JP2004059946A - Ultra-fine grain hard metal - Google Patents

Ultra-fine grain hard metal Download PDF

Info

Publication number
JP2004059946A
JP2004059946A JP2002216193A JP2002216193A JP2004059946A JP 2004059946 A JP2004059946 A JP 2004059946A JP 2002216193 A JP2002216193 A JP 2002216193A JP 2002216193 A JP2002216193 A JP 2002216193A JP 2004059946 A JP2004059946 A JP 2004059946A
Authority
JP
Japan
Prior art keywords
ultra
cemented carbide
fine grain
hard metal
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002216193A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
久保 裕
Atsuhiro Takano
高野 敦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2002216193A priority Critical patent/JP2004059946A/en
Publication of JP2004059946A publication Critical patent/JP2004059946A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra-fine grain hard metal for providing a cutting tool showing a high strength and adequate abrasion resistance besides having the long life before breakage, by improving a deflection strength through quantitatively grasping defects due to segregation of metal constituents in a microstructure of the ultra-fine grain hard metal material. <P>SOLUTION: The ultra-fine grain hard metal has a composition comprising, by weight ratio, 5-12% Co and/or Ni, 0.1-3% total amount of two or more elements selected from among Cr<SB>3</SB>C<SB>2</SB>, VC, TaC, Ru and Si, and the balance WC with unavoidable impurities; no peak of Co exceeding 1.5 times of an average intensity of a Co component per unit length of 100 μm in a line analysis, when the line analysis for Co on a polished surface is carried out by EPMA with a beam diameter of 1 μm; a value of saturation magnetization in an amount of 1.62 μTm<SP>3</SP>/kg or less per one percent of Co; and a coercive force of 27.8-51.7 kA/m. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、穴あけ加工やフライス加工等に使用される切削工具に適用される超微粒組織を有する超硬合金に関する。
【0002】
【従来の技術】
周期律表4a、5a、6a族金属の炭化物粉末と、Fe、Co、Ni等の鉄族金属で焼結結合した超硬合金の内WC−Co系合金は、機械的性質(高温での強度低下が少なくまた熱伝導率が高い)に優れ、切削工具に多用されている。切削工具の場合、特に、WC−Co系合金でも、微細なWC粉末を出発原料とし、かつ焼結過程でWCの粒成長を抑制する遷移元素(例えばCr、V、Ta)を添加することにより、WCの平均粒度が0.7μm以下の超微粒組織とした超硬合金(以下、超微粒超硬合金という。)が使用されている。超微粒超硬合金を使用した切削工具として、例えば半導体のプリント基板の穴あけ加工や外縁部の加工に使用される外径が0.05〜0.5mm程度のプリント基板用ドリルがあるが、この種のドリルは多数枚積層したプリント基板に対して高速回転させて使用されるので、折損し易いという問題がある。そこで工具寿命を延ばすために、従来から種々の提案がなされている。例えば特公昭62−56224号の訂正公報(以下、先行技術1という。)には、重量比で、Co及び/又はNi:5〜40%及びV:0.1〜2.0%とCr:0.1〜2.0%を含有し、かつCo及び/又はNiにV及びCrが固溶している金属結合相と、平均粒径が0.7μm以下のWC硬質相からなる2相組織とすることにより、強度(靭性)を改善することが記載されている。特公昭62−56944号公報(以下、先行技術2という。)には、合金中に平均粒径が0.6μm以下のWCを含有した超硬合金において、重量比で、Co及び/又はNi:4〜40%及びV:0.1〜2.0%とCr:0.1〜2.0%とTaC又は(Ta、Nb)C:0.5〜8.0%を含有することにより、エンドミルで軟らかい被削材を加工する場合の耐溶着性を改善することが記載されている。特公平4−50374号公報(以下、先行技術3という。)には、重量比で、VC:0.05〜1.0%とCr:0.05〜1.5%を複合添加し、かつ(VC+Cr)/(Co+Ni):0.03〜0.07とすることにより、Co及び/又はNi中にVCと炭化クロムとを固溶させてWCの粒成長を抑止すること及びCo及び/又はNiからなる結合相の塑性変形から生ずる強度低下を防止することが記載されている。特許第3008532号公報(以下、先行技術4という。)には、重量比で、Co及び/又はNi:4〜25%、V及びCrを、それぞれV/(Co+Ni):0.01〜0.1、Cr/(Co+Ni):0.05〜0.2を満足するように含有し、Co及び/又はNiを成分とする金属結合相とWC相の粒界に、VとWを含む複合炭化物を第3相として有することにより、強度(靭性)を改善することが記載されている。特開2000−712号公報(以下、先行技術5という)には、質量比で、V:0.2〜1.0%とCr:0.2〜2%を複合添加すると共に硬質分散相が70〜93面積%を占め、残りがCoの結合相からなる組織を示し、硬質分散相はWCをWとCrの析出複合炭化物の薄層で全面及び/又は部分被覆してなる被覆WCからなる第1硬質分散相65〜92.5面積%と、VとWとCrの析出複合炭化物が結合相中に微細に分散した第2硬質分散相0.5〜5面積%からなる超硬合金でプリント基板用ドリルを構成することが記載されている。
【0003】
【発明が解決しようとする課題】
上記の先行技術1〜5に記載された組成及び組織を有する超微粒超硬合金によれば、従来よりも工具性能を向上することができるが、次に述べる通り、プリント基板用ドリルのような厳しい切削条件のもとで使用される工具に適用する場合には、改良すべき点が残されている。先行技術1に記載されているような2相組織の超硬合金をプリント基板用ドリルに適用すると、工具寿命の安定性に欠けるという問題がある。先行技術2に記載された組成は、TaC又は(Ta、Nb)Cが合金素地中に析出するので、靭性が低下するという問題がある。先行技術3に記載された組成は、(VC+Cr)/(Co+Ni)が少ないので、製造条件によってはWCの粒成長を十分に抑制できないことがある。先行技術4に記載された超硬合金は、第3相を有するため、第3相の析出を制御するのが困難となり、第3相が粗大化し、不均一に析出した場合には高い抗折力を得られないという問題がある。先行技術5に記載された超硬合金は、Crが多いので、強度が低下するという問題がある。しかし、この原因と考えられる金属成分等の偏析による欠陥に関して定量化はされてはいない。
本発明の目的は、超微粒超硬合金材料のミクロ組織内における金属成分の偏析による欠陥を定量的に捉えることによって抗折力の改善を図り、折損までの寿命が長く、しかも高強度で良好な耐磨耗性を示す切削工具が得られる超微粒超硬合金を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明者等は、超微粒超硬合金について、抗折力と合金組成、結合相中へのCr固溶量、磁気特性との関係に注目し、種々検討を行なった。それらの検討の中で、上記の合金組成、磁気特性などに加え、Electron Probe Micro analyser(以下、EPMAという。)によるCoの面分析を行なったときの、Coの成分強度の平均値に対して、ある比率以上のCoのピークの個数と抗折力の間に密接な関係があることを見出し本発明に至った。即ち、本発明の超微粒超硬合金は、重量比でCo及び/又はNi:5〜12%、Cr、VC、TaC、Ru、Siのうちから選ばれる2種以上の合計量が0.1〜3%、残部がWC及び不可避の不純物からなる組成を有し、研磨面上を直径1μmのビーム径においてCoのEPMA線分析をした時に、線分析におけるCo成分強度の平均値の1.5倍をこえるCoのピークが単位長さ100μm当りで無く、飽和磁化の値がCo1%当り1.62μTm/kg以下、保磁力が27.8〜51.7kA/m、であることを特徴とする超微粒超硬合金である。また上記に加え更に、(VC+Cr)/(Co+Ni)が0.07を超える組成を有することが好ましい。また更に、Co中に固溶するCr量が10%以下であることが好ましい。
【0005】
本発明者らはこれまで超硬合金の解析にあまり用いられることがなかったEPMA線分析法による評価を試みた。そして直径1μmという比較的大きいビーム径を用いて、研磨面の線分析を行なうことによって、Coの偏析を定量的に捉えることを可能とした。更に、線分析におけるCoの平均値に対して1.5倍をこえるピークの個数と抗折力の間に顕著な相関関係があることを見出した。即ち、線分析におけるCoの平均値に対して1.5倍をこえるピークが無いことであり、その許容範囲は、100μmの線分析を行なった時に1個以下であれば高い抗折力が得られ、2個以上の場合には、抗折力が大幅に低下することが判明した。また、4.0GPa以上の抗折力を有する超微粒超硬合金を得るためには、飽和磁化の値がCo1%当り1.62μTm/kg以下であることが必要である。これは飽和磁化の値を上記値にすることにより、結合相中のW、Crなどの固溶量を多くすることが可能になり、固溶強化により高抗折力を得ることができるからである。また保磁力については、4.0GPa以上の高強度を得るためには27.8〜51.7kA/mの範囲にあることが必要であることが判明した。保磁力が低すぎることは、WCの粒径が大きくなることに相当し、高い抗折力を得ることが出来なくなる。また保磁力を51.7kA/mを超える値とするためには、粒成長抑制剤の量を極めて多くする必要があり、またCo量を少なくする必要があり、高い抗折力を得ることは出来なくなる。
【0006】
本発明の超微粒超硬合金は、上記の組成、組織及び磁気特性とを有することにより、例えば平均粒径が0.35μm以下でかつ粒径が0.7μm以上の粗大粒子の含有量が10%未満といった狭い粒度分布を有するWCが硬質相に均一に分散され、しかもWC、炭化物固溶体、Co相からなる3相域の幅がη相や遊離炭素が生じないように調整されるので、高硬度で、かつ高い強度、例えば4.0GPa以上の抗折力が得られる。従って、本発明の超微粒超硬合金で形成したプリント基板用ドリルで半導体のプリント基板の穴あけ加工や外縁部の加工を行っても、折損し難くなり、長期の使用に耐えることができる。
【0007】
本発明における各成分範囲の限定理由は次の通りである。Co及び/又はNiは、少な過ぎると焼結性が低下し、強度が低下するので5%以上が必要で、多過ぎると硬さが低くなり耐摩耗性が低下し、また価格高を招来するので、12%以下とする。Cr、VC、TaC、Ru、Siは液相焼結時に結合相に溶解し、WCの粒成長を防止する効果を有するので、本発明の超微粒超硬合金にはこれらの元素のうち少なくとも2種以上が含有されるが、これらの元素の合計が0.1%以下であるとWCの粒成長を防止する効果がなく、一方、3%を越えると、焼結後の冷却過程において、粗大な化合物として晶出又は析出するので著しい強度の低下をもたらすので、0.1〜3%の範囲が好ましい。また、Cr及びRuの少なくとも一方を含有することにより、耐食性を向上させることが可能であり、工具研削時の研削液による腐食及び湿式切削における切削液による腐食を有効に防止することができる。更に、均一微細なWCを有する組織とするために、Cr、VC及びCoを次の範囲で含有させることが好ましい。即ち、(VC+Cr)/(Co+Ni)が小さいと、焼結過程におけるWCの粒成長を十分に抑制することが出来なくなるため、0.07を超えることとする。Co中のCrの固溶量が10%を超えるとCrを成分とする粗大な析出炭化物が形成されやすくなるのでCo中のCrの量は10%以下とする。上記組成は、製造上不可避の不純物を含んでいても差支えないが、焼結後に脆化相を形成するP、S、Sn等の元素の含有量は極力少なくすることが好ましい。
【0008】
本発明の超微粒超硬合金は、上記の組成を有するものであり、微細な組織を得るために従来のように複雑な製造工程によらず、例えば次のような工程に従って製造することができる。平均粒径0.35μm以下のWC粉末及び平均粒径1.0μmのCo粉末と、VC粉末、Cr粉末、TaC粉末、Ru粉末及びSi粉末の2種以上を準備し、これらを所定組成になるように配合し、ボールミルで湿式混合し、減圧乾燥後5〜10MPaの圧力を印加して、プレス成形する。この成形体を10−3torr程度の真空中で、WCとCo及び/又はNiとの共晶温度以上(例えば1300〜1500℃)に0.5〜2h保持して、焼結を行えばよい。また必要に応じ、焼結中又は焼結後にArガス雰囲気中で加圧するシンターHIP又はHIP処理を行なうことにより更に特性を向上させることが可能となる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。平均粒径0.35μmのWC粉末、平均粒径1.0μmのCo粉末、平均粒径1.2μmのVC粉末、平均粒径2.0μmのCr粉末、平均粒径1.2μmのTaC粉末及び平均粒径2.0μmのRu粉末、平均粒径1.5μmのSi粉末を準備し、これらを表1に示す組成になるように配合し、アトライタで湿式混合し、減圧乾燥後9.8×10Paの圧力を印加して、プレス成形した。
【0010】
【表1】

Figure 2004059946
【0011】
この成形体を真空中で、1400〜1450℃に1時間保持して焼結を行い、得られた焼結体を加工して、全長38.1mm、シャンク径3.175mm、刃径0.2mm、溝長4.0mmのプリント基板用ドリルを作製した。また、本発明例7〜9、比較例14、15においては混合時間とC添加量を調整することにより、保磁力及び飽和磁化を変化させた。
本発明例及び比較例の超微粒超硬合金につき、WCの平均粒径をミクロ組織写真よりフルマンの式を用いて算出した。抗折力、保磁力、飽和磁化(Co量1%当り)、EPMAによるCoの平均値に対し1.5倍を超えるピークの数をもとめた。Co中のCr固溶量の値は、酸によりCoのみを溶解し、その溶液をICP分析することによりを求めた。これらの結果を表2に示す。
【0012】
【表2】
Figure 2004059946
【0013】
表2には、EPMAによるCoピークの数は、各試料の表面を鏡面研磨した後、直径1μmのビームで100μmの長さを走査して行った。本発明例1に示す超微粒超硬合金のEPMAによる解析結果を図1に、比較例10に示す超微粒超硬合金の同解析結果を図2に示す。
図1より、本発明例1の超微粒超硬合金は、平均値の1.5倍以上のCoピークが無いのに対し、図2より、比較例10の超微粒超硬合金はCoのピークが2個/100μm、現出していることがわかる。比較例10の抗折力は本発明例1よりも低下し、工具寿命も短い。
【0014】
表1の本発明例1〜9及び比較例10〜15のプリント基板用ドリルを用いて、次の諸元で切削テストを行い、ドリル寿命を測定した。その結果も表2に示す。切削諸元は、被削材:ガラスエポキシ樹脂からなるプリント基板(厚さ1.6mm)を2枚積層し、回転速度:70000min−1、送り:2100mm/minで実施した。
【0015】
表1、表2から、本発明例1〜9は、4.0GPa以上の高い抗折力が得られると共に、プリント基板穴あけでも4900〜5800穴が加工でき、比較例10〜15では、抗折力が低下し、プリント基板用ドリルとしても折損までの穴あけ数が1600〜3500穴となった。
【0016】
【発明の効果】
以上に記述の如く、本発明を適用することにより、複雑な製造工程によることなく、高い抗折力が得られ更にプリント基板用ドリルとしての長い折損寿命が得られる。
【図面の簡単な説明】
【図1】図1は、本発明例のEPMA線分析結果を示す図である。
【図2】図2は、比較例のEPMA線分析結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cemented carbide having an ultrafine grain structure applied to a cutting tool used for drilling, milling and the like.
[0002]
[Prior art]
The WC-Co based alloy of the carbide powder of the periodic table 4a, 5a, 6a metal and the cemented carbide sintered with the iron group metal such as Fe, Co, Ni, etc. has mechanical properties (high-temperature strength). It has excellent heat conductivity with little reduction and is widely used for cutting tools. In the case of a cutting tool, in particular, even for a WC-Co alloy, a fine WC powder is used as a starting material, and a transition element (for example, Cr, V, Ta) that suppresses WC grain growth in a sintering process is added. In addition, a cemented carbide having an ultrafine grain structure with an average grain size of WC of 0.7 μm or less (hereinafter, referred to as an ultrafine cemented carbide) is used. As a cutting tool using an ultrafine-grain cemented carbide, for example, there is a drill for a printed circuit board having an outer diameter of about 0.05 to 0.5 mm used for drilling a semiconductor printed circuit board or processing an outer edge portion. Since the kind of drill is used while rotating at a high speed with respect to the printed circuit board on which many sheets are stacked, there is a problem that the drill is easily broken. Therefore, various proposals have conventionally been made to extend the tool life. For example, a corrected gazette of Japanese Patent Publication No. 62-56224 (hereinafter referred to as Prior Art 1) discloses that, by weight, Co and / or Ni: 5 to 40%, V: 0.1 to 2.0%, and Cr: A two-phase structure comprising a metal binder phase containing 0.1 to 2.0% and having V and Cr dissolved in Co and / or Ni, and a WC hard phase having an average particle size of 0.7 μm or less. Describes that the strength (toughness) is improved. Japanese Patent Publication No. 62-56944 (hereinafter referred to as Prior Art 2) discloses a cemented carbide containing WC having an average particle diameter of 0.6 μm or less in a weight ratio of Co and / or Ni: By containing 4 to 40% and V: 0.1 to 2.0%, Cr: 0.1 to 2.0% and TaC or (Ta, Nb) C: 0.5 to 8.0%, It describes that the welding resistance is improved when a soft work material is processed by an end mill. Kokoku 4-50374 Patent Publication (. Hereinafter referred to the prior art 3), the weight ratio, VC: 0.05 to 1.0% and Cr 3 C 2: 0.05~1.5% the combined addition and, and (VC + Cr 3 C 2) / (Co + Ni): with 0.03 to 0.07, by solid solution and VC and chromium carbide to suppress grain growth of the WC in Co and / or Ni And prevention of a decrease in strength resulting from plastic deformation of a binder phase composed of Co and / or Ni. Japanese Patent No. 3008532 (hereinafter referred to as Prior Art 4) discloses that, by weight ratio, Co and / or Ni: 4 to 25%, V and Cr are respectively V / (Co + Ni): 0.01 to 0. 1. Composite carbide containing Cr / (Co + Ni): 0.05-0.2 to satisfy V and W at the grain boundary between the metal binder phase and the WC phase containing Co and / or Ni. Is described as having a third phase to improve the strength (toughness). Japanese Patent Application Laid-Open No. 2000-712 (hereinafter referred to as Prior Art 5) discloses that, by mass ratio, V: 0.2 to 1.0% and Cr: 0.2 to 2% are added in combination and a hard dispersed phase is added. The hard dispersed phase occupies 70 to 93 area%, and the balance is composed of a binder phase of Co, and the hard dispersed phase is composed of a coated WC obtained by entirely and / or partially coating WC with a thin layer of a precipitated composite carbide of W and Cr. A cemented carbide comprising a first hard dispersed phase of 65 to 92.5 area% and a second hard dispersed phase of 0.5 to 5 area% in which a precipitated composite carbide of V, W and Cr is finely dispersed in a binder phase. It is described that a drill for a printed circuit board is configured.
[0003]
[Problems to be solved by the invention]
According to the ultra-fine-grain cemented carbide having the composition and structure described in the above-mentioned prior arts 1 to 5, tool performance can be improved as compared with the related art, but as described below, such as a drill for a printed board. When applied to tools used under severe cutting conditions, there are still points to be improved. When a cemented carbide having a two-phase structure as described in Prior Art 1 is applied to a drill for a printed circuit board, there is a problem that the tool life is not stable. The composition described in Prior Art 2 has a problem that the toughness is reduced because TaC or (Ta, Nb) C precipitates in the alloy base material. In the composition described in Prior Art 3, since (VC + Cr 3 C 2 ) / (Co + Ni) is small, the WC grain growth may not be sufficiently suppressed depending on the manufacturing conditions. Since the cemented carbide described in the prior art 4 has a third phase, it is difficult to control the precipitation of the third phase, and when the third phase is coarse and non-uniformly precipitated, a high bending resistance is obtained. There is a problem of not gaining power. The cemented carbide described in Prior Art 5 has a problem in that the strength is reduced because of a large amount of Cr. However, there is no quantification of defects caused by segregation of metal components and the like, which is considered to be the cause.
An object of the present invention is to improve the transverse rupture strength by quantitatively detecting defects due to segregation of metal components in the microstructure of a superfine-grain cemented carbide material, to have a long life up to breakage, and to have high strength and good strength. An object of the present invention is to provide an ultrafine-grained cemented carbide from which a cutting tool exhibiting excellent wear resistance can be obtained.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have focused on the relationship between the transverse rupture strength and the alloy composition, the amount of Cr dissolved in the binder phase, and the magnetic properties of ultra-fine-grained cemented carbide, and made various studies. Done. In those studies, in addition to the above alloy composition, magnetic properties, etc., in addition to the average value of the component intensity of Co when a surface analysis of Co was performed using an Electron Probe Micro analyzer (hereinafter referred to as EPMA). The present inventors have found that there is a close relationship between the number of Co peaks at a certain ratio or more and the transverse rupture strength, and have reached the present invention. That is, ultrafine cemented carbide of the present invention, Co and / or Ni with a weight ratio: 5~12%, Cr 3 C 2 , VC, TaC, Ru, the total amount of two or more selected from among Si, 0.1 to 3%, with the balance being WC and unavoidable impurities, and when performing EPMA line analysis of Co on a polished surface with a beam diameter of 1 μm, the average value of the Co component intensity in the line analysis is calculated. The peak of Co exceeding 1.5 times is not per unit length of 100 μm, the saturation magnetization is 1.62 μTm 3 / kg or less per 1% of Co, and the coercive force is 27.8 to 51.7 kA / m. It is an ultra-fine-grain cemented carbide characterized by the following. Further, in addition to the above, it is preferable that (VC + Cr 3 C 2 ) / (Co + Ni) has a composition exceeding 0.07. Further, the amount of Cr dissolved in Co is preferably 10% or less.
[0005]
The present inventors have attempted an evaluation by an EPMA linear analysis method, which has been rarely used in the analysis of cemented carbides. Then, by performing line analysis of the polished surface using a relatively large beam diameter of 1 μm, segregation of Co can be quantitatively captured. Further, it has been found that there is a remarkable correlation between the number of peaks exceeding 1.5 times the average value of Co in the line analysis and the transverse rupture force. That is, there is no peak that exceeds 1.5 times the average value of Co in the line analysis, and the allowable range is as follows. In the case of two or more, it was found that the transverse rupture strength was significantly reduced. Further, in order to obtain an ultrafine-grained cemented carbide having a transverse rupture strength of 4.0 GPa or more, it is necessary that the value of the saturation magnetization be 1.62 μTm 3 / kg or less per 1% of Co. This is because by setting the value of the saturation magnetization to the above value, it becomes possible to increase the amount of solid solution such as W and Cr in the binder phase, and a high transverse rupture force can be obtained by solid solution strengthening. is there. It was also found that the coercive force had to be in the range of 27.8 to 51.7 kA / m in order to obtain a high strength of 4.0 GPa or more. When the coercive force is too low, it corresponds to an increase in the particle size of WC, and it is impossible to obtain a high bending strength. Further, in order to set the coercive force to a value exceeding 51.7 kA / m, it is necessary to extremely increase the amount of the grain growth inhibitor, and it is necessary to reduce the amount of Co. I cannot do it.
[0006]
Since the ultrafine-grain cemented carbide of the present invention has the above composition, structure and magnetic properties, for example, the content of coarse particles having an average particle diameter of 0.35 μm or less and a particle diameter of 0.7 μm or more is 10 μm or less. %, The WC having a narrow particle size distribution of less than 0.1% is uniformly dispersed in the hard phase, and the width of the three-phase region consisting of WC, carbide solid solution and Co phase is adjusted so as not to generate η phase and free carbon. Hardness and high strength, for example, a bending strength of 4.0 GPa or more can be obtained. Therefore, even if the printed circuit board drill made of the ultrafine-grain cemented carbide of the present invention is used for drilling a semiconductor printed circuit board or processing an outer edge portion thereof, breakage becomes difficult, and it can be used for a long time.
[0007]
The reasons for limiting the range of each component in the present invention are as follows. If the content of Co and / or Ni is too small, the sinterability is reduced, and the strength is reduced. Therefore, 5% or more is necessary. If the content is too large, the hardness is reduced, the wear resistance is reduced, and the cost is increased. Therefore, the content is set to 12% or less. Since Cr 3 C 2 , VC, TaC, Ru, and Si dissolve in the binder phase during liquid phase sintering and have the effect of preventing WC grain growth, the ultrafine-grained cemented carbide of the present invention contains these elements. Of these, at least two or more are contained, but if the total of these elements is 0.1% or less, there is no effect of preventing WC grain growth, while if it exceeds 3%, the cooling process after sintering In the above, the crystallization or precipitation as a coarse compound results in a remarkable decrease in strength, so the range of 0.1 to 3% is preferable. Further, by containing at least one of Cr and Ru, it is possible to improve corrosion resistance, and it is possible to effectively prevent corrosion by a grinding fluid during tool grinding and corrosion by a cutting fluid in wet cutting. Further, in order to obtain a structure having uniform and fine WC, it is preferable to contain Cr 3 C 2 , VC and Co in the following range. That is, if (VC + Cr 3 C 2 ) / (Co + Ni) is small, it becomes impossible to sufficiently suppress the grain growth of WC in the sintering process. If the amount of Cr in Co exceeds 10%, coarse precipitated carbides containing Cr as a component are likely to be formed, so the amount of Cr in Co is set to 10% or less. The above composition may contain impurities inevitable in production, but it is preferable to minimize the content of elements such as P, S, and Sn that form an embrittlement phase after sintering.
[0008]
The ultrafine-grained cemented carbide of the present invention has the above-mentioned composition, and can be manufactured according to, for example, the following process without using a complicated manufacturing process as in the related art to obtain a fine structure. . A WC powder having an average particle diameter of 0.35 μm or less, a Co powder having an average particle diameter of 1.0 μm, and two or more kinds of a VC powder, a Cr 3 C 2 powder, a TaC powder, a Ru powder, and a Si powder are prepared. The components are blended so as to have a composition, wet-mixed with a ball mill, dried under reduced pressure, and then press-molded by applying a pressure of 5 to 10 MPa. This compact may be sintered in a vacuum of about 10 −3 torr at a temperature equal to or higher than the eutectic temperature of WC and Co and / or Ni (for example, 1300 to 1500 ° C.) for 0.5 to 2 hours. . If necessary, the characteristics can be further improved by performing sintering HIP or HIP treatment in which pressure is applied in an Ar gas atmosphere during or after sintering.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Average particle diameter 0.35μm of WC powder, average particle size 1.0 .mu.m Co powder, the average particle diameter 1.2μm of VC powder, average particle size 2.0 .mu.m Cr 3 C 2 powder, the average particle size of 1.2μm A TaC powder, a Ru powder having an average particle diameter of 2.0 μm, and a Si powder having an average particle diameter of 1.5 μm were prepared, blended to have the composition shown in Table 1, wet-mixed with an attritor, dried under reduced pressure, and dried. A pressure of 0.8 × 10 7 Pa was applied to perform press molding.
[0010]
[Table 1]
Figure 2004059946
[0011]
This compact was sintered in vacuum at 1400-1450 ° C. for 1 hour, and the resulting sintered compact was processed into a total length of 38.1 mm, a shank diameter of 3.175 mm, and a blade diameter of 0.2 mm. And a drill for a printed board having a groove length of 4.0 mm. In Examples 7 to 9 of the present invention and Comparative Examples 14 and 15, the coercive force and the saturation magnetization were changed by adjusting the mixing time and the amount of C added.
With respect to the ultrafine-grained cemented carbides of the present invention example and the comparative example, the average particle size of WC was calculated from a microstructure photograph using Fulman's formula. The bending force, coercive force, saturation magnetization (per 1% of Co amount), and the number of peaks exceeding 1.5 times the average value of Co by EPMA were determined. The value of the amount of Cr dissolved in Co was determined by dissolving only Co with an acid and subjecting the solution to ICP analysis. Table 2 shows the results.
[0012]
[Table 2]
Figure 2004059946
[0013]
In Table 2, the number of Co peaks by EPMA was obtained by mirror-polishing the surface of each sample and then scanning a beam of 1 μm in diameter over a length of 100 μm. FIG. 1 shows the analysis result of the ultrafine-grain cemented carbide shown in Example 1 of the present invention by EPMA, and FIG. 2 shows the analysis result of the ultrafine-grained cemented carbide shown in Comparative Example 10.
From FIG. 1, the ultrafine-grain cemented carbide of Example 1 of the present invention has no Co peak 1.5 times or more of the average value, whereas from FIG. 2, the ultrafine-grain cemented carbide of Comparative Example 10 has a Co peak. 2/100 μm appeared. The transverse rupture strength of Comparative Example 10 is lower than that of Inventive Example 1, and the tool life is shorter.
[0014]
Using the drills for printed circuit boards of Examples 1 to 9 of the present invention and Comparative Examples 10 to 15 in Table 1, cutting tests were performed under the following specifications, and the drill life was measured. Table 2 also shows the results. The cutting was performed by laminating two print substrates (thickness: 1.6 mm) made of a work material: glass epoxy resin at a rotation speed of 70000 min -1 and a feed of 2100 mm / min.
[0015]
From Tables 1 and 2, it can be seen that Examples 1 to 9 of the present invention can obtain a high bending force of 4.0 GPa or more, can process 4900 to 5800 holes even when drilling a printed circuit board, and Comparative Examples 10 to 15 show a bending resistance. The force was reduced, and the number of drilled holes until breakage was 1600 to 3500 holes even for a printed circuit board drill.
[0016]
【The invention's effect】
As described above, by applying the present invention, a high bending strength can be obtained without a complicated manufacturing process, and a long break life as a drill for a printed circuit board can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an EPMA line analysis result of an example of the present invention.
FIG. 2 is a diagram showing an EPMA line analysis result of a comparative example.

Claims (4)

重量比でCo及び/又はNi:5〜12%、Cr、VC、TaC、Ru、Siのうちから選ばれる2種以上の合計量が0.1〜3%、残部がWC及び不可避の不純物からなる組成を有し、研磨面上を直径1μmのビーム径においてCoのEPMA線分析をした時に、線分析におけるCo成分強度の平均値の1.5倍をこえるCoのピークが単位長さ100μm当りで無く、飽和磁化の値がCo1%当り1.62μTm/kg以下、保磁力が27.8〜51.7kA/m、であることを特徴とする超微粒超硬合金。The weight ratio of Co and / or Ni: 5~12%, Cr 3 C 2, VC, TaC, Ru, the total amount of two or more selected from among Si, 0.1% to 3%, balance WC and unavoidable When an EPMA line analysis of Co is performed on a polished surface with a beam diameter of 1 μm at a beam diameter of 1 μm, a peak of Co exceeding 1.5 times the average value of the intensity of the Co component in the line analysis has a unit length. An ultrafine-grain cemented carbide characterized by having a saturation magnetization of 1.62 μTm 3 / kg or less per 1% of Co and a coercive force of 27.8 to 51.7 kA / m, not per 100 μm. 該Coピーク数が、1個/100μm、以下であることを特徴とする請求項1記載の超微粒超硬合金。2. The ultrafine cemented carbide according to claim 1, wherein the number of Co peaks is 1/100 [mu] m or less. 該(VC+Cr)/(Co+Ni)>0.07、である組成を有することを特徴とする請求項1又は2記載の超微粒超硬合金。The (VC + Cr 3 C 2) / (Co + Ni)> 0.07 ultrafine cemented carbide according to claim 1 or 2 characterized in that it has a composition which is. Co中に固溶するCrの量が10%以下であることを特徴とする請求項1乃至3記載の超微粒超硬合金。4. The ultrafine cemented carbide according to claim 1, wherein the amount of Cr dissolved in Co is 10% or less.
JP2002216193A 2002-07-25 2002-07-25 Ultra-fine grain hard metal Withdrawn JP2004059946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216193A JP2004059946A (en) 2002-07-25 2002-07-25 Ultra-fine grain hard metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216193A JP2004059946A (en) 2002-07-25 2002-07-25 Ultra-fine grain hard metal

Publications (1)

Publication Number Publication Date
JP2004059946A true JP2004059946A (en) 2004-02-26

Family

ID=31938010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216193A Withdrawn JP2004059946A (en) 2002-07-25 2002-07-25 Ultra-fine grain hard metal

Country Status (1)

Country Link
JP (1) JP2004059946A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
JP2006328540A (en) * 2005-05-27 2006-12-07 Sandvik Intellectual Property Ab Cemented carbide, and drawing die
JP2007044807A (en) * 2005-08-10 2007-02-22 Hitachi Tool Engineering Ltd Extremely small diameter end mill made of cemented carbide
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
JP2009120903A (en) * 2007-11-14 2009-06-04 Hitachi Tool Engineering Ltd Wc base cemented carbide
JP2009167503A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
US7972409B2 (en) 2005-03-28 2011-07-05 Kyocera Corporation Cemented carbide and cutting tool
US20120177828A1 (en) * 2008-09-15 2012-07-12 Igor Yuri Konyashin Wear part with hard facing
KR101165699B1 (en) 2010-06-30 2012-07-18 한국야금 주식회사 Sintered body of hardmetal cemented carbide and method of manufacturing the same
DE112011102668T5 (en) 2010-08-11 2013-06-06 Kennametal Inc. Carbide compositions with a cobalt-silicon alloy binder
CN103464741A (en) * 2013-09-06 2013-12-25 成都工具研究所有限公司 Rare-earth modified WC-Co type hard alloy cutting tool material
CN106191606A (en) * 2016-07-15 2016-12-07 无锡森锐硬质合金制品有限公司 A kind of high temperature cemented carbide
EP3839086A1 (en) 2019-12-19 2021-06-23 Tungaloy Corporation Cemented carbide and coated cemented carbide, and tool including same
US11104980B2 (en) 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure
CN116287925A (en) * 2023-01-29 2023-06-23 江阴塞特精密工具有限公司 New brand hard alloy for cold heading die and preparation process

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
DE112006000769B4 (en) * 2005-03-28 2014-06-12 Kyocera Corporation Carbide and cutting tool
US7972409B2 (en) 2005-03-28 2011-07-05 Kyocera Corporation Cemented carbide and cutting tool
DE112006000769C5 (en) 2005-03-28 2022-08-18 Kyocera Corporation Carbide and cutting tool
JP2006328540A (en) * 2005-05-27 2006-12-07 Sandvik Intellectual Property Ab Cemented carbide, and drawing die
JP2006328539A (en) * 2005-05-27 2006-12-07 Sandvik Intellectual Property Ab Coated cemented carbide, and tool
JP2007044807A (en) * 2005-08-10 2007-02-22 Hitachi Tool Engineering Ltd Extremely small diameter end mill made of cemented carbide
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
JP2009120903A (en) * 2007-11-14 2009-06-04 Hitachi Tool Engineering Ltd Wc base cemented carbide
JP2009167503A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
US20120177828A1 (en) * 2008-09-15 2012-07-12 Igor Yuri Konyashin Wear part with hard facing
US8968834B2 (en) * 2008-09-15 2015-03-03 Igor Yuri Konyashin Wear part with hard facing
KR101165699B1 (en) 2010-06-30 2012-07-18 한국야금 주식회사 Sintered body of hardmetal cemented carbide and method of manufacturing the same
DE112011102668T5 (en) 2010-08-11 2013-06-06 Kennametal Inc. Carbide compositions with a cobalt-silicon alloy binder
CN103464741A (en) * 2013-09-06 2013-12-25 成都工具研究所有限公司 Rare-earth modified WC-Co type hard alloy cutting tool material
US11104980B2 (en) 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure
CN106191606A (en) * 2016-07-15 2016-12-07 无锡森锐硬质合金制品有限公司 A kind of high temperature cemented carbide
EP3839086A1 (en) 2019-12-19 2021-06-23 Tungaloy Corporation Cemented carbide and coated cemented carbide, and tool including same
US11421307B2 (en) 2019-12-19 2022-08-23 Tungaloy Corporation Cemented carbide and coated cemented carbide, and tool including same
CN116287925A (en) * 2023-01-29 2023-06-23 江阴塞特精密工具有限公司 New brand hard alloy for cold heading die and preparation process

Similar Documents

Publication Publication Date Title
TWI479027B (en) Hard alloy
JP2004059946A (en) Ultra-fine grain hard metal
EP0559901A1 (en) Hard alloy and production thereof
JP2008001918A (en) Wc-based cemented carbide
JP2004076049A (en) Hard metal of ultra-fine particles
JP2009024214A (en) Hard metal and manufacturing method therefor
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
JP2009154224A (en) Titanium carbonitride based cermet cutting tool excellent in wear resistance
JP2008202074A (en) Fine-grained cemented carbide
JP2004052110A (en) Hyper-fine grained cemented carbide
JP4282298B2 (en) Super fine cemented carbide
JP2007284751A (en) Hard metal made of fine particle
JPH08199283A (en) Titanium carbonitride-base alloy
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH0346538B2 (en)
CN111850368A (en) Cemented carbide compositions and uses thereof
JPS6256944B2 (en)
JP3954845B2 (en) Tungsten carbide-based cemented carbide and method for producing the same
JP2005068515A (en) Hard metal containing fine particles
JP4126280B2 (en) Fine cemented carbide
JP3008532B2 (en) High hardness, high toughness cemented carbide
WO2022208766A1 (en) Superhard alloy and mold
JP2006257469A (en) High-hardness cemented carbide containing ultrafine particle of tungsten carbide
JPH09227981A (en) Cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080825