JP2009074121A - Wc-base hard metal - Google Patents

Wc-base hard metal Download PDF

Info

Publication number
JP2009074121A
JP2009074121A JP2007242815A JP2007242815A JP2009074121A JP 2009074121 A JP2009074121 A JP 2009074121A JP 2007242815 A JP2007242815 A JP 2007242815A JP 2007242815 A JP2007242815 A JP 2007242815A JP 2009074121 A JP2009074121 A JP 2009074121A
Authority
JP
Japan
Prior art keywords
zrw
cemented carbide
average particle
powder
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242815A
Other languages
Japanese (ja)
Inventor
Hideyuki Konishi
秀之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2007242815A priority Critical patent/JP2009074121A/en
Publication of JP2009074121A publication Critical patent/JP2009074121A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a WC-base hard metal having superior high-temperature strength. <P>SOLUTION: The WC-base hard metal comprises, by wt.%, 4% to 20% Co which shall be a binder phase, Zr and the balance WC with unavoidable impurities. The hard metal includes carboxide particles containing Zr and double-carbide particles containing Zr and W. When an average particle diameter of the carboxide particles containing Zr is expressed by d1 (μm), an average particle diameter of the double-carbide particles containing Zr and W by d2 (μm), and an average particle diameter of WC particles by D (μm), the particle diameters satisfy the expressions: (d1/D)≤2 and (d2/D)≤2. The hard metal has a deflective strength of 2.5 GPa or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、優れた高温強度を有するWC基超硬合金に関する。   The present invention relates to a WC-based cemented carbide having excellent high temperature strength.

特許文献1から3には、Zrを含有した超硬合金を用いた工具に関する技術が開示されている。   Patent Documents 1 to 3 disclose a technique related to a tool using a cemented carbide containing Zr.

特許第3235259号公報Japanese Patent No. 3235259 特開2003−113437号公報JP 2003-113437 A 特開2005−54258号公報JP 2005-54258 A

本願発明の解決課題は、優れた高温強度を有するWC基超硬合金を提供することである。   The problem to be solved by the present invention is to provide a WC-based cemented carbide having excellent high temperature strength.

本願発明のWC基超硬合金は、重量%で4%〜20%のCoを結合相とし、Zrを含有し、残部がWC及び不可避不純物を有し、該超硬合金はZrを含む炭酸化物及び、ZrとWを含む複炭化物を含有し、該Zrを含む炭酸化物の平均粒子径をd1(μm)、ZrとWを含む複炭化物の平均粒子径をd2(μm)、WCの平均粒子径をD(μm)としたとき、(d1/D)≦2、(d2/D)≦2、抗折力が2.5GPa以上、であることを特徴とするWC基超硬合金である。上記の構成を採用することにより、優れた高温強度を有するWC基超硬合金を実現できる。ここで言う高温強度とは、略800℃における強度のことである。   The WC-based cemented carbide according to the present invention comprises 4% to 20% by weight of Co as a binder phase, contains Zr, the remainder has WC and inevitable impurities, and the cemented carbide contains Zr. And a double carbide containing Zr and W, the average particle diameter of the carbonate containing Zr is d1 (μm), the average particle diameter of the double carbide containing Zr and W is d2 (μm), and the average particle of WC When the diameter is D (μm), the WC-based cemented carbide is characterized in that (d1 / D) ≦ 2, (d2 / D) ≦ 2, and the bending strength is 2.5 GPa or more. By adopting the above configuration, a WC-based cemented carbide having excellent high-temperature strength can be realized. The high temperature strength here refers to strength at about 800 ° C.

本願発明によって、優れた高温強度を有するWC基超硬合金を提供することができた。   By this invention, the WC base cemented carbide which has the outstanding high temperature strength was able to be provided.

本願発明は、優れた高温強度を有するWC基超硬合金を達成するため、超硬合金の高温強度を向上させるZrの含有に関する検討を行い、Zrを含む炭酸化物及びZrとWを含む複炭化物を含有させることにより高温強度が飛躍的に向上する効果を見出した。更に、d1値、d2値を制御することが必要であるとの知見を得た。Zrは、従来、超硬合金の高温強度を改善する目的で含有されてきたが、本願発明では、Zrを含む炭酸化物及びZrとWを含む複炭化物の含有の有無を規定し、d1値、d2値を規定することにより、更なる高温強度の改善を図ったものである。同時に、室温の25℃での抗折力も2.5GPa以上を達成することができた。
本願発明のWC基超硬合金は、WCを硬質相とし、Co、Ni、Fe等といった鉄族元素を結合相とする焼結体である。結合相の組成は、Coを含有する。結合相の含有量は、4%以上、20%以下に規定する。4%未満であると、Zrを含む炭酸化物及びZrとWを含む複炭化物の粒子径が適量であっても、抗折力が低下する。一方、20%を超えて多いと、結合相量が多すぎるため、硬度が低下する不都合が生じる。また、Coの1部をNi等の他の鉄族元素に置換してもよい。
本願発明のWC基超硬合金の高温強度を改善するには、Zrを含む炭酸化物(以下、Zr系炭酸化物と記す。)及びZrとWを含む複炭化物(以下、(ZrW)系複炭化物と記す。)を伴に含有する必要がある。高温強度の強化機構の1つとして、Zr元素がZr系炭酸化物及び(ZrW)系複炭化物となってWC基超硬合金に効果的に分散することによって、高温強度が向上する。特に、Zr系炭酸化物の分散して存在することが、高温強度の改善と耐酸化性の改善に有効である。本願発明のWC基超硬合金におけるZr系炭酸化物及び(ZrW)系複炭化物等のZr化合物は、超硬合金内に分散して存在し材料の高温強度を向上させ、強化させる効果があり、またその含有量には適正な範囲がある。即ち、Zr化合物の含有量が少なすぎる場合は、高温強度の改善や、室温での抗折力の改善といったZr化合物の含有効果を得ることができない。また、多すぎる場合には、超硬合金の焼結性が劣化してしまう等の不都合が生じる。そこで、Zr化合物の含有量にも適正な範囲が存在する。本願発明のWC基超硬合金では、Zr元素添加量の範囲として、0.1%から5%が好ましい。
Zr(CO)等のZr系炭酸化物は、O元素を含むZrC原料粉末や他の原料粉末のO元素及び配合時の混合工程に於いて酸化により付着するO元素から生成する。例えば、Zr系炭酸化物は、O元素を含むZrC原料粉末が合金の焼結中に結合相中に固溶及び再析出する過程で生成し、再析出する過程において、混合粉末全体の含有するO元素が、Zr系炭酸化物に含有される。しかし、焼結工程において、ZrC及び他の原料粉末のO含有量、原料粉末混合時に混入するO量等の増加により、焼結中に形成されるZr系炭酸化物中のO含有量が多くなりすぎると、ZrOとなって焼結性が著しく低下してしまう。そこで焼結条件は、800℃以上の焼結過程において、COやH等の還元性のガスを分圧制御にて焼結炉内に導入し、Zr系炭酸化物としてのO含有量が30重量%を超えない様にした。また、炭素量が適正値になる様、炉内雰囲気を制御した。また、(ZrW)C等の(ZrW)系複炭化物は、原料粉末の(ZrW)Cに由来するもの、もしくは、焼結工程中に結合相に溶解及び析出して生成したものと考えられる。添加したZrの1部は結合相中やWC相中に固溶しているとも考えられる。他に結合相中やWC相は、Cr、V、Hf等の各添加元素及び不可避不純物元素を少量含有しても良い。
本願発明は、d1、d2値を制御する為に、(ZrW)Cの固溶体粉末とZrC粉末とを併用した。即ち、(ZrW)C固溶体粉末だけの添加では、Zr系炭酸化物の含有量及びd1値が制御できない。一方、ZrC粉末だけのZr添加では、Zr系炭酸化物及び(ZrW)系複炭化物が超硬合金内に形成されるものの、これではd2値が制御できない。そこで本願発明は焼結工程において、結合相中に1部が固溶し焼結後に再析出してできると考えられるZr系炭酸化物を得るため、結合相の含有量に配慮してZrC粉末を添加した。また、(ZrW)系複炭化物を超硬合金に含有させる為に、(ZrW)C固溶体粉末を原料粉末として添加した。具体的には、ZrC粉末に対する(ZrW)C固溶体粉末の重量比を0.2〜1の範囲として添加した。
また本願発明は、Zr系炭酸化物及び(ZrW)系複炭化物を含有させ、これらのd1、d2値をD値の2倍以下に制御する為に、Zr含有量、ZrC原料粉末と(ZrW)C固溶体原料粉末によるZrの添加、Zr含有量に合わせたCr、V等の含有量、焼結温度などの調整と、焼結温度よりも低い温度での恒温保持の操作を行った。Zr含有量が増加すると必然的にd1値が増加する為、Zrが焼結中に結合相中に固溶する結合相含有量の5%から10%程度をZrC原料粉末として添加し、d1値がD値の2倍以下になるようにした。(ZrW)系複炭化物について、ZrC原料粉末の含有によって生成する量、(ZrW)C固溶体原料粉末の量とのバランスから調整した。更にd2値も制御した。またWC粒子の粒成長を抑制させる為に添加するCr、VやZrは、超硬合金の焼結性を低下させる要因となる為、焼結性に影響の少ないCrを主として用い、Cr含有量もZr含有量を配慮して調整し、D値を制御した。更に、WC原料粉末時点の平均粒子径にも配慮して調整した。焼結条件では、温度が高い場合、Zrの粒成長も活性となる。そこでZr含有量が多い場合は、1290℃での焼結時に2時間程度の中間保持を設定した。そして、Zr、CrやV含有量によって低下する焼結性、特に超硬合金が固相焼結状態での焼結性を改善した。更に、Zr含有量が増加してゆくと、d1値、d2値がD値に対して大きくなる。すると、Zr系炭酸化物及び(ZrW)系複炭化物が破壊の起点となって、高温強度や室温強度の低下を引き起こす。従って、本願発明のWC基超硬合金のd1値、d2値は、D値の2倍以下にする必要がある。一方、単にZrを添加した従来の超硬合金では、Zr系炭酸化物の存在は検出されていないことから、Zr系炭酸化物及び(ZrW)系複炭化物を伴に含有することによって得られるという、本願発明の高温強度の改善効果を得ることはできない。
本願発明のWC基超硬合金は、室温での抗折力が2.5GPa以上である。この理由は、抗折力が2.5GPa未満では、例えば切削工具に適用した場合、十分な強度を得ることができず、性能面において満足のいく耐欠損性や耐摩耗性を得ることができないからである。
In order to achieve a WC-based cemented carbide having excellent high-temperature strength, the present invention has studied the inclusion of Zr to improve the high-temperature strength of the cemented carbide, and includes a carbonate containing Zr and a double carbide containing Zr and W. It has been found that the high temperature strength is remarkably improved by the inclusion of. Furthermore, the knowledge that it was necessary to control the d1 value and the d2 value was obtained. Zr has been conventionally contained for the purpose of improving the high-temperature strength of the cemented carbide, but in the present invention, the presence or absence of a carbonate containing Zr and a double carbide containing Zr and W is specified, By prescribing the d2 value, the high temperature strength is further improved. At the same time, the bending strength at 25 ° C. at room temperature was also able to achieve 2.5 GPa or more.
The WC-based cemented carbide of the present invention is a sintered body having WC as a hard phase and iron group elements such as Co, Ni, Fe, etc. as a binder phase. The composition of the binder phase contains Co. The content of the binder phase is specified to be 4% or more and 20% or less. If it is less than 4%, even if the particle size of the carbonate containing Zr and the double carbide containing Zr and W is an appropriate amount, the bending strength is lowered. On the other hand, if it exceeds 20%, the amount of the binder phase is too large, which causes a disadvantage that the hardness is lowered. Further, a part of Co may be replaced with other iron group elements such as Ni.
In order to improve the high temperature strength of the WC-based cemented carbide of the present invention, a carbonate containing Zr (hereinafter referred to as a Zr-based carbonate) and a double carbide containing Zr and W (hereinafter referred to as a (ZrW) -based double carbide). It is necessary to contain it. As one of the strengthening mechanisms for high-temperature strength, the Zr element is converted into a Zr-based carbonate and (ZrW) -based double carbide and is effectively dispersed in the WC-based cemented carbide, thereby improving the high-temperature strength. In particular, the presence of dispersed Zr-based carbonates is effective in improving high-temperature strength and improving oxidation resistance. Zr compounds such as Zr-based carbonates and (ZrW) -based double carbides in the WC-based cemented carbide of the present invention are dispersed in the cemented carbide and have the effect of improving and strengthening the high temperature strength of the material, Moreover, the content has an appropriate range. That is, when the content of the Zr compound is too small, the effect of containing the Zr compound such as improvement of the high temperature strength and improvement of the bending strength at room temperature cannot be obtained. Moreover, when too much, inconveniences, such as the sinterability of a cemented carbide deteriorate, will arise. Therefore, there is an appropriate range for the content of the Zr compound. In the WC-based cemented carbide of the present invention, the range of the Zr element addition amount is preferably 0.1% to 5%.
Zr-based carbonates such as Zr (CO) are generated from an O element of a ZrC raw material powder containing O element and other raw material powders, and an O element attached by oxidation in a mixing step at the time of blending. For example, Zr-based carbonate is produced in the process in which the ZrC raw material powder containing the O element is dissolved and reprecipitated in the binder phase during the sintering of the alloy. Elements are contained in Zr-based carbonates. However, in the sintering process, the O content in Zr-based carbonates formed during sintering increases due to an increase in the O content of ZrC and other raw material powders, the amount of O mixed when mixing the raw material powders, etc. If it is too much, it becomes ZrO 2 and the sinterability is significantly reduced. Therefore, the sintering condition is that a reducing gas such as CO or H 2 is introduced into the sintering furnace under partial pressure control in the sintering process at 800 ° C. or higher, and the O content as the Zr-based carbonate is 30. The weight percentage was not exceeded. In addition, the atmosphere in the furnace was controlled so that the carbon amount became an appropriate value. In addition, (ZrW) -based double carbide such as (ZrW) C is considered to be derived from (ZrW) C of the raw material powder, or generated by dissolving and precipitating in the binder phase during the sintering process. It is considered that a part of the added Zr is dissolved in the binder phase or the WC phase. In addition, the binder phase and the WC phase may contain a small amount of each additive element such as Cr, V, and Hf and inevitable impurity elements.
In the present invention, in order to control the d1 and d2 values, a solid solution powder of (ZrW) C and a ZrC powder were used in combination. That is, the addition of the (ZrW) C solid solution powder alone cannot control the Zr-based carbonate content and d1 value. On the other hand, when Zr is added only to the ZrC powder, Zr-based carbonates and (ZrW) -based double carbides are formed in the cemented carbide, but this cannot control the d2 value. Accordingly, in the sintering process of the present invention, in order to obtain a Zr-based carbonate that is considered to be formed by dissolving a part of the binder phase in the binder phase and reprecipitating after the sintering, the ZrC powder is used in consideration of the binder phase content. Added. In addition, (ZrW) C solid solution powder was added as a raw material powder so that the cemented carbide contained the (ZrW) -based double carbide. Specifically, the weight ratio of (ZrW) C solid solution powder to ZrC powder was added in the range of 0.2-1.
In addition, the present invention includes a Zr-based carbonate and a (ZrW) -based double carbide, and in order to control these d1 and d2 values to be not more than twice the D value, the Zr content, the ZrC raw material powder and (ZrW) The operation of adding Zr with the C solid solution raw material powder, adjusting the content of Cr, V, etc. in accordance with the Zr content, the sintering temperature, and maintaining the constant temperature at a temperature lower than the sintering temperature were performed. As the Zr content increases, the d1 value inevitably increases. Therefore, about 5% to 10% of the binder phase content in which Zr is solid-solved in the binder phase during sintering is added as the ZrC raw material powder. Was set to be less than twice the D value. About (ZrW) type | system | group double carbide, it adjusted from the quantity produced | generated by containing ZrC raw material powder, and the quantity of the amount of (ZrW) C solid solution raw material powder. Furthermore, d2 value was also controlled. In addition, Cr, V and Zr added to suppress the grain growth of the WC particles are factors that reduce the sinterability of the cemented carbide. Therefore, the Cr content is mainly used because it has little influence on the sinterability. Was adjusted in consideration of the Zr content, and the D value was controlled. Furthermore, the average particle diameter at the time of the WC raw material powder was adjusted in consideration. Under sintering conditions, when the temperature is high, the grain growth of Zr becomes active. Therefore, when the Zr content is large, an intermediate holding of about 2 hours was set during sintering at 1290 ° C. And the sinterability which falls with Zr, Cr, and V content, especially the sinterability in the solid-phase sintering state of the cemented carbide improved. Further, as the Zr content increases, the d1 value and the d2 value increase with respect to the D value. Then, Zr-based carbonates and (ZrW) -based double carbides serve as starting points for destruction, causing a decrease in high temperature strength and room temperature strength. Therefore, the d1 value and d2 value of the WC-based cemented carbide of the present invention must be twice or less than the D value. On the other hand, in the conventional cemented carbide simply added Zr, since the presence of Zr-based carbonate has not been detected, it can be obtained by containing Zr-based carbonate and (ZrW) -based double carbide, The effect of improving the high temperature strength of the present invention cannot be obtained.
The WC-based cemented carbide of the present invention has a bending strength at room temperature of 2.5 GPa or more. The reason for this is that when the bending strength is less than 2.5 GPa, for example, when applied to a cutting tool, sufficient strength cannot be obtained, and satisfactory fracture resistance and wear resistance cannot be obtained in terms of performance. Because.

本願発明のWC基超硬合金の表面に、スパッタ法、アークイオンプレーティング法等の物理蒸着法、化学蒸着(以下、CVDと記す。)法等により、被覆を施して使用すると、更に硬度等の性能が改善されて好ましい。被覆する材料としては、例えば、周期律表4a、5a、6a族金属及びAl、Siの1種以上の炭素、窒素、酸素、硼素等との化合物からなる皮膜や酸化アルミニウム膜、酸化ジルコニウム膜等の単層や多層膜からなる硬質皮膜が有効である。これらの硬質皮膜を本願発明の超硬合金部材に被覆することにより、表面の耐摩耗性や耐酸化性、摺動性等を改善することが出来る。本願発明のWC基超硬合金は、硬さと高温強度が伴に優れているため、例えば、回転工具、旋削加工用工具、切断用工具、打ち抜き用工具などに広範囲に用いられ、性能の改善効果が得られる。本願発明のWC基超硬合金を以下の実施例に基づいて具体的に説明する。   When the surface of the WC-based cemented carbide of the present invention is coated with a physical vapor deposition method such as a sputtering method or an arc ion plating method, or a chemical vapor deposition (hereinafter referred to as CVD) method, the hardness and the like are further increased. This is preferable because of improved performance. Examples of the material to be coated include a film made of a compound of a periodic table 4a, 5a, 6a group metal and one or more of Al, Si, carbon, nitrogen, oxygen, boron, etc., an aluminum oxide film, a zirconium oxide film, etc. A hard film composed of a single layer or a multilayer film is effective. By coating these hard coatings on the cemented carbide member of the present invention, the surface wear resistance, oxidation resistance, slidability and the like can be improved. Since the WC-based cemented carbide of the present invention is excellent in terms of hardness and high-temperature strength, for example, it is widely used for rotating tools, turning tools, cutting tools, punching tools, etc., and the performance improvement effect Is obtained. The WC-based cemented carbide of the present invention will be specifically described based on the following examples.

(実施例1)
原料粉末として、夫々、平均粒子径:0.4μm、1.0μm、1.5μm、2.5μm、3.5μm、4.5μmのWC粉末、平均粒子径:1.2μmのCo粉末、平均粒子径:1.5μmのNi粉末、平均粒子径:1.5μmのFe粉末、平均粒子径:1.5μmのCr3C2粉末、平均粒子径:1.2μmのVC粉末、平均粒子径:1.5μmのHfC粉末、平均粒子径:2.0μmのTiC粉末、平均粒子径:1.5μmのTaC粉末、平均粒子径:0.4μmの(ZrW)C固溶体粉末及び0.8μmのZrC粉末を夫々用意した。これらの粉末を所定の組成に配合した。使用したZrC粉末はO元素を約1重量%程度含有している。配合粉をアルコール中で12時間アトライター混合し、成型用の樹脂を添加し乾燥して混合粉末を作成した。次に混合粉末を100MPaの圧力でプレス成形し、JIS抗折試験片(JIS−B−4053)用の成形体とした。これらの成形体を真空雰囲気中、1400℃で、30分焼結した後、超硬合金内の残留空孔を無くす為に、アルゴンガスを用いて4.9MPaで30分間加圧し、炉冷した。
JIS試験片用成形体より得られた焼結体は、ダイヤモンド砥石で研削し、4mm×8mm×24mmの寸法を有するJIS抗折力試験片を作製した。この試験片を用いて組成分析を行い、Co、Ni、Zr、Cr、V、Ta、Hf、Ti等の各含有量を求めた。金属結合相であるCo、Niは、超硬合金の断面を鏡面研磨した後、蛍光X線分析装置(リガク製、ZSX−100E型)により分析し、その含有量を定量的に求めた。他の金属元素は、超硬合金を微細に粉砕した粉を、HPO、HCl、HF、HNO及びHSOを用いて溶解し、イオン化して、誘導結合プラズマ発光分析(以下、ICP分析と記す。)することにより、各元素の種類を同定するとともに、その含有量を定量的に求めた。各試料の組成を表1に示す。
Example 1
As raw material powders, average particle size: 0.4 μm, 1.0 μm, 1.5 μm, 2.5 μm, 3.5 μm, 4.5 μm WC powder, average particle size: 1.2 μm Co powder, average particle, respectively Diameter: 1.5 μm Ni powder, Average particle size: 1.5 μm Fe powder, Average particle size: 1.5 μm Cr3C2 powder, Average particle size: 1.2 μm VC powder, Average particle size: 1.5 μm HfC powder, average particle size: 2.0 μm TiC powder, average particle size: 1.5 μm TaC powder, average particle size: 0.4 μm (ZrW) C solid solution powder and 0.8 μm ZrC powder were prepared. . These powders were blended into a predetermined composition. The ZrC powder used contains about 1% by weight of O element. The blended powder was mixed with an attritor in alcohol for 12 hours, a molding resin was added and dried to prepare a mixed powder. Next, the mixed powder was press-molded at a pressure of 100 MPa to obtain a molded body for a JIS bending test piece (JIS-B-4053). After these compacts were sintered in a vacuum atmosphere at 1400 ° C. for 30 minutes, in order to eliminate residual voids in the cemented carbide, they were pressurized with argon gas at 4.9 MPa for 30 minutes and cooled in the furnace. .
The sintered body obtained from the molded body for JIS test pieces was ground with a diamond grindstone to produce JIS bending strength test pieces having dimensions of 4 mm × 8 mm × 24 mm. Composition analysis was performed using this test piece, and each content of Co, Ni, Zr, Cr, V, Ta, Hf, Ti, and the like was determined. Co and Ni, which are metal binder phases, were mirror-polished on the cross section of the cemented carbide, and then analyzed by a fluorescent X-ray analyzer (manufactured by Rigaku, ZSX-100E type), and the content thereof was quantitatively determined. For other metal elements, powder of finely pulverized cemented carbide is dissolved and ionized using H 3 PO 4 , HCl, HF, HNO 3 and H 2 SO 4 , and inductively coupled plasma emission analysis (hereinafter referred to as “inductively coupled plasma emission spectrometry”) And ICP analysis), the type of each element was identified and its content was quantitatively determined. Table 1 shows the composition of each sample.

Figure 2009074121
Figure 2009074121

試験片の断面を鏡面研磨した後、村上試薬で0.5分、王水で0.5分間エッチング処理することにより、結晶粒界を明確にした後、各種粒子やZr含有化合物の測定をおこなった。解析に使用した装置は、電界放出型電子プローブマイクロアナライザー(日本電子製、JXA−8500F、以下、FE−EPMAと記す。)である。この解析によって、Zr系炭酸化物の1例としてZr(CO)、(ZrW)系複炭化物の1例として(ZrW)Cの有無を同定した。まず、FE−EPMAを用いて、倍率5k倍で20視野の面分析を行った。次に、Zrを含有する粒子の解析を行い、Zr(CO)、(ZrW)Cの識別を行った。FE−EPMA分析にて1視野以上に、Zr(CO)の存在が確認できた試料は、Zr系炭酸化物を含有していると判断した。同様に、(ZrW)Cの存在が確認できた試料は、(ZrW)系複炭化物を含有していると判断した。本発明例2、16、17及び比較例25、26、従来例30の分析結果を表2に示す。ここで、従来例30は市販の切削工具を用いた。   After mirror-polishing the cross section of the test piece, the crystal grain boundaries are clarified by etching with Murakami reagent for 0.5 minutes and aqua regia for 0.5 minutes, and various particles and Zr-containing compounds are measured. It was. The apparatus used for the analysis is a field emission electron probe microanalyzer (manufactured by JEOL, JXA-8500F, hereinafter referred to as FE-EPMA). By this analysis, the presence or absence of Zr (CO) as an example of a Zr-based carbonate and (ZrW) C as an example of a (ZrW) -based double carbide was identified. First, using FE-EPMA, a surface analysis of 20 fields of view was performed at a magnification of 5k. Next, the particles containing Zr were analyzed, and Zr (CO) and (ZrW) C were identified. A sample in which the presence of Zr (CO) was confirmed in one or more fields of view by FE-EPMA analysis was judged to contain a Zr-based carbonate. Similarly, the sample in which the presence of (ZrW) C was confirmed was judged to contain (ZrW) -based double carbide. Table 2 shows the analysis results of Invention Examples 2, 16, and 17, Comparative Examples 25 and 26, and Conventional Example 30. Here, the conventional example 30 used the commercially available cutting tool.

Figure 2009074121
Figure 2009074121

表2に示す様に、本発明例2には2種類の相が観察され、化合物番号2−1はZr(CO)、化合物番号2−2は(ZrW)Cであった。両者化合物相を区別するに当たり、Zr(CO)の特徴は、Zr、O及びCを含有することである。化合物番号2−1はZr、O及びCを含有するが、化合物番号2−2はOを含有しなかった。これに対して(ZrW)Cの特徴は、Oを含有せず、ZrとWを含有する複炭化物であることである。化合物番号2−1ではWを含有するが、同時にOも含有している為、(ZrW)Cではない。化合物番号2−2は、Zr、W及びCを含有し、Oを含有しない為、(ZrW)Cと判断した。また、(ZrW)Cには本発明例16の化合物番号16−2や本発明例17の化合物番号17−2の様に、Co、V及びTa等の他の元素を含有していても(ZrW)系複炭化物としての性質が損なわれることはなく、逆に性質が向上する可能性も考えられる。一方、比較例25は、化合物番号25−1のZr(CO)のみの存在が確認され、(ZrW)Cを含有していなかった。従来例30は、化合物番号30−1の1種類の相が観察され、これは(ZrW)Cであった。また、Zr(CO)は含有していなかった。
d1値、d2値は、各化合物相を含有していると判別した試料について、倍率10k倍で撮影した画像を拡大コピーし、これを画像解析ソフト(Image−ProPlusVersion 4.0 for Windows、Media Cybernetics社、Windowsは登録商標です。)により解析することにより算出した。D値も同様に、倍率10k倍にて5視野観察して求めた。D値、d1値、d2値、とその比を表1に示した。
試験片の室温、高温での抗折力は、Metal Testing Machine(島津製作所製、EHF−ED20型)を用いて、スパン20mm、クロスベッドスピード:1mm/minの条件で3点曲げ試験により求めた。室温条件は、室温が25℃の大気中にて測定を行った。高温条件は、800℃に保持したAr雰囲気の恒温炉中にて測定を行った。夫々の試験数は5点とし、平均値を求めた。試験片の硬さは、ロックウェル硬度試験機(ミツトヨ製、HR−523型)を用い、Aスケール、加重249.2Nの条件にて求めた。各試料の室温及び高温条件における抗折力、硬さを表3に示す。
As shown in Table 2, two types of phases were observed in Inventive Example 2, Compound No. 2-1 was Zr (CO), and Compound No. 2-2 was (ZrW) C. In distinguishing between the two compound phases, the feature of Zr (CO) is that it contains Zr, O and C. Compound No. 2-1 contains Zr, O and C, but Compound No. 2-2 did not contain O. On the other hand, the feature of (ZrW) C is that it is a double carbide not containing O but containing Zr and W. Compound No. 2-1 contains W but is not (ZrW) C because it also contains O at the same time. Compound No. 2-2 contained Zr, W, and C and did not contain O, so was determined to be (ZrW) C. Further, (ZrW) C may contain other elements such as Co, V and Ta as in Compound No. 16-2 of Invention Example 16 and Compound No. 17-2 of Invention Example 17 ( The property as a ZrW) -based double carbide is not impaired, and conversely, the property may be improved. On the other hand, Comparative Example 25 was confirmed to contain only Zr (CO) of Compound No. 25-1, and did not contain (ZrW) C. In Conventional Example 30, one type of phase of Compound No. 30-1 was observed, which was (ZrW) C. Moreover, Zr (CO) was not contained.
The d1 value and the d2 value are obtained by magnifying and copying an image photographed at a magnification of 10 k with respect to a sample determined to contain each compound phase, and using this image analysis software (Image-ProPlus Version 4.0 for Windows, Media Cybernetics) (Company, Windows is a registered trademark). Similarly, the D value was determined by observing 5 visual fields at a magnification of 10 k. Table 1 shows the D value, d1 value, d2 value, and their ratios.
The bending strength of the test piece at room temperature and high temperature was determined by a three-point bending test using a Metal Testing Machine (manufactured by Shimadzu Corporation, EHF-ED20 type) under the conditions of a span of 20 mm and a cross bed speed of 1 mm / min. . The room temperature condition was measured in the air at room temperature of 25 ° C. The high temperature condition was measured in a constant temperature furnace maintained at 800 ° C. in an Ar atmosphere. The number of each test was 5 points, and the average value was obtained. The hardness of the test piece was determined using a Rockwell hardness tester (manufactured by Mitutoyo, model HR-523) under the conditions of A scale and a load of 249.2N. Table 3 shows the bending strength and hardness of each sample at room temperature and high temperature.

Figure 2009074121
Figure 2009074121

表3の結果より、本発明例1から19は、抗折力が高く、室温の25℃では2.5GPaから2.9GPa、高温の800℃では1.6GPaから2.1GPaの強度を示した。また、結合相にCoを含有した本発明例2に対して、Co、Niを含有した本発明例3、Co、NiとFeを含有した本発明例4では、何れも2.7GPa程度の室温強度、1.8GPa程度の高温強度、HRA90.3程度の硬さを示した。この結果より、本願発明の超硬合金における結合相はCoの他にNiやFe等の鉄族元素を含有しても良い。Zr含有量の異なる本発明例9から14は、Zr系炭酸化物及び(ZrW)系複炭化物の含有効果が得られ、高温で1.6GPa以上の高い抗折力が得られた。Cr、V、Ta、Hf、Tiを含有した本発明例15から19も、同様の高い高温抗折力を示した。これより、添加元素を少量含有させても、高温抗折力の改善効果が見られた。更に、D値が1.0μm以下の微粒超硬合金である本発明例20、21は、2.9GPa以上の高い高温抗折力を示した。
しかし、結合相量の少ない比較例22は、Zr(CO)、(ZrW)Cを含有し、d1、d2値及びZr含有量が本願発明の規定範囲内であっても、1.9GPaの低い室温強度、0.9GPaの低い高温強度しか示さなかった。Co含有量が本願発明の規定範囲より多い比較例23は、Zr(CO)、(ZrW)Cを含有し、d1、d2値が本願発明の規定範囲内であっても、結合相量が多いため硬度が低下した。そこで、本願発明の超硬合金における結合相量は、4%以上、20%以下とする必要がある。Zr(CO)及び(ZrW)Cを含有しない比較例24は、両化合物の含有効果が得られず、高温で0.9GPaの低い抗折力しか示さなかった。また、結合相含有量が本願発明規定の範囲内であっても、Zr(CO)のみ含有する比較例25、27は、(ZrW)系複炭化物の含有効果が得られず、高温で1.0GPa以下の低い抗折力しか示さなかった。表2の比較例26に示す様に、Zr(CO)及び(ZrW)Cを含有していても、(d1/D)値が2を超えて大きいと、Zr(CO)の粗大な粒子が破壊の起点となって、室温及び高温抗折力が1.0GPa以下であった。(d1/D)値が2を超えて大きくなった比較例28、29は、1.9GPa以下の低い高温抗折力しか示さなかった。
From the results shown in Table 3, Examples 1 to 19 of the present invention had high bending strength, and showed strengths of 2.5 GPa to 2.9 GPa at 25 ° C. at room temperature and 1.6 GPa to 2.1 GPa at 800 ° C. at high temperature. . Further, in Example 2 of the present invention containing Co and Ni, and Example 4 of the present invention containing Co, Ni and Fe, compared to Example 2 containing Co in the binder phase, the room temperature was about 2.7 GPa. It showed strength, high temperature strength of about 1.8 GPa, and hardness of about HRA 90.3. From this result, the binder phase in the cemented carbide of the present invention may contain iron group elements such as Ni and Fe in addition to Co. Inventive Examples 9 to 14 having different Zr contents were able to obtain the effect of containing Zr-based carbonates and (ZrW) -based double carbides, and a high bending strength of 1.6 GPa or more was obtained at high temperatures. Invention Examples 15 to 19 containing Cr, V, Ta, Hf, and Ti also showed the same high high temperature bending strength. From this, even if it contained a small amount of the additive element, the effect of improving the high temperature bending strength was observed. Further, Invention Examples 20 and 21, which are fine cemented carbides having a D value of 1.0 μm or less, showed a high high temperature bending strength of 2.9 GPa or more.
However, Comparative Example 22 with a small amount of binder phase contains Zr (CO), (ZrW) C, and even if the d1, d2 value and Zr content are within the specified range of the present invention, they are as low as 1.9 GPa. Only room temperature strength and low high temperature strength of 0.9 GPa were shown. Comparative Example 23 having more Co content than the specified range of the present invention contains Zr (CO), (ZrW) C, and has a large amount of binder phase even if the d1 and d2 values are within the specified range of the present invention. Therefore, the hardness decreased. Therefore, the amount of the binder phase in the cemented carbide of the present invention needs to be 4% or more and 20% or less. The comparative example 24 which does not contain Zr (CO) and (ZrW) C did not obtain the inclusion effect of both compounds, and showed only a low bending strength of 0.9 GPa at a high temperature. Moreover, even if the binder phase content is within the range specified in the present invention, Comparative Examples 25 and 27 containing only Zr (CO) cannot obtain the effect of containing the (ZrW) -based double carbide, and are 1. Only low bending strength of 0 GPa or less was exhibited. As shown in Comparative Example 26 of Table 2, even if Zr (CO) and (ZrW) C are contained, if the (d1 / D) value is larger than 2, coarse particles of Zr (CO) are formed. The room temperature and high-temperature bending strength were 1.0 GPa or less as a starting point of destruction. Comparative Examples 28 and 29 having a (d1 / D) value exceeding 2 exhibited only a low high temperature bending resistance of 1.9 GPa or less.

(実施例2)
本願発明のWC基超硬合金の高温強度を具体的に説明する為に、旋削用インサートを作成して比較検討を行った。ここで本発明例31から35、比較例36から41を作製した。各試料は、表1の試料から選択した材料を使用した。従って夫々の試料における各元素の含有量、Zr(CO)及び(ZrW)Cの含有の有無、d1値、d2値、D値、抗折力、硬さは、JIS試験片と試料の作製方法が同じであるため、表1、表2と表3の測定値と同値であるとした。各試料に対応する表1の試料番号を表4に併記した。
(Example 2)
In order to specifically explain the high temperature strength of the WC-based cemented carbide of the present invention, a turning insert was created and subjected to a comparative study. Here, Invention Examples 31 to 35 and Comparative Examples 36 to 41 were produced. Each sample used a material selected from the samples in Table 1. Therefore, the content of each element in each sample, the presence / absence of Zr (CO) and (ZrW) C, d1 value, d2 value, D value, bending strength, and hardness are determined according to the JIS test piece and sample preparation method. Are the same as the measured values in Table 1, Table 2, and Table 3. The sample numbers in Table 1 corresponding to each sample are also shown in Table 4.

Figure 2009074121
Figure 2009074121

表1の材料の造粒粉を用いて内接円が12.4mm、厚さが4.8mmのCNMG型の切削用試験片プレス体を作製した。各プレス体は表1に示す同試料と同じ条件にて夫々焼結を行い、焼結体を作製した。夫々の焼結体を同寸法に研削加工を行い、CVD成膜装置を用いて基体上にTiN、Ti(CN)、Al2O3硬質皮膜を被覆した。各試料を用いて以下の試験条件1で切削加工を実施した。切削性能は、切削試験片の逃げ面最大摩耗幅が0.4mmに達した時点までの切削時間を工具寿命と判断した。結果を表4に示す。
(試験条件1)
被削材:炭素鋼S53C、直径300mm
切削方法:旋削加工
切削速度:毎分220m
切り込み量:2mm
送り量:1回転につき0.4mm
表4より、本発明例31から35は、何れも55分以上の工具寿命を示した。この理由は、本発明例31、32は、表1に示す試料の中で、Co含有量を変化させた本発明例1、2の材料を用いて作成し、本発明例33から35は、Zr含有量を変化させた本発明例11、12と、Taを含有した本発明例17の材料から作成したからである。以上の結果から、本願発明のWC基超硬合金を用いて作製した切削工具は、優れた高温強度による耐欠損性と耐摩耗性を有し、切削加工における工具寿命を向上させることができた。一方、比較例36から41は、何れも25分以下の工具寿命しか示さなかった。この理由は、比較例36、37のCo含有量が、本願発明の規定外の材料である比較例22、23を用いて作成したためである。また比較例38がZr系炭酸化物及び(ZrW)系複炭化物を含有しない比較例24を用いて作成し、比較例39がZr系炭酸化物のみを含有する比較例25を用いて作成し、比較例40が(d1/D)値が2を超えて大きい比較例26を用いて作成し、比較例41がZr系炭酸化物のみを含有する比較例27の材料を用いて作成したためである。
Using a granulated powder of the materials shown in Table 1, a CNMG type test piece press for cutting having an inscribed circle of 12.4 mm and a thickness of 4.8 mm was produced. Each pressed body was sintered under the same conditions as the sample shown in Table 1 to produce a sintered body. Each sintered body was ground to the same size, and a TiN, Ti (CN), and Al2O3 hard coating was coated on the substrate using a CVD film forming apparatus. Cutting was performed under the following test condition 1 using each sample. For the cutting performance, the cutting time until the maximum flank wear width of the cutting specimen reached 0.4 mm was determined as the tool life. The results are shown in Table 4.
(Test condition 1)
Work material: Carbon steel S53C, diameter 300mm
Cutting method: Turning Cutting speed: 220m / min
Cutting depth: 2mm
Feed amount: 0.4mm per rotation
From Table 4, Examples 31 to 35 of the present invention all showed a tool life of 55 minutes or more. This is because the inventive examples 31 and 32 were prepared using the materials of the inventive examples 1 and 2 in which the Co content was changed in the samples shown in Table 1, and the inventive examples 33 to 35 were It is because it created from the material of this invention example 11 and 12 which changed Zr content, and the material of this invention example 17 containing Ta. From the above results, the cutting tool produced using the WC-based cemented carbide of the present invention has fracture resistance and wear resistance due to excellent high-temperature strength, and was able to improve the tool life in cutting. . On the other hand, Comparative Examples 36 to 41 all showed only a tool life of 25 minutes or less. This is because the Co contents in Comparative Examples 36 and 37 were prepared using Comparative Examples 22 and 23, which are materials outside the scope of the present invention. Further, Comparative Example 38 was prepared using Comparative Example 24 containing no Zr-based carbonate and (ZrW) -based double carbide, and Comparative Example 39 was prepared using Comparative Example 25 containing only Zr-based carbonate. This is because Example 40 was prepared using Comparative Example 26 having a large (d1 / D) value exceeding 2 and Comparative Example 41 was prepared using the material of Comparative Example 27 containing only Zr-based carbonate.

(実施例3)
本願発明のWC基超硬合金の高温強度を説明する為に、小径ドリルを用いた穴開け加工の試験を行った。小径ドリルは、刃先径が細く、微粒超硬合金の性能差が容易に比較できる。また、穴開け加工時には、ドリルの刃先が約800℃以上になる。高温における強度の低下は、ドリルの刃先の変形を引き起こし、この変形によってドリルの破損が起きる。そこで、折損本数を測定することにより、高温強度が比較できる。表1に示した試料中、D値が1.0μm以下の本発明例20、21、比較例28、29の材料を用いて小径ドリルを作成し、これらを本発明例42、43、比較例44、45とした。各材料の混合粉末を、25MPaの圧力で押し出し成形し、φ4.7mmの丸棒成形体を作製した。この丸棒成形体より得られた丸棒焼結体を夫々研磨し、全長が38.1mm、シャンク径が3.175mm、刃先径が0.25mm、溝長が5.5mmの小径ドリルに加工した。これらの小径ドリルを用いて、以下の試験条件2で穴開け加工を行った。高温強度の指標となる耐折損性の良否を測定する為、夫々の条件について20本のドリルを用いて、被削材を6000ヒットした時、折損したドリルの本数を測定し、耐折損性を評価した。結果を表5に示す。
(Example 3)
In order to explain the high temperature strength of the WC-based cemented carbide of the present invention, a drilling test using a small diameter drill was conducted. Small-diameter drills have a narrow cutting edge diameter and can easily compare the performance difference of fine-grain cemented carbide. Further, at the time of drilling, the cutting edge of the drill becomes about 800 ° C. or higher. The decrease in strength at high temperature causes the cutting edge of the drill to be deformed, and this deformation causes breakage of the drill. Therefore, high temperature strength can be compared by measuring the number of breaks. In the samples shown in Table 1, small-diameter drills were prepared using the materials of Invention Examples 20 and 21, Comparative Examples 28 and 29 having a D value of 1.0 μm or less, and these were used as Invention Examples 42 and 43 and Comparative Examples. 44 and 45. The mixed powder of each material was extrusion molded at a pressure of 25 MPa to produce a round bar molded body having a diameter of 4.7 mm. Each round bar sintered body obtained from this round bar molded body is polished and processed into a small diameter drill having a total length of 38.1 mm, a shank diameter of 3.175 mm, a cutting edge diameter of 0.25 mm, and a groove length of 5.5 mm. did. Using these small diameter drills, drilling was performed under the following test condition 2. In order to measure the quality of breakage resistance, which is an index of high-temperature strength, 20 drills were used for each condition, and when the work material hit 6000, the number of broken drills was measured to determine the breakage resistance. evaluated. The results are shown in Table 5.

Figure 2009074121
Figure 2009074121

(試験条件2)
被削材:板厚が1.6mmのガラスエポキシ銅張り4層積層板、2枚重ね
回転数:毎分160、000回転
送り量:19μm/回転
表5より、本発明例42、43は何れも折損本数が0本であったが、比較例44、45は何れも7本以上と、大変多い折損本数を示した。以上の結果から、本願発明のWC基超硬合金を用いて作製した切削工具は、優れた高温強度による耐欠損性を有し、小径ドリル等の微粒超硬合金を用いた工具寿命を向上させることができた。
(Test condition 2)
Work material: Glass epoxy copper-clad 4-layer laminate with a thickness of 1.6 mm, 2 layers Stacking speed: 160,000 revolutions per minute Feeding amount: 19 μm / rotation From Table 5, any of Examples 42 and 43 of the present invention Although the number of breaks was 0, Comparative Examples 44 and 45 both showed a very large number of breaks of 7 or more. From the above results, the cutting tool produced using the WC-based cemented carbide of the present invention has excellent fracture resistance due to high temperature strength, and improves the tool life using a fine cemented carbide such as a small diameter drill. I was able to.

Claims (1)

WC基超硬合金は、重量%で4%〜20%のCoを結合相とし、Zrを含有し、残部がWC及び不可避不純物を有し、該超硬合金はZrを含む炭酸化物及び、ZrとWを含む複炭化物を含有し、該Zrを含む炭酸化物の平均粒子径をd1(μm)、ZrとWを含む複炭化物の平均粒子径をd2(μm)、WCの平均粒子径をD(μm)としたとき、(d1/D)≦2、(d2/D)≦2、抗折力が2.5GPa以上、であることを特徴とするWC基超硬合金。 The WC-based cemented carbide contains 4% to 20% by weight of Co as a binder phase, contains Zr, the balance has WC and inevitable impurities, the cemented carbide includes a carbonate containing Zr, and Zr And a double carbide containing Zr, the average particle size of the carbonate containing Zr is d1 (μm), the average particle size of the double carbide containing Zr and W is d2 (μm), and the average particle size of WC is D A WC-based cemented carbide characterized by (d1 / D) ≦ 2, (d2 / D) ≦ 2, and the bending strength is 2.5 GPa or more when (μm).
JP2007242815A 2007-09-19 2007-09-19 Wc-base hard metal Pending JP2009074121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242815A JP2009074121A (en) 2007-09-19 2007-09-19 Wc-base hard metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242815A JP2009074121A (en) 2007-09-19 2007-09-19 Wc-base hard metal

Publications (1)

Publication Number Publication Date
JP2009074121A true JP2009074121A (en) 2009-04-09

Family

ID=40609380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242815A Pending JP2009074121A (en) 2007-09-19 2007-09-19 Wc-base hard metal

Country Status (1)

Country Link
JP (1) JP2009074121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199686A1 (en) * 2015-06-12 2016-12-15 株式会社タンガロイ Cemented carbide and coated cemented carbide
CN111979463A (en) * 2020-08-21 2020-11-24 合肥工业大学 WC-Co-Y2O3-Zr hard alloy with excellent comprehensive mechanical property and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199686A1 (en) * 2015-06-12 2016-12-15 株式会社タンガロイ Cemented carbide and coated cemented carbide
JP6090685B1 (en) * 2015-06-12 2017-03-08 株式会社タンガロイ Cemented carbide and coated cemented carbide
CN107614719A (en) * 2015-06-12 2018-01-19 株式会社泰珂洛 Hard alloy and coated carbide alloy
US10066277B2 (en) 2015-06-12 2018-09-04 Tungaloy Corporation Cemented carbide and coated cemented carbide
EP3309267A4 (en) * 2015-06-12 2019-03-13 Tungaloy Corporation Cemented carbide and coated cemented carbide
CN107614719B (en) * 2015-06-12 2019-05-07 株式会社泰珂洛 Hard alloy and coated carbide alloy
CN111979463A (en) * 2020-08-21 2020-11-24 合肥工业大学 WC-Co-Y2O3-Zr hard alloy with excellent comprehensive mechanical property and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5111600B2 (en) Surface covering member and cutting tool
WO2011129422A1 (en) Coated sintered cbn
JP2008001918A (en) Wc-based cemented carbide
JP4936761B2 (en) Cutting tools
JP6879935B2 (en) Cutting tools
JP2008208027A (en) cBN SINTERED COMPACT
JP6064549B2 (en) Sintered body and method of manufacturing the sintered body
JP2004076049A (en) Hard metal of ultra-fine particles
JP2004059946A (en) Ultra-fine grain hard metal
JP2008208027A5 (en)
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
EP3309267B1 (en) Cemented carbide and coated cemented carbide
JP2008202074A (en) Fine-grained cemented carbide
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
JP2007284751A (en) Hard metal made of fine particle
JP2009074121A (en) Wc-base hard metal
JP2006239792A (en) Hard film coated cemented carbide member
JP2008025024A (en) Wc-based cemented carbide
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
WO2015099305A1 (en) Ti-based sintered alloy having improved thermal shock resistance and cutting tool using same
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2008196041A (en) Cemented carbide
JP2007223001A (en) Cutting tool