JPH08199283A - Titanium carbonitride-base alloy - Google Patents

Titanium carbonitride-base alloy

Info

Publication number
JPH08199283A
JPH08199283A JP31552394A JP31552394A JPH08199283A JP H08199283 A JPH08199283 A JP H08199283A JP 31552394 A JP31552394 A JP 31552394A JP 31552394 A JP31552394 A JP 31552394A JP H08199283 A JPH08199283 A JP H08199283A
Authority
JP
Japan
Prior art keywords
alloy
particles
hard phase
grains
titanium carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31552394A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Kazuhiro Yamaguchi
和浩 山口
Nobuyuki Kitagawa
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Hokkaido Sumiden Precision Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Hokkaido Sumiden Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Hokkaido Sumiden Precision Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31552394A priority Critical patent/JPH08199283A/en
Publication of JPH08199283A publication Critical patent/JPH08199283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the performance of a titanium carbonitride-base alloy at the time of use as a cutting tool for high-speed cutting and high-feeding cutting by specifying a hard titanium carbonitride-base alloy, to which specific metals are added, and the grain sizes and contents of solid-solution grains, respectively. CONSTITUTION: This alloy consists of 80-95wt.% of hard phase consisting of the carbide, nitride, carbonitride of Ti and at least one metal, other than Ti, selected from the group IVa, Va, and VIa metals of the periodic table and the balance binding phase composed essentially of iron group metal with inevitable impurities. Further, when this alloy is observed by means of a scanning electron microscopic structure photograph, the grains of the hard phase in the alloy are essentially constituted of grain A whose core part has a black color enriched in Ti and grain B whose core part has a white color deficient in Ti, and the average grain size of the grains A and the average grain size of the grains B are regulated to 0.7-1.5μm and 0.1-0.7μm, respectively. Further, it is preferable to regulate the area ratio of the grains A comprising in the hard phase to 60-90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭窒化チタン基合金 (い
わゆるサーメット) の改良に関するものであり、特に高
速切削、高送り、高切込みなどの耐熱亀裂性と耐塑性変
形性とが要求される重切削において長期にわたって優れ
た性能を発揮するサーメット工具として使用可能なサー
メットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of titanium carbonitride based alloy (so-called cermet), which is particularly required to have heat crack resistance and plastic deformation resistance such as high speed cutting, high feed and high depth of cut. The present invention relates to a cermet that can be used as a cermet tool that exhibits excellent performance over a long period in heavy cutting.

【0002】[0002]

【従来技術】炭窒化チタン基合金(サーメット)はWC
基合金に比べて耐酸化性と耐磨耗性に優れているので、
切削工具として広く使用されている。しかし、従来のサ
ーメットは機械的に欠損し易く、熱衝撃に弱いため用途
が限られていた。そのため、耐欠損性を向上するための
方法が種々提案されている。特開平5−186843には、平
均粒径が1μm未満の硬質成分の微粒マトリックス中に
平均粒径が2〜8μmの粗粒を10〜50体積%分散させ、
微粒と粗粒との平均粒径差を1.5 μm以上にしたチタン
基炭窒化焼結合金が記載されている。この合金は靭性と
耐摩耗性が向上する。しかし、この特許に記載の合金
は、やや大きな負荷で断続切削を行った場合、6μm以
上の粗粒を起点として欠損を生じる場合がしばしばあ
り、靭性も充分とはいえない。
PRIOR ART Titanium carbonitride based alloy (cermet) is WC
Since it has superior oxidation resistance and abrasion resistance compared to the base alloy,
Widely used as a cutting tool. However, the conventional cermet is mechanically liable to be damaged and weak in thermal shock, so that its use is limited. Therefore, various methods for improving fracture resistance have been proposed. Japanese Unexamined Patent Publication (Kokai) No. 5-186843 discloses that coarse particles having an average particle diameter of 2 to 8 μm are dispersed in an amount of 10 to 50% by volume in a fine particle matrix of a hard component having an average particle diameter of less than 1 μm.
A titanium-based carbonitride-sintered alloy in which the average grain size difference between fine grains and coarse grains is 1.5 μm or more is described. This alloy has improved toughness and wear resistance. However, in the alloy described in this patent, when intermittent cutting is carried out under a rather large load, defects often occur starting from coarse grains of 6 μm or more, and the toughness is not sufficient.

【0003】また、最近の切削加工では切削の高能率化
が求められ、高速切削や高送り切削が用いられる傾向に
あるが、公知のTiCN基サーメット切削工具を高速切削
や高送り切削で用いた場合には比較的短時間で使用寿命
に至るのが現状である。
Further, in recent cutting processes, high efficiency of cutting is required, and high-speed cutting and high-feed cutting tend to be used. However, known TiCN-based cermet cutting tools were used for high-speed cutting and high-feed cutting. In the present case, the service life is reached in a relatively short time.

【0004】本発明者達は、硬質相を形成する成分の中
でTiC、TiCNまたはTiNあるいはこれらにVa,VIa
族金属のうち1種または2種以上を含んだ固溶体の粒度
を最適化することによって、高速切削、高送り切削、高
切込み切削において発生する熱亀裂と熱衝撃に対して優
れた耐久性を示すということを見い出した。また、VIa
族金属の結合相への固溶が十分進むと、結合相の硬度が
増加して優れた耐摩耗性合金になるということを見い出
した。本発明はこれらの知見に基づいてなされたもので
ある。
The present inventors have found that TiC, TiCN, or TiN among these components forming the hard phase, or Va, VIa
By optimizing the particle size of the solid solution containing one or more of group metals, it exhibits excellent durability against thermal cracks and thermal shocks that occur in high-speed cutting, high-feed cutting, and high-cut cutting. I found out that. Also, VIa
It has been found that when the solid solution of the group metal to the binder phase progresses sufficiently, the hardness of the binder phase increases and an excellent wear resistant alloy is obtained. The present invention has been made based on these findings.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は使用寿
命が長いサーメット切削工具用のTiCN基合金を提供す
ることにある。
It is an object of the present invention to provide a TiCN based alloy for cermet cutting tools which has a long service life.

【0006】[0006]

【課題を解決するための手段】本発明は、TiとTi以
外の周期律表IVa,VaおよびVIa族金属の中から選択
される少なくとも1種の金属との炭化物、窒化物、炭窒
化物よりなる硬質相が80〜95重量%で、残部が鉄族金属
を主成分とした結合相と不可避不純物とからなる硬質炭
窒化チタン基合金において、合金断面を研磨した後に走
査型電子顕微鏡組織写真で観察した場合に、合金中の硬
質相の粒子が芯部がTiに富んだ黒色に見える粒子A
と、芯部がTiが乏しい白色に見える粒子Bとの2種類
から主として構成され、研磨断面での粒子Aの平均面積
が 0.7〜 1.5μm2 の範囲にあり、粒子Bの平均面積が
0.1〜 0.7μm2の範囲にある点を特徴とする硬質炭窒化
チタン基合金を提供する。
DISCLOSURE OF THE INVENTION The present invention relates to a carbide, a nitride, and a carbonitride of Ti and at least one metal selected from the group IVa, Va, and VIa metals other than Ti. In the hard carbonitride-based alloy consisting of 80-95% by weight of the hard phase and the balance being the unavoidable impurities and the binder phase having the iron group metal as the main component, a scanning electron microscope microstructure photograph is obtained after polishing the alloy cross section. When observed, the particles of the hard phase in the alloy appear as black with the core rich in Ti.
And a particle B whose core has a poor Ti content and which looks white. The average area of the particle A in the polished cross section is in the range of 0.7 to 1.5 μm 2 , and the average area of the particle B is
A hard titanium carbonitride-based alloy characterized by being in the range of 0.1 to 0.7 μm 2 .

【0007】硬質相の炭窒化チタンの組成は〔式1〕で
表すことができる: 〔式1〕 (Ti,M)1 (Cu V z (ここで、MはTi以外のIVa,VaおよびVIa族金属
の中から選択される少なくとも1種の金属を表し、u、
vおよびzは下記範囲の数を表す: u+v=1、 0.2≧v≧0.6 、 0.75≧z≧0.95)
The composition of the hard phase titanium carbonitride can be represented by [Equation 1]: [Equation 1] (Ti, M) 1 (C u N V ) z (where M is IVa other than Ti, Represents at least one metal selected from the group consisting of Va and VIa metals, u,
v and z represent numbers in the following range: u + v = 1, 0.2 ≧ v ≧ 0.6, 0.75 ≧ z ≧ 0.95)

【0008】MとしてVIa族金属のMo、W、Crを選択し
た場合には、これら金属は硬質相に固溶すると共に結合
相にも固溶し、固溶強化を示す。MとしてVa族金属の
V、Nb、Taを選択した場合には、これら金属は主として
硬質相に固溶し、2重構造を形成することで耐摩耗性を
向上させる。MとしてIVa族金属のZr、Hfを選択した場
合には、これら金属は結合相の強化に対して有効である
が、反面焼結性を著しく低下させて空孔を発生し易くす
るため、その添加量は2%以下にするのが好ましい。N
はサーメットの強度向上に有効であるが、Nの値vが
0.6を越えると、焼結性が損なわれ、逆に 0.3以下では
N添加の効果が少ない。Zの値は0.95以下にする。そう
することによって低炭素合金にして結合相へのM金属の
固溶を促進させ、固溶強化させることができる。この値
を越えるとFC析出合金と成り易い。また、Zの値を0.
75以下にすると金属間化合物が析出し、靭性の低下また
は抗折力のバラツキが大きくなり、性能にバラツキがで
る。
When the group VIa metals Mo, W and Cr are selected as M, these metals dissolve in the hard phase as well as in the binder phase and exhibit solid solution strengthening. When the V group metals V, Nb, and Ta are selected as M, these metals mainly form a solid solution in the hard phase and form a double structure to improve wear resistance. When a group IVa metal, Zr or Hf, is selected as M, these metals are effective for strengthening the binder phase, but on the other hand, they significantly reduce the sinterability and easily generate vacancies. The addition amount is preferably 2% or less. N
Is effective for improving the strength of cermet, but the value v of N is
If it exceeds 0.6, the sinterability is impaired, and if it is 0.3 or less, the effect of N addition is small. The value of Z should be 0.95 or less. By doing so, it is possible to form a low carbon alloy to promote the solid solution of M metal in the binder phase and strengthen the solid solution. If it exceeds this value, an FC precipitation alloy is likely to be formed. Also, set the value of Z to 0.
If it is less than 75, the intermetallic compound is precipitated, the toughness is lowered or the transverse rupture strength is greatly varied, and the performance is varied.

【0009】結合相は少なくとも1種の鉄族金属にする
ことができ、硬質炭窒化チタン基合金における比率は5
〜20重量%である。
The binder phase can be at least one iron group metal and has a ratio of 5 in a hard titanium carbonitride based alloy.
~ 20% by weight.

【0010】走査型電子顕微鏡組織写真で観察した場
合、本発明の合金中の硬質相の粒子は図1に示すよう
に、黒い芯を持つ粒子(すなわち芯部がTiに富んでい
る粒子Aまたは黒芯粒子)と、白い芯を持つ粒子(すな
わち芯部がTiが乏しい粒子Bまたは白芯粒子)との2
種類に主として分けることができる。本発明の特徴はこ
れら粒子の平均粒子面積が下記の範囲にある点にある: 黒芯粒子 0.7〜1.5 μm2 白芯粒子 0.1〜0.7 μm2
When observed by scanning electron micrograph, the particles of the hard phase in the alloy of the present invention are, as shown in FIG. 1, particles having a black core (that is, particles A whose core is rich in Ti or Black core particles) and particles having a white core (that is, particles B or white core particles having a poor Ti core).
They can be divided into types. The feature of the present invention resides in that the average particle area of these particles is in the following range: Black core particles 0.7 to 1.5 μm 2 White core particles 0.1 to 0.7 μm 2

【0011】ここで、「粒子面積」とは、合金の断面を
研磨し、研磨断面を走査型電子顕微鏡組織写真で観察し
た時に見える合金中で硬質相の個々の粒子が占める面積
であり、「平均粒子面積」とはその平均(例えば、走査
型電子顕微鏡の視野内にある粒子の粒子面積の幾何平
均)であり、「最大粒子面積」とは最大の粒子の面積で
ある。
Here, the "particle area" is the area occupied by individual particles of the hard phase in the alloy as seen when the cross section of the alloy is polished and the polished cross section is observed with a scanning electron micrograph. The "average particle area" is its average (for example, the geometric average of the particle areas of the particles in the field of view of the scanning electron microscope), and the "maximum particle area" is the maximum particle area.

【0012】この平均粒子面積は組織写真から肉眼で算
出することもできるが、下記の手順で画像処理技術を用
いて算出することもできる。すなわち、 (1) 先ず、サーメット合金を研磨し、走査型電子顕微鏡
で 5,000倍の組織写真を撮る。 (2) 14μm×17μmの領域に対して粒界を識別後、画像
をスキャナーを用いてコンピュータに読み込む。 (3) 次に、粒界識別後の画像で黒芯を有する粒子を粒界
まで黒く塗りつぶし、再度スキャナーを用いてコンピュ
ータに読み込む。 (4) 最初に読み込んだ画像と黒く塗りつぶした画像との
差を取って白芯粒子を抽出する。 (5) 各粒子の占有する画素数を求め、倍率から1画素の
面積を求め、各粒子の面積を求める。 (6) 全白芯粒子の面積から各粒子の面積の分布を求め
る。 (7) 黒芯に付いて同様の方法で面積と分布を求める。 (8) 得られた分布より平均粒子面積と最大粒子面積を求
める。
This average particle area can be calculated with the naked eye from a microstructure photograph, but it can also be calculated using an image processing technique in the following procedure. That is, (1) First, the cermet alloy is polished and a 5,000 times structure photograph is taken with a scanning electron microscope. (2) After identifying grain boundaries in a region of 14 μm × 17 μm, an image is read into a computer using a scanner. (3) Next, in the image after the identification of the grain boundaries, the particles having the black core are painted black to the grain boundaries, and again read into the computer by using the scanner. (4) The white core particles are extracted by taking the difference between the image read first and the image painted black. (5) The number of pixels occupied by each particle is calculated, the area of one pixel is calculated from the magnification, and the area of each particle is calculated. (6) Obtain the distribution of the area of each particle from the area of all white core particles. (7) Obtain the area and distribution of the black core by the same method. (8) Obtain the average particle area and the maximum particle area from the obtained distribution.

【0013】実際の走査電子顕微鏡観察では、硬質相は
図1に示すように黒い芯を持つ粒子と、白い芯を持つ粒
子とに区別でき、その 4,800倍写真の1cm2 当り10視野
を画像解析して硬質相の個々の粒子の面積と個数を算出
する。
In the actual scanning electron microscope observation, the hard phase can be distinguished into particles having a black core and particles having a white core as shown in FIG. 1, and 10 fields of view per 1 cm 2 of 4,800 times photograph are analyzed by image analysis. Then, the area and number of individual particles of the hard phase are calculated.

【0014】[0014]

【作用】白芯粒子の平均粒度が 0.7μm2 以上になる
と、耐摩耗性が著しく低下する。逆に、白芯粒子の平均
粒度が 0.1μm 2 以下なると、粒子の脱落が生じ易くな
って、クレーター磨耗が増大する。一方、黒芯粒子の平
均粒度が 0.7μm2 以下になると、亀裂の伝播を抑えら
れなくなり、十分な破壊靭性が得られず、短い寿命で欠
損してしまう。逆に、黒芯粒子の平均粒度が 1.5μm 2
以上になると、硬度の低下により耐摩耗性が低下すると
共に、破壊の起点となり易く、所望の効果が得られな
い。また、白芯粒子の最大粒径は5μm 2 にする。最大
粒径がこの値を越えると耐摩耗性が低下する。硬質相で
白芯粒子が占める面積率は10〜40%にするのが好まし
い。白芯粒子の比率が40%を越えると耐摩耗性が低下す
る。
When the average particle size of the white core particles is 0.7 μm 2 or more, the abrasion resistance is significantly reduced. On the other hand, when the average particle size of the white core particles is 0.1 μm 2 or less, the particles are likely to come off and the crater wear increases. On the other hand, if the average particle size of the black core particles is 0.7 μm 2 or less, crack propagation cannot be suppressed, sufficient fracture toughness cannot be obtained, and the black core particles are broken in a short life. Conversely, the average particle size of the black core particles is 1.5 μm 2
In the case above, the hardness is lowered, the wear resistance is lowered, and it becomes a starting point of fracture, so that a desired effect cannot be obtained. The maximum particle size of the white core particles is 5 μm 2 . If the maximum particle size exceeds this value, the wear resistance decreases. The area ratio of the white core particles in the hard phase is preferably 10 to 40%. If the ratio of the white core particles exceeds 40%, the wear resistance decreases.

【0015】粗粒粒子の黒芯粒子は耐摩耗性を向上さ
せ、その粒径が大きくなると、亀裂進展性を抑制する効
果よって靭性が向上する。しかし、最大粒子面積が 20
μm2を越える粒子が存在すると、工具の切削時の衝撃や
振動を吸収しきれずに、破壊の起点となり易い。
Coarse-grained black core particles improve wear resistance, and when the particle size becomes large, the toughness is improved due to the effect of suppressing crack propagation. However, the maximum particle area is 20
If particles exceeding μm 2 are present, the impact and vibration during cutting of the tool cannot be completely absorbed, and it tends to become the starting point of fracture.

【0016】本発明の合金の結合相は結合金属の格子定
数が 3.590〜3.620 の範囲、特に、3.600 〜3.615 であ
るのが好ましい (X線解析装置XRD/RU−300 、Cu
−K線、励起条件 50 kv - 200 mA 、2θ=40〜45°、
Co・Ni(111) 面を解析) 。格子定数が 3.590以下では固
溶強化が不充分であり、 3.615以上になると金属間化合
物が生成し易くなり、強度が不安定となる。また、この
範囲の合金は高温硬度が高く、切削中の刃先が変形し難
いという特徴もある。
The binder phase of the alloy of the present invention preferably has a lattice constant of the binder metal in the range of 3.590 to 3.620, particularly 3.600 to 3.615 (X-ray analyzer XRD / RU-300, Cu.
-K line, excitation condition 50 kv -200 mA, 2θ = 40 to 45 °,
(Analysis of Co ・ Ni (111) plane). If the lattice constant is 3.590 or less, solid solution strengthening is insufficient, and if it is 3.615 or more, intermetallic compounds are likely to be formed and the strength becomes unstable. In addition, alloys in this range have high hardness at high temperature, and the cutting edge during cutting is also difficult to deform.

【0017】[0017]

【実施例】焼結体の製造 市販のTiCN、TiC、TaC、NbC、WC、 Mo2C、Niお
よび Co の粉末を用いた。TiCN、TiC、TaCおよびNb
Cは黒芯粒子構成粉末であり、これらは混合後、N2
で 1,400〜2,000 ℃で粗粒化処理して用いた。一方、Ta
C、NbC、WCおよび Mo2Cは白芯粒子構成粉末であ
り、これらは湿式ボールミルで超硬ボールを用いて予備
粉砕し、微粒化処理して、粒度調整した。〔表1〕およ
び〔表2〕に示す粉末を各表に示した組成比で配合した
ものに3〜5%のパラフィンを成形助剤として添加した
後、アルコールまたはアセトン溶媒を用いてステンレス
容器中でWC基超硬合金ボールで混合粉砕した。なお、
〔表2〕には比較例が示してある。
Example Production of Sintered Body Commercially available TiCN, TiC, TaC, NbC, WC, Mo 2 C, Ni and Co powders were used. TiCN, TiC, TaC and Nb
C is a black core particle constituent powder, which was used after being mixed and then roughened in N 2 at 1,400 to 2,000 ° C. On the other hand, Ta
C, NbC, WC and Mo 2 C are white core particle constituent powders, which were preliminarily crushed in a wet ball mill by using superhard balls, and atomized to adjust the particle size. After adding 3 to 5% of paraffin as a molding aid to a mixture of the powders shown in [Table 1] and [Table 2] in the composition ratios shown in each table, in an stainless steel container using an alcohol or acetone solvent. Then, it was mixed and ground with a WC-based cemented carbide ball. In addition,
Table 2 shows comparative examples.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】得られた混合粉末から溶媒を蒸発乾燥した
後、混合粉末を 0.5ton/cm2 〜5ton /cm2の圧力で圧縮
成形し、10-3〜10-2 mmHg の真空下 (または混合粉末の
平衡窒素分圧に合せて 0.1〜100 Torrの窒素分圧) で、
液相出現温度〜最高温度1,400 〜1600℃の温度に60〜90
分保持した後、真空または一酸化炭素雰囲気を1〜300
Torrにして、1,100 ℃以下まで冷却した (焼結) 。粒度
分布の調節で2つのピーク分布を得た。また、結合層へ
の固溶量の調整はWCの代わりに金属Wを配合して行っ
た。得られた焼結体を化学分析して硬質相成分(Ti、T
a、Nb、Mo、W)と、結合相成分(Ni, Co) と、軽元素
(C、N)とを定量し、v 、z の値を求めた。
[0020] After the evaporative drying of the solvent from the obtained mixed powder, the mixed powder was compression molded at a pressure of 0.5ton / cm 2 ~5ton / cm 2 , 10 -3 ~10 -2 mmHg vacuum (or mixed (Equal to the equilibrium nitrogen partial pressure of the powder, the nitrogen partial pressure is 0.1 to 100 Torr).
Liquid phase appearance temperature ~ maximum temperature 1,400 ~ 1600 ℃ 60 ~ 90
After holding for 1 minute, vacuum or carbon monoxide atmosphere for 1 to 300
It was made Torr and cooled to 1,100 ° C or lower (sintering). Two peak distributions were obtained by adjusting the particle size distribution. The amount of solid solution in the bonding layer was adjusted by blending metal W instead of WC. The obtained sintered body is chemically analyzed and hard phase components (Ti, T
a, Nb, Mo, W), the binder phase components (Ni, Co) and the light elements (C, N) were quantified, and the values of v and z were obtained.

【0021】焼結体の評価 得られた焼結体を平面研磨し、バフ研磨した後に、走査
型電子顕微鏡の4,800倍写真の10視野を画像解析して硬
質相の粒度を解析した (白芯粒子および黒芯粒子の最大
粒径、平均粒径および面積を算出) 。また、X線回析で
結合相の格子定数を求めた。得られた結果は〔表3〕お
よび〔表4〕に示してある。
Evaluation of Sintered Body After the obtained sintered body was flat-polished and buffed, 10 fields of view of a scanning electron microscope at 4,800 times were image-analyzed to analyze the grain size of the hard phase (white core). Calculate maximum particle size, average particle size and area of particles and black core particles). Further, the lattice constant of the binder phase was obtained by X-ray diffraction. The results obtained are shown in [Table 3] and [Table 4].

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】切削試験 得られた焼結体試料1〜18からカッタ用チップSNMN
432 を作成して、以下の条件で切削試験した。 (1) フライス耐摩耗試験 ワーク SCM435 HS37 (100 × 300mm) 乾式で 10 パス、 切削速度 v=200 m/分 送り速度 f=0.2 mm/刃 切込み d=2.0 mm 測定項目 VB 摩耗量(μm)
Cutting test From the obtained sintered body samples 1 to 18, a cutter tip SNMN
432 was prepared and a cutting test was conducted under the following conditions. (1) milling wear test work SCM435 HS37 (100 × 300mm) dry at 10 pass, the cutting speed v = 200 m / min Feed rate f = 0.2 mm / blade cut d = 2.0 mm measurement items V B wear amount ([mu] m)

【0025】(2) フライス靭性試験 ワーク S50C φ16(78穴) (150 × 300) 湿式で3パス/1コーナー、n=4、 切削速度 v=200 m/分 送り速度 f=0.2 mm/刃 切込み d=2.0 mm 測定 欠損までの切削長/3,600mm =破損率 結果は〔表5〕および〔表6〕にまとめて示してある。(2) Milling toughness test work S50C φ16 (78 holes) (150 × 300) Wet, 3 passes / 1 corner, n = 4, cutting speed v = 200 m / min Feed speed f = 0.2 mm / blade cutting d = 2.0 mm measurement Cutting length up to fracture / 3,600 mm = breakage rate The results are summarized in [Table 5] and [Table 6].

【0026】本発明の試料1〜9の耐摩耗試験の結果
は、逃げ面摩耗量VB が200 μm 以下であり、靭性試験
に於ての破損率は35%以下であり、破壊強靱値 K1Cで表
される通り非常に強靭な合金である。Nの含有量を減ら
すと(試料3と試料11とを比較)、耐摩耗性が低下す
る。また、Z値が下り過ぎると金属間化合物ができるた
め、破壊靭性が著しく低下する(試料10)。白芯粒子お
よび黒芯粒子の粗大粒子の存在(試料14)は、初期欠損
により靭性試験での破壊率の増大となって現れ、靭性の
バラツキの原因になっている。
The results of the wear resistance test of Samples 1 to 9 of the present invention show that the flank wear amount V B is 200 μm or less, the fracture rate in the toughness test is 35% or less, and the fracture toughness value K1C It is a very strong alloy as shown in. When the content of N is reduced (Comparing Sample 3 and Sample 11), the wear resistance decreases. On the other hand, if the Z value is too low, an intermetallic compound is formed, so that the fracture toughness is significantly reduced (Sample 10). The presence of coarse particles of white-core particles and black-core particles (Sample 14) appears as an increase in the fracture rate in the toughness test due to the initial defect, and causes variations in the toughness.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 ☆ :クレータ磨耗大[Table 6] ☆: Large crater wear

【0029】[0029]

【発明の効果】以上の結果より、本発明の炭窒化チタン
基合金はフライス等の切削での耐熱亀裂性が著しく向上
し、破壊靭性を大幅に向上させるので、使用寿命が長い
サーメット切削工具として利用することができる。
From the above results, the titanium carbonitride-based alloy of the present invention markedly improves the heat crack resistance in cutting such as a milling cutter and greatly improves the fracture toughness, so that it can be used as a cermet cutting tool having a long service life. Can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の硬質炭窒化チタン基合金を走査
型電子顕微鏡組織写真で観察した場合に見られる粒子の
概念的説明図。
FIG. 1 is a conceptual explanatory view of particles observed when a hard titanium carbonitride-based alloy of the present invention is observed by a scanning electron microscope structure photograph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 信行 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Nobuyuki Kitagawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 TiとTi以外の周期律表IVa,Vaお
よびVIa族金属の中から選択される少なくとも1種の金
属との炭化物、窒化物、炭窒化物よりなる硬質相が80〜
95重量%で、残部が鉄族金属を主成分とした結合相と不
可避不純物とからなると硬質炭窒化チタン基合金におい
て走査型電子顕微鏡組織写真で観察した場合に、合金中
の硬質相の粒子の芯部がTiに富んだ黒色に見える粒子
Aと、芯部がTiに乏しい白色に見える粒子Bとの2種
類から主として構成され、粒子Aの平均面積が 0.7〜
1.5μm2 の範囲にあり、粒子Bの平均面積が 0.1〜 0.
7μm2 の範囲にあることを特徴とする炭窒化チタン基
合金。
1. A hard phase composed of carbides, nitrides, and carbonitrides of Ti and at least one metal selected from metals of the IVa, Va, and VIa groups of the periodic table other than Ti has a hard phase of 80 to 80.
95% by weight, the balance consisting of a binder phase mainly composed of iron group metal and unavoidable impurities, when observed in a scanning electron microscope structure photograph in a hard titanium carbonitride-based alloy, particles of the hard phase in the alloy The core is mainly composed of two kinds of particles A, which is rich in Ti and looks black, and particle B whose core is poor in Ti, which looks white.
In the range of 1.5 [mu] m 2, 0.1 to the average area of the particles B 0.
A titanium carbonitride based alloy characterized by being in the range of 7 μm 2 .
【請求項2】 粒子Aが硬質相で占める面積が60〜90%
である請求項1に記載の合金。
2. The area occupied by the hard phase of the particles A is 60 to 90%.
The alloy according to claim 1, wherein
【請求項3】 走査型電子顕微鏡組織写真で観察した場
合に、粒子Aの最大粒子の面積が20μm2 以下であり、
粒子Bの最大粒子の面積が5μm2 以下である請求項1
または2に記載の合金。
3. The maximum particle area of the particle A is 20 μm 2 or less when observed with a scanning electron microscope structure photograph,
The maximum particle area of particle B is 5 μm 2 or less.
Or the alloy according to 2.
【請求項4】 硬質相が〔式1〕で表される組成を有す
る炭窒化チタンである請求項1〜3のいずれか一項に記
載の合金: 〔式1〕 (Ti,M)1 (Cu V z (ここで、 MはTi以外のIVa,VaおよびVIa族金属の中から選
択される少なくとも1種の金属を表し、 u、vおよびzは下記範囲の数を表す: u+v=1.0 、 0.2≧v≧0.6 、 0.75≧z≧0.95)
4. The alloy according to any one of claims 1 to 3, wherein the hard phase is titanium carbonitride having a composition represented by [Formula 1]: [Formula 1] (Ti, M) 1 ( C u N V ) z (where M represents at least one metal selected from the group IVa, Va and VIa metals other than Ti, u, v and z represent a number in the following range: u + v = 1.0, 0.2 ≧ v ≧ 0.6, 0.75 ≧ z ≧ 0.95)
【請求項5】 結合相がNiおよび/またはCoの金属
で構成され、結合金属の格子定数が 3.590〜3.620 Åで
ある請求項4に記載の合金。
5. The alloy according to claim 4, wherein the binder phase is composed of a metal of Ni and / or Co, and the lattice constant of the binder metal is 3.590 to 3.620Å.
JP31552394A 1994-07-29 1994-11-25 Titanium carbonitride-base alloy Pending JPH08199283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31552394A JPH08199283A (en) 1994-07-29 1994-11-25 Titanium carbonitride-base alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-197557 1994-07-29
JP19755794 1994-07-29
JP31552394A JPH08199283A (en) 1994-07-29 1994-11-25 Titanium carbonitride-base alloy

Publications (1)

Publication Number Publication Date
JPH08199283A true JPH08199283A (en) 1996-08-06

Family

ID=26510434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31552394A Pending JPH08199283A (en) 1994-07-29 1994-11-25 Titanium carbonitride-base alloy

Country Status (1)

Country Link
JP (1) JPH08199283A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872566A1 (en) * 1997-04-17 1998-10-21 Sumitomo Electric Industries, Ltd. Titanium-based alloy
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
WO2010110197A1 (en) * 2009-03-24 2010-09-30 住友電気工業株式会社 Cermet
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JPWO2016136894A1 (en) * 2015-02-26 2018-01-18 京セラ株式会社 Cermet decorative member, watch, portable terminal and accessory using the same
WO2020135404A1 (en) * 2018-12-29 2020-07-02 重庆文理学院 Ti(c,n)-based superhard metal composite material and preparation method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266341B1 (en) * 1997-04-17 2000-09-15 시바타 이사오 Titanium based alloy
EP0872566B2 (en) 1997-04-17 2007-04-11 Sumitomo Electric Industries, Ltd. Method for forming a titanium-based alloy
EP0872566A1 (en) * 1997-04-17 1998-10-21 Sumitomo Electric Industries, Ltd. Titanium-based alloy
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
WO2010110197A1 (en) * 2009-03-24 2010-09-30 住友電気工業株式会社 Cermet
JP2010222650A (en) * 2009-03-24 2010-10-07 Sumitomo Electric Ind Ltd Cermet
JP4690475B2 (en) * 2009-03-24 2011-06-01 住友電気工業株式会社 Cermet and coated cermet tools
JPWO2016136894A1 (en) * 2015-02-26 2018-01-18 京セラ株式会社 Cermet decorative member, watch, portable terminal and accessory using the same
WO2020135404A1 (en) * 2018-12-29 2020-07-02 重庆文理学院 Ti(c,n)-based superhard metal composite material and preparation method therefor
US11319618B2 (en) 2018-12-29 2022-05-03 Chongqing University of Arts and Sciences Ti(C,N)-based superhard metal composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7932199B2 (en) Sintered compact
US4769070A (en) High toughness cermet and a process for the production of the same
JP6953674B2 (en) Cemented Carbide and Cutting Tools
US9127335B2 (en) Cemented carbide tools
EP2036997A1 (en) Coated cemented carbide cutting tool inserts
JP3952209B2 (en) WC-base cemented carbide member
KR20210084337A (en) Cemented carbide, cutting tool and manufacturing method of cemented carbide
JPH08199283A (en) Titanium carbonitride-base alloy
JP2004076049A (en) Hard metal of ultra-fine particles
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP2893886B2 (en) Composite hard alloy material
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JPH0681072A (en) Tungsten carbide base sintered hard alloy
EP1422304B1 (en) Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for milling cutting tool applications
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP6819018B2 (en) TiCN-based cermet cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JPH10298696A (en) Titanium-carbonitride-base alloy
JPS6256944B2 (en)
JP2514088B2 (en) High hardness and high toughness sintered alloy
JPH08176719A (en) Nitrogen-containing sintered hard alloy
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPH10287946A (en) Titanium carbonitride-base alloy
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
JPH10298695A (en) Titanium-carbonitride-base alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A02