JP2008001918A - Wc-based cemented carbide - Google Patents

Wc-based cemented carbide Download PDF

Info

Publication number
JP2008001918A
JP2008001918A JP2006169760A JP2006169760A JP2008001918A JP 2008001918 A JP2008001918 A JP 2008001918A JP 2006169760 A JP2006169760 A JP 2006169760A JP 2006169760 A JP2006169760 A JP 2006169760A JP 2008001918 A JP2008001918 A JP 2008001918A
Authority
JP
Japan
Prior art keywords
cemented carbide
content
binder phase
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006169760A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006169760A priority Critical patent/JP2008001918A/en
Publication of JP2008001918A publication Critical patent/JP2008001918A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a WC-based cemented carbide having both excellent hardness and toughness. <P>SOLUTION: The WC-based cemented carbide is characterized in that: a binder phase is composed of 3 to 15 wt.% of at least one iron-group metal element; two or more elements among Cr, Ta, V, Ti and Zr are contained; Ta content is 0.005 to 0.06 wt.%; Cr content ranges from 0.03 to 0.2 in weight ratio to the binder phase; the balance has WC and inevitable impurities; and the average grain size of WC is made to ≤0.3μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、平均粒径が0.3μm以下のWC粒子を有し、優れた硬度と靭性とを有するWC基超硬合金に関する。   The present invention relates to a WC-based cemented carbide having WC particles having an average particle size of 0.3 μm or less and having excellent hardness and toughness.

特許文献1から6には、超硬合金におけるCo及び/又はNiを含む金属結合相中に、Cr及びVを含有し、焼成時のWC粒子の粒成長を抑制し、微細なWC粒子を含有する超硬合金が提案されている。   Patent Documents 1 to 6 contain Cr and V in a metal binder phase containing Co and / or Ni in a cemented carbide, suppress grain growth of WC particles during firing, and contain fine WC particles. A cemented carbide has been proposed.

特公昭59−56224号公報Japanese Examined Patent Publication No.59-56224 特公平4−50374号公報Japanese Patent Publication No. 4-50374 特公平7−76403号公報Japanese Patent Publication No. 7-76403 特許第3008532号公報Japanese Patent No. 3008532 特願2005−54258号公報Japanese Patent Application No. 2005-54258 特許第3762777号公報Japanese Patent No. 3762777

特許文献1は、Cr及びVの相乗効果により、靱性を低下させる第3相を生成させることなく耐摩耗性及び靱性を向上させている。特許文献2は、炭化バナジウム及び炭化クロムの含有量を調整し、金属結合相へ固溶させることにより、強度を向上させている。特許文献3は、VC及びCr3C2を含有する一方で、TaC、NbC及びTiCの含有量を抑制して、硬度、靱性の低下を抑制している。特許文献4は、金属結合相とWC相の粒界にVとWを含む複合炭化物を第3相として生成させ、硬度、抗折力などの特性を向上させている。上記文献は、VをWC粒子の粒成長抑制効果により硬度、強度を向上させる目的で、Crを金属結合相であるCo及び/又はNiに固溶させて靱性を向上させる目的で含有している。特許文献5は、Cr、V、Ta、Nb、Zr、Hf及びMoの1種又は2種以上を含有し、硬質分散相中に大きさが100nm以下のCr酸化物が存在している。硬質分散相中にCr酸化物を析出させ、靱性、耐欠損性、耐チッピング性を改善している。しかし、Cr、V、Ta、Nb、Zr、Hf及びMoの含有量についての十分な検討がなされているとは言えない。特許文献5は、Ti、Cr、Taを含有する超硬合金が示され、硬質相の粒成長を抑制するためにTiを利用することが開示されている。
そこで本願発明が解決しようとする課題は、更なる硬度と靭性の改善を行い、双方に優れるWC基超硬合金を提供することである。
Patent Document 1 improves wear resistance and toughness without generating a third phase that reduces toughness due to the synergistic effect of Cr and V. Patent Document 2 improves the strength by adjusting the contents of vanadium carbide and chromium carbide and dissolving them in a metal binder phase. Patent Document 3 contains VC and Cr3C2, while suppressing the contents of TaC, NbC, and TiC to suppress the decrease in hardness and toughness. In Patent Document 4, composite carbide containing V and W is formed as a third phase at the grain boundary between the metal binder phase and the WC phase, and characteristics such as hardness and bending strength are improved. The above document contains V for the purpose of improving hardness and strength by the effect of suppressing grain growth of WC particles, and for the purpose of improving toughness by dissolving Cr in Co and / or Ni which are metal binder phases. . Patent Document 5 contains one or more of Cr, V, Ta, Nb, Zr, Hf, and Mo, and a Cr oxide having a size of 100 nm or less exists in the hard dispersed phase. Cr oxide is precipitated in the hard dispersed phase to improve toughness, fracture resistance and chipping resistance. However, it cannot be said that sufficient studies have been made on the contents of Cr, V, Ta, Nb, Zr, Hf and Mo. Patent Document 5 discloses a cemented carbide containing Ti, Cr, and Ta, and discloses that Ti is used to suppress grain growth of the hard phase.
Accordingly, the problem to be solved by the present invention is to provide a WC-based cemented carbide which is further improved in hardness and toughness and is excellent in both.

本願発明のWC基超硬合金は、重量%で3%から15%の少なくとも1種の鉄族金属元素を結合相とし、Cr、Ta、V、Ti、Zr元素の2種以上の元素を含有し、Ta含有量は重量%で0.005%から0.06%、Cr含有量は結合相に対する重量比で0.03から0.2、残部がWC及び不可避不純物を有し、WCの平均粒径は0.3μm以下、であることを特徴とするWC基超硬合金である。上記の構成を採用することにより、優れた硬度と靭性とを有するWC基超硬合金を実現できる。
本願発明のWC基超硬合金のTi含有量は、重量%で0.005%未満であることが好ましい。また、V含有量は結合相に対する重量比で0.02から0.1であることが好ましい。
The WC-based cemented carbide of the present invention contains 3% to 15% by weight of at least one iron group metal element as a binder phase and contains two or more elements of Cr, Ta, V, Ti, and Zr elements. The Ta content is 0.005% to 0.06% by weight, the Cr content is 0.03 to 0.2 by weight ratio to the binder phase, the balance has WC and inevitable impurities, and the average of WC The WC-based cemented carbide is characterized by having a particle size of 0.3 μm or less. By adopting the above configuration, a WC-based cemented carbide having excellent hardness and toughness can be realized.
The Ti content of the WC-based cemented carbide of the present invention is preferably less than 0.005% by weight. The V content is preferably 0.02 to 0.1 by weight ratio to the binder phase.

本願発明によって、優れた硬度と靭性とを有するWC基超硬合金を提供することができた。例えば、本願発明の超硬合金を加工工具等に適用した場合、優れた耐摩耗性、耐折損性を示す。   By this invention, the WC base cemented carbide which has the outstanding hardness and toughness was able to be provided. For example, when the cemented carbide of the present invention is applied to a processing tool or the like, excellent wear resistance and breakage resistance are exhibited.

本願発明は、優れた硬度と靭性とを有するWC基超硬合金を達成するため、微細な原料粉末を使用することによって、超硬合金の組織の微細化について検討を行った。これは、硬質相が微粒の超硬合金において、WCの粒径が小さい程、硬度が向上するからである。そこで、WCの粒成長を抑制するために粒成長抑制剤、結合相量との関係について検討を行った。その結果、Ta元素は、微量添加であっても靭性の改善に有効に作用し、CrとTaの併用によってWCの成長を抑える効果があることを見出した。Ta元素と結合相の元素との間には相関関係があり、WCの成長抑制には、Ta元素を微量添加すると同時に、結合相の元素も本願発明で規定する含有量が必要である。CrとTaを添加した超硬合金は、高い靭性及び高硬度の他にも優れた耐熱強度を得られる特徴がある。CrとTaは、粒成長抑制剤としても有効であるから、本願発明では積極的に添加する。但し、Ta含有量については、十分な検討が必要である。この理由は、過剰なTaの添加は析出相の発生が不可避とされているからである。即ち、液相焼結中にTaを含む複炭化物相の(WTa)CやTaCが生成されて、硬質相が大きく成長する場合があるためである。そして、これらのTaを含む析出相は、Cr等の粒成長抑制剤を添加していても、粒成長を抑制して微細化することが困難となる。そこで、本願発明は、Ta含有量を0.005%から0.06%に規定する。Ta含有量が0.005%未満では、高い靭性及び高硬度、優れた耐熱強度を得ることができず、Ta添加効果が現れない。一方、0.06%を超えて添加すると、Taを含む析出相が発生して、WC粒子の微細化が困難となる。従って、Ta元素を微量添加することによって、Taが靭性の改善に有効に作用しつつ、更にCr等の粒成長抑制剤と併せて含有するとWC粒子の微粒化に有効であり、高い靭性及び高硬度、優れた耐熱強度の超硬合金を得ることができる。またTa含有量を結合相に対して特定の関係となるように制御することが好ましいとの知見を得た。本願発明は、硬質相であるWCの平均粒径や、このWCの平均粒径に最適な結合相量と共に、Ta含有量、Crと結合相量との関係を規定する。   In the present invention, in order to achieve a WC-based cemented carbide having excellent hardness and toughness, the refinement of the microstructure of the cemented carbide was examined by using a fine raw material powder. This is because in a cemented carbide with a fine hard phase, the smaller the WC grain size, the higher the hardness. Therefore, in order to suppress the grain growth of WC, the relationship between the grain growth inhibitor and the amount of the binder phase was examined. As a result, it has been found that even when a small amount of Ta element is added, it effectively works to improve toughness, and the combined use of Cr and Ta has the effect of suppressing the growth of WC. There is a correlation between the Ta element and the element of the binder phase. In order to suppress the growth of WC, a small amount of the Ta element is added, and at the same time, the content of the binder phase element is specified in the present invention. The cemented carbide added with Cr and Ta is characterized by excellent heat resistance in addition to high toughness and high hardness. Since Cr and Ta are effective as a grain growth inhibitor, they are positively added in the present invention. However, sufficient consideration is required for the Ta content. The reason is that excessive Ta addition inevitably generates a precipitated phase. That is, during the liquid phase sintering, (WTa) C or TaC of a double carbide phase containing Ta is generated, and the hard phase may grow greatly. And even if the grain growth inhibitor, such as Cr, is added, it becomes difficult to suppress the grain growth and refine the precipitate phase containing Ta. Therefore, the present invention defines the Ta content from 0.005% to 0.06%. When the Ta content is less than 0.005%, high toughness, high hardness, and excellent heat resistance cannot be obtained, and the Ta addition effect does not appear. On the other hand, if added over 0.06%, a precipitated phase containing Ta is generated, making it difficult to refine the WC particles. Therefore, by adding a small amount of Ta element, Ta effectively works to improve the toughness, and when contained together with a grain growth inhibitor such as Cr, it is effective for atomizing WC particles, and has high toughness and high A cemented carbide with high hardness and excellent heat resistance can be obtained. Moreover, the knowledge that it was preferable to control Ta content so that it might become a specific relationship with respect to a binder phase was acquired. The present invention defines the relationship between the Ta content and Cr and the amount of binder phase as well as the average particle size of WC, which is a hard phase, and the amount of binder phase optimum for the average particle size of WC.

本願発明のWC基超硬合金は、WC粒子の粒成長を抑制するために、Crの効果を主に利用する。Cr含有量は、結合相である鉄族金属元素の重量に対して特定割合とする。具体的には、結合相に対してCrの重量比を0.03以上、0.2以下に規定する。0.03未満では、含有量が少なく、WCの粒成長を十分に抑制できない。一方、0.2を超えて多いいと、Crが過多となり、Crの炭化物等の脆性相が超硬合金中に、多量に生成し、この化合物が破壊の起点となり、強度低下を引き起こしやすい。
本願発明のWC基超硬合金は、WCを硬質相とし、Co、Ni、Fe等といった鉄族金属元素を結合相とする焼結体である。ここで結合相の組成は、Coであることが好ましい。極端に言えばCoのみとしてもよい。または、Coの1部をNi等の他の鉄族元素に置換してもよい。但し、鉄族元素による結合相の含有量は、3%以上、15%以下に規定する。複数元素の場合は、合計の含有量とする。この含有量が3%未満であると、Cr、Taの含有量が適量であっても、抗折力が低下する。一方、15%を超えて多いと、結合相量が多すぎるため、硬度が低下する不都合が生じるからである。
本願発明のWC基超硬合金は、硬質相の平均粒子径を0.3μm以下に規定する。この理由は、0.3μmを超える場合、硬度の低下による耐摩耗性の低下と、強度の低下による抗折力の低下を引き起こす為である。より好ましい平均粒径は、0.1μm以下である。
The WC-based cemented carbide of the present invention mainly uses the effect of Cr in order to suppress grain growth of WC particles. Cr content shall be a specific ratio with respect to the weight of the iron group metal element which is a binder phase. Specifically, the weight ratio of Cr with respect to the binder phase is specified to be 0.03 or more and 0.2 or less. If it is less than 0.03, the content is small and grain growth of WC cannot be sufficiently suppressed. On the other hand, if it exceeds 0.2, Cr is excessive, and a brittle phase such as a carbide of Cr is produced in a large amount in the cemented carbide, and this compound becomes a starting point of fracture, which tends to cause a decrease in strength.
The WC-based cemented carbide of the present invention is a sintered body having WC as a hard phase and an iron group metal element such as Co, Ni, or Fe as a binder phase. Here, the composition of the binder phase is preferably Co. In extreme terms, Co alone may be used. Alternatively, one part of Co may be replaced with another iron group element such as Ni. However, the content of the binder phase by the iron group element is specified to be 3% or more and 15% or less. In the case of multiple elements, the total content is assumed. If the content is less than 3%, the bending strength is lowered even if the Cr and Ta contents are appropriate. On the other hand, if the amount exceeds 15%, the amount of the binder phase is too large, which causes a disadvantage that the hardness decreases.
In the WC-based cemented carbide of the present invention, the average particle size of the hard phase is regulated to 0.3 μm or less. The reason for this is that when the thickness exceeds 0.3 μm, the wear resistance is reduced due to a decrease in hardness and the bending strength is decreased due to a decrease in strength. A more preferable average particle diameter is 0.1 μm or less.

一方、本願発明のWC基超硬合金において、Ti元素を含有する相は炭素と反応して粒成長することがあり、これが欠陥となることを見出した。そこで、Tiの含有量を0.005%未満とすることが好ましく、Tiは意図して添加しない。従って、Tiを含有しないことが最も好ましい。この理由は、Tiについて検討した結果、特に靭性に悪影響を及ぼすためである。不可避的に混入してしまう場合を考慮しても、0.003%以下が好ましく、0.005%を上限値とすることが好ましい。例えば、液相焼結中にTiを含む炭化物相が生成されて、硬質相が大きく成長する場合がある。そして、これらTiを含む析出相は、たとえ粒成長抑制剤のTa、Cr元素を添加しても、粒成長が進行する。そして、脆性相が超硬合金中に多量に生成し、この化合物が破壊の起点となり、靭性低下を引き起こしやすい。
本願発明の微粒超硬合金は、Vを結合相に対する重量比で0.02から0.1含有することが望ましい。V添加によって、粒成長をより効果的に抑制して微細化を安定させることができて好ましい。本願発明の微粒超硬合金は、粒成長抑制剤として、先に述べたCrを主、Vを副として添加している。重量比が0.02未満の場合、微粒組織の安定性が不十分となり、Vを添加したことによる効果を十分に得ることができない。一方、0.1を超えて多いいと、硬質相と結合相との濡れ性の劣化を引き起こし、破壊靭性が低下する傾向がある。特に好ましい重量比は、0.02以上、0.06以下である。本願発明のWC基超硬合金における各成分の含有量は、例えば、誘導結合プラズマ発光分析(以下、ICP分析と記す。)によって求めることができる。
On the other hand, in the WC-based cemented carbide of the present invention, it has been found that the phase containing the Ti element may react with carbon and grow grains, which becomes a defect. Therefore, the Ti content is preferably less than 0.005%, and Ti is not intentionally added. Therefore, it is most preferable not to contain Ti. This is because, as a result of examining Ti, particularly, the toughness is adversely affected. Considering the case where it is inevitably mixed, 0.003% or less is preferable, and 0.005% is preferably set as the upper limit. For example, a carbide phase containing Ti may be generated during liquid phase sintering, and the hard phase may grow greatly. And even if the precipitation phase containing these Ti contains Ta and Cr element of a grain growth inhibitor, grain growth advances. And a brittle phase produces | generates abundantly in a cemented carbide alloy, this compound becomes a starting point of a fracture | rupture, and tends to cause a toughness fall.
The fine cemented carbide of the present invention desirably contains V in a weight ratio of 0.02 to 0.1 with respect to the binder phase. Addition of V is preferable because grain growth can be more effectively suppressed and miniaturization can be stabilized. The fine-grain cemented carbide of the present invention is added with the aforementioned Cr as the main and V as the sub as a grain growth inhibitor. When the weight ratio is less than 0.02, the stability of the fine grain structure becomes insufficient, and the effect of adding V cannot be sufficiently obtained. On the other hand, if it exceeds 0.1, the wettability between the hard phase and the binder phase is deteriorated, and the fracture toughness tends to be lowered. A particularly preferred weight ratio is 0.02 or more and 0.06 or less. The content of each component in the WC-based cemented carbide of the present invention can be determined, for example, by inductively coupled plasma emission analysis (hereinafter referred to as ICP analysis).

本願発明のWC基超硬合金は、Zrを0.005%以上、0.8%以下含有することが好ましい。Zrは、粒成長抑制効果が少ないとされ、超硬合金へ添加することはほとんどなかった。しかし、硬質相の平均粒子径が0.3μm以下の超硬合金に添加する場合、強度の改善、特に、高温における強度の改善に有効である。このとき、単にZrを含有するだけでなく、結合相となる鉄族金属元素の含有量に合わせて、Zrの含有量を制御する。具体的には、結合相を5%以上、15%以下含有させるとき、Zrの添加によって強度の改善が望める。Zr含有量が0.005%未満では、不純物レベルの含有量となり、強度の改善効果が少ない。一方、0.8%を超えて多く含有すると、超硬合金全体に対するZrの含有量が過多となり、Zrを多量に含有する炭化物等が破壊の起点となって、強度の低下を引き起こす。
本願発明は、超硬合金の表面にスパッタ法、アークイオンプレーティング法、化学蒸着(以下、CVDと記す。)法等により少なくとも周期律表4a、5a、6a族金属及びAl、Siの1種以上の炭素、窒素、酸素、硼素等との化合物等の皮膜や酸化アルミニウム膜、酸化ジルコニウム膜等の単層や多層膜等の硬質皮膜を被覆した超硬合金でも有効である。これらの硬質皮膜を本願発明の微粒超硬合金部材に被覆することにより、表面の耐摩耗性や耐酸化性、摺動性等を更に高めることが出来る。また、本願発明は、回転工具、切削工具の他、特に刃径が0.3mm以下の小径工具、特に小径ドリルやルーター等に用いると顕著な効果が得られるが、切削工具でなくとも径の小さい耐摩耗工具、押しピン、金型、摺動材等の加工工具に適用しても同様の優れた効果が得られる。本願発明のWC基超硬合金を、以下の実施例に基づいて具体的に説明する。
The WC-based cemented carbide of the present invention preferably contains 0.005% or more and 0.8% or less of Zr. Zr is considered to have little effect of suppressing grain growth and was hardly added to the cemented carbide. However, when added to a cemented carbide with an average particle size of the hard phase of 0.3 μm or less, it is effective for improving the strength, particularly at high temperatures. At this time, the content of Zr is controlled in accordance with the content of the iron group metal element as the binder phase, not just containing Zr. Specifically, when the binder phase is contained in an amount of 5% or more and 15% or less, the strength can be improved by adding Zr. When the Zr content is less than 0.005%, the content becomes an impurity level, and the effect of improving the strength is small. On the other hand, if the content exceeds 0.8%, the content of Zr in the entire cemented carbide becomes excessive, and carbides containing a large amount of Zr become the starting point of fracture, causing a decrease in strength.
In the present invention, at least one of periodic group 4a, 5a, 6a group metals and Al, Si is formed on the surface of the cemented carbide by sputtering, arc ion plating, chemical vapor deposition (hereinafter referred to as CVD), or the like. It is also effective to use a cemented carbide alloy coated with a hard film such as a film such as a compound of carbon, nitrogen, oxygen, boron or the like, a single layer such as an aluminum oxide film or a zirconium oxide film, or a multilayer film. By coating these hard coatings on the fine cemented carbide member of the present invention, the wear resistance, oxidation resistance, slidability, etc. of the surface can be further enhanced. In addition to the rotary tool and the cutting tool, the present invention can provide a remarkable effect when used for a small diameter tool having a blade diameter of 0.3 mm or less, particularly a small diameter drill or a router. The same excellent effect can be obtained even when applied to a processing tool such as a small wear-resistant tool, a push pin, a die, or a sliding material. The WC-based cemented carbide of the present invention will be specifically described based on the following examples.

(実施例1)
原料粉末として、夫々、平均粒径:0.4μmのWC粉末、平均粒径:1.2μmのCo粉末、平均粒径:1.5μmのCr3C2粉末、平均粒径:1.2μmのTaC粉末、平均粒径:1.2μmのVC粉末、平均粒径:1.2μmの(W、Zr)C固溶体粉末を夫々用意し、これらの粉末を表1に示す組成に配合した。
(Example 1)
As raw material powders, WC powder having an average particle diameter of 0.4 μm, Co powder having an average particle diameter of 1.2 μm, Cr3C2 powder having an average particle diameter of 1.5 μm, TaC powder having an average particle diameter of 1.2 μm, A VC powder having an average particle size of 1.2 μm and a (W, Zr) C solid solution powder having an average particle size of 1.2 μm were prepared, and these powders were blended into the compositions shown in Table 1.

Figure 2008001918
Figure 2008001918

配合した粉末は、アルコール中で12時間、アトライターを用いて粉砕、混合し、成型用の樹脂を添加し、乾燥して混合粉末を作成した。この混合粉末を100MPaの圧力でプレス成形し、JIS抗折試験片(JIS−B−4053)用の成形体とした。これらの成形体を真空雰囲気中、1380℃で、30分焼結した後、アルゴンガスを用いて4.9MPaで30分間加圧し、炉冷した。焼結条件は、C量を適正値に制御するため、温度プロファイル、真空度、雰囲気ガス組成等を最適化した条件を用いた。JIS試験片用成形体より得られた焼結体は、ダイヤモンド砥石で研削し、4mm×8mm×24mmの寸法を有するJIS抗折力試験片を作製した。これらの試験片より、Co、Cr、Ta、Ti、V、Zrの各含有量を測定した。金属結合相であるCoは、超硬合金の断面を鏡面研磨した後、蛍光X線分析装置(リガク製、ZSX−100E)により分析し、その含有量を定量的に求めた。金属結合相中に含有しているCr、Ta、Ti、V、Zrは、超硬合金を微細に粉砕した粉を、H3PO4、HCl、HF、HNO3及びH2SO4を用いて溶解し、イオン化して、ICP分析することにより、各元素の種類を同定するとともに、その含有量を定量的に求めた。分析結果を表1に併記した。
また、表1の本発明例3と同じ組成で、Coの1部をNiに置換した本発明例19、予め混合された材料粉末を用いた本発明例20を作製した。本発明例19は、平均粒径:1μmのNi粉末及びCo粉末を用いた以外は本発明例と同様の条件で作製した。本発明例20は、表1に示す組成の材料粉末が予め混合されているものを用い、それ以外は上記本発明例と同様の条件で作製した。更に、WCの平均粒径が異なる比較例30、焼結後の加圧処理を施さない比較例31を作製した。比較例30は、平均粒径:1.0μmのWC粉末、平均粒径:1μmのCo原料粉末、平均粒径:1.5μmのCr3C2粉末、平均粒径:1.2μmのTaC粉末を夫々用意し、これらの粉末を表1に示される組成に配合した。比較例31は、表1に示す組成の材料粉末を用意して配合し、焼結温度は本発明例の条件よりも100℃高い1480℃に設定して焼結した。
The blended powder was pulverized and mixed in an alcohol using an attritor for 12 hours, and a molding resin was added and dried to prepare a mixed powder. This mixed powder was press-molded at a pressure of 100 MPa to obtain a molded body for a JIS bending test piece (JIS-B-4053). After these compacts were sintered in a vacuum atmosphere at 1380 ° C. for 30 minutes, they were pressurized with argon gas at 4.9 MPa for 30 minutes and cooled in the furnace. As the sintering conditions, in order to control the amount of C to an appropriate value, conditions in which the temperature profile, the degree of vacuum, the atmospheric gas composition, etc. were optimized were used. The sintered body obtained from the molded body for JIS test pieces was ground with a diamond grindstone to produce JIS bending strength test pieces having dimensions of 4 mm × 8 mm × 24 mm. From these test pieces, the contents of Co, Cr, Ta, Ti, V, and Zr were measured. Co, which is a metallic binder phase, was mirror-polished on the cross section of the cemented carbide and then analyzed with a fluorescent X-ray analyzer (manufactured by Rigaku, ZSX-100E) to quantitatively determine its content. Cr, Ta, Ti, V, and Zr contained in the metal binder phase are obtained by dissolving finely pulverized cemented carbide with H3PO4, HCl, HF, HNO3, and H2SO4, and ionizing them. By ICP analysis, the type of each element was identified and the content was quantitatively determined. The analysis results are also shown in Table 1.
Further, Invention Example 19 having the same composition as Invention Example 3 in Table 1 and 1 part of Co substituted with Ni, and Invention Example 20 using pre-mixed material powders were prepared. Invention Example 19 was prepared under the same conditions as in the Invention Example except that Ni powder and Co powder having an average particle diameter of 1 μm were used. Invention Example 20 was prepared under the same conditions as in the above-described Invention Example except that the material powder having the composition shown in Table 1 was previously mixed. Furthermore, the comparative example 30 from which the average particle diameter of WC differs, and the comparative example 31 which does not give the pressurization process after sintering were produced. In Comparative Example 30, WC powder having an average particle size of 1.0 μm, Co raw material powder having an average particle size of 1 μm, Cr3C2 powder having an average particle size of 1.5 μm, and TaC powder having an average particle size of 1.2 μm are prepared. These powders were blended in the composition shown in Table 1. In Comparative Example 31, material powder having the composition shown in Table 1 was prepared and blended, and the sintering temperature was set to 1480 ° C., which is 100 ° C. higher than the conditions of the present invention example, and was sintered.

次に、JIS抗折力試験片を用いて、WCの平均粒径、抗折力、硬さを測定した。WCの平均結晶粒径は、超硬合金の断面を鏡面研磨した後、村上試薬で0.5分、王水で0.5分間エッチングすることにより超硬合金の結晶粒界を明確にした後、走査電子顕微鏡(日立製作所製、S−4200、以下、SEMと記す。)によって倍率10k倍で撮影した画像を拡大コピーし、これを画像解析ソフト(Image−Pro Plus Version4.0 for Windows、Media Cybernetics社、Windowsは登録商標です。)により解析することにより算出した。抗折力試験は、試料ごとに10本ずつ抗折力を測定し、10本の抗折力の平均値(GPa)を求めた。測定結果を表2に示す。   Next, the average particle diameter, bending strength, and hardness of WC were measured using a JIS bending strength test piece. The average grain size of WC is obtained by clarifying the grain boundaries of cemented carbide by mirror polishing the section of cemented carbide and then etching 0.5 minutes with Murakami reagent and 0.5 minutes with aqua regia. , An enlarged copy of an image taken at a magnification of 10 k with a scanning electron microscope (manufactured by Hitachi, Ltd., S-4200, hereinafter referred to as SEM), and this is image analysis software (Image-Pro Plus Version 4.0 for Windows, Media) (Cybernetics, Windows is a registered trademark). In the bending strength test, ten bending strengths were measured for each sample, and an average value (GPa) of the ten bending strengths was obtained. The measurement results are shown in Table 2.

Figure 2008001918
Figure 2008001918

表2に示すように鉄族金属を結合相とし、微量のTaを含有し、結合相に対して所定量のCrを含有した本発明例1から20は、WCの平均粒径が0.3μm以下となり、高い抗折力と高硬度を示し、双方に優れていた。また、抗折力のばらつきも小さく、均一な微粒組織が得られたものと考えられる。特に、Vを含有した本発明例14から18は、抗折力が優れると共に、高硬度であることがわかった。
本発明例1から4、比較例21から24を比較することで、結合相の含有量が抗折力に影響することがわかる。結合相の含有量が3%未満では、Cr、Taの含有量が適量であっても、抗折力が低下した。一方、15%を超えて多いと、結合相量が多すぎるため、硬度が低下してしまった。
本発明例3及び本発明例5、6、比較例25から27を比較することで、Ta含有量の影響がわかる。Ta元素を微量添加することによって、Taが靭性の改善に有効に作用しつつ、更にCr等の粒成長抑制剤と併せて含有するとWC粒子の微粒化に有効であり、高い抗折力と高硬度を併せ持った超硬合金を得ることができた。しかし、0.005%未満の比較例25は、満足のいく抗折力を得ることができず、Ta添加効果が現れなかった。0.06%を超えた比較例26、27は、Taを含む析出相が発生して、WC粒子の微細化が困難であった。
本発明例3及び本発明例7から10、比較例28、29を比較することで、Cr含有量の抗折力への影響がわかる。本発明例は適量のCr添加によって、WCの均一な微粒化を図ることができた。しかし、Cr含有量比が0.03未満の比較例28は含有量が少なく、WCの粒成長を十分に抑制できなかった。Cr含有量比が0.2を超えて多い比較例29は、Crが過多となり、Crの炭化物等の脆性相が超硬合金中に多量に生成し、この化合物が破壊の起点となり、抗折力が低下した。また、比較例28、29は、抗折力のばらつきも大きかったことから、Cr含有量は、WCの粒成長抑制に寄与していると考えられる。
本発明例3及び本発明例11から13を比較することで、Tiの有無の影響がわかる。Tiを含有しない本発明例3が最も好ましい。この理由は、Tiの含有は抗折力に悪影響を及ぼすためである。従って、0.003%以下が好ましく、0.005%を上限値とすることが好ましい。本発明例3と19とを比較することで、結合相は、Coのみとすると、より優れた特性を有する超硬合金が得られた。本発明例3と20とを比較することで、材料粉末が予め混合されている粉末も利用可能であることがわかった。本発明例3と比較例30とを比較することで、原料粉末としてより微粒のものを利用することで、より微細なWCとなり、高い抗折力と高硬度を併せ持つ超硬合金が得られることがわかった。本発明例3と比較例31とを比較することで、焼結後、アルゴンガスを用いた加圧処理により、優れた特性を有する超硬合金が得られた。
As shown in Table 2, Examples 1 to 20 of the present invention in which an iron group metal is used as a binder phase, a small amount of Ta is contained, and a predetermined amount of Cr is contained in the binder phase have an average WC particle size of 0.3 μm. It was as follows, showing high bending strength and high hardness, and was excellent in both. Further, it is considered that a uniform fine grain structure was obtained with little variation in bending strength. In particular, the inventive examples 14 to 18 containing V were found to have excellent bending strength and high hardness.
By comparing Invention Examples 1 to 4 and Comparative Examples 21 to 24, it can be seen that the content of the binder phase affects the bending strength. When the content of the binder phase was less than 3%, the bending strength was lowered even when the content of Cr and Ta was appropriate. On the other hand, if it exceeds 15%, the amount of the binder phase is too large, and thus the hardness is lowered.
By comparing Invention Example 3, Invention Examples 5 and 6, and Comparative Examples 25 to 27, the influence of the Ta content can be understood. By adding a small amount of Ta element, Ta effectively works to improve toughness, and when contained together with a grain growth inhibitor such as Cr, it is effective for atomizing WC particles, and has high bending strength and high resistance. A cemented carbide with high hardness was obtained. However, in Comparative Example 25 of less than 0.005%, satisfactory bending strength could not be obtained, and the Ta addition effect did not appear. In Comparative Examples 26 and 27 exceeding 0.06%, a precipitated phase containing Ta was generated, and it was difficult to refine the WC particles.
By comparing Invention Example 3 and Invention Examples 7 to 10 and Comparative Examples 28 and 29, the influence of Cr content on the bending strength can be understood. In the example of the present invention, WC can be uniformly atomized by adding an appropriate amount of Cr. However, Comparative Example 28 having a Cr content ratio of less than 0.03 has a small content and could not sufficiently suppress the grain growth of WC. In Comparative Example 29 in which the Cr content ratio exceeds 0.2, Cr is excessive, and a brittle phase such as a carbide of Cr is produced in a large amount in the cemented carbide. Power decreased. In Comparative Examples 28 and 29, the variation in the bending strength was large, so it is considered that the Cr content contributes to the suppression of grain growth of WC.
By comparing Invention Example 3 and Invention Examples 11 to 13, the effect of the presence or absence of Ti can be understood. Invention Example 3 containing no Ti is most preferred. This is because the Ti content adversely affects the bending strength. Therefore, 0.003% or less is preferable, and 0.005% is preferably set as the upper limit. By comparing Inventive Examples 3 and 19, when the binder phase was only Co, a cemented carbide having superior characteristics was obtained. By comparing Invention Examples 3 and 20, it was found that a powder in which material powders were mixed in advance could also be used. By comparing Inventive Example 3 and Comparative Example 30, by using finer powder as the raw material powder, a finer WC can be obtained, and a cemented carbide having both high bending strength and high hardness can be obtained. I understood. By comparing Inventive Example 3 and Comparative Example 31, a cemented carbide having excellent characteristics was obtained by sintering using an argon gas after sintering.

(実施例2)
表1に示した混合粉末を、25MPaの圧力で押し出し成形し、φ4.7mmの丸棒成形体を作製した。この丸棒成形体より得られた丸棒焼結体を、夫々研磨し、全長が38.1mm、シャンク径が3.175mm、刃先径が0.25mm、溝長が5.5mmの小径ドリルを作製した。これらの小径ドリルを用いて、穴開け加工の試験を行った。評価方法は、5000穴ヒットした加工後、小径ドリルの刃先径の減少量を測定して耐摩耗性を評価した。また、強度を測定する為、夫々の条件について20本のドリルを用いて、送り量が19μm/回転の条件で、被削材を6000ヒットした時、折損したドリルの本数を測定し、耐折損性を評価した。これらの評価結果を表3に示す。
(Example 2)
The mixed powder shown in Table 1 was extruded at a pressure of 25 MPa to produce a round bar molded body having a diameter of 4.7 mm. Each of the round bar sintered bodies obtained from this round bar molded body was polished, and a small diameter drill having a total length of 38.1 mm, a shank diameter of 3.175 mm, a cutting edge diameter of 0.25 mm, and a groove length of 5.5 mm was obtained. Produced. Using these small diameter drills, a drilling test was conducted. The evaluation method evaluated the wear resistance by measuring the amount of reduction in the diameter of the edge of a small-diameter drill after processing after hitting 5000 holes. Also, in order to measure the strength, 20 drills were used for each condition, and the number of broken drills was measured when the work material hit 6000 with a feed rate of 19 μm / rotation, Sex was evaluated. These evaluation results are shown in Table 3.

Figure 2008001918
Figure 2008001918

(試験条件)
被削材 :板厚が1.6mmのガラスエポキシ銅張り4層積層板を2枚重ね
回転数 :毎分160、000回転
耐摩耗性の評価時の送り量:13μm/回転
耐折損性の評価時の送り量:19μm/回転
表3に示す各小径ドリルのWC平均粒径、Co、Cr、Ta、Ti、V、Zrの分析値、抗折力、硬度は、焼成条件等の素材の作製条件がJIS抗折試験片と同じであるため、表1、表2に示したJIS抗折試験片番号が同一のものと同値とみなした。従って、表1の試料番号に沿って、本発明例32から51、比較例52から62とした。表3の結果から、本発明例32から51は、優れた耐摩耗性、耐折損性を示した。Zrを含有する本発明例45から48は、切削時の刃先温度程度の高温における強度が優れていた。所定量の鉄族金属を結合相とし、極微量のTaを含有すると共に、結合相に対して所定量のCrを含有した本発明例は、折損が生じにくく、更に耐折損性、靭性に優れるものであることがわかった。このような結果となったのは、小径ドリルに粗大なWCがほとんど存在しなかったためであり、従って本願発明の超硬合金による切削工具は、耐摩耗性、耐折損性に優れ、工具寿命を向上することができた。
(Test conditions)
Work material: Two glass epoxy copper-clad 4-layer laminates with a plate thickness of 1.6 mm Rotating speed: 160,000 rotations per minute Feed rate during evaluation of wear resistance: 13 μm / rotation breakage evaluation Feeding time: 19 μm / rotation WC average particle diameter, Co, Cr, Ta, Ti, V, Zr analysis values, bending strength, hardness of each small-diameter drill shown in Table 3 are materials for firing conditions, etc. Since the conditions were the same as those of the JIS bent specimen, the JIS bent specimen numbers shown in Tables 1 and 2 were regarded as the same as the same. Therefore, according to the sample numbers in Table 1, the present invention examples 32 to 51 and comparative examples 52 to 62 were used. From the results in Table 3, Invention Examples 32 to 51 showed excellent wear resistance and breakage resistance. Invention Examples 45 to 48 containing Zr were excellent in strength at a high temperature of the cutting edge temperature at the time of cutting. The present invention example in which a predetermined amount of an iron group metal is used as a binder phase and contains a very small amount of Ta and a predetermined amount of Cr with respect to the binder phase is less likely to break, and is further excellent in breakage resistance and toughness. It turned out to be a thing. This result was because there was almost no coarse WC in the small diameter drill. Therefore, the cutting tool made of the cemented carbide of the present invention has excellent wear resistance and breakage resistance, and has a long tool life. I was able to improve.

Claims (3)

WC基超硬合金は、重量%で3%から15%の少なくとも1種の鉄族金属元素を結合相とし、Cr、Ta、V、Ti、Zr元素の2種以上の元素を含有し、Ta含有量は重量%で0.005%から0.06%、Cr含有量は結合相に対する重量比で0.03から0.2、残部がWC及び不可避不純物を有し、WCの平均粒径は0.3μm以下、であることを特徴とするWC基超硬合金。 The WC-based cemented carbide contains 3% to 15% by weight of at least one iron group metal element as a binder phase, and contains two or more elements of Cr, Ta, V, Ti, and Zr elements. The content is 0.005% to 0.06% by weight, the Cr content is 0.03 to 0.2 by weight ratio to the binder phase, the balance has WC and inevitable impurities, and the average particle size of WC is A WC-based cemented carbide characterized by being 0.3 μm or less. 請求項1に記載のWC基超硬合金におけるTi含有量は重量%で0.005%未満、であることを特徴とするWC基超硬合金。 The WC-based cemented carbide according to claim 1, wherein the WC-based cemented carbide has a Ti content of less than 0.005% by weight. 請求項1、2に記載のWC基超硬合金におけるV含有量は結合相に対する重量比で0.02から0.1、であることを特徴とするWC基超硬合金。
The WC-base cemented carbide according to claim 1, wherein the WC-base cemented carbide has a V content of 0.02 to 0.1 in terms of weight ratio to the binder phase.
JP2006169760A 2006-06-20 2006-06-20 Wc-based cemented carbide Pending JP2008001918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169760A JP2008001918A (en) 2006-06-20 2006-06-20 Wc-based cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169760A JP2008001918A (en) 2006-06-20 2006-06-20 Wc-based cemented carbide

Publications (1)

Publication Number Publication Date
JP2008001918A true JP2008001918A (en) 2008-01-10

Family

ID=39006548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169760A Pending JP2008001918A (en) 2006-06-20 2006-06-20 Wc-based cemented carbide

Country Status (1)

Country Link
JP (1) JP2008001918A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000808A (en) * 2007-06-15 2009-01-08 Sandvik Intellectual Property Ab -fine particle cemented carbide for turning of heat resistant super alloy (hrsa) and stainless steel
JP2009061579A (en) * 2007-06-01 2009-03-26 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
JP2009203544A (en) * 2008-02-29 2009-09-10 Tokyo Institute Of Technology Hard alloy material, production method, and tool and wear resistant member
US8283058B2 (en) 2007-06-01 2012-10-09 Sandvik Intellectual Property Ab Fine grained cemented carbide cutting tool insert
JP2013508546A (en) * 2009-11-13 2013-03-07 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide and method for producing the same
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
US9005329B2 (en) 2007-06-01 2015-04-14 Sandvik Intellectual Property Ab Fine grained cemented carbide with refined structure
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
WO2020127684A1 (en) * 2018-12-20 2020-06-25 Ab Sandvik Coromant Coated cutting tool
US11104980B2 (en) 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061579A (en) * 2007-06-01 2009-03-26 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
JP2009066747A (en) * 2007-06-01 2009-04-02 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
US8283058B2 (en) 2007-06-01 2012-10-09 Sandvik Intellectual Property Ab Fine grained cemented carbide cutting tool insert
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
US9005329B2 (en) 2007-06-01 2015-04-14 Sandvik Intellectual Property Ab Fine grained cemented carbide with refined structure
JP2009000808A (en) * 2007-06-15 2009-01-08 Sandvik Intellectual Property Ab -fine particle cemented carbide for turning of heat resistant super alloy (hrsa) and stainless steel
JP2009203544A (en) * 2008-02-29 2009-09-10 Tokyo Institute Of Technology Hard alloy material, production method, and tool and wear resistant member
JP2013508546A (en) * 2009-11-13 2013-03-07 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide and method for producing the same
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
US11104980B2 (en) 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure
WO2020127684A1 (en) * 2018-12-20 2020-06-25 Ab Sandvik Coromant Coated cutting tool

Similar Documents

Publication Publication Date Title
JP2008001918A (en) Wc-based cemented carbide
KR101233474B1 (en) Cemented carbides
JP6330387B2 (en) Sintered body and manufacturing method thereof
JP2011080153A (en) Hard metal and cutting tool
WO2011129422A1 (en) Coated sintered cbn
JP2007260851A (en) Surface coated cutting tool
JP2004076049A (en) Hard metal of ultra-fine particles
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2004059946A (en) Ultra-fine grain hard metal
JP6064549B2 (en) Sintered body and method of manufacturing the sintered body
JP2007284751A (en) Hard metal made of fine particle
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP2008202074A (en) Fine-grained cemented carbide
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
JP2006239792A (en) Hard film coated cemented carbide member
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP4776395B2 (en) Cutting tools
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2009074121A (en) Wc-base hard metal
JP2008025024A (en) Wc-based cemented carbide
JP2009007615A (en) Cemented carbide, and cutting tool using the same
CN113453828A (en) Hard film cutting tool
WO2020067138A1 (en) Surface coated tin-based cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2009006413A (en) Ti based cermet