 is generally defined by the depth and width of each slit and the wall thickness, which is the distance between adjacent slits. This type of slit is usually deep and thin, with a thin wall thickness. For example, as shown in FIG. 3, the slit 14 may have dimensions of a depth of 300 μm, a width of 40 μm, and a wall thickness of 15 μm. Such a slit is generally formed by slit processing using a grinding wheel.

当然ながら、プローブカードには測定プローブ同士の短絡を防止するため絶縁性が求められ、体積固有抵抗で1.0×1010Ω・cm以上であることが必要である。
従来のプローブ案内部品は、プラスチック、またはAl2O3、SiO2、K2Oなどからなる快削性の結晶化ガラス系セラミックス材料から作製されてきた。最近では窒化硼素を含有する快削性セラミックスからも作製されている。
As a matter of course, the probe card is required to have insulation properties in order to prevent a short circuit between the measurement probes, and the volume specific resistance is required to be 1.0 × 10 10 Ω · cm or more.
Conventional probe guide parts have been made of plastic or free-cutting crystallized glass-based ceramic material made of Al2O3, SiO2, K2O or the like. Recently, it has also been produced from free-cutting ceramics containing boron nitride.

プラスチック製のプローブ案内部品は、高温で検査する必要性がある場合には用いることができず、また貫通穴またはスリットの十分な寸法精度を得ることができない。
結晶化ガラスセラミックス材料製のプローブ案内部品は、高温検査への対応は可能である。しかし、結晶化ガラスセラミックスの熱膨張係数が半導体素子に比べて大きく、測定温度によっては、測定用プローブと半導体素子の電極パッドとの間の位置ずれが起こることがある。また、結晶化ガラスセラミックスの強度はそれほど高くないので、ドリル加工や他の切削加工時に欠けや割れが起こり易く、やはり充分な寸法精度が得られない。特許文献1参照。
Plastic probe guide parts cannot be used when there is a need to inspect at high temperatures, and sufficient dimensional accuracy of through holes or slits cannot be obtained.
Probe guide parts made of crystallized glass ceramic material can be used for high temperature inspection. However, the thermal expansion coefficient of crystallized glass ceramics is larger than that of a semiconductor element, and depending on the measurement temperature, there may be a displacement between the measurement probe and the electrode pad of the semiconductor element. Further, since the strength of crystallized glass ceramics is not so high, chipping and cracking are likely to occur during drilling and other cutting processes, and sufficient dimensional accuracy cannot be obtained. See Patent Document 1.

さらに、普通の結晶化ガラスセラミックス材料は色が白色系である。そのため、プローブ案内部品に形成した微細な貫通穴またはスリットの寸法検査や、プローブ案内部品をプローブカードに装着する際に位置合わせのために行う画像処理測定時に、プローブ案内部品の表面から光が反射されやすく、正確な画像を得ることが困難となる。また、白色系の色では、外観上も汚れが目立ちやすく、汚れで商品価値が低下する。特許文献1参照。   Further, ordinary crystallized glass ceramic materials are white in color. For this reason, light is reflected from the surface of the probe guide part during dimensional inspection of minute through holes or slits formed in the probe guide part and image processing measurement for alignment when the probe guide part is mounted on the probe card. This makes it difficult to obtain an accurate image. In addition, in the case of a white color, stains are conspicuous in appearance, and the product value decreases due to the stains. See Patent Document 1.

窒化アルミニウムと窒化硼素との複合材料は、熱膨張係数がシリコンに近い。従って、この材料から作製したプローブ案内部品を使用した場合には、熱膨張により起こる位置ずれは少ない。しかし、この材料は加工性が悪いため、高精度な微細加工に不向きである。また、商品価値を低下させる色ムラも存在する。特許文献2参照。   A composite material of aluminum nitride and boron nitride has a thermal expansion coefficient close to that of silicon. Therefore, when a probe guide component made from this material is used, there is little misalignment caused by thermal expansion. However, since this material has poor processability, it is not suitable for high-precision fine processing. There are also color irregularities that reduce the commercial value. See Patent Document 2.

高強度の快削性窒化珪素/窒化硼素複合材料も提案されているが、シリコンに比べて熱膨張係数が小さい。従って、プローブ案内部品などの半導体検査用治具に用いた場合、測定温度によっては位置ずれが発生する。特許文献3参照。   A high-strength free-cutting silicon nitride / boron nitride composite material has also been proposed, but has a smaller thermal expansion coefficient than silicon. Therefore, when it is used for a semiconductor inspection jig such as a probe guide component, a positional deviation occurs depending on the measurement temperature. See Patent Document 3.

特開昭58−165056号公報JP 58-165056 A 特開昭60−195059号公報JP 60-195059 特開2000−327402号公報JP 2000-327402 A

本発明の課題は、高精度な微細加工に必要な高強度と優れた加工性、そしてシリコンに近い熱膨張係数、さらに画像処理測定に好適であり、かつ商品価値を高める均一な黒色系の色合いとを兼ね備えたセラミックスとその製造方法、さらにそれから製作されたプローブ案内部品を提供することである。   The object of the present invention is to provide a high-strength and excellent workability required for high-precision microfabrication, a thermal expansion coefficient close to that of silicon, and a uniform black hue that is suitable for image processing measurement and increases commercial value. And a method of manufacturing the ceramic, and a probe guide component manufactured therefrom.

本発明は、強度が240 MPa以上の高強度の快削性セラミックスを提供する。このセラミックスは、超硬K-10種工具による5分間旋削での工具逃げ面摩耗幅VBが0.2 mm以下、かつ被削材表面粗さRmaxが5μm以下という良好な被削性を示す。このような高強度で被削性に優れたセラミックスによって、ミクロンレベルの微細加工が可能になる。このセラミックスはまた均一な黒色系の色合いとシリコンに近い熱膨張係数を有するので、例えば、プローブ案内部品等用の絶縁材料として有用である。   The present invention provides a high-strength free-cutting ceramic having a strength of 240 MPa or more. This ceramic exhibits good machinability with a tool flank wear width VB of 0.2 mm or less and a workpiece surface roughness Rmax of 5 μm or less in a 5-minute turning with a carbide K-10 type tool. Such high-strength and excellent machinability ceramics enables micron-level fine processing. Since this ceramic also has a uniform blackish hue and a thermal expansion coefficient close to that of silicon, it is useful, for example, as an insulating material for probe guide parts and the like.

本発明の1態様において、高強度快削性セラミックスは、主成分と焼結助剤とを含み、主成分が窒化硼素:30〜59.95質量%、ジルコニア:40〜69.95質量%、および窒化珪素:0〜20質量%を含み、黒色系の色合いを備えている。好ましくは、このセラミックスは、25℃〜600℃での熱膨張係数が3〜5×lO-6/℃の範囲である。 In one embodiment of the present invention, the high-strength free-cutting ceramic includes a main component and a sintering aid, the main components being boron nitride: 30 to 59.95% by mass, zirconia: 40 to 69.95% by mass, and silicon nitride: It contains 0 to 20% by mass and has a blackish tint. Preferably, the ceramic has a coefficient of thermal expansion of 3 to 5 × 10 −6 / ° C. at 25 ° C. to 600 ° C.

このセラミックスの黒色系の色合いは、セラミックスの主成分に着色成分を混入することにより付与することができる。着色成分は、C、Si、長周期型周期表における第4周期IIIA 〜IVB族、第5周期IVA〜VB 族および第6周期IVA〜VIB族の元素から選択された1種以上の元素である。この元素は、単体の形態と化合物形態のいずれか、またはその両方の形態で存在しうる。着色成分の合計量は、セラミックスの主成分に基づいて、単体元素換算で0.05〜2.5質量%である。   The blackish hue of the ceramic can be imparted by mixing a coloring component into the main component of the ceramic. The coloring component is one or more elements selected from elements of C, Si, the fourth period IIIA to IVB group, the fifth period IVA to VB group, and the sixth period IVA to VIB group in the long period type periodic table. . The element can exist in either a single form, a compound form, or both. The total amount of the coloring component is 0.05 to 2.5% by mass in terms of a single element based on the main component of the ceramic.

ここで、本発明における「主成分」とは、セラミックスの本体を構成する固体粒子成分を意味し、焼結助剤を含まない意味である。本発明に係るセラミックスの主成分は、窒化硼素、ジルコニア、着色成分、および場合により添加される窒化珪素を合わせたものである。   Here, the “main component” in the present invention means a solid particle component constituting the main body of the ceramic, and does not include a sintering aid. The main component of the ceramic according to the present invention is a combination of boron nitride, zirconia, coloring components, and optionally added silicon nitride.

また、「焼結助剤」とは、焼結時に液相を生成し、焼結を促進させるものである。焼結後、焼結助剤は、粒子状の主成分骨材の粒界に不定形状で残存するか、あるいは焼結時に一部揮発する。   Further, the “sintering aid” is a material that generates a liquid phase during sintering and promotes sintering. After sintering, the sintering aid remains in an indefinite shape at the grain boundaries of the particulate main component aggregate or partially volatilizes during sintering.

なお、ジルコニアには、低温側から順に、単斜晶、正方晶、立方晶の3つの結晶形態があり、常温でのジルコニアの普通の形態は単斜晶である。結晶形態の転移に伴う膨張または収縮により起こる亀裂発生を避けるため、ジルコニア質のセラミックスは、常温で正方晶もしくは立方晶またはその両方が生じている安定化ジルコニアの状態で通常は使用される。このような安定化ジルコニアには、完全安定化ジルコニア (FSZ、立方晶)、部分安定化ジルコニア (PSZ、立方晶+正方晶)、正方晶ジルコニア多結晶 (TZP、正方晶) がある。一般に、PSZとTZPは、FSZより高靱性である。   Zirconia has three crystal forms of monoclinic, tetragonal, and cubic in order from the low temperature side, and the normal form of zirconia at normal temperature is monoclinic. In order to avoid the occurrence of cracks due to expansion or contraction associated with the transition of crystal form, zirconia ceramics are usually used in the state of stabilized zirconia in which tetragonal crystals and / or cubic crystals are formed at room temperature. Such stabilized zirconia includes fully stabilized zirconia (FSZ, cubic), partially stabilized zirconia (PSZ, cubic + tetragonal), and tetragonal zirconia polycrystal (TZP, tetragonal). In general, PSZ and TZP are tougher than FSZ.

本発明において、高強度と快削性 (高靱性) とを両立させるために、PSZやTZPより加工性が比較的良いFSZが主に析出していることが望ましい。
本発明に係る快削性セラミックスは、窒化硼素、ジルコニアおよび任意成分の窒化珪素と、少なくとも1種の着色成分を含む主成分原料粉末を、該主成分原料粉末の1〜15質量%の焼結助剤とを混合して原料粉末を得る工程と、混合された原料粉末を高温加圧下に焼結する工程とを含む方法により製造することができる。プローブ案内部品のような加工部品は、このセラミックスから、切削加工とスリット形成用の研削加工および/または貫通穴形成用のドリル加工とを含む機械加工により製造することができる。
In the present invention, in order to achieve both high strength and free machinability (high toughness), it is desirable that FSZ having relatively better workability than PSZ or TZP is mainly precipitated.
A free-cutting ceramic according to the present invention comprises sintering a main component raw material powder containing boron nitride, zirconia and an optional component silicon nitride and at least one coloring component in an amount of 1 to 15% by mass of the main component raw material powder. It can be manufactured by a method including a step of obtaining a raw material powder by mixing an auxiliary agent and a step of sintering the mixed raw material powder under high temperature and pressure. A processed part such as a probe guide part can be manufactured from this ceramic by machining including grinding and grinding for forming slits and / or drilling for forming through holes.

本発明にかかる快削性セラミックスは、均一な黒色系の色合いに着色されているため光反射が少なく、加工後に金属やセラミックスの蒸着、樹脂被膜による被覆処理といった加工寸法精度の低下をもたらす特別な着色処理を行う必要がない。そのため、画像処理測定等の測定や位置合わせを正確に行なうことができ、外観上も優れているから、商品価値も高い。   Since the free-cutting ceramic according to the present invention is colored in a uniform black color shade, it has a small light reflection, and after processing, it has a special reduction in processing dimensional accuracy such as metal or ceramic vapor deposition or resin coating. It is not necessary to perform a coloring process. For this reason, measurement such as image processing measurement and alignment can be performed accurately, and since the appearance is excellent, the commercial value is also high.

さらに、25℃〜600℃での熱膨張係数を、シリコンの熱膨張係数4×10-6/℃に近い、3〜5×10-6/℃の範囲に制御しているため、スリットおよび/または穴が形成された半導体検査装置用プローブ案内部品(プローブガイド)に用いた場合、熱膨張による被検査半導体素子との位置ずれを起こさない。 Furthermore, since the thermal expansion coefficient at 25 ° C. to 600 ° C. is controlled within the range of 3 to 5 × 10 −6 / ° C., which is close to the thermal expansion coefficient of silicon 4 × 10 −6 / ° C., Alternatively, when used in a probe guide component (probe guide) for a semiconductor inspection apparatus in which a hole is formed, there is no positional deviation from the semiconductor element to be inspected due to thermal expansion.

本発明によれば、薄い壁厚みで幅または直径の小さい深いスリットまたは貫通穴を精度良く形成できるので、高密度に設けたプローブを所定位置に保持でき、かつ測定温度による位置ずれが小さく、その結果、LSIの高密度化に対応可能な半導体素子の検査装置が実現できる。   According to the present invention, a deep slit or a through-hole having a small wall thickness and a small width or diameter can be formed with high accuracy, so that a probe provided at a high density can be held at a predetermined position, and a displacement due to a measurement temperature is small. As a result, it is possible to realize a semiconductor element inspection apparatus that can cope with higher density of LSI.

本発明により、25℃〜600℃での熱膨張係数が3〜5×lO-6/℃とシリコンに近い熱膨張係数を有するとともに、均一な黒色系の色合いを呈する、下記(1)、(2) のような新規なセラミックス加工部品が提供される。 According to the present invention, the thermal expansion coefficient at 25 ° C. to 600 ° C. is 3 to 5 × 10 −6 / ° C. and a thermal expansion coefficient close to that of silicon, and the following (1), ( New ceramic processed parts like 2) are provided.

(1) 研削加工により形成された複数のスリットを備えた快削性セラミックス焼結体からなる加工部品であって、前記スリット間の壁厚みが5μm以上20μm未満、前記スリット深さ/壁厚み比が15以上かつ前記スリット間のピッチ精度が±4μm以内であることを特徴とするセラミックス加工部品。   (1) A machined part made of a free-cutting ceramic sintered body having a plurality of slits formed by grinding, wherein the wall thickness between the slits is 5 μm or more and less than 20 μm, and the slit depth / wall thickness ratio 15 or more and the pitch accuracy between the slits is within ± 4 μm.

(2) ドリル加工により形成された複数の穴を備えた快削性セラミックス焼結体からなる加工部品であって、前記穴径が65μm以下、前記穴間の壁厚みが5μm以上20μm未満、前記穴深さ/壁厚み比が15以上かつ前記穴径と穴ピッチの精度がいずれも±4μm以内であることを特徴とするセラミックス加工部品。   (2) A machined part made of a free-cutting ceramic sintered body having a plurality of holes formed by drilling, wherein the hole diameter is 65 μm or less, the wall thickness between the holes is 5 μm or more and less than 20 μm, A ceramic processed part having a hole depth / wall thickness ratio of 15 or more and an accuracy of the hole diameter and hole pitch both within ± 4 μm.

ここで穴間の壁厚みとは穴間の最小距離を意味する。
これらのセラミックス加工部品は、プローブが通る複数のスリットおよび/または穴を備えたプローブ案内部品であっても良い。
Here, the wall thickness between the holes means the minimum distance between the holes.
These ceramic processed parts may be probe guide parts having a plurality of slits and / or holes through which the probe passes.

本発明にかかる加工部品は、窒化硼素、ジルコニア、所望により添加される窒化珪素および着色成分から成る主成分に、適宜の焼結助剤を混合した原料粉末を高温加圧下で、例えばホットプレスまたはHIPで焼結してセラミックス焼結体を得る工程、およびこのセラミックス焼結体を研削砥石またはドリルで加工する工程を含む方法により製造することができる。   A processed part according to the present invention comprises a raw material powder obtained by mixing an appropriate sintering aid with a main component composed of boron nitride, zirconia, optionally added silicon nitride and a coloring component under high temperature pressure, for example, hot pressing or It can be produced by a method including a step of obtaining a ceramic sintered body by sintering with HIP and a step of processing the ceramic sintered body with a grinding wheel or a drill.

ここで、窒化硼素、ジルコニアの原料粉末は平均粒径1μm未満のものが好適である。窒化硼素を添加することによってその本来の快削性に加えて高熱伝導性も付与することになり、その両者によって優れた加工性が得られる。ジルコニアは高強度であるが、その熱膨張率はシリコンより大きい。窒化珪素は必須ではないが、熱膨張率がシリコンよりも低い上、高強度である。   Here, it is preferable that the raw material powder of boron nitride and zirconia has an average particle diameter of less than 1 μm. By adding boron nitride, high thermal conductivity is imparted in addition to the original free machinability, both of which provide excellent workability. Zirconia has high strength, but its coefficient of thermal expansion is larger than that of silicon. Silicon nitride is not essential, but has a lower coefficient of thermal expansion than silicon and high strength.

従って、本発明のセラミックスの熱膨張率は、原料粉末中のジルコニア、窒化硼素および窒化珪素の割合により調整することができる。また、窒化珪素の添加により、強度をさらに高めることができる。   Therefore, the thermal expansion coefficient of the ceramic of the present invention can be adjusted by the ratio of zirconia, boron nitride and silicon nitride in the raw material powder. Further, the strength can be further increased by the addition of silicon nitride.

本発明における着色成分は、C、Si、ならびに長周期型周期表における第4周期IIIA〜IVB族および第5周期IVA〜VB族および第6周期IVA〜VIB族の元素から選ばれる1種以上の元素の単体またはその化合物である。適当な化合物としては、窒化物、炭化物、硼化物、酸化物、珪化物、酸水和物、硝酸塩、炭酸塩、酢酸塩、硫酸塩などが例示される。ただし、主成分中に含まれる化合物種は除く。窒化硼素、ジルコニアだけでは光反射の少ない均一な黒色系の色合いを出すことはできない。   In the present invention, the coloring component is one or more selected from elements of C, Si, and the fourth period IIIA to IVB group, the fifth period IVA to VB group, and the sixth period IVA to VIB group in the long period periodic table. An elemental element or a compound thereof. Suitable compounds include nitrides, carbides, borides, oxides, silicides, acid hydrates, nitrates, carbonates, acetates, sulfates and the like. However, the compound species contained in the main component is excluded. Even with boron nitride and zirconia alone, a uniform black hue with little light reflection cannot be produced.

着色成分の原料は焼結前の加熱中または焼結中に反応を受けてもよい。即ち、この原料は焼結したセラミックス中に存在する着色成分の前駆体であってもよい。例えば、Cの前駆体として有機樹脂を使用してもよく、また金属酸化物の前駆体として金属塩を使用することもできる。特に後者の場合、焼結前に金属塩または他の前駆体を金属酸化物に転化させるために、原料粉末を予め空気中または他の酸化性雰囲気中で仮焼してもよい。仮焼は、焼結助剤を添加する前または添加した後のいずれに行ってもよい。   The coloring component raw material may undergo a reaction during heating before sintering or during sintering. That is, this raw material may be a precursor of a coloring component present in the sintered ceramic. For example, an organic resin may be used as the C precursor, and a metal salt may be used as the metal oxide precursor. In particular, in the latter case, the raw material powder may be preliminarily calcined in air or another oxidizing atmosphere in order to convert the metal salt or other precursor to a metal oxide before sintering. The calcination may be performed either before or after the sintering aid is added.

CおよびSiは、それぞれカーボンもしくは珪素の単体または炭化珪素の形態で添加することができる。それ以外の場合で、金属の炭化物または珪化物として含有されるときは、その金属元素の炭化物または珪化物として扱う。   C and Si can be added in the form of carbon or silicon alone or silicon carbide, respectively. Otherwise, when it is contained as a metal carbide or silicide, it is treated as a carbide or silicide of the metal element.

長周期型周期表の第4周期IIIA〜IVB族の元素としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、およびGeが挙げられる。第5周期IVA〜VB族の元素としては、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、およびSbが挙げられる。第6周期IVA〜VIB族の元素としては、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、およびPoが挙げられる。   The elements of the fourth period IIIA to IVB group of the long period type periodic table include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, and Ge. Examples of the elements of the fifth period IVA to VB group include Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, and Sb. The elements of the sixth period IVA to VIB group include Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, and Po.

これらの元素の中でも、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Wなどの遷移金属の単体および/または酸化物を添加したとき、焼成中に金属や低価数酸化物への還元黒色化が起こり特に均一な色合いとなるとともに、これらの酸化物は窒化物、炭化物、硼化物よりも低硬度で加工性への影響が少ないことから好ましい。   Among these elements, when a single element and / or oxide of a transition metal such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and W is added, a metal or Reduced blackening to low valence oxide occurs, resulting in a particularly uniform color, and these oxides are preferred because they have lower hardness and less influence on workability than nitrides, carbides and borides.

特に、Tiの単体および/または酸化物を添加したときには、色ムラがより目立ちにくい均一な色合いになるとともに、加工性への影響も少なく、より好適である。
また、C (カーボン) 添加も、加工性への影響が少ない点から好適であるが、これらは炭素粉末や炭化性樹脂の形態で配合すればよい。炭化性樹脂の場合は炭化後に所望のC添加率となるようにその添加量を調整すればよい。
In particular, when a simple substance of Ti and / or an oxide is added, the color unevenness becomes more inconspicuous, and it is more suitable because it has a less influence on workability.
C (carbon) addition is also preferable because it has little influence on processability, but these may be added in the form of carbon powder or carbonized resin. In the case of a carbonized resin, the addition amount may be adjusted so that a desired C addition rate is obtained after carbonization.

本発明に係るセラミックスは、240 MPa以上の高強度であるとともに、快削性を呈し、高精度な微細加工を行なうことができる。そして、25℃〜600℃での熱膨張係数が3〜5×10-6/℃とシリコンに近い値を示すことから、半導体検査装置に使用されるプローブ案内部品(プローブガイド)に用いた場合、温度変化があっても検査する半導体素子との間で位置ずれを起こさない。また、均一な黒色系の色合いに着色されているため、加工後の画像処理測定等の測定を正確に行なうことができるとともに、外観上も優れており、その商品価値を高める。 The ceramic according to the present invention has a high strength of 240 MPa or more, exhibits free-cutting properties, and can perform fine processing with high accuracy. And when the thermal expansion coefficient at 25 ° C to 600 ° C is 3-5x10 -6 / ° C, which is close to silicon, it is used for probe guide parts (probe guides) used in semiconductor inspection equipment. Even if there is a temperature change, no positional deviation occurs between the semiconductor element to be inspected. In addition, since it is colored in a uniform blackish hue, it is possible to accurately perform measurement such as image processing after processing, and it is excellent in appearance and increases its commercial value.

セラミックス加工部品の単純な着色方法としては、金属やセラミックスの蒸着、樹脂被膜での被覆が考えられる。しかし、これらの方法では、被覆が剥離しやすい上、被覆自体が10μm程度の厚みが有り、膜厚も不均一になりやすいため、加工精度保持が難しいなどの問題があるので、セラミックス素材自体を着色することが望ましい。   As a simple coloring method for ceramic processed parts, vapor deposition of metals and ceramics, and coating with a resin film can be considered. However, in these methods, the coating is easy to peel off, and the coating itself has a thickness of about 10 μm, and the film thickness tends to be non-uniform. It is desirable to color.

また、着色成分の添加量については、少量過ぎると光反射の少ない均一な色合いを呈した焼結体を得ることができない。逆に多量すぎると、強度が低下するとともに、被削性も劣化して微細加工性に影響を与え、さらに絶縁性も低下するので、半導体検査装置用のプローブ案内部品に用いた場合、プローブ間の短絡などの問題が発生する。   Moreover, about the addition amount of a coloring component, when too small, the sintered compact which exhibited the uniform color with little light reflection cannot be obtained. On the other hand, if the amount is too large, the strength will decrease and the machinability will also deteriorate, affecting the fine workability, and also the insulation will be reduced, so when used for probe guide parts for semiconductor inspection equipment, Problems such as short circuit occur.

また、本発明における光反射の少ない均一な黒色系の色合いとは、黒色、灰色、濃紺色、濃紫色、濃緑色などである。具体的には、例えばマンセル表色系 (JIS Z8721:色の三属性による表示方法) における明度の基準でいえば、8.5以下の範囲である。   In addition, the uniform blackish hue with less light reflection in the present invention includes black, gray, dark blue, dark purple, dark green, and the like. Specifically, for example, in terms of lightness in the Munsell color system (JIS Z8721: display method using three attributes of color), the range is 8.5 or less.

本発明の快削性セラミックスの製造方法によれば、窒化硼素30〜59.95質量%とジルコニア40〜69.95質量%、窒化珪素0〜20質量%および着色成分とからなる主成分に焼結助剤成分を添加し、混合して原料粉末を調製する。この混合は、たとえば湿式ボールミル等により行うことができる。   According to the method for producing free-cutting ceramics of the present invention, the sintering aid component is a main component consisting of 30 to 59.95% by weight of boron nitride, 40 to 69.95% by weight of zirconia, 0 to 20% by weight of silicon nitride, and a coloring component. Are added and mixed to prepare a raw material powder. This mixing can be performed by, for example, a wet ball mill.

窒化硼素は六方晶系のもの (h−BN)でよい。微細加工の際必要とされる高強度を得る観点から、主成分原料粉末、特に窒化硼素粉末は平均粒径1μm未満のものが好適である。ジルコニアも同様に、平均粒径1μm未満のもの、さらに好ましくは0.5μm未満のものを使用することによって、所望の高強度快削性セラミックスを確実に製造することができる。   Boron nitride may be hexagonal (h-BN). From the viewpoint of obtaining the high strength required for microfabrication, it is preferable that the main component raw material powder, particularly boron nitride powder, has an average particle size of less than 1 μm. Similarly, by using zirconia having an average particle size of less than 1 μm, more preferably less than 0.5 μm, a desired high-strength free-cutting ceramic can be reliably produced.

本発明において用いる焼結助剤は、窒化硼素や窒化珪素の焼結に従来から使用されているものから選択することができる。好ましい焼結助剤は、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化イットリウム(イットリア)、およびランタノイド金属の酸化物およびスピネルなどの複合酸化物から得られた1種もしくは2種以上であり、より好ましくはアルミナとイットリアとの混合物、もしくはこれにさらにマグネシアを添加した混合物である。   The sintering aid used in the present invention can be selected from those conventionally used for sintering boron nitride and silicon nitride. Preferred sintering aids are one or more obtained from complex oxides such as aluminum oxide (alumina), magnesium oxide (magnesia), yttrium oxide (yttria), and lanthanoid metal oxides and spinels. More preferably, it is a mixture of alumina and yttria, or a mixture obtained by further adding magnesia thereto.

焼結助剤成分の配合量は、主成分原料粉末の1〜15質量%、特に3〜10質量%の範囲とすることが望ましい。配合量が少なすぎては、焼結が不十分となって、焼結体の強度が低下する。配合量が多すぎると、強度の低い粒界ガラス層が増加して、焼結体の強度低下を招く。   The blending amount of the sintering aid component is desirably in the range of 1 to 15% by mass, particularly 3 to 10% by mass of the main component raw material powder. If the blending amount is too small, sintering becomes insufficient and the strength of the sintered body is lowered. When there are too many compounding quantities, a low-intensity grain boundary glass layer will increase, and the intensity | strength fall of a sintered compact will be caused.

着色成分の前駆体である金属塩を金属酸化物に転化させるために、焼結助剤を添加した後に原料粉末を仮焼した場合、仮焼中に普通は粉末の凝集が起こるので、仮焼粉を解凝集のために再び湿式ボールミル混合することが好ましい。   When the raw material powder is calcined after adding a sintering aid in order to convert the metal salt, which is a precursor of the coloring component, into a metal oxide, the agglomeration of the powder usually occurs during the calcining. It is preferable to wet-mill the powder again for deagglomeration.

主成分原料粉末と焼結助剤成分とを混合した原料粉末を高温加圧下で焼結させる。高温加圧焼結法としてはホットプレスがあり、窒素雰囲気中または加圧窒素中で行ってもよい。ホットプレス温度は1400〜1800℃の範囲がよい。温度が低すぎると焼結が不十分となり、高すぎると助剤成分の溶出などの問題が発生する。加圧力は20〜50 MPaの範囲内が適当である。ホットプレスの持続時間は、温度や寸法にもよるが、通常は1〜4時間程度である。   The raw material powder in which the main component raw material powder and the sintering aid component are mixed is sintered under high temperature and pressure. As a high-temperature pressure sintering method, there is a hot press, which may be performed in a nitrogen atmosphere or in pressurized nitrogen. The hot press temperature is preferably in the range of 1400-1800 ° C. If the temperature is too low, sintering becomes insufficient, and if it is too high, problems such as elution of the auxiliary component occur. The pressure is suitably in the range of 20-50 MPa. The duration of hot pressing is usually about 1 to 4 hours, although it depends on the temperature and dimensions.

高温加圧焼結はHIP (ホットアイソスタティクプレス)により行うこともできる。この場合の焼結条件も、当業者であれば適宜設定できる。
得られた焼結体は均一に黒色系の色合いに着色しており、焼結助剤の種類や量ならびにジルコニアおよび窒化珪素 (使用する場合) の割合を適切に選択すれば、25℃〜600℃での熱膨張係数が3〜5×10-6/℃となる。
High-temperature pressure sintering can also be performed by HIP (hot isostatic press). The sintering conditions in this case can also be set as appropriate by those skilled in the art.
The obtained sintered body is uniformly colored in a blackish hue. If the kind and amount of the sintering aid and the ratio of zirconia and silicon nitride (when used) are appropriately selected, 25 to 600 ° C. The coefficient of thermal expansion at 3 ° C. is 3 to 5 × 10 −6 / ° C.

また、この焼結体の微細組織を走査型電子顕微鏡 (SEM) で観察したところ、主成分である窒化硼素、ジルコニア、窒化珪素および着色成分とも平均粒径が5μm以下であった。   Further, when the microstructure of the sintered body was observed with a scanning electron microscope (SEM), the average particle diameters of boron nitride, zirconia, silicon nitride and coloring components as main components were 5 μm or less.

この焼結体は被削性に優れ、かつ高強度であるので、微細なスリット加工または穴加工を高精度で行なえる。また、シリコンに近い熱膨張係数を示すことから、半導体検査装置に使用されるプローブ案内部品(プローブガイド)に用いた場合、温度変化があっても被検査半導体素子との間で位置ずれを起こさない。さらに、光反射性の低い均一な黒色系の色合いに着色されているため、加工後の金属やセラミックスの蒸着、樹脂被膜による被覆処理といった、加工寸法精度の低下をもたらす特別な着色処理無しに、画像処理測定等の測定や位置合わせを正確に行なうことができる。また、外観上もすぐれているので、商品価値も高い。   Since this sintered body has excellent machinability and high strength, fine slit processing or hole processing can be performed with high accuracy. In addition, since it exhibits a thermal expansion coefficient close to that of silicon, when used in a probe guide component (probe guide) used in a semiconductor inspection apparatus, even if there is a temperature change, a positional deviation occurs with respect to the semiconductor element to be inspected. Absent. Furthermore, because it is colored in a uniform black color shade with low light reflectivity, without special coloring treatment that causes deterioration of processing dimensional accuracy, such as vapor deposition of metal and ceramic after processing, coating treatment with resin coating, Measurement such as image processing measurement and alignment can be performed accurately. In addition, it has a good commercial value due to its excellent appearance.

本発明にかかるセラミックス加工部品は、図1(B)および図2に示すように、一般に板状または枠形状でよく、研削砥石によるスリット加工で形成された複数のスリットおよび/またはドリルによる穴あけ加工により形成された複数の貫通穴を有するプローブ案内部品とすることができる。その外形は、このプローブ案内部品を装着するプローブカードの開口部に嵌合するように決めればよい。   As shown in FIGS. 1B and 2, the ceramic processed part according to the present invention may generally have a plate shape or a frame shape, and a plurality of slits and / or drills formed by slit processing using a grinding wheel. It is possible to obtain a probe guide component having a plurality of through holes formed by. The outer shape may be determined so as to be fitted into the opening of the probe card to which the probe guide component is mounted.

壁厚みないしは穴間の壁厚みが、例えば5μm以上、20μm未満と薄く、かつ精度良く加工ができるため、本発明に係るプローブ案内部品は、高密度にプローブを保持することができ、かつプローブの位置合わせ精度が向上し、検査装置の信頼性が高まる。   Since the wall thickness or the wall thickness between holes is as thin as 5 μm or more and less than 20 μm and can be processed with high accuracy, the probe guide component according to the present invention can hold the probe at a high density and The alignment accuracy is improved and the reliability of the inspection apparatus is increased.

従って、こうして製造された、均一な黒色系の色合いを呈し、熱膨張係数がシリコンに近い高強度快削性セラミックスの用途は、特に制限されないが、半導体素子の検査に使用されるプローブカードに装着されるプローブ案内部品として有用である。   Therefore, the use of the high strength free-cutting ceramics thus produced with a uniform black hue and a thermal expansion coefficient close to that of silicon is not particularly limited, but is attached to a probe card used for inspection of semiconductor elements. It is useful as a probe guide component.

本発明における実施例並びにそれに対する比較例を述べ、結果を表1に示す。実施例および比較例中の「%」は特に指定しない限り、「質量%」である。   The Example in this invention and the comparative example with respect to it are described, and a result is shown in Table 1. “%” In Examples and Comparative Examples is “% by mass” unless otherwise specified.

[実施例1]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h−BN) 粉末、平均粒径0.1μmのジルコニア粉末、および平均粒径0.1μmのカーボン粉末を、表1に示す割合で混合した。この混合粉末 (主成分原料粉末)に対して、焼結助剤として2%のアルミナと6%のイットリアを加え、エチルアルコールを溶媒として湿式ボールミル混合を行った。この時、ポリエチレン製ポット、メディアとしてジルコニアボールを用い、得られたスラリーを減圧エバポレーターにより乾燥させて、原料粉末を得た。
[Example 1]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and a purity of 99%, zirconia powder having an average particle size of 0.1 μm, and carbon powder having an average particle size of 0.1 μm were mixed at a ratio shown in Table 1. To this mixed powder (main component raw material powder), 2% alumina and 6% yttria were added as sintering aids, and wet ball mill mixing was performed using ethyl alcohol as a solvent. At this time, a polyethylene pot and zirconia balls as media were used, and the resulting slurry was dried by a vacuum evaporator to obtain a raw material powder.

この原料粉末を黒鉛製のダイスに充填し、窒素雰囲気中30 MPaの圧力を加えながら1600℃で2時間ホットプレス焼結を行って 65 mm×65 mm、厚み10 mmのセラミックス焼結体を得た。   This raw material powder is filled in a graphite die and hot press sintered at 1600 ° C for 2 hours while applying a pressure of 30 MPa in a nitrogen atmosphere to obtain a ceramic sintered body of 65 mm × 65 mm and 10 mm thickness. It was.

この焼結体より試験片を切り出し、破壊強度を3点曲げ試験で測定した。また、被削性を評価するため、超硬K-lO種工具を用いて、研削速度18 m/min、送り速度0.03 mm/rev、切り込み0.1 mmの条件で旋削試験を行い、5分後の被削材の表面粗さと工具の逃げ面摩耗幅(工具の摩耗の程度を示す)を測定した。さらに、この焼結体の熱膨張係数を室温(25℃)〜600℃の範囲で測定した。また、室温にて体積固有抵抗を測定した。   A test piece was cut out from the sintered body, and the fracture strength was measured by a three-point bending test. In order to evaluate machinability, a turning test was conducted using a carbide K-lO type tool at a grinding speed of 18 m / min, a feed rate of 0.03 mm / rev, and a cutting depth of 0.1 mm. The surface roughness of the work material and the flank wear width of the tool (indicating the degree of tool wear) were measured. Furthermore, the thermal expansion coefficient of this sintered body was measured in the range of room temperature (25 ° C.) to 600 ° C. Further, the volume resistivity was measured at room temperature.

色合いについては、65 mm×65 mm焼結体の表層を研削除去後、目視にて評価し、「均一性」の欄に、色むらが無く着色されていれば○、色むらが見られれば×とした。色調についても検査し、「着色度合い」の欄において、加工形状(穴径や穴加工位置など)の画像処理測定を円滑に行なうことができた場合を着色度○、光の反射などで円滑に測定できなかった場合を着色度×とした。さらに、マンセル表色系 (JIS Z8721) における明度を、標準色票と製品研削面色合いとを比較することにより測定した。これらの結果を表1に示す。   Regarding the hue, after grinding and removing the surface layer of the 65 mm × 65 mm sintered body, it is visually evaluated. If there is no color unevenness in the “uniformity” column, ○, if color unevenness is seen X. Also check the color tone, and if the image processing measurement of the processing shape (hole diameter, hole processing position, etc.) can be performed smoothly in the “Coloring degree” column, the coloration degree ○, light reflection, etc. The case where it was not able to measure was made into coloring degree x. Furthermore, the brightness in the Munsell color system (JIS Z8721) was measured by comparing the standard color chart with the product ground surface color. These results are shown in Table 1.

この焼結体に、研削砥石(レジンボンドダイヤモンド砥石No.200、厚み40μm、外径50 mm)を用いたスリット加工により、図3に示す形状のスリット(幅=40μm、壁厚み=15μm、深さ=300μm)を100 個形成した。「スリット」の欄に、スリット加工ができない場合を×、スリット加工は可能であるが、精度が不十分(ピッチ精度が±4μmを超える)か、割れおよび/欠け(チッピング)が発生した場合を△、十分な精度でスリット加工が可能で、割れや欠けが発生しない場合を○と評価した。   By slitting this sintered body using a grinding wheel (resin bond diamond wheel No. 200, thickness 40 μm, outer diameter 50 mm), a slit having the shape shown in FIG. 3 (width = 40 μm, wall thickness = 15 μm, depth) 100 = 300 μm). In the “Slit” column, x indicates that slitting is not possible, slitting is possible, but accuracy is insufficient (pitch accuracy exceeds ± 4 μm), or cracking and / or chipping (chipping) occurs. Δ, when slitting was possible with sufficient accuracy and no cracks or chipping occurred, it was evaluated as ○.

また、得られた焼結体を厚さ300μmの薄板状に切り出した後、直径50μmの超硬ドリル材質SKH 9) を用いて、図1(C)、(D)に示すように、壁厚み10μmで縦20列(合計200個)の穴あけ加工を行った。穴の直径は60μm、深さは300μmである。   Further, after cutting the obtained sintered body into a thin plate having a thickness of 300 μm, using a carbide drill material SKH 9) having a diameter of 50 μm, as shown in FIGS. 1 (C) and (D), the wall thickness Drilling was performed in 20 rows (total 200 pieces) at 10 μm. The diameter of the hole is 60 μm and the depth is 300 μm.

得られた貫通穴の穴径と穴ピッチの精度を測定し、「穴あけ」の欄において、この精度が±4μm以内で、割れや欠けがない場合を○、穴あけ加工は可能であるものの、精度が不十分か、割れや欠けが発生した場合を△、穴あけ加工ができない場合を×と評価した。結果を表1にあわせて示す。   Measure the hole diameter and hole pitch accuracy of the obtained through holes, and in the “Drilling” column, if this accuracy is within ± 4μm and there are no cracks or chips, drilling is possible. Was evaluated as “C” when the crack was insufficient or cracks or chips were generated, and “C” was evaluated when drilling was not possible. The results are shown in Table 1.

[実施例2]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、平均粒径0.1μmのカーボン粉末を表1に示す割合で混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして、焼結体を作製し、評価した。結果は表1に示す。
[Example 2]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and purity of 99%, zirconia powder having an average particle size of 0.1 μm, silicon nitride powder having an average particle size of 0.1 μm, and carbon having an average particle size of 0.1 μm Powders were mixed at a ratio shown in Table 1 to prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例3]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、C供給源のフェノール樹脂を、炭化後に表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価を行った。結果は表1に示す。
[Example 3]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and purity of 99%, zirconia powder having an average particle size of 0.1 μm, and phenol resin as a C source so as to have the ratio shown in Table 1 after carbonization. To prepare a main component raw material powder. The other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例4]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、モリブデン酸(H2MoO4) をMo換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 4]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, and molybdic acid (H2MoO4) so as to have the ratio shown in Table 1 in terms of Mo. The main component raw material powder was prepared by mixing. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例5〜8]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、場合により平均粒径0.1μmの窒化珪素粉末と、酸化チタン(TiO2)をTi換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Examples 5 to 8]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, and optionally a silicon nitride powder with an average particle size of 0.1μm, and titanium oxide (TiO2) Were mixed so as to have the ratio shown in Table 1 in terms of Ti to prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例9]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、炭化チタン(TiC) をTi換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 9]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, and titanium carbide (TiC) so that the ratio shown in Table 1 is converted to Ti. The main component raw material powder was prepared by mixing. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例10]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、窒化チタン(TiN)をTi換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 10]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and titanium nitride (TiN) The main component raw material powder was prepared by mixing so as to have the ratio shown in Table 1 in terms of conversion. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例11]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、硼化チタン(TiB2)をTi換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 11]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, and titanium boride (TiB2) to the ratio shown in Table 1 in terms of Ti To prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例12]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、炭化タングステンをW換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 12]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, silicon nitride powder with an average particle size of 0.1μm, and tungsten carbide in terms of W The main component raw material powder was prepared by mixing so as to have the ratio shown in 1. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例13]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、塩基性炭酸コバルト(II)をCo換算で表1に示す割合になるように混合して調製した主成分原料粉末に、実施例1と同様に焼結助剤を加えて湿式ボールミル混合した。得られた原料粉末を大気中400 ℃で仮焼して炭酸コバルトを酸化コバルトに分解し、この仮焼粉をエチルアルコールを用いて再び湿式ボールミル混合して解凝集した後、実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 13]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and purity of 99%, zirconia powder having an average particle size of 0.1 μm, silicon nitride powder having an average particle size of 0.1 μm, and basic cobalt carbonate (II) In the same manner as in Example 1, a sintering aid was added to a main component raw material powder prepared by mixing so as to have a ratio shown in Table 1 in terms of Co, and wet ball mill mixed. The obtained raw material powder was calcined at 400 ° C. in the atmosphere to decompose cobalt carbonate into cobalt oxide, and this calcined powder was again wet-milled using ethyl alcohol and deagglomerated, and then the same as in Example 1. Thus, a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例14]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、平均粒径0.1μm、純度99.9%のニッケル粉末を表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 14]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, silicon nitride powder with an average particle size of 0.1μm, average particle size of 0.1μm, purity Main component raw material powder was prepared by mixing 99.9% of nickel powder in the proportion shown in Table 1. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例15]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酢酸マンガン(II)4水和物をMn換算で表1に示す割合になるように混合して調製した主成分原料粉末に、実施例1と同様に焼結助剤を加えて湿式ボールミル混合した。得られた原料粉末を大気中400 ℃で仮焼して酢酸マンガンを酸化マンガンに分解し、この仮焼粉をエチルアルコールを用いて再び湿式ボールミル混合して解凝集した後、実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 15]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and purity of 99%, zirconia powder having an average particle size of 0.1 μm, silicon nitride powder having an average particle size of 0.1 μm, and manganese (II) acetate 4 water In the same manner as in Example 1, a sintering aid was added to a main component raw material powder prepared by mixing a Japanese product so as to have a ratio shown in Table 1 in terms of Mn, and wet ball mill mixing was performed. The obtained raw material powder was calcined at 400 ° C. in the atmosphere to decompose manganese acetate into manganese oxide, and this calcined powder was again wet-milled using ethyl alcohol and deagglomerated, and then the same as in Example 1. Thus, a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例16]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、硝酸銅(II)3水和物をCu換算で表1に示す割合になるように混合して調製した主成分原料粉末に、実施例1と同様に焼結助剤を加えて湿式ボールミル混合した。得られた原料粉末を大気中400 ℃で仮焼して硝酸銅を酸化銅に分解し、この仮焼粉をエチルアルコールを用いて再び湿式ボールミル混合して解凝集した後、実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 16]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and copper (II) nitrate 3 water In the same manner as in Example 1, a sintering aid was added to the main component raw material powder prepared by mixing the Japanese product so as to have a ratio shown in Table 1 in terms of Cu, and wet ball mill mixing was performed. The obtained raw material powder was calcined at 400 ° C. in the atmosphere to decompose copper nitrate into copper oxide, and this calcined powder was again wet-milled using ethyl alcohol and deagglomerated, and then the same as in Example 1. Thus, a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例17]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化銀(I) (Ag2O) をAg換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 17]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and silver (I) (Ag2O ) Were mixed so as to have the ratio shown in Table 1 in terms of Ag to prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例18]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化スカンジウム (Sc2O3) をSc換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 18]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, silicon nitride powder with an average particle size of 0.1μm, and scandium oxide (Sc2O3) The main component raw material powder was prepared by mixing so as to have the ratio shown in Table 1 in terms of conversion. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例19]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化バナジウム(V) (V2O5) をV換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 19]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.9 μm and purity of 99%, zirconia powder having an average particle size of 0.1 μm, silicon nitride powder having an average particle size of 0.1 μm, and vanadium oxide (V) (V2O5 ) Were mixed so as to have the ratio shown in Table 1 in terms of V to prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例20]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化亜鉛 (ZnO) をZn換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 20]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, silicon nitride powder with an average particle size of 0.1μm, and zinc oxide (ZnO) in Zn The main component raw material powder was prepared by mixing so as to have the ratio shown in Table 1 in terms of conversion. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例21]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化ガリウム(III) (Ga2O3)をGa換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 21]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and gallium (III) oxide (Ga2O3 ) Were mixed so as to have the ratio shown in Table 1 in terms of Ga to prepare a main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例22]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、硝酸鉄(III) 9水和物をFe換算で表1に示す割合になるように混合して調製した主成分原料粉末に、実施例1と同様に焼結助剤を加えて湿式ボールミル混合した。得られた原料粉末を大気中400 ℃で仮焼して硝酸鉄を酸化鉄に分解し、この仮焼粉をエチルアルコールを用いて再び湿式ボールミル混合して解凝集した後、実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 22]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and iron (III) nitrate 9 water In the same manner as in Example 1, a sintering aid was added to a main component raw material powder prepared by mixing Japanese products so as to have a ratio shown in Table 1 in terms of Fe, and wet ball mill mixing was performed. The obtained raw material powder was calcined at 400 ° C. in the atmosphere to decompose iron nitrate into iron oxide, and this calcined powder was again wet-milled using ethyl alcohol and deagglomerated, and then the same as in Example 1. Thus, a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例23]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と平均粒径0.1μmの窒化珪素粉末と、酸化クロム (Cr2O3) をCr換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 23]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9μm and purity of 99%, zirconia powder with an average particle size of 0.1μm, silicon nitride powder with an average particle size of 0.1μm, and chromium oxide (Cr2O3) converted to Cr The main component raw material powder was prepared by mixing so as to have the ratio shown in Table 1. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[実施例24]
平均粒径0.9μm、純度99%の六方晶窒化硼素 (h-BN) 粉末と、平均粒径0.1μmのジルコニア粉末と、平均粒径0.1μmの窒化珪素粉末と、酸化スズ(II) (SnO) をSn換算で表1に示す割合になるように混合して主成分原料粉末を調製した。その他の条件は実施例1と同様にして焼結体を作製し、評価した。結果は表1に示す。
[Example 24]
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.9 μm and purity of 99%, zirconia powder with an average particle size of 0.1 μm, silicon nitride powder with an average particle size of 0.1 μm, and tin (II) oxide (SnO ) Were mixed so as to have the ratio shown in Table 1 in terms of Sn to prepare main component raw material powder. Other conditions were the same as in Example 1, and a sintered body was produced and evaluated. The results are shown in Table 1.

[比較例1〜3]
比較のために、窒化硼素、ジルコニア、および/または着色添加剤の質量比が本発明の範囲外であった点を除いて実施例4と同様にして (但し、主成分原料粉末は平均粒径0.1μmの窒化珪素粉末を場合により含有) 焼結体を作製し、評価した。結果は表1に示す。
[Comparative Examples 1-3]
For comparison, the same as in Example 4 except that the mass ratio of boron nitride, zirconia, and / or coloring additive was outside the scope of the present invention (provided that the main component raw material powder has an average particle size) A sintered body was prepared and evaluated. The results are shown in Table 1.

[比較例4]
比較のため、従来の快削性結晶化ガラス系セラミックス材料について実施例と同様なスリット加工および穴加工を施したところ、材料の強度が弱く、微細加工を施すと欠け(チッピング)が発生し、精度良くきれいに穴あけすることができなかった。このセラミックス材料の各種特性や加工結果も表1に併記する。
[Comparative Example 4]
For comparison, the conventional free-cutting crystallized glass-based ceramic material was subjected to slit processing and hole processing similar to those of the examples. However, the strength of the material was weak, and chipping (chipping) occurred when fine processing was performed. It was not possible to drill holes with good precision. Various characteristics and processing results of this ceramic material are also shown in Table 1.

[比較例5]
比較のため、従来の窒化アルミニウムと窒化硼素の複合快削性セラミックス材料について実施例と同様なスリット加工および穴加工を施したところ、材料の加工性が悪く、精度良くきれいに穴あけすることができなかった。このセラミックス材料の各種特性や加工結果も表1に併記する。
[Comparative Example 5]
For comparison, when a conventional free-cutting ceramic material of aluminum nitride and boron nitride was subjected to slitting and drilling similar to the examples, the workability of the material was poor and it was not possible to drill accurately and cleanly. It was. Various characteristics and processing results of this ceramic material are also shown in Table 1.

Figure 0004400360
Figure 0004400360

表1から分かるように実施例の範囲内の条件で作製された焼結体からなるセラミックス材料を用いると、割れや欠けを生じることなく高精度な微細加工を行うことができる。しかも均一な黒色系の色合いを呈しており、画像測定などによる加工寸法測定も円滑に行なえる。さらにこの材料の熱膨張係数は従来の結晶化ガラス系セラミックス材料に比べて小さく、シリコンの熱膨張係数に近い値を示すことがわかる。   As can be seen from Table 1, when a ceramic material made of a sintered body produced under conditions within the range of the examples is used, high-precision fine processing can be performed without causing cracks or chips. In addition, it has a uniform blackish hue and can be smoothly measured for processing dimensions such as image measurement. Furthermore, it can be seen that the thermal expansion coefficient of this material is smaller than that of a conventional crystallized glass-based ceramic material, and shows a value close to that of silicon.

図1(A) は従来のプローブカードの断面を示す部分略式説明図、図1(B) は、貫通穴を備えたプローブ案内部品を装着したプローブカードの断面を示す略式説明図、図1(C) は貫通穴の形状を示すプローブ案内部品の略式上面図、図1(D) はその断面を示すプローブ案内部品の略式説明図である。FIG. 1 (A) is a partially schematic explanatory view showing a cross section of a conventional probe card, FIG. 1 (B) is a schematic explanatory view showing a cross section of a probe card equipped with a probe guide component having a through hole, and FIG. C) is a schematic top view of the probe guide component showing the shape of the through hole, and FIG. 1 (D) is a schematic explanatory view of the probe guide component showing its cross section. スリットを備えたプローブ案内部品の略式説明図である。It is a schematic explanatory drawing of the probe guide component provided with the slit. 実施例で形成したスリット形状の説明図である。It is explanatory drawing of the slit shape formed in the Example.

符号の説明Explanation of symbols

1:プローブカード、2:プローブ、3、3a:プローブ案内部品、10:開口部、12:貫通穴、14:スリット 1: probe card, 2: probe, 3, 3a: probe guide component, 10: opening, 12: through hole, 14: slit

Claims (6)

主成分として、窒化硼素:30〜59.95質量%、ジルコニア:40〜69.95質量%、およびC、Si、長周期型周期表における第4周期IIIA 〜IVB族、第5周期IVA〜VB 族および第6周期IVA〜VIB族の元素から選択された1種以上の元素の単体および/または化合物からなる着色成分:0.05〜2.5質量% (但し、単体元素換算)を含み、窒化硼素、ジルコニアおよび前記着色成分の平均粒径が5μm以下であり、ジルコニアはFSZが主に析出しており、240MPa以上の曲げ強度および均一な黒色系の色合いを備えたことを特徴とする微細加工が可能な快削性セラミックス。 As main components, boron nitride: 30 to 59.95% by mass, zirconia: 40 to 69.95% by mass, and C, Si, the fourth period IIIA to IVB group, the fifth period IVA to VB group and the sixth in the long period type periodic table A coloring component composed of a single element and / or a compound of one or more elements selected from the elements of the groups IVA to VIB having a period: 0.05 to 2.5% by mass (however, converted to a single element) , boron nitride, zirconia and the coloring component A free-cutting ceramic capable of micromachining characterized by having an average particle size of 5 μm or less, FSZ mainly precipitated by FSZ, and having a bending strength of 240 MPa or more and a uniform blackish hue. . 主成分として、窒化硼素:30〜59.95質量%、ジルコニア:40〜69.95質量%、およびSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、MoおよびWから選択された1種以上の金属の単体および/または酸化物からなる着色成分:0.05〜2.5質量% (但し、単体元素換算)を含み、窒化硼素、ジルコニアおよび前記着色成分の平均粒径が5μm以下であり、ジルコニアはFSZが主に析出しており、240MPa以上の曲げ強度および均一な黒色系の色合いを備えたことを特徴とする微細加工が可能な快削性セラミックス。 As main components, boron nitride: 30 to 59.95% by mass, zirconia: 40 to 69.95% by mass, and 1 selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo and W A coloring component composed of a simple substance and / or an oxide of at least one kind of metal: 0.05 to 2.5% by mass (however, converted to a simple element) , boron nitride, zirconia and the average particle diameter of the coloring component are 5 μm or less, and zirconia Is a free-cutting ceramic capable of microfabrication , characterized in that FSZ is mainly precipitated and has a bending strength of 240 MPa or more and a uniform blackish hue . 前記主成分の一部に代えて、窒化珪素20質量%以下を主成分として含むことを特徴とする請求項1または2に記載の快削性セラミックス。 3. The free-cutting ceramic according to claim 1 , comprising 20% by mass or less of silicon nitride as a main component instead of a part of the main component . 25℃〜600 ℃の熱膨張係数が3〜5×10-6/℃である請求項1〜3のいずれかに記載の快削性セラミックス。 The free-cutting ceramics according to any one of claims 1 to 3 , which has a thermal expansion coefficient of 3 to 5 x 10-6 / ° C at 25 ° C to 600 ° C. 窒化硼素、ジルコニアおよび着色成分を含む主成分原料粉末と、該主成分原料粉末の1〜15質量%の焼結助剤とを混合して原料粉末を得る工程と、混合された原料粉末を高温加圧下に焼結する工程とを含む、請求項1〜4のいずれかに記載の快削性セラミックスの製造方法。 A step of mixing raw material powder containing boron nitride, zirconia and coloring components and 1 to 15% by mass of a sintering aid of the main component raw material powder to obtain raw material powder, and heating the mixed raw material powder at high temperature The manufacturing method of the free-cutting ceramics in any one of Claims 1-4 including the process of sintering under pressure. プローブが通る複数のスリットおよび/または貫通穴を備えたプローブ案内部品であって、請求項1〜4のいずれかに記載の快削性セラミックスからなることを特徴とするプローブ案内部品。 A probe guide component comprising a plurality of slits and / or through-holes through which the probe passes, the probe guide component comprising the free-cutting ceramic according to claim 1 .
JP2004224261A 2003-09-25 2004-07-30 Free-cutting ceramics, manufacturing method thereof, and probe guide parts Active JP4400360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224261A JP4400360B2 (en) 2003-09-25 2004-07-30 Free-cutting ceramics, manufacturing method thereof, and probe guide parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333691 2003-09-25
JP2004224261A JP4400360B2 (en) 2003-09-25 2004-07-30 Free-cutting ceramics, manufacturing method thereof, and probe guide parts

Publications (2)

Publication Number Publication Date
JP2005119941A JP2005119941A (en) 2005-05-12
JP4400360B2 true JP4400360B2 (en) 2010-01-20

Family

ID=34622026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224261A Active JP4400360B2 (en) 2003-09-25 2004-07-30 Free-cutting ceramics, manufacturing method thereof, and probe guide parts

Country Status (1)

Country Link
JP (1) JP4400360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054670A (en) * 2019-09-27 2021-04-08 株式会社フェローテックマテリアルテクノロジーズ Ceramic part and manufacturing method of ceramic part

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024530A (en) * 2006-07-18 2008-02-07 Toto Ltd Free-cutting ceramic sintered compact and probe guiding component
JP2009074823A (en) * 2007-09-19 2009-04-09 Ngk Spark Plug Co Ltd Wiring board for electronic component inspection device, and its manufacturing method
EP2266934B1 (en) * 2008-03-24 2015-04-29 Kyocera Corporation Ceramic for decorative part
JP5161060B2 (en) * 2008-12-26 2013-03-13 電気化学工業株式会社 Heat resistant black member and method for producing the same
JP2010249538A (en) * 2009-04-10 2010-11-04 Nps Inc Four-needle probe and resistivity measuring device using the same
JP5506246B2 (en) 2009-05-28 2014-05-28 日本発條株式会社 Ceramic member, probe holder, and method for manufacturing ceramic member
JP2011007597A (en) * 2009-06-25 2011-01-13 Kyocera Corp Board for probe card constituting probe card, laminate for probe card, and probe card using laminate for probe card
JP5407613B2 (en) * 2009-07-14 2014-02-05 東ソー株式会社 Orange zirconia sintered body
JP5407614B2 (en) * 2009-07-14 2014-02-05 東ソー株式会社 Yellow zirconia sintered body
JP6698395B2 (en) * 2016-03-24 2020-05-27 デンカ株式会社 Probe guide member and manufacturing method thereof
JP2018031597A (en) * 2016-08-22 2018-03-01 Koa株式会社 Probe unit
CN111247115A (en) 2017-10-20 2020-06-05 飞罗得材料技术股份有限公司 Ceramic, probe guide member, probe card, and socket for package inspection
KR102505460B1 (en) * 2017-11-10 2023-03-03 가부시키가이샤 페로텍 머티리얼 테크놀로지즈 Sockets for inspecting ceramics, probe guide elements, probe cards and packages
JP7373651B2 (en) 2020-04-10 2023-11-02 株式会社フェローテックマテリアルテクノロジーズ Ceramics, probe guide components, probe cards and package inspection sockets
CN117486620B (en) * 2023-10-30 2024-05-31 西华大学 Alumina low-temperature sintering aid, alumina ceramic material and preparation method of alumina low-temperature sintering aid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054670A (en) * 2019-09-27 2021-04-08 株式会社フェローテックマテリアルテクノロジーズ Ceramic part and manufacturing method of ceramic part
JP7148472B2 (en) 2019-09-27 2022-10-05 株式会社フェローテックマテリアルテクノロジーズ Ceramic part and method for manufacturing ceramic part

Also Published As

Publication number Publication date
JP2005119941A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4400360B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
EP1518844B1 (en) Machinable ceramic
JP5032318B2 (en) Composite sintered body
JP6193207B2 (en) Ceramic parts and cutting tools
KR20040030048A (en) Sputtering target and transparent conductive film
EP2248784A1 (en) Zirconia sintered body and manufacturing method thereof
CN101218188B (en) Sintered yttria, anticorrosion member and process for producing the same
KR101316658B1 (en) Mullite-based sintered body, circuit board using same and probe card
KR20140005909A (en) Cutting tool made of sialon based material
KR101910358B1 (en) Passage member and semiconductor module
KR100569643B1 (en) An aluminum nitride ceramics, a member used for the production of semiconductors and a method of producing an aluminum nitride sintered body
TW202222738A (en) Metal boride ceramic composites and uses thereof
KR20210119958A (en) Cubic boron nitride sintered compact, manufacturing method thereof, and tool
JP4371158B2 (en) Black-based free-cutting ceramics and their production and use
JP4066591B2 (en) Probe guide
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
JP6160986B1 (en) Ceramic sintered body
JP6698395B2 (en) Probe guide member and manufacturing method thereof
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JPH0745335B2 (en) Colored alumina sintered body
EP1095915A2 (en) Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP5257793B2 (en) Drill and its manufacturing method
JPS63282158A (en) Sintered ceramics having excellent oxidation resistance
JP2009074121A (en) Wc-base hard metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250