JP2014073944A - Method of producing silicon nitride sintered body - Google Patents

Method of producing silicon nitride sintered body Download PDF

Info

Publication number
JP2014073944A
JP2014073944A JP2012223020A JP2012223020A JP2014073944A JP 2014073944 A JP2014073944 A JP 2014073944A JP 2012223020 A JP2012223020 A JP 2012223020A JP 2012223020 A JP2012223020 A JP 2012223020A JP 2014073944 A JP2014073944 A JP 2014073944A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
temperature
range
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223020A
Other languages
Japanese (ja)
Other versions
JP6037217B2 (en
Inventor
Ryo Naganuma
諒 長沼
Kenichiro Shimizu
健一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012223020A priority Critical patent/JP6037217B2/en
Publication of JP2014073944A publication Critical patent/JP2014073944A/en
Application granted granted Critical
Publication of JP6037217B2 publication Critical patent/JP6037217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a silicon nitride sintered body having stable durability in terms of peeling resistance, and imparting low damage to a mating material.SOLUTION: There is provided the method of producing a silicon nitride sintered body containing Mg and at least one kind of rare earth elements. The method includes a raw material powder preparation step of adding a sintering assistant containing Mg and at least one kind of rare earth elements (RE) to a silicon nitride powder having a 50% cumulative particle diameter (d50) of 0.2 to 3 μm and having a relationship (d90-d10)/d50 among the 50% cumulative particle diameter (d50), 10% cumulative particle diameter (d10) and 90% cumulative particle diameter (d90), the relationship (d90-d10)/d50 being in the range of 0.5 to 8, in such a manner that a ratio (RExOy/MgO) in the case of oxide conversion of Mg and at least one kind of rare earth elements (RE) falls within the range of 0.05 to 50 and mixing them to form the raw powder and a sintering step of sintering molded body which is molded by the raw material, under a pressure of 0.2 to 10 MPa and in nitrogen atmosphere.

Description

本発明は、窒化珪素質焼結体の製造方法に係る発明である。   The present invention relates to a method for producing a silicon nitride sintered body.

例えば、鋼鈑の圧延ラインで使用される圧延用ロール、搬送用ロールまたは支持ロールなどの各種ロール部材、コンプレッサー、タービンブレードまたはカムローラなど各種エンジン部材、転動体(ボール・コロ)または内輪・外輪などのころがり軸受部材、すべり軸受部材として、摺動部材が組み込まれている。そして、近年、長寿命化および省エネ化を目的とし、これらの摺動部材に窒化珪素質焼結体を利用することが鋭意検討されており、その一例が、下記特許文献1〜4に開示されている。   For example, various roll members such as rolling rolls, conveyance rolls or support rolls used in steel rolling lines, various engine members such as compressors, turbine blades or cam rollers, rolling elements (balls / rollers), inner rings / outer rings, etc. Sliding members are incorporated as rolling bearing members and sliding bearing members. In recent years, for the purpose of extending the life and energy saving, it has been intensively studied to use a silicon nitride sintered body for these sliding members, and examples thereof are disclosed in the following Patent Documents 1 to 4. ing.

特許文献1に開示された窒化珪素質焼結体は、「窒化珪素粒子と、2質量%以上15質量%以下の範囲の焼結助剤成分とを含有する窒化珪素焼結体であって、前記窒化珪素粒子は、長径Lが10μm以下で、かつ短径Sに対する長径Lの比(L/S)が5以上である針状結晶粒子を、前記窒化珪素焼結体の結晶組織内に面積比で50〜80%有し、前記窒化珪素焼結体中に存在するボイドの最大径が3μm以下、前記ボイドの数が30×30μmの範囲内に5個以下である」、窒化珪素焼結体である。かかる窒化珪素焼結体によれば、これを摺動部材に適用した場合には、転がり寿命に代表される摺動特性のバラツキを低減し、耐久性や信頼性を再現性よく高めることができると記載されている。   The silicon nitride-based sintered body disclosed in Patent Document 1 is “a silicon nitride sintered body containing silicon nitride particles and a sintering aid component in the range of 2% by mass to 15% by mass, The silicon nitride particles have needle-like crystal particles having a major axis L of 10 μm or less and a ratio of the major axis L to the minor axis S (L / S) of 5 or more in the crystal structure of the silicon nitride sintered body. 50% to 80% in the ratio, the maximum diameter of the voids existing in the silicon nitride sintered body is 3 μm or less, and the number of the voids is 5 or less within the range of 30 × 30 μm ”. Is the body. According to such a silicon nitride sintered body, when this is applied to a sliding member, it is possible to reduce variations in sliding characteristics typified by rolling life and to improve durability and reliability with good reproducibility. It is described.

特許文献2に開示された窒化珪素質焼結体は、「窒化珪素結晶粒子と、2質量%以上15質量%以下の範囲の焼結助剤成分とを含有する窒化珪素焼結体であって、前記窒化珪素結晶粒子は、短径Sに対する長径Lの比(L/S比)が5以上の針状結晶粒子を面積比で10%以上含み、かつ前記針状結晶粒子のL/S比の平均値が6〜8の範囲で、変動係数が0.8以上であり、前記針状結晶粒子の長径Lは40μm以下である」、窒化珪素焼結体である。かかる窒化珪素焼結体によれば、強度や転がり寿命に代表される摺動特性の低下を抑制しつつ、加工性を向上させて製造コストの低減を図ることが可能であると記載されている。   The silicon nitride sintered body disclosed in Patent Document 2 is “a silicon nitride sintered body containing silicon nitride crystal particles and a sintering aid component in the range of 2% by mass to 15% by mass. The silicon nitride crystal particles contain 10% or more of needle-like crystal particles having an area ratio of the major axis L to the minor axis S (L / S ratio) of 5 or more, and the L / S ratio of the acicular crystal particles Is an average value of 6-8, the coefficient of variation is 0.8 or more, and the long diameter L of the needle-like crystal particles is 40 μm or less. ” According to such a silicon nitride sintered body, it is described that it is possible to improve the workability and reduce the manufacturing cost while suppressing the deterioration of the sliding characteristics represented by the strength and the rolling life. .

特許文献3に開示された窒化珪素質焼結体は、「金属窒化法により製造された窒化けい素粉末と焼結助剤とを混合した窒化けい素焼結体において、焼結助剤成分として希土類元素を1.5〜3質量%、Al元素を1〜3質量%、酸素元素を5質量%以下含有した窒化けい素焼結体であり、不純物としてFeを10〜3000ppm含有するとともに、Caを10〜1000ppm含有し、窒化けい素焼結体のビッカース硬度Hvが1300〜1600であり、ヤング率が290GPa以上であり、この窒化けい素焼結体の結晶組織において窒化けい素結晶粒子の短径に対する長径の比が2以上である窒化けい素針状結晶粒子の面積率が50%以上、その最大長さが40μm以下、前記窒化けい素焼結体の気孔率が1%以下、最大気孔径が3μm以下、前記窒化けい素焼結体を研摩加工した後の30×30μmの表面領域に残存する径が1μm以上の気孔数が5個以下、前記窒化けい素焼結体の結晶組織における助剤成分の偏析凝集部の最大径が30μm以下である」、窒化珪素焼結体である。かかる窒化珪素焼結体によれば、特に金属窒化法で製造された窒化けい素粉末のように純度が低く安価な窒化けい素原料粉末を使用して形成した場合であっても、助剤成分の分散状態を制御することが可能であり、均質で粒界強度のばらつきが小さくすることができ、従来の窒化けい素焼結体と同等以上の機械的強度、耐摩耗性、転がり寿命特性に加え、加工性に優れた転がり軸受け部材として好適な窒化珪素焼結体を構成できると記載されている。   The silicon nitride sintered body disclosed in Patent Document 3 is “a silicon nitride sintered body obtained by mixing silicon nitride powder produced by a metal nitriding method and a sintering aid, and a rare earth element as a sintering aid component. A silicon nitride sintered body containing 1.5 to 3% by mass of element, 1 to 3% by mass of Al element, and 5% by mass or less of oxygen element, containing 10 to 3000 ppm of Fe as impurities, and 10% of Ca. The silicon nitride sintered body has a Vickers hardness Hv of 1300 to 1600 and a Young's modulus of 290 GPa or more. In the crystal structure of this silicon nitride sintered body, The area ratio of silicon nitride needle crystal grains having a ratio of 2 or more is 50% or more, the maximum length is 40 μm or less, the porosity of the silicon nitride sintered body is 1% or less, and the maximum pore diameter is 3 μm. Hereinafter, the number of pores having a diameter of 1 μm or more remaining in the surface region of 30 × 30 μm after polishing the silicon nitride sintered body is 5 or less, and segregation of the auxiliary component in the crystal structure of the silicon nitride sintered body The maximum diameter of the agglomerated part is 30 μm or less ”. According to such a silicon nitride sintered body, even if it is formed using a low-purity and inexpensive silicon nitride raw material powder, such as silicon nitride powder produced by a metal nitriding method, the auxiliary component It is possible to control the dispersion state of the material, and it can be uniform and variation in grain boundary strength can be reduced. In addition to mechanical strength, wear resistance, and rolling life characteristics equivalent to or better than those of conventional silicon nitride sintered bodies Further, it is described that a silicon nitride sintered body suitable for a rolling bearing member having excellent workability can be constituted.

特許文献4に開示された窒化珪素質焼結体からなる耐摩耗部材(摺動部材)は、「ケイ素粉末に、希土類化合物を酸化物に換算して0.5〜10質量%、チタン化合物を窒化チタンに換算して0.1〜5質量%、酸化アルミニウムを0.1〜5質量%、および窒化アルミニウムを5質量%以下の範囲で添加した混合原料粉末を成形、焼結してなる窒化ケイ素焼結体を具備し、長軸径が1μm以下の窒化チタン粒子を0.2〜5質量%、前記窒化チタン粒子は、アスペクト比が1.0〜1.2の範囲の粒子を80%以上含み、前記窒化ケイ素焼結体は気孔率が0.5%以下である」、耐摩耗部材である。かかる耐摩耗部材によれば、高強度および高靭性に加えて、摺動特性に優れた耐摩耗性部材、特に転がり寿命を向上させて軸受部材に好適な特性を付与可能な耐摩耗部材を構成できると記載されている。   The wear-resistant member (sliding member) made of a silicon nitride-based sintered body disclosed in Patent Document 4 is “a silicon powder containing 0.5 to 10% by mass of a rare earth compound converted to an oxide and a titanium compound. Nitriding formed by forming and sintering mixed raw material powder in which 0.1 to 5% by mass in terms of titanium nitride, 0.1 to 5% by mass of aluminum oxide, and 5% by mass or less of aluminum nitride are added. 0.2 to 5% by mass of titanium nitride particles having a silicon sintered body and having a major axis diameter of 1 μm or less, and 80% of the titanium nitride particles having an aspect ratio of 1.0 to 1.2 Including the above, the silicon nitride sintered body has a porosity of 0.5% or less. ” According to the wear-resistant member, in addition to high strength and high toughness, a wear-resistant member having excellent sliding characteristics, particularly a wear-resistant member capable of imparting suitable characteristics to the bearing member by improving the rolling life. It is stated that it can be done.

WO2008/111307号公報WO2008 / 111307 gazette 特開2008−285349号公報JP 2008-285349 A 特開2011−16716号公報JP 2011-16716 A 特開2011−132126号公報JP 2011-132126 A

上記特許文献1〜4で例示される従来の窒化珪素質焼結体は、これを摺動部材として適用した場合に、表面の耐剥離性の点で不十分であった。このため、耐剥離性という観点で見た場合の摺動部材の耐久性が安定せず、工業生産において実用的に、窒化珪素質焼結体を摺動部材として適用することを阻害する一つの要因となっていた。   The conventional silicon nitride sintered bodies exemplified in Patent Documents 1 to 4 are insufficient in terms of surface peeling resistance when applied as a sliding member. For this reason, the durability of the sliding member when viewed from the viewpoint of peeling resistance is not stable, and practically impedes the application of the silicon nitride sintered body as a sliding member in industrial production. It was a factor.

さらに、従来の窒化珪素質焼結体は、相手材の損耗性の面で問題があった。すなわち、摺動部材の表面の摺動中における損耗は、硬度の低い粒界相が優先して摩耗するため、使用前には平滑な表面であっても、摺動中における粒界相の優先的な損耗により窒化珪素粒子が露出するようになり、表面に凹凸が生じる。ここで、従来の窒化珪素質焼結体はアスペクト比が高い針状の窒化珪素粒子を主体として構成されているため、この凹凸の程度が粗くなる。このため、圧延用ロールまたは搬送用ロールに適用した場合には、上記凸部に起因し相手材である鋼鈑等の表面に擦り疵が生じたり、鋼鈑等の表面に上記凹部がプリントされるという問題があった。また、転がり軸受の転動体に適用した場合には、相手材である内輪または外輪の摺動面に摩耗や損傷が生じ、軸受の寿命が低下するという問題があった。   Furthermore, the conventional silicon nitride sintered body has a problem in terms of wear of the counterpart material. In other words, wear during sliding on the surface of the sliding member is preferentially worn by the grain boundary phase having low hardness, so even if the surface is smooth before use, the grain boundary phase during sliding is preferred. The silicon nitride particles are exposed due to the general wear and the surface is uneven. Here, since the conventional silicon nitride sintered body is mainly composed of acicular silicon nitride particles having a high aspect ratio, the degree of the unevenness becomes rough. For this reason, when applied to a roll for rolling or a roll for conveyance, scratches are generated on the surface of a steel plate or the like which is the counterpart material due to the above-mentioned convex portions, or the above-mentioned concave portions are printed on the surface of the steel plate or the like. There was a problem that. Further, when applied to a rolling element of a rolling bearing, there is a problem that the sliding surface of the inner ring or outer ring which is the counterpart material is worn or damaged, and the life of the bearing is reduced.

本発明は、上記従来技術の課題を本発明者らが鋭意検討してなされたものであり、耐剥離性という観点からの耐久性が安定し、加えて相手材の損傷性の低い窒化珪素質焼結体の製造方法を提供することを目的としている。   The present invention has been made by the present inventors intensively examining the above-mentioned problems of the prior art, and is stable in terms of durability from the viewpoint of peeling resistance, and in addition, the silicon nitride material having low damage to the counterpart material It aims at providing the manufacturing method of a sintered compact.

上記目的を達成する本発明の一態様は、Mgおよび少なくとも1種の希土類元素を酸化物換算で0.5〜20質量%含む窒化珪素質焼結体の製造方法であって、50%累積粒子径(d50)が0.2〜3μmであり、当該50%累積粒子径(d50)と10%累積粒子径(d10)および90%累積粒子径(d90)との関係である(d90−d10)/d50が0.5〜8の範囲の窒化珪素粉末に、Mgおよび少なくとも1種の希土類元素(RE)を含む焼結助剤を、Mgおよび少なくとも1種の希土類元素(RE)を酸化物換算した場合の比(RExOy/MgO)が0.05〜5の範囲となるよう添加し、混合して原料粉末を形成する原料粉末調整工程と、前記原料粉末で形成した成形体を0.2〜10MPaの圧力下にて窒素雰囲気中で焼成する焼成工程を有する原料窒化珪素質焼結体の製造方法である。   One aspect of the present invention that achieves the above object is a method for producing a silicon nitride-based sintered body containing 0.5 to 20% by mass of Mg and at least one rare earth element in terms of oxides, wherein 50% cumulative particles The diameter (d50) is 0.2 to 3 μm, and is a relationship between the 50% cumulative particle diameter (d50), the 10% cumulative particle diameter (d10), and the 90% cumulative particle diameter (d90) (d90-d10). / Sintering aid containing Mg and at least one rare earth element (RE) in a silicon nitride powder with a d50 of 0.5-8, and Mg and at least one rare earth element (RE) as oxides The ratio (RExOy / MgO) is added so as to be in the range of 0.05 to 5 and mixed to form a raw material powder, and a compact formed from the raw material powder is 0.2 to Nitrogen atmosphere under 10 MPa pressure In a method for producing a raw material silicon nitride sintered body having a firing step of firing.

なお、前記焼成工程において、成形体の収縮率が90%となる温度H3に対し、(H3−200℃)〜(H3+200℃)の範囲で成形体を所定時間加熱する温度域を有することが望ましい。   In addition, in the said baking process, it is desirable to have the temperature range which heats a molded object for the predetermined time in the range of (H3-200 degreeC)-(H3 + 200 degreeC) with respect to temperature H3 from which the shrinkage rate of a molded object will be 90%. .

さらに、前記焼成工程において、焼結助剤の液相化が開始する温度H1に対し、(H1−300℃)〜(H1−10℃)の範囲で成形体を所定時間加熱する温度域を有することが好ましい。   Furthermore, in the said baking process, it has the temperature range which heats a molded object for the predetermined time in the range of (H1-300 degreeC)-(H1-10 degreeC) with respect to temperature H1 which liquid phase conversion of a sintering adjuvant starts. It is preferable.

さらに加えて、前記焼成工程において、焼結助剤の液相化が開始する温度H1に対し、H1〜(H1+200℃)の範囲で成形体を所定時間加熱する温度域を有することがより好ましい。   In addition, in the firing step, it is more preferable to have a temperature range in which the compact is heated for a predetermined time in a range of H1 to (H1 + 200 ° C.) with respect to the temperature H1 at which the liquid phase of the sintering aid starts.

本発明に係る窒化珪素質焼結体によれば、下記で詳細に説明するように、耐剥離性という観点からの耐久性が安定し、加えて相手材の損傷性の低い窒化珪素質焼結体の製造方法を提供することができる。   According to the silicon nitride sintered body according to the present invention, as will be described in detail below, the durability from the viewpoint of peel resistance is stable, and in addition, the silicon nitride sintered with low damage to the counterpart material A method of manufacturing a body can be provided.

焼成工程における温度プロファイルを示す図である。It is a figure which shows the temperature profile in a baking process. 第4温度域の加熱温度の基準となる温度H2を求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the temperature H2 used as the reference | standard of the heating temperature of a 4th temperature range. 摩耗試験機の概略構成図である。It is a schematic block diagram of an abrasion testing machine.

本発明に係る窒化珪素質焼結体の製造方法は、
(1)Mgおよび少なくとも1種の希土類元素を酸化物換算で0.5〜20質量%含む窒化珪素質焼結体の製造方法であって、
(2)50%累積粒子径(d50)が0.2〜3μmであり、当該50%累積粒子径(d50)と10%累積粒子径(d10)および90%累積粒子径(d90)との関係である(d90−d10)/d50が0.5〜8の範囲の窒化珪素粉末に、
(3)Mgおよび少なくとも1種の希土類元素(RE)を含む焼結助剤を、Mgおよび少なくとも1種の希土類元素(RE)を酸化物換算した場合の比(RExOy/MgO)が0.05〜5の範囲となるよう添加し、混合して原料粉末を形成する原料粉末調整工程と、(4)前記原料粉末で形成した成形体を0.2〜10MPaの圧力下にて窒素雰囲気中で焼成する焼成工程を有する、窒化珪素質焼結体の製造方法である。以下、本発明に係る窒化珪素質焼結体の製造方法について、その工程に沿い説明する。
The method for producing a silicon nitride sintered body according to the present invention comprises:
(1) A method for producing a silicon nitride sintered body containing 0.5 to 20% by mass of Mg and at least one rare earth element in terms of oxide,
(2) The 50% cumulative particle size (d50) is 0.2 to 3 μm, and the relationship between the 50% cumulative particle size (d50), the 10% cumulative particle size (d10), and the 90% cumulative particle size (d90) (D90-d10) / d50 having a silicon nitride powder with a range of 0.5 to 8,
(3) The ratio (RExOy / MgO) when the sintering aid containing Mg and at least one rare earth element (RE) is converted to an oxide of Mg and at least one rare earth element (RE) is 0.05. A raw material powder adjusting step of adding and mixing to form a raw material powder, and (4) a molded body formed of the raw material powder in a nitrogen atmosphere under a pressure of 0.2 to 10 MPa. This is a method for producing a silicon nitride sintered body having a firing step of firing. Hereinafter, the manufacturing method of the silicon nitride sintered body according to the present invention will be described along the steps.

[原料粉末調整工程]
まず、窒化珪素粉末について説明する。用意する窒化珪素粉末としては、d50が0.2〜3μmであり、(d90−d10)/d50が0.5〜8の範囲の粒度分布を有する窒化珪素粉末を用いる。なお、上記d10、d50およびd90は、JIS Z 8825−1に準拠し、窒化珪素粉末の粒度分布をレーザ式粒度測定装置で測定したときの体積基準の累積分布において、各々、10%累積粒子径、50%累積粒子径、90%累積粒子径のことを指す。このように(d90−d10)/d50が0.5〜8の範囲を有する窒化珪素粉末によれば、所望の長軸長の範囲を有する窒化珪素質焼結体を得ることができる。なお、(d90−d10)/d50の望ましい範囲は、1〜5である。
[Raw material powder adjustment process]
First, the silicon nitride powder will be described. As the silicon nitride powder to be prepared, silicon nitride powder having a particle size distribution in which d50 is 0.2 to 3 μm and (d90−d10) / d50 is in the range of 0.5 to 8 is used. In addition, said d10, d50, and d90 are based on JIS Z 8825-1, and are each 10% cumulative particle diameter in the volume-based cumulative distribution when the particle size distribution of silicon nitride powder is measured with a laser type particle size measuring device. , 50% cumulative particle size, 90% cumulative particle size. Thus, according to the silicon nitride powder having a range of (d90-d10) / d50 of 0.5 to 8, a silicon nitride-based sintered body having a desired long axis length range can be obtained. The desirable range of (d90-d10) / d50 is 1-5.

窒化珪素粉末のd10は、0.1〜1μmの範囲であることが望ましい。d10が0.1μm未満の場合には、細かな粒子が相対的に多くなるため焼結時に異常な粒成長を引き起こしやすくなり、その結果、窒化珪素質焼結体に粗大な空孔が生じるおそれがある。一方で、d10が1μmを超えると、相対的に粒径が大きな窒化珪素粒子の割合が多くなるため、得られた窒化珪素質焼結体の強度が低下するおそれがある。さらに、窒化珪素粉末のd90は、0.8〜10μmの範囲であることが望ましい。d90が0.8μm未満の場合には、d50との差異が小さく、窒化珪素粒子の粒径が揃いすぎているため所望の充填密度を得ることができず、粗大な空孔が生じるおそれがある。一方で、d90が10μmを超えると、相対的に粒径が大きな窒化珪素粒子の割合が多くなるため、得られた窒化珪素質焼結体の強度が低下するおそれがある。なお、上記の理由から、窒化珪素粉末のd10およびd90の更に望ましい範囲は、各々、0.1〜0.5μm、0.9〜8μmである。   The d10 of the silicon nitride powder is desirably in the range of 0.1 to 1 μm. When d10 is less than 0.1 μm, fine particles are relatively increased, and thus abnormal grain growth is likely to occur during sintering, and as a result, coarse pores may be generated in the silicon nitride sintered body. There is. On the other hand, when d10 exceeds 1 μm, the ratio of silicon nitride particles having a relatively large particle size increases, and the strength of the obtained silicon nitride-based sintered body may be reduced. Furthermore, d90 of the silicon nitride powder is desirably in the range of 0.8 to 10 μm. If d90 is less than 0.8 μm, the difference from d50 is small, and the silicon nitride particles are too uniform in size, so that a desired packing density cannot be obtained and coarse pores may be generated. . On the other hand, when d90 exceeds 10 μm, the ratio of silicon nitride particles having a relatively large particle size increases, and the strength of the obtained silicon nitride-based sintered body may be reduced. For the above reasons, more preferable ranges of d10 and d90 of the silicon nitride powder are 0.1 to 0.5 μm and 0.9 to 8 μm, respectively.

窒化珪素粉末の酸素含有量は、焼結性および窒化珪素質焼結体の機械的特性等を考慮し、5質量%以下、より望ましく0.2〜3質量%であることが望ましい。加えて、同様な観点から、窒化珪素粉末中に占めるα型窒化珪素粒子の割合であるα化率は60%以上、望ましくは70%以上であることが望ましい。さらに、所望の機械的特性を有する窒化珪素質焼結体を低コストで製造するために、窒化珪素粉末または焼結助剤は、Fe成分をFe元素換算で5〜3000ppm含有してもよい。   The oxygen content of the silicon nitride powder is 5% by mass or less, more preferably 0.2 to 3% by mass in consideration of the sinterability and the mechanical characteristics of the silicon nitride sintered body. In addition, from the same point of view, the alpha conversion rate, which is the ratio of the α-type silicon nitride particles in the silicon nitride powder, is preferably 60% or more, and more preferably 70% or more. Furthermore, in order to produce a silicon nitride sintered body having desired mechanical properties at a low cost, the silicon nitride powder or the sintering aid may contain 5 to 3000 ppm of an Fe component in terms of Fe element.

次いで、窒化珪素粉末に添加される焼結助剤について説明する。Mgおよび少なくとも1種の希土類元素(RE)を少なくとも含む焼結助剤は、一般的に、これらの元素の酸化物、酸窒化物、炭化物、窒化物、珪化物、硼化物等の化合物として各々Mgを含む粉末(以下、Mg粉末と言う場合がある。)および希土類元素を含む粉末(以下、RE粉末と言う場合がある。)の形態で原料粉末に添加される。なお、焼結助剤として用いる希土類元素(RE)は特に限定されるものではないが、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの何れの元素でも好適に用いることができるが、これらの中でもY、Ce、Sm、Dy、Er、Yb、Luが機械的特性の面から望ましく、特に緻密化の観点からYが最も望ましい。なお、Mg粉末およびRE粉末(以下、両者を総し焼結助剤粉末と言う場合がある。)の平均粒径(d50)は0.1〜3μmとすることが好ましい。   Next, the sintering aid added to the silicon nitride powder will be described. The sintering aid containing at least Mg and at least one rare earth element (RE) is generally used as a compound such as an oxide, oxynitride, carbide, nitride, silicide, or boride of these elements. It is added to the raw material powder in the form of a powder containing Mg (hereinafter sometimes referred to as Mg powder) and a powder containing a rare earth element (hereinafter sometimes referred to as RE powder). The rare earth element (RE) used as the sintering aid is not particularly limited, but Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm , Yb, and Lu can be suitably used, but among these, Y, Ce, Sm, Dy, Er, Yb, and Lu are desirable from the viewpoint of mechanical properties, and Y is particularly desirable from the viewpoint of densification. Most desirable. In addition, it is preferable that the average particle diameter (d50) of Mg powder and RE powder (hereinafter, both may be collectively referred to as a sintering aid powder) is 0.1 to 3 μm.

さらに、上記焼結助剤以外に、窒化珪素質焼結体の機械的特性を向上させる添加物として、金属元素(M)を原料粉末に添加してもよい。この金属元素(M)も、一般的には、酸化物、酸窒化物、炭化物、窒化物、珪化物、硼化物等の化合物として粉末(以下、金属元素を含む粉末をM粉末と言う場合がある。)の形態で原料粉末に添加される。なお、金属元素(M)は特に限定されるものではないが、例えばハフニウム(Hf)、チタン(Ti)、ジルコニウム(Zr)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、ニオブ(Nb)、およびクロム(Cr)から選ばれる少なくとも1種の金属元素Mを使用することができ、特に機械的強度の面からTiを使用することが望ましい。また、M粉末の平均粒径(d50)は0.1〜3μmとすることが好ましい。   Furthermore, in addition to the sintering aid, a metal element (M) may be added to the raw material powder as an additive for improving the mechanical properties of the silicon nitride sintered body. This metal element (M) is also generally a powder as a compound such as an oxide, oxynitride, carbide, nitride, silicide, boride, etc. (hereinafter, a powder containing a metal element may be referred to as M powder). Is added to the raw material powder in the form of The metal element (M) is not particularly limited. For example, hafnium (Hf), titanium (Ti), zirconium (Zr), tungsten (W), molybdenum (Mo), tantalum (Ta), niobium ( Nb) and at least one metal element M selected from chromium (Cr) can be used, and it is particularly preferable to use Ti from the viewpoint of mechanical strength. Moreover, it is preferable that the average particle diameter (d50) of M powder shall be 0.1-3 micrometers.

次いで、窒化珪素粉末、焼結助剤粉末および必要に応じM粉末に、有機バインダーおよび溶媒を添加し、これらを例えば窒化珪素製のボールを使用したボールミル等の混合装置で混合して原料スラリーを形成する。なお、溶媒中における窒化珪素粉末および焼結助剤粉末の分散性を向上するため、分散剤を添加してもよい。ここで、Mgおよび希土類元素は、酸化物換算で2〜20質量%含むように窒化珪素粉末および焼結助剤粉末を配合するが、Mgおよび希土類元素(RE)を酸化物換算した場合の比(RExOy/MgO)が0.05〜5の範囲となるようMg粉末およびRE粉末を調整する。これにより所定の大きさの窒化珪素粒子が所望のアスペクト比(L/S)を有する窒化珪素質焼結体を得ることができる。   Next, an organic binder and a solvent are added to the silicon nitride powder, the sintering aid powder and, if necessary, the M powder, and these are mixed by a mixing device such as a ball mill using a silicon nitride ball to obtain a raw material slurry. Form. In order to improve the dispersibility of the silicon nitride powder and the sintering aid powder in the solvent, a dispersant may be added. Here, the silicon nitride powder and the sintering aid powder are blended so that Mg and the rare earth element are contained in an amount of 2 to 20% by mass in terms of oxide, but the ratio in the case of Mg and rare earth element (RE) in terms of oxide is mixed. Mg powder and RE powder are adjusted so that (RExOy / MgO) is in the range of 0.05 to 5. Thereby, a silicon nitride-based sintered body in which silicon nitride particles having a predetermined size have a desired aspect ratio (L / S) can be obtained.

なお、Mgおよび希土類元素(RE)は、各々、酸化物換算で0.1〜15質量%、0.1〜15質量%となるよう調整することが望ましい。さらに、M粉末を添加する場合には、金属元素(M)を酸化物換算して0.01〜15質量%となるよう調整し、配合することが望ましい。   In addition, it is desirable to adjust Mg and rare earth elements (RE) to be 0.1 to 15% by mass and 0.1 to 15% by mass, respectively, in terms of oxide. Furthermore, when adding M powder, it is desirable to adjust and mix | blend a metal element (M) so that it may become 0.01-15 mass% in conversion of an oxide.

上記有機バインダーとしては、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、メチルセルロース、アクリル樹脂などの高分子化合物を単独でまたは2種以上混合して使用することができる。また、溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコールなどの有機溶媒や水(純水)などを単独でまたは2種以上混合して使用することができる。そして、原料スラリーは、窒化珪素粉末および焼結助剤粉末の総量100質量部に対し、上記有機バインダーを0.1〜20質量部、上記溶媒を30〜1000質量部添加し、混合することにより得ることができる。   As said organic binder, high molecular compounds, such as polyvinyl alcohol, polyvinyl butyral, polyethyleneglycol, methylcellulose, an acrylic resin, can be used individually or in mixture of 2 or more types. Moreover, as a solvent, organic solvents, such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, water (pure water), etc. can be used individually or in mixture of 2 or more types. The raw material slurry is mixed by adding 0.1 to 20 parts by mass of the organic binder and 30 to 1000 parts by mass of the solvent with respect to 100 parts by mass of the total amount of silicon nitride powder and sintering aid powder. Can be obtained.

[造粒工程]
上記原料調整工程で得られた原料スラリーを例えばスプレードライヤー等の造粒装置で乾燥し、造粒粉を形成する。
[Granulation process]
The raw material slurry obtained in the raw material adjustment step is dried by a granulating apparatus such as a spray dryer to form granulated powder.

上記スプレードライヤー等で形成された造粒粉を例えば篩分け等で分級し、所定の粒度分布を有する造粒粉を形成する。ここで、造粒粉の平均粒径(d50)は10〜300μmであることが望ましい。平均粒径(d50)が10μm未満の場合には、造粒粉の流動性が悪く成形型への充填率が低下するとともに、成形圧力の伝達性が低下するため、所望の密度を有する成形体を得ることができない場合がある。一方で、300μmを超える場合には、成形工程において造粒粉を成形型等に充填した際、造粒粉間に形成される気孔も相対的に大きくなり、その結果、粗大な空孔が成形体に発生し、ひいては得られた窒化珪素質焼結体に粗大な空孔が残存するおそれがある。同様な観点から、造粒粉の平均粒径(d50)の望ましい範囲は、20〜150μmである。   The granulated powder formed by the spray dryer or the like is classified by, for example, sieving to form a granulated powder having a predetermined particle size distribution. Here, the average particle size (d50) of the granulated powder is desirably 10 to 300 μm. When the average particle size (d50) is less than 10 μm, the fluidity of the granulated powder is poor and the filling rate into the mold is reduced, and the transferability of the molding pressure is lowered. May not be able to get. On the other hand, when it exceeds 300 μm, the pores formed between the granulated powders become relatively large when the granulated powder is filled in the molding die or the like in the molding process, and as a result, coarse pores are formed. There is a possibility that coarse pores remain in the resulting silicon nitride sintered body. From the same viewpoint, the desirable range of the average particle diameter (d50) of the granulated powder is 20 to 150 μm.

[成形工程〜脱脂工程]
上記造粒工程で形成された造粒粉を使用し、成形体を形成する(成形工程)。成形方法は、乾式成形および湿式成形いずれでもよく、例えばプレス成型法やCIP(冷間静水圧プレス)等の乾式成形で成形を行うことができる。そして、成形工程で形成された成形体を大気雰囲気中で加熱し、成形体に含まれる有機バインダーを除去する(脱脂工程)。なお、必要に応じ、脱脂工程後の成形体を加工し、製品である摺動部材に近似した形状に成形体を調整しておいてもよい。
[Molding process to degreasing process]
Using the granulated powder formed in the granulation step, a molded body is formed (molding step). The molding method may be either dry molding or wet molding. For example, the molding can be performed by a dry molding such as a press molding method or CIP (cold isostatic pressing). And the molded object formed at the shaping | molding process is heated in an atmospheric condition, and the organic binder contained in a molded object is removed (degreasing process). In addition, you may process the molded object after a degreasing process as needed, and may adjust a molded object in the shape approximated to the sliding member which is a product.

[焼成工程]
上記脱脂工程を経た成形体を焼成炉で焼成し、窒化珪素質焼結体を形成する。成形体を焼成して窒化珪素質焼結体を形成する焼成工程は、図1に示すように、加熱域である第1〜第6温度域P1〜P6と第6温度域P6の後に配置された冷却域P7を備えた温度プロファイルPで温度を制御しつつ各温度域P1〜P6で炉内雰囲気を制御し、窒化珪素質焼結体を形成する。ここで、図1において、横軸は経過時間であり、縦軸は焼成炉の加熱温度であり、炉内雰囲気はグラフの下に表示している。また、各温度域P1〜P6を示す線図は図1において水平な直線として描かれているが、許容される温度範囲の中で各温度域P1〜P6の温度は変化してもよい。以下、温度プロファイルPの各温度域P1〜P7について、詳細に説明する。
[Baking process]
The molded body that has undergone the degreasing step is fired in a firing furnace to form a silicon nitride sintered body. As shown in FIG. 1, the firing step of firing the compact to form the silicon nitride sintered body is arranged after the first to sixth temperature regions P1 to P6 and the sixth temperature region P6 which are heating regions. While controlling the temperature with the temperature profile P provided with the cooling region P7, the atmosphere in the furnace is controlled in each of the temperature regions P1 to P6 to form a silicon nitride sintered body. Here, in FIG. 1, the horizontal axis is the elapsed time, the vertical axis is the heating temperature of the firing furnace, and the furnace atmosphere is displayed below the graph. Moreover, although the diagram which shows each temperature range P1-P6 is drawn as a horizontal straight line in FIG. 1, the temperature of each temperature range P1-P6 may change within the allowable temperature range. Hereinafter, the temperature ranges P1 to P7 of the temperature profile P will be described in detail.

[第1温度域]
第1温度域P1は、真空雰囲気中において、好ましくは一定の温度で保持しつつ成形体を加熱し、成形体に含まれるガス化しうる成分を揮発させ、第2温度域P2以降において成形体に残存するガスに起因する粗大な気孔の発生を抑制するための温度域である。なお、脱ガス効果を高めるためには、50Pa以下の圧力下で成形体を加熱することが好ましく、さらに、次述する第2温度域P2においても真空雰囲気で成形体を加熱してもよい。加えて、同様な観点から、第1温度域P1の温度t1の範囲は、800〜1400℃とすることが好ましく、加熱時間は0.5〜10時間であることが好ましい。なお、脱脂効果を高めるためには、室温から第1温度域P1に至る昇温速度は、0.2〜20℃/時間とすることが好ましい。
[First temperature range]
The first temperature range P1 is heated in a vacuum atmosphere, preferably at a constant temperature, and the molded body is heated to volatilize gasifiable components contained in the molded body. This is a temperature range for suppressing the generation of coarse pores due to the remaining gas. In order to enhance the degassing effect, it is preferable to heat the molded body under a pressure of 50 Pa or less, and the molded body may be heated in a vacuum atmosphere also in the second temperature range P2 described below. In addition, from the same viewpoint, the range of the temperature t1 in the first temperature range P1 is preferably 800 to 1400 ° C., and the heating time is preferably 0.5 to 10 hours. In order to enhance the degreasing effect, the temperature rising rate from room temperature to the first temperature range P1 is preferably 0.2 to 20 ° C./hour.

[第2温度域]
第2温度域P2は、次述する第3温度域P3の前段において、好ましくは一定の温度で保持しつつ成形体を所定の温度範囲で一定時間加熱することで、成形体の温度を全体として均一化させる温度域である。ここで、上記第1の温度域P1の加熱温度t1を超える温度に設定される第2温度域P2の温度t2の範囲は、焼結助剤成分として添加されたMg化合物の液相化が開始する温度H1を基準として設定する。具体的には、その温度範囲は、(H1−300℃)〜(H1−10℃)の範囲とすることが望ましい。上記温度H1は窒化珪素粉末および焼結助剤粉末の粒度・組成等により異なるが、例えば焼結助剤がMgOである場合には、上記温度H1は1200〜1700℃の範囲となる。さらに、成形体の温度の均一化のためには、第2温度域P2の加熱時間は、0.5時間以上とし、第1温度域P1から第2温度域P2までの昇温速度は、0.2〜20℃/時間とすることが好ましい。なお、加熱時間の上限は特に限定されないが、工業生産上コストの面から5時間以下とすることが望ましい。また、第2温度域P2の雰囲気は、窒素雰囲気でもよいが、上記したように第1温度域P1に引き続く真空雰囲気とすることが好ましい。
[Second temperature range]
The second temperature range P2 is a pre-stage of the third temperature range P3 to be described below, preferably by heating the molded body for a certain period of time within a predetermined temperature range while maintaining the temperature at a constant temperature. This is the temperature range to make uniform. Here, in the range of the temperature t2 in the second temperature range P2 set to a temperature exceeding the heating temperature t1 in the first temperature range P1, the liquid phase of the Mg compound added as the sintering aid component starts. The temperature H1 to be set is set as a reference. Specifically, the temperature range is preferably in the range of (H1-300 ° C) to (H1-10 ° C). The temperature H1 varies depending on the particle size and composition of the silicon nitride powder and the sintering aid powder. For example, when the sintering aid is MgO, the temperature H1 is in the range of 1200 to 1700 ° C. Further, in order to make the temperature of the molded body uniform, the heating time in the second temperature range P2 is 0.5 hours or more, and the rate of temperature increase from the first temperature range P1 to the second temperature range P2 is 0. 2 to 20 ° C./hour is preferable. In addition, although the upper limit of heating time is not specifically limited, It is desirable to set it as 5 hours or less from the surface of industrial production cost. Further, the atmosphere in the second temperature range P2 may be a nitrogen atmosphere, but as described above, it is preferable to use a vacuum atmosphere following the first temperature range P1.

[第3温度域]
第3温度域P3は、焼結助剤成分として添加されたMg化合物およびRE化合物とが窒化珪素粒子の表面のSiO等と反応して液相化を開始する温度に設定された温度域である。すなわち、第3温度域P3では、上記第2温度域P2で加熱された成形体を昇温し、その後、Mg化合物およびRE化合物の液相化が開始した状態において、好ましくは一定の温度で保持しつつ成形体を所定の温度範囲で一定時間加熱することで、Mg化合物およびRE化合物の液相化を成形体全体として均一に進行させる。ここで、上記のように第2温度域P2で成形体は均一に加熱されており、その効果も重畳し、Mg化合物およびRE化合物の液相化の均一性が更に高められる。
[Third temperature range]
The third temperature range P3 is a temperature range set to a temperature at which the Mg compound and RE compound added as a sintering aid component react with SiO 2 or the like on the surface of the silicon nitride particles to start liquid phase formation. is there. That is, in the third temperature range P3, the temperature of the molded body heated in the second temperature range P2 is increased, and thereafter, the liquid phase of the Mg compound and the RE compound is preferably maintained at a constant temperature. However, by heating the molded body for a certain time in a predetermined temperature range, the liquid phase formation of the Mg compound and the RE compound proceeds uniformly as the entire molded body. Here, as described above, the molded body is heated uniformly in the second temperature range P2, and the effect is also superimposed, and the uniformity of the liquid phase formation of the Mg compound and the RE compound is further enhanced.

上記第2の温度域P2の加熱温度t2を超える温度に設定される第3温度域P3の温度t3の範囲は、上記液相化が開始する温度H1を基準として設定するが、その温度範囲は、H1〜(H1+200℃)の範囲とすることが望ましい。さらに、液相化の均一化のためには、第3温度域P3の加熱時間は、0.5〜10時間の範囲とし、第2温度域P2から第3温度域P3までの昇温速度は、0.2〜20℃/時間とすることが好ましい。   The range of the temperature t3 in the third temperature range P3 set to a temperature exceeding the heating temperature t2 in the second temperature range P2 is set with reference to the temperature H1 at which the liquid phase starts, but the temperature range is , H1 to (H1 + 200 ° C.) is preferable. Furthermore, in order to make the liquid phase uniform, the heating time of the third temperature range P3 is set to a range of 0.5 to 10 hours, and the rate of temperature increase from the second temperature range P2 to the third temperature range P3 is 0.2 to 20 ° C./hour is preferable.

第3温度域P3の雰囲気は、脱ガスの効果を得るためには真空雰囲気としてもよいが、窒化珪素粒子の分解を低減するとともに、蒸気圧が低い液相化したMg化合物の蒸発を抑制し、粗大な気孔の発生を防止するためには、窒素雰囲気とすることが好ましい。なお、加圧条件は、下記する第4〜第6温度域P4〜P6も含め0.2〜10MPaとすることが好ましく、より好ましくは1〜10MPaである。その理由は、後述する。   The atmosphere in the third temperature range P3 may be a vacuum atmosphere in order to obtain the effect of degassing, but it reduces the decomposition of the silicon nitride particles and suppresses the evaporation of the liquid phase Mg compound having a low vapor pressure. In order to prevent generation of coarse pores, a nitrogen atmosphere is preferable. The pressurizing condition is preferably 0.2 to 10 MPa, more preferably 1 to 10 MPa, including the fourth to sixth temperature ranges P4 to P6 described below. The reason will be described later.

[第4温度域]
第4温度域P4は、液相化したMg化合物およびRE化合物の液相中において、窒化珪素粒子の再配列を促進させる温度域である。この第4温度域P4を設けることにより、液相中で収縮する成形体において、次述する第5温度域P5および第6温度域P6における窒化珪素粒子の粒成長の前に、窒化珪素粒子が液相中で再配列が促進され、その結果、得られる窒化珪素質焼結体の緻密性が高まり、粗大な空孔が少なく、さらに空孔の分散性が向上した窒化珪素質焼結体が形成される。
[Fourth temperature range]
The fourth temperature range P4 is a temperature range in which rearrangement of the silicon nitride particles is promoted in the liquid phase of the liquid phase Mg compound and RE compound. By providing the fourth temperature range P4, in the molded body that contracts in the liquid phase, the silicon nitride particles are formed before the grain growth of the silicon nitride particles in the fifth temperature range P5 and the sixth temperature range P6 described below. Rearrangement is promoted in the liquid phase. As a result, the resulting silicon nitride sintered body is improved in density, resulting in a silicon nitride sintered body with fewer coarse pores and further improved pore dispersibility. It is formed.

ここで、上記第3の温度域P3の加熱温度t3を超える温度に設定される第4温度域P4の温度t4の範囲は、加熱された成形体における、単位温度当たりの収縮率の変化量である収縮速度(単位:%/℃)が最も高くなる温度H2を基準として設定するが、その温度範囲は、(H2−50℃)〜(H2+50℃)の範囲とすることが望ましく、好ましくは一定の温度に保持しつつ加熱することが望ましい。さらに、窒化珪素粒子の再配列を充分にならしめるためには、第4温度域P4の加熱時間は、1〜10時間の範囲とし、第3温度域P3から第4温度域P4までの昇温速度は、0.2〜20℃/時間とすることが好ましい。また、上記第3温度域P3と同様な理由から、第4温度域P4の雰囲気も、窒素雰囲気とすることが望ましい。また、加圧条件は、0.2〜10MPaとすることが好ましく、より好ましくは1〜10MPaである。   Here, the range of the temperature t4 in the fourth temperature range P4 set to a temperature exceeding the heating temperature t3 in the third temperature range P3 is the amount of change in shrinkage rate per unit temperature in the heated molded body. The temperature H2 at which a certain shrinkage rate (unit:% / ° C) is the highest is set as a reference, and the temperature range is desirably (H2-50 ° C) to (H2 + 50 ° C), preferably constant. It is desirable to heat while maintaining this temperature. Further, in order to sufficiently rearrange the silicon nitride particles, the heating time of the fourth temperature range P4 is set to a range of 1 to 10 hours, and the temperature rise from the third temperature range P3 to the fourth temperature range P4. The speed is preferably 0.2 to 20 ° C./hour. For the same reason as in the third temperature range P3, the atmosphere in the fourth temperature range P4 is preferably a nitrogen atmosphere. Further, the pressurizing condition is preferably 0.2 to 10 MPa, and more preferably 1 to 10 MPa.

上記加熱された成形体の収縮速度が最も高くなる温度H2は、本発明において、次の方法で求めるものとする。この温度H2は、窒化珪素粉末および焼結助剤粉末の仕様または配合割合で変化するため、概念図である図2に示すように、第3温度域P3〜第6温度域P6の温度範囲t3〜t6の範囲を10分割し、温度ta~tiを選択する。そして、上記第1温度域P1および第2温度域P2は省略したうえで、0.2MPaの窒素雰囲気中にて選択した温度ta~tiまで成形体の加熱を行い、その後炉冷し、得られた成形体の線収縮率を測定する。そして、図2に示すように、加熱温度と収縮率との相関をプロットした線図のうち傾斜が最も大きな点の温度をH2とする。また、上記H2は、線膨張計の使用可能温度が上記t3〜t6の範囲内であれば、線膨張計を用いて加熱温度と収縮率との相関をプロットした線図を作成し傾斜が最も大きな点の温度をH2としても良い。   In the present invention, the temperature H2 at which the shrinkage rate of the heated molded body is highest is obtained by the following method. Since this temperature H2 varies depending on the specifications or blending ratio of the silicon nitride powder and the sintering aid powder, as shown in the conceptual diagram of FIG. 2, the temperature range t3 of the third temperature range P3 to the sixth temperature range P6. The range of t6 is divided into 10 and the temperatures ta to ti are selected. And after omitting the said 1st temperature range P1 and the 2nd temperature range P2, it heats a molded object to the temperature ta-ti selected in 0.2 MPa nitrogen atmosphere, and furnace-cools after that, and is obtained. The linear shrinkage rate of the molded body was measured. And as shown in FIG. 2, let the temperature of the point with the largest inclination among the diagrams which plotted the correlation of heating temperature and shrinkage | contraction rate be H2. In addition, if the usable temperature of the linear dilatometer is within the range of t3 to t6, the above H2 creates a diagram in which the correlation between the heating temperature and the shrinkage rate is plotted using the linear dilatometer, and has the highest inclination. The temperature at a large point may be H2.

[第5温度域]
第5温度域P5は、加熱域の最終段階である次述する第6温度域P6の前段において、望ましくは一定の温度を保持しつつ所定の温度範囲で所定時間、成形体を加熱し、成形体の収縮が全体的に均一となるよう配置された温度域である。この第5温度域P5を、第6温度域P6前段に設けることにより、より緻密化され粗大な気孔の少ない窒化珪素質焼結体を形成することができる。
[Fifth temperature range]
The fifth temperature range P5 is a final stage of the heating zone, which is the last stage of the sixth temperature range P6, which will be described below, desirably heating the molded body for a predetermined time in a predetermined temperature range while maintaining a constant temperature, This is a temperature range where the body contraction is uniform throughout. By providing the fifth temperature range P5 in the preceding stage of the sixth temperature range P6, it is possible to form a silicon nitride-based sintered body that is more dense and has fewer coarse pores.

ここで、上記第4の温度域P4の加熱温度t4を超える温度に設定される第5温度域P5の温度t5の範囲は、加熱された成形体の収縮率が90%となる温度H3を基準として設定するが、その温度範囲は、(H3−200℃)〜(H3+200℃)の範囲とすることが望ましく、好ましくは一定の温度に保持しつつ加熱することが望ましい。なお、加熱された成形体の収縮率が90%となる温度H3は、上記第4温度域P4と同様にして求めることができる。さらに、成形体の収縮の均一化のためには、第5温度域P5の加熱時間は、0.1〜10時間の範囲とし、第4温度域P4から第5温度域P5までの昇温速度は、0.2〜20℃/時間とすることが好ましい。また、上記と同様に、第5温度域P5の雰囲気も、窒素雰囲気とすることが望ましい。加圧条件は、0.2〜10MPaとすることが好ましく、より好ましくは1〜10MPaである。   Here, the range of the temperature t5 of the fifth temperature range P5 set to a temperature exceeding the heating temperature t4 of the fourth temperature range P4 is based on the temperature H3 at which the contraction rate of the heated molded body is 90%. However, it is desirable that the temperature range be in the range of (H3−200 ° C.) to (H3 + 200 ° C.), and it is desirable to heat while maintaining a constant temperature. The temperature H3 at which the contraction rate of the heated molded body becomes 90% can be obtained in the same manner as in the fourth temperature range P4. Further, for uniform shrinkage of the molded body, the heating time of the fifth temperature range P5 is set to a range of 0.1 to 10 hours, and the rate of temperature increase from the fourth temperature range P4 to the fifth temperature range P5. Is preferably 0.2 to 20 ° C./hour. Similarly to the above, the atmosphere in the fifth temperature range P5 is preferably a nitrogen atmosphere. The pressurizing condition is preferably 0.2 to 10 MPa, and more preferably 1 to 10 MPa.

[第6温度域]
加熱域の最終段階である第6温度域P6は、窒化珪素粒子のβ相への相転移が完了し、緻密化が完了する温度域である。ここで、上記第1の温度域P5の加熱温度t5を超える温度に設定される第6温度域P6における加熱温度t6および加熱時間は、得られる窒化珪素質焼結体の含む窒化珪素粒子の大きさやアスペクト比(L/S)または焼結助剤の揮発による空孔の形成など窒化珪素質焼結体の特性への影響を考慮して適宜設定されるが、加熱温度は、1500〜2000℃の範囲、加熱時間は0.1〜20時間の範囲とすることが好ましく、さらに、一定の温度で保持しつつ加熱することが好ましい。上記と同様に、第6温度域P6の雰囲気も、加圧された窒素雰囲気とすることが望ましい。加圧条件は、0.2〜10MPaとすることが好ましく、より好ましくは1〜10MPaである。
[6th temperature range]
The sixth temperature range P6, which is the final stage of the heating range, is a temperature range in which the phase transition of the silicon nitride particles to the β phase is completed and densification is completed. Here, the heating temperature t6 and the heating time in the sixth temperature range P6 set to a temperature exceeding the heating temperature t5 in the first temperature range P5 are the sizes of the silicon nitride particles contained in the obtained silicon nitride-based sintered body. The heating temperature is suitably set to 1500 to 2000 ° C. in consideration of the influence on the characteristics of the silicon nitride sintered body, such as the formation of pores due to the sheath ratio or the volatilization of the sintering aid. The heating time is preferably in the range of 0.1 to 20 hours, and it is preferable to heat while maintaining at a constant temperature. Similarly to the above, the atmosphere in the sixth temperature range P6 is preferably a pressurized nitrogen atmosphere. The pressurizing condition is preferably 0.2 to 10 MPa, and more preferably 1 to 10 MPa.

[冷却域]
冷却域P7は、加熱域P1〜P6を経て形成された液相を固化して粒界相を形成する温度領域である。なお、焼結助剤成分の結晶化を抑制し、ガラス相を主体とした粒界相を構成するため、冷却域P7の冷却速度は、0.2℃/時間以上とすることが好ましい。これにより、窒化珪素質焼結体中に存在する粒界相中の面積率で97%以上をガラス相とすることができ、機械的特性、特に耐摩耗性に優れた窒化珪素質焼結体を得ることができる。
[Cooling area]
The cooling region P7 is a temperature region in which the liquid phase formed through the heating regions P1 to P6 is solidified to form a grain boundary phase. In order to suppress crystallization of the sintering aid component and to form a grain boundary phase mainly composed of the glass phase, the cooling rate of the cooling zone P7 is preferably 0.2 ° C./hour or more. As a result, the area ratio in the grain boundary phase existing in the silicon nitride-based sintered body can be 97% or more as the glass phase, and the silicon nitride-based sintered body excellent in mechanical characteristics, particularly wear resistance. Can be obtained.

上記実施態様に係る窒化珪素質焼結体の製造方法によれば、Mgおよび少なくとも1種の希土類元素を酸化物換算で0.5〜20質量%含む窒化珪素質焼結体であって、窒化珪素粒子と、前記Mgおよび少なくとも1種の希土類元素を含む粒界相を有し、Mgおよび希土類元素(RE)の各々を酸化物換算した場合の比(RExOy/MgO)が、0.05〜5の範囲であり、加工された表面において任意に設定した20×20μmの領域に存在する窒化珪素粒子の長軸長Lの平均値が5.0μm以下、短軸長Sに対する長軸長Lの比(L/S)の平均値が5以下であり、加工された表面において任意に設定した300×300μmの領域において、個々の面積が0.01μm以上の気孔を面積比で0.01〜5%含み、前記気孔のうち最も隣接する気孔同士の重心間距離の平均値が5μm以上であり、当該重心間距離の変動係数が1.5以下である、窒化珪素質焼結体を得ることができる。以下、本発明に係る窒化珪素質焼結体の製造方法によって得ることのできる窒化珪素質焼結体の具体的な構成について説明する。 According to the method for producing a silicon nitride-based sintered body according to the above embodiment, a silicon nitride-based sintered body containing 0.5 to 20% by mass of Mg and at least one rare earth element in terms of oxide, The ratio (RExOy / MgO) when having a grain boundary phase containing silicon particles and Mg and at least one kind of rare earth element, and each of Mg and rare earth element (RE) in terms of oxide is 0.05 to The average value of the major axis length L of silicon nitride particles existing in a 20 × 20 μm region arbitrarily set on the processed surface is 5.0 μm or less, and the major axis length L with respect to the minor axis length S is The average value of the ratio (L / S) is 5 or less, and in an area of 300 × 300 μm arbitrarily set on the processed surface, pores each having an area of 0.01 μm 2 or more are 0.01 to 2 in area ratio. 5%, the most adjacent among the pores It is possible to obtain a silicon nitride sintered body in which the average value of the distance between the centers of gravity of the pores in contact is 5 μm or more and the variation coefficient of the distance between the centers of gravity is 1.5 or less. Hereinafter, a specific configuration of the silicon nitride sintered body that can be obtained by the method for manufacturing a silicon nitride sintered body according to the present invention will be described.

上記製造方法で得られる窒化珪素質焼結体は、Mgおよび少なくとも1種の希土類元素(RE)を酸化物換算で0.5〜20質量%含み、窒化珪素粒子と、前記Mgおよび少なくとも1種の希土類元素(RE)を含む粒界相を有している。   The silicon nitride sintered body obtained by the above production method contains 0.5 to 20% by mass of Mg and at least one rare earth element (RE) in terms of oxides, and includes silicon nitride particles, the Mg and at least one kind. It has a grain boundary phase containing rare earth elements (RE).

ここで、窒化珪素質焼結体とは、窒化珪素を主成分とする焼結体である。摺動部材を構成するに有効に利用可能な窒化珪素質焼結体は、相対密度が90%以上、好ましくは95%以上の高密度な焼結体であることが望ましい。相対密度が90%未満の場合には、高い摺動特性が要求される摺動部材として好ましくない。   Here, the silicon nitride-based sintered body is a sintered body mainly composed of silicon nitride. The silicon nitride-based sintered body that can be effectively used for constituting the sliding member is desirably a high-density sintered body having a relative density of 90% or more, preferably 95% or more. When the relative density is less than 90%, it is not preferable as a sliding member requiring high sliding characteristics.

焼結助剤成分としてのマグネシウム(Mg)および希土類元素(RE)は、粒界相を構成する主成分である。なお、窒化珪素質焼結体におけるMgおよび希土類元素(RE)の含有率の総量は、酸化物換算で0.5〜20質量%の範囲とする。総含有率が0.5%未満の場合には、窒化珪素粒子を結合する機能を果たす粒界相の割合が少なく、緻密化が不十分となり相対密度が低下するため、窒化珪素質焼結体の強度が低下し、これを摺動部材として適用した場合に、所望の耐剥離性を満足することができない。一方で、20%以上の場合には、窒化珪素粒子に対し粒界相の割合が多くなるために窒化珪素質焼結体の強度や硬度が低下し、これを摺動部材として適用した場合に、同様に、所望の耐剥離性を満足することができない。なお、Mgの含有量は0.1〜15質量%の範囲であることが好ましい。さらに、窒化珪素質焼結体中における希土類元素(RE)の含有量は0.1〜15質量%の範囲であることが好ましい。   Magnesium (Mg) and rare earth elements (RE) as sintering aid components are main components constituting the grain boundary phase. The total content of Mg and rare earth element (RE) in the silicon nitride sintered body is in the range of 0.5 to 20% by mass in terms of oxide. When the total content is less than 0.5%, the proportion of the grain boundary phase that functions to bond silicon nitride particles is small, the densification is insufficient, and the relative density is lowered. When this is applied as a sliding member, the desired peel resistance cannot be satisfied. On the other hand, in the case of 20% or more, since the ratio of the grain boundary phase to the silicon nitride particles is increased, the strength and hardness of the silicon nitride sintered body is lowered, and when this is applied as a sliding member Similarly, the desired peel resistance cannot be satisfied. In addition, it is preferable that content of Mg is the range of 0.1-15 mass%. Further, the rare earth element (RE) content in the silicon nitride sintered body is preferably in the range of 0.1 to 15% by mass.

さらに、下記する窒化珪素粒子のアスペクト比は、Mgおよび希土類元素(RE)の各々を酸化物換算した場合の比(RExOy/MgO)は、0.05〜5の範囲とすることで具現される。   Furthermore, the aspect ratio of the silicon nitride particles described below is realized by setting the ratio (RExOy / MgO) when Mg and rare earth elements (RE) are converted to oxides in the range of 0.05 to 5. .

そして、上記製造方法で得られた窒化珪素質焼結体は、加工した表面において任意に設定した20×20μmの領域に存在する窒化珪素粒子の長軸長Lの平均値が5.0μm以下、短軸長Sに対する長軸長Lの比(L/S)の平均値が5以下である。このように、本発明に係る窒化珪素質焼結体は、上記範囲の長軸長Lおよびアスペクト比(L/S)の平均値を有する窒化珪素粒子で構成されている。これにより、この窒化珪素質焼結体は、その中に存在する気孔の大きさを低減するとともに、気孔の分散状態を均一化して隣接した気孔の発生を抑制している。   The silicon nitride sintered body obtained by the above manufacturing method has an average value of the major axis length L of silicon nitride particles existing in a 20 × 20 μm region arbitrarily set on the processed surface, of 5.0 μm or less, The average value of the ratio (L / S) of the major axis length L to the minor axis length S is 5 or less. Thus, the silicon nitride sintered body according to the present invention is composed of silicon nitride particles having the long axis length L and the average value of the aspect ratio (L / S) in the above range. Thereby, this silicon nitride sintered body reduces the size of the pores present therein, and also uniformizes the dispersed state of the pores to suppress the generation of adjacent pores.

すなわち、上記窒化珪素質焼結体は、加工された表面で任意に設定した300×300μmの領域に存在する気孔のうち、個々の面積が0.01μm以上の気孔を面積比で0.01〜5%含んでいる。この面積を有する気孔は、当該窒化珪素質焼結体を摺動部材として適用した場合に、破壊の起点となる可能性のある気孔であり、その面積比を5%以下とすることにより窒化珪素質焼結体の強度が確保される。なお、気孔の面積比が0.01%未満の窒化珪素質焼結体を得るためには、高密度化のためにHIP処理等操作が必要となり、窒化珪素質焼結体の製造コストが高くなる。さらに、焼成工程において高圧で加圧した場合には気孔の密集部が形成されやすく、この密集部が見かけ上一つの大きな空孔として振る舞うため、密集部が存在する窒化珪素焼結体を摺動部材として使用した場合には、この密集部を起点としてクラックが生じ、剥離が生じる場合がある。 That is, in the silicon nitride sintered body, among pores existing in a 300 × 300 μm region arbitrarily set on the processed surface, pores each having an area of 0.01 μm 2 or more are 0.01 by area ratio. Contains ~ 5%. The pores having this area are pores that may become a starting point of destruction when the silicon nitride sintered body is applied as a sliding member. By making the area ratio 5% or less, the silicon nitride The strength of the sintered material is ensured. In order to obtain a silicon nitride sintered body having an area ratio of pores of less than 0.01%, an operation such as HIP treatment is required for increasing the density, and the manufacturing cost of the silicon nitride sintered body is high. Become. Furthermore, when high pressure is applied in the firing process, a dense portion of pores is likely to be formed, and this dense portion apparently behaves as one large void, so that the silicon nitride sintered body having the dense portion is slid. When used as a member, cracks may occur starting from this dense portion, and peeling may occur.

さらに、上記窒化珪素質焼結体は、その気孔のうち最も隣接する気孔同士の重心間距離の平均値が5μm以上であり、当該重心間距離の変動係数が1.5以下である。本発明に係る窒化珪素質焼結体は、このように破壊の起点となりうる大きさの気孔が、一定の距離離散している状態で均一に分布している。その結果、この窒化珪素質焼結体を摺動部材として適用した場合に、隣接した気孔が見かけ上一つの大きな気孔を構成して破壊の起点となることを抑制し、摺動部材として適用した場合の耐剥離性を確保することが可能となる。なお、変動係数は、最も隣接する気孔同士の重心間距離の標準偏差をその平均値で除することにより求めることができる。   Further, in the silicon nitride sintered body, the average value of the distance between the centers of gravity of the pores adjacent to each other among the pores is 5 μm or more, and the variation coefficient of the distance between the centers of gravity is 1.5 or less. In the silicon nitride sintered body according to the present invention, the pores having such a size that can be the starting point of the fracture are uniformly distributed in a state where they are dispersed at a certain distance. As a result, when this silicon nitride-based sintered body was applied as a sliding member, the adjacent pores apparently formed one large pore and suppressed from becoming the starting point of destruction, and applied as a sliding member. In this case, it is possible to ensure the peel resistance in the case. The coefficient of variation can be obtained by dividing the standard deviation of the distance between the centers of gravity of the most adjacent pores by the average value.

加えて、上記製造方法で得られる窒化珪素質焼結体は、上記範囲の長軸長およびアスペクト比の平均値を有する窒化珪素粒子を主体として構成されているので、この窒化珪素質焼結体の表面には凸凹が少なくなる。その結果、本発明に係る窒化珪素質焼結体を摺動部材として適用した場合には、当該摺動部材と摺動する相手材の損耗が抑制される。   In addition, the silicon nitride sintered body obtained by the above manufacturing method is mainly composed of silicon nitride particles having a long axis length and an average aspect ratio in the above range. There is less unevenness on the surface. As a result, when the silicon nitride sintered body according to the present invention is applied as a sliding member, wear of the counterpart material sliding with the sliding member is suppressed.

本発明において、加工された表面における300×300μmの領域に存在する気孔の面積および当該領域における面積率ならびに隣接した気孔同士の重心間距離は、以下の手順で測定するものとする。まず、窒化珪素質焼結体が焼結肌である場合には、その表面を#180のダイヤモンド砥石で研削して焼結肌を除去し、加工肌とする。次いで、JISB0601に規定される表面粗さ(Rz)が0.07μm以下となるよう、当該加工肌を平均粒径が1μm以下のダイヤモンド砥粒でラップ加工する。そのラップ加工後の表面の任意の3箇所をSEMまたはレーザ顕微鏡で撮像する。次いで、撮像した写真の300×300μmの領域に存在する気孔の像を特定し、画像処理によりその面積を求め、面積が0.01μm以上の気孔の当該領域における面積比を求める。そして、画像処理によりそれらの気孔の重心を求め、最も隣接した気孔同士の重心間距離を算出し、その平均値および標準偏差を求める。なお、上記300×300μmの領域に一部が含まれる気孔は、確認の対象から除外するものとする。 In the present invention, the area of pores existing in a 300 × 300 μm region on the processed surface, the area ratio in the region, and the distance between the centers of gravity of adjacent pores are measured by the following procedure. First, when the silicon nitride sintered body has a sintered skin, the surface is ground with a # 180 diamond grindstone to remove the sintered skin to obtain a processed skin. Next, the processed skin is lapped with diamond abrasive grains having an average particle size of 1 μm or less so that the surface roughness (Rz) specified in JIS B0601 is 0.07 μm or less. Any three places on the surface after lapping are imaged with an SEM or a laser microscope. Next, an image of pores existing in a 300 × 300 μm region of the photographed photograph is specified, the area is obtained by image processing, and the area ratio in the region of pores having an area of 0.01 μm 2 or more is obtained. Then, the center of gravity of those pores is obtained by image processing, the distance between the centers of gravity of the most adjacent pores is calculated, and the average value and standard deviation are obtained. Note that pores partially included in the 300 × 300 μm region are excluded from the objects of confirmation.

また、本発明において、上記窒化珪素粒子の長軸長L、そのアスペクト比(L/S)は、以下の手順で測定するものとする。まず、上記ラップ加工後の表面をプラズマエッチングし、その後当該プラズマエッチングした表面を、窒化珪素質焼結体の表面の任意の3箇所をSEMまたはレーザ顕微鏡で撮像する。撮像した写真の20×20μmの領域に存在する窒化珪素粒子の長軸長Lと短軸長Sを測定する。なお、長軸長Lとは、窒化珪素粒子のうち最も長さの長い部分の大きさを指し、短軸長Sとは、窒化珪素粒子のうち最も長さの短い部分の大きさを指す。そして、これらの測定結果から窒化珪素粒子の長軸長Lおよびアスペクト比(L/S)の平均値を求める。ここで、上記20×20μmの領域に周縁に一部が含まれる窒化珪素粒子は、確認の対象から除外するものとする。   In the present invention, the major axis length L and the aspect ratio (L / S) of the silicon nitride particles are measured by the following procedure. First, the surface after the lapping is plasma etched, and then the plasma-etched surface is imaged with an SEM or a laser microscope at any three locations on the surface of the silicon nitride sintered body. The major axis length L and minor axis length S of silicon nitride particles present in a 20 × 20 μm region of the photographed image are measured. The major axis length L refers to the size of the longest portion of the silicon nitride particles, and the minor axis length S refers to the size of the shortest portion of the silicon nitride particles. And the average value of the major axis length L and aspect ratio (L / S) of a silicon nitride particle is calculated | required from these measurement results. Here, the silicon nitride particles that are partially included in the periphery of the 20 × 20 μm region are excluded from the objects of confirmation.

なお、耐剥離性を更に向上し、相手材の損耗性を更に低減するためには、加工された表面において任意に設定した20×20μmの領域において、窒化珪素粒子の長軸長Lが1.0〜4.0μm、かつアスペクト比(L/S)が4以下である窒化珪素粒子を50〜150個含み、加工された表面において任意に設定した300×300μmの領域において、上記気孔の面積比が0.01〜2%であり、上記重心間距離の平均値が5〜425μmであり、当該重心間距離の変動係数が0.5〜1.5であるであることが望ましい。   In order to further improve the peel resistance and further reduce the wear resistance of the counterpart material, the major axis length L of the silicon nitride particles is 1. in a 20 × 20 μm region arbitrarily set on the processed surface. In the region of 300 × 300 μm arbitrarily set on the processed surface containing 50 to 150 silicon nitride particles of 0 to 4.0 μm and an aspect ratio (L / S) of 4 or less, the area ratio of the pores Is 0.01 to 2%, the average value of the distance between the centers of gravity is preferably 5 to 425 μm, and the coefficient of variation of the distance between the centers of gravity is preferably 0.5 to 1.5.

さらに加えて、上記気孔の相互間の重心間距離5μm未満である密集部が存在する場合には、当該密集部の包囲円の直径が5〜40μmであることが好ましい。このように相互間の重心間距離が5μm未満である気孔の密集部が窒化珪素質焼結体の表面に存在すると、隣接した気孔が見かけ上一つの気孔を構成し、当該窒化珪素質焼結体を摺動部材として適用した場合に、密集部が破壊の起点となる可能性が高い。そこで、本発明に係る窒化珪素質焼結体では、上記密集部を包囲する包囲円の直径を40μm以下とすることにより、当該密集部が破壊の起点となることを抑制し、窒化珪素質焼結体の強度をより向上させている。なお、密集部の包囲円とは、密集部を構成する気孔を包含する最小直径の円のことと定義する。また、密集部の直径の下限は特に限定されないが、5μm未満とする場合には、高密度化のためにHIP処理等操作が必要となり、上記したように製造コストが高くなるとともに耐剥離性が低下する。そのため、密集部の直径の下限は、5μm以上とすることが好ましい。   In addition, when a dense part having a distance between the centers of gravity of the pores of less than 5 μm is present, the diameter of the surrounding circle of the dense part is preferably 5 to 40 μm. In this way, when there are dense pores on the surface of the silicon nitride sintered body having a distance between the centers of gravity of less than 5 μm, adjacent pores apparently constitute one pore, and the silicon nitride sintered When the body is applied as a sliding member, the dense portion is highly likely to be a starting point of destruction. Therefore, in the silicon nitride-based sintered body according to the present invention, by setting the diameter of the surrounding circle surrounding the dense portion to 40 μm or less, the dense portion is prevented from starting to break down, and the silicon nitride-based sintered body is suppressed. The strength of the knot is further improved. The encircling circle of the dense part is defined as a circle having the smallest diameter including the pores constituting the dense part. Further, the lower limit of the diameter of the dense portion is not particularly limited, but when it is less than 5 μm, an operation such as HIP treatment is required for increasing the density, and as described above, the manufacturing cost is increased and the peel resistance is increased. descend. Therefore, the lower limit of the diameter of the dense part is preferably 5 μm or more.

さらに、上記窒化珪素質焼結体は、鉄(Fe)成分をFe元素換算で5〜3000ppm含んでいてもよい。ここでFe成分とは、酸化鉄や窒化鉄などFe化合物など、元素としてFeを含む成分のことを指す。このFe成分は、通常、原料としての窒化珪素粉末または焼結助剤粉末に含まれる不純物に由来するが、必要に応じ添加してもよい。ここで、Fe成分がFe元素換算で3ppm未満の場合には、高純度の窒化珪素粉末または焼結助剤粉末が必要となり、窒化珪素質焼結体の製造コストが高くなる。一方で、3000ppmを超える場合には、窒化珪素質焼結体の所望の機械的特性を満足することができず、これを摺動部材として適用した場合に摺動特性を具現することができないおそれがある。ここで、窒化珪素質焼結体に含まれているFe成分は、破壊の起点となる偏析部を形成しやすく、摺動部材として適用した場合の耐剥離性を低下させる。しかしながら、下記説明するように、本発明に係る窒化珪素質焼結体では、当該偏析部の大きさおよび分散状態を制御してそれらを最適化することにより、耐剥離性の低下を抑制している。   Furthermore, the silicon nitride sintered body may contain 5 to 3000 ppm of an iron (Fe) component in terms of Fe element. Here, the Fe component refers to a component containing Fe as an element, such as an Fe compound such as iron oxide or iron nitride. This Fe component is usually derived from impurities contained in the silicon nitride powder or sintering aid powder as a raw material, but may be added as necessary. Here, when the Fe component is less than 3 ppm in terms of Fe element, high-purity silicon nitride powder or sintering aid powder is required, and the production cost of the silicon nitride-based sintered body increases. On the other hand, if it exceeds 3000 ppm, the desired mechanical properties of the silicon nitride sintered body cannot be satisfied, and if this is applied as a sliding member, the sliding properties may not be realized. There is. Here, the Fe component contained in the silicon nitride-based sintered body easily forms a segregation part that becomes a starting point of fracture, and lowers the peel resistance when applied as a sliding member. However, as will be described below, in the silicon nitride sintered body according to the present invention, by controlling the size and dispersion state of the segregation part and optimizing them, the decrease in peel resistance is suppressed. Yes.

すなわち、このFe成分を含む窒化珪素質焼結体においては、加工された表面で任意に設定した200×200μmの測定領域において、最大径が0.1〜10μmのFe偏析部を5〜50個含み、隣接するFe偏析部間の重心間距離の平均値が5μm以上であり、当該重心間距離の変動係数を1.2以下としている。ここでFe偏析部の最大径が0.1μm未満、またはその個数が5個未満の場合には、高純度な窒化珪素原料粉末または焼結助剤粉末を使用する必要があり、コスト的に不利となる。一方で、Fe偏析部の最大径が20μmを超えまたはその個数が50個を超える場合には、強度が低下し、Fe偏析部を起点とした破壊が生じやすくなる。   That is, in the silicon nitride sintered body containing the Fe component, 5 to 50 Fe segregation portions having a maximum diameter of 0.1 to 10 μm in a measurement region of 200 × 200 μm arbitrarily set on the processed surface. In addition, the average value of the distance between centroids between adjacent Fe segregation parts is 5 μm or more, and the variation coefficient of the distance between centroids is 1.2 or less. Here, when the maximum diameter of the Fe segregation portion is less than 0.1 μm, or the number thereof is less than 5, it is necessary to use high-purity silicon nitride raw material powder or sintering aid powder, which is disadvantageous in terms of cost. It becomes. On the other hand, when the maximum diameter of the Fe segregation part exceeds 20 μm or the number thereof exceeds 50, the strength is reduced, and the fracture starting from the Fe segregation part is likely to occur.

なお、上記Fe成分の含有量は以下の手順で測定できる。まず、窒化珪素質焼結体を微細に粉砕して粉状にした後、フッ酸などを加えて加圧容器中で180℃程度に加熱して溶液化する。次いで、硫酸でフッ酸などを洗い落とした後、この溶液に対してICP発光分析を行ってFe成分の含有量を求める。   In addition, content of the said Fe component can be measured in the following procedures. First, after the silicon nitride sintered body is finely pulverized and powdered, hydrofluoric acid or the like is added and heated to about 180 ° C. in a pressure vessel to form a solution. Next, after rinsing off hydrofluoric acid with sulfuric acid, the solution is subjected to ICP emission analysis to determine the content of Fe component.

ここで、上記したように本発明に係る製造方法で製造された窒化珪素質焼結体は、上記範囲の長軸長およびアスペクト比の平均値を有する窒化珪素粒子を主体として構成されているため、Fe偏析部も、一定の距離離散した状態で均一に配置されることとなる。すなわち、この好ましい態様の窒化珪素質焼結体においては、加工された表面で任意に設定した200×200μmの測定領域において、Fe偏析部のうち最も隣接したFe偏析部間の重心間距離の平均値が5μm以上、当該重心間距離の変動係数が1.2以下となっている。これにより、隣接したFe偏析部が見かけ上一つのFe偏析部となって破壊の起点となることを抑制し、その結果、より耐剥離性の高い窒化珪素質焼結体が構成される。   Here, as described above, the silicon nitride sintered body produced by the production method according to the present invention is mainly composed of silicon nitride particles having the major axis length and the average aspect ratio in the above range. In addition, the Fe segregation part is also uniformly arranged in a state of being separated by a certain distance. That is, in the silicon nitride sintered body of this preferred embodiment, in the 200 × 200 μm measurement region arbitrarily set on the processed surface, the average distance between the centers of gravity between the most adjacent Fe segregation portions among the Fe segregation portions The value is 5 μm or more, and the variation coefficient of the distance between the centers of gravity is 1.2 or less. Thereby, it is suppressed that the adjacent Fe segregation part becomes one Fe segregation part apparently and becomes the starting point of fracture, and as a result, a silicon nitride-based sintered body with higher peeling resistance is configured.

さらに、上記窒化珪素質焼結体は、上記Mg、希土類元素およびFe成分以外に、ハフニウム(Hf)、チタン(Ti)、ジルコニウム(Zr)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、ニオブ(Nb)、およびクロム(Cr)から選ばれる少なくとも1種の金属元素(M)を、金属元素の単体または金属元素の化合物として含んでいてもよい。これらの金属成分(M)は、窒化珪素質焼結体の機械的特性を向上させる添加物として任意に添加される。   In addition to the Mg, rare earth elements and Fe components, the silicon nitride sintered body includes hafnium (Hf), titanium (Ti), zirconium (Zr), tungsten (W), molybdenum (Mo), tantalum (Ta). ), Niobium (Nb), and chromium (Cr), at least one metal element (M) may be contained as a simple metal element or as a compound of the metal element. These metal components (M) are arbitrarily added as additives for improving the mechanical properties of the silicon nitride sintered body.

ここで、金属成分(M)は任意に添加される元素であるが、上記M化合物を窒化珪素質焼結体に分散させることで、窒化珪素質焼結体の機械的強度を向上せしめ、これを摺動部材として適用した場合の摺動特性を向上させることが可能となる。上記金属元素(M)のうち、特に機械的特性の観点からチタン(Ti)を適用することが好ましい。なお、窒化珪素質焼結体中における金属元素Mの含有量は金属元素(M)を酸化物換算して0.01〜15質量%の範囲とすることが好ましい。金属元素Mの含有量が15質量%を超えると、機械的強度が低下するおそれがある。一方で、0.01質量%未満の場合には、上記機械的強度の向上の効果を得ることができない可能性がある。   Here, the metal component (M) is an element that is optionally added. By dispersing the M compound in the silicon nitride sintered body, the mechanical strength of the silicon nitride sintered body is improved. It is possible to improve the sliding characteristics when applied as a sliding member. Of the metal elements (M), titanium (Ti) is preferably applied particularly from the viewpoint of mechanical properties. The content of the metal element M in the silicon nitride sintered body is preferably in the range of 0.01 to 15% by mass in terms of the metal element (M) in terms of oxide. If the content of the metal element M exceeds 15% by mass, the mechanical strength may decrease. On the other hand, when the amount is less than 0.01% by mass, the effect of improving the mechanical strength may not be obtained.

このように金属元素(M)を酸化物換算して0.01〜15質量%含有させた場合、金属成分(M)を主成分として偏析した偏析部(以下、M偏析部と言う場合がある。)が生成する場合があり、このM偏析部を起点として窒化珪素質焼結体の破壊が生じるおそれがある。そこで、好ましい態様の窒化珪素質焼結体においては、加工された表面で任意に設定した40×40μmの領域において、最大径が5μm以下のM偏析部を50個以下含み、M偏析部のうち最も隣接するM偏析部間の重心間距離の平均値が2μm以上であり、当該重心間距離の変動係数が1.5以下としている。ここで、M偏析部の最大径が5μmを超えまたはその個数が50個を超える場合には、強度が低下し、M偏析部を起点とした破壊が生じやすい。一方で、M偏析部の最大径および個数下限は、特に限定されないが、M偏析部の最大径が0.05μm未満の窒化珪素質焼結体を製造するためには、非常に粒子径の細かい原料粉末の添加や当該原料粉末の窒化珪素粉末中における分散性を向上させる必要があり、工業生産上コスト的に不利となる。したがって、M偏析部の最大径の下限は、各々0.05μmであることが望ましい。また、M偏析部の個数下限は、同様な理由から2個であることが望ましい。   Thus, when the metal element (M) is contained in an amount of 0.01 to 15% by mass in terms of an oxide, a segregated part (hereinafter referred to as an M segregated part) segregated with the metal component (M) as a main component. .) May be generated, and the silicon nitride sintered body may be destroyed starting from the M segregated portion. Therefore, in the silicon nitride-based sintered body according to a preferred embodiment, in a 40 × 40 μm region arbitrarily set on the processed surface, the M segregation portion includes 50 or less M segregation portions having a maximum diameter of 5 μm or less. The average value of the distance between the centers of gravity between the most adjacent M segregating parts is 2 μm or more, and the coefficient of variation of the distance between the centers of gravity is 1.5 or less. Here, when the maximum diameter of the M segregation part exceeds 5 μm or the number thereof exceeds 50, the strength is reduced, and the breakage starting from the M segregation part is likely to occur. On the other hand, the maximum diameter and the lower limit of the number of M segregation parts are not particularly limited, but in order to produce a silicon nitride sintered body having a maximum diameter of less than 0.05 μm, the particle diameter is very fine. It is necessary to improve the dispersibility of the raw material powder in the silicon nitride powder and the addition of the raw material powder, which is disadvantageous in terms of industrial production. Therefore, the lower limit of the maximum diameter of the M segregation part is preferably 0.05 μm. Further, the lower limit of the number of M segregation parts is desirably two for the same reason.

本発明において、上記Fe偏析部およびM偏析部の最大径および個数等は、以下の手順で確認するものとする。まず、窒化珪素質焼結体の加工された表面において、任意に設定した200×200μmまたは40×40μmの領域についてEPMAで面分析し、当該面分析の画像に基づきFeおよび所定の金属元素(M)の分布を確認する。この面分析の画像に存在するFe偏析部およびM偏析部のうち所定の範囲の最大径を有するものの個数を測定する。なお、Fe偏析部およびM偏析部の最大径とは、個々のFe偏析部およびM偏析部の最大直径を指す。次いで、上記範囲の最大径を有するFe偏析部およびM偏析部のみを特定し、画像処理によりその重心を求め、最も隣接したFe偏析部およびM偏析部同士の重心間距離を算出し、その平均値および変動係数を求める。ここで、上記領域の周縁に一部が含まれるFe偏析部およびM偏析部は、確認の対象から除外するものとする。   In the present invention, the maximum diameter and the number of the Fe segregation part and the M segregation part are confirmed by the following procedure. First, a 200 × 200 μm or 40 × 40 μm region arbitrarily set on the processed surface of the silicon nitride-based sintered body is subjected to surface analysis with EPMA, and Fe and a predetermined metal element (M ) Distribution. Of the Fe segregation part and M segregation part present in the surface analysis image, the number of those having the maximum diameter in a predetermined range is measured. Note that the maximum diameters of the Fe segregation part and the M segregation part refer to the maximum diameter of each Fe segregation part and M segregation part. Next, only the Fe segregation part and M segregation part having the maximum diameter in the above range are specified, the center of gravity is obtained by image processing, the distance between the center of gravity of the most adjacent Fe segregation part and M segregation part is calculated, and the average Find the value and coefficient of variation. Here, the Fe segregation part and the M segregation part partially included in the periphery of the region are excluded from the objects of confirmation.

本発明に係る製造方法で製造された窒化珪素質焼結体において、窒化珪素粒子同士の粒界に存在する相は、ガラス相が主体であることが好ましい。具体的には、窒化珪素粒子同士の粒界に存在する結晶相の割合を面積率で3%未満とし、97%以上をガラス相とすることが好ましい。窒化珪素粒子同士の粒界に存在する相を主にガラス相で構成することによって、摺動部材としての耐剥離性を高めることができる。ここで、本発明において結晶相とは、Fe成分や金属元素(M)を主成分として含み、ガラス相とは別個に窒化珪素粒子間の粒界に存在するものを指す。   In the silicon nitride sintered body produced by the production method according to the present invention, the phase present at the grain boundary between the silicon nitride particles is preferably mainly a glass phase. Specifically, it is preferable that the ratio of the crystal phase existing at the grain boundary between the silicon nitride particles is less than 3% by area ratio and 97% or more is the glass phase. By constituting the phase present at the grain boundary between the silicon nitride particles mainly with the glass phase, it is possible to improve the peel resistance as the sliding member. Here, in the present invention, the crystal phase refers to a material containing an Fe component or a metal element (M) as a main component and existing at a grain boundary between silicon nitride particles separately from the glass phase.

なお、本発明において、上記窒化珪素粒子同士の粒界に存在するガラス相の面積率は、以下手順で求めるものとする。まず、加工された表面をX線回折法で解析し、結晶相の組成を同定する。次いで、上記のように組成を同定した結晶相を構成する元素について、200×200μmの領域をEPMAで面分析し、その面分析の画像に基づき当該元素の分布を確認する。この面分析の結果に基づき、当該元素を有する結晶相の面積を求める。また、上記200×200μmの領域をSEMで撮像し、粒界に存在するガラス相および結晶相の面積を求める。両者の合計面積から上記結晶相の面積を減じ、合計面積で除した値(100分率)をガラス相の面積割合(%)とする。   In the present invention, the area ratio of the glass phase existing at the grain boundary between the silicon nitride particles is determined by the following procedure. First, the processed surface is analyzed by X-ray diffraction to identify the composition of the crystal phase. Subsequently, about the element which comprises the crystal phase which identified the composition as mentioned above, a 200 * 200 micrometer area | region is surface-analyzed by EPMA, The distribution of the said element is confirmed based on the image of the surface analysis. Based on the results of this surface analysis, the area of the crystal phase containing the element is obtained. Further, the 200 × 200 μm region is imaged by SEM, and the areas of the glass phase and the crystal phase existing at the grain boundaries are obtained. The value (100 fraction) obtained by subtracting the area of the crystal phase from the total area of both and dividing by the total area is defined as the area ratio (%) of the glass phase.

[実施例]
以下、本発明について、その実施例1〜24および比較例1〜6に基づき具体的に説明する。なお、本発明は、実施例1〜24に限定されない。
[Example]
Hereinafter, the present invention will be specifically described based on Examples 1 to 24 and Comparative Examples 1 to 6. In addition, this invention is not limited to Examples 1-24.

まず、実施例1〜12および比較例1〜6について説明する。実施例1〜12および比較例1〜6では、以下説明する方法で窒化珪素質焼結体を製作し、その窒化珪素粒子および空孔等の状態ならびに耐剥離性および相手材の損耗性の評価を行った。   First, Examples 1-12 and Comparative Examples 1-6 will be described. In Examples 1 to 12 and Comparative Examples 1 to 6, a silicon nitride-based sintered body was manufactured by the method described below, and the state of the silicon nitride particles and pores, as well as the peel resistance and the wear resistance of the counterpart material were evaluated. Went.

各実施例および比較例ともに、表1に示すd10〜d90及び(d90−d10)/d50、酸素量1.5%、Fe含有率300ppm、α化率97%の窒化珪素粉末に対し、酸化マグネシウム(MgO)、酸化イットリウム(Y)、酸化セシウム(Ce)または酸化エルビウム(Er)を各々粉末の状態で表1に示す割合で添加した原料粉末100質量部に対して、有機バインダーとしてポリビニルブチラールを2質量部、有機溶剤としてエチルアルコールを100質量部、樹脂で内張りされた容器に入れ、窒化珪素ボールを用いてボールミルで24時間混合して原料スラリーを作製した。なお、粉末として添加した、酸化マグネシウム(MgO)、酸化イットリウム(Y)、酸化セシウム(Ce)および酸化エルビウム(Er)の各粉末の平均粒径(d50)は、1.2μmとした。 In each of the examples and comparative examples, magnesium oxide was used for silicon nitride powder having d10 to d90 and (d90-d10) / d50, oxygen content of 1.5%, Fe content of 300 ppm, and α conversion of 97% shown in Table 1. (MgO), yttrium oxide (Y 2 O 3 ), cesium oxide (Ce 2 O 3 ), or erbium oxide (Er 2 O 3 ) in a powder state added in a proportion shown in Table 1 to 100 parts by mass of the raw material powder On the other hand, 2 parts by weight of polyvinyl butyral as an organic binder and 100 parts by weight of ethyl alcohol as an organic solvent were placed in a resin-lined container and mixed with a silicon nitride ball in a ball mill for 24 hours to prepare a raw material slurry. . The average particle size (d50) of each powder of magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), cesium oxide (Ce 2 O 3 ) and erbium oxide (Er 2 O 3 ) added as a powder is 1.2 μm.

各実施例および比較例ともに、得られた原料スラリーの粘度を調整した後、スプレードライヤーで乾燥し、造粒粉を形成した。得られた造粒粉を篩分けで分級し、平均粒径(d50)が80μmの造粒粉となるよう調整した。そして、当該造粒粉を200MPaの成形圧力でプレス成形し、直径80mm、厚さ6mmの円板状の成形体を多数作成した。   In each Example and Comparative Example, after adjusting the viscosity of the obtained raw material slurry, it was dried with a spray dryer to form granulated powder. The obtained granulated powder was classified by sieving and adjusted so as to be a granulated powder having an average particle size (d50) of 80 μm. Then, the granulated powder was press-molded at a molding pressure of 200 MPa to produce a large number of disk-shaped molded bodies having a diameter of 80 mm and a thickness of 6 mm.

上記成形体を大気中にて700℃、12時間加熱して脱脂処理した後、図1に示す温度および雰囲気パターンで焼結炉内において焼結し、直径が64〜66mm、厚みが4.8〜5mmの範囲の窒化珪素質焼結体からなる試験片を多数作成した。なお、第2温度域P2・第4温度域P4・第5温度域P5の温度t2・t4・t5および各々の加熱時間、ならびに窒素雰囲気とした第2温度域P2〜第6温度域の炉内圧力は表1に示すとおり設定した。上記以外の焼結条件は、下記のとおりである。なお、各温度域間の昇温速度は、いずれも2.0℃/時間とした。
(1)第1温度域P1 温度t1:900℃、加熱時間:2時間、雰囲気:真空、圧力:10Pa
(2)第2温度域P2 温度t2および加熱時間:表1に示す
(3)第3温度域P3 温度t3:1300℃、加熱時間:1時間
(4)第4温度域P4 温度t4:表1に示す、加熱時間:2時間
(5)第5温度域P5 温度t5および加熱時間:表1に示す
(6)第6温度域P6 温度t6:1850℃、加熱時間:3時間
(7)第7温度域P7 冷却速度:0.5℃/時間
The molded body was degreased by heating at 700 ° C. for 12 hours in the air, and then sintered in a sintering furnace at the temperature and atmosphere pattern shown in FIG. 1, and the diameter was 64 to 66 mm and the thickness was 4.8. A number of test pieces made of a silicon nitride-based sintered body in a range of ˜5 mm were prepared. The furnaces in the second temperature range P2 to the sixth temperature range of the second temperature range P2, the fourth temperature range P4, the fifth temperature range P5, the temperatures t2, t4, and t5 and the respective heating times and the nitrogen atmosphere. The pressure was set as shown in Table 1. The sintering conditions other than the above are as follows. The rate of temperature increase between the temperature ranges was 2.0 ° C./hour.
(1) First temperature range P1 Temperature t1: 900 ° C., heating time: 2 hours, atmosphere: vacuum, pressure: 10 Pa
(2) Second temperature region P2 Temperature t2 and heating time: shown in Table 1 (3) Third temperature region P3 Temperature t3: 1300 ° C., Heating time: 1 hour (4) Fourth temperature region P4 Temperature t4: Table 1 Heating time: 2 hours (5) 5th temperature range P5 Temperature t5 and heating time: shown in Table 1 (6) 6th temperature range P6 Temperature t6: 1850 ° C., heating time: 3 hours (7) 7th Temperature range P7 Cooling rate: 0.5 ° C / hour

各実施例および比較例の試験片の表面および裏面を#180のダイヤモンド砥石で厚みが4.2mmとなるよう研削して焼結肌を除去し、加工肌とし、次いで、JISB0601に規定される表面粗さ(Rz)が0.07μm以下となるよう、当該加工肌を平均粒径が1μm以下のダイヤモンド砥粒でラップ加工した。そのラップ加工後の表面の任意の3箇所をSEMまたはレーザ顕微鏡で撮像し、撮像した写真の300×300μmの領域に存在する気孔の像を特定し、画像処理によりその面積を求め、面積が0.01μm以上の気孔の当該領域における面積比を求めた。そして、画像処理によりそれらの気孔の重心を求め、最も隣接した気孔同士の重心間距離を算出し、その平均値および標準偏差ならびに密集部が存在する場合にはその包囲円の直径を求めた。なお、上記300×300μmの領域に一部が含まれる気孔は、確認の対象から除外した。その結果を表2に示す。 The front and back surfaces of the test pieces of each Example and Comparative Example were ground with a # 180 diamond grindstone to a thickness of 4.2 mm to remove the sintered skin to obtain a processed skin, and then the surface defined in JIS B0601 The processed skin was lapped with diamond abrasive grains having an average particle size of 1 μm or less so that the roughness (Rz) was 0.07 μm or less. Any three places on the surface after the lapping are picked up with an SEM or a laser microscope, an image of pores existing in a 300 × 300 μm region of the photographed photo is specified, the area is obtained by image processing, and the area is 0 The area ratio in the region of pores of 0.01 μm 2 or more was determined. Then, the center of gravity of those pores was obtained by image processing, the distance between the centers of gravity of the most adjacent pores was calculated, and the average value, standard deviation, and the diameter of the surrounding circle when there was a dense portion were obtained. Note that pores partially included in the 300 × 300 μm region were excluded from the objects of confirmation. The results are shown in Table 2.

さらに、上記ラップ加工後の試験片の表面をプラズマエッチングし、その後当該プラズマエッチングした表面を、窒化珪素質焼結体の表面の任意の3箇所をSEMまたはレーザ顕微鏡で撮像し、撮像した写真の20×20μmの領域に存在する窒化珪素粒子の長軸長Lと短軸長Sを測定した。そして、これらの測定結果から窒化珪素粒子の長軸長Lおよびアスペクト比(L/S)の平均値、および長軸長Lが1.0〜4.0μm、アスペクト比(L/S)が4以下である所定の窒化珪素粒子の個数を求めた。なお、上記20×20μmの領域に一部が含まれる窒化珪素粒子は、確認の対象から除外した。その結果を表2に示す。   Furthermore, the surface of the test piece after the lapping was plasma etched, and then the plasma etched surface was imaged with an SEM or a laser microscope at any three locations on the surface of the silicon nitride sintered body. The major axis length L and minor axis length S of silicon nitride particles existing in a 20 × 20 μm region were measured. From these measurement results, the average value of the major axis length L and the aspect ratio (L / S) of the silicon nitride particles, the major axis length L is 1.0 to 4.0 μm, and the aspect ratio (L / S) is 4. The number of predetermined silicon nitride particles as follows was determined. Note that the silicon nitride particles partially contained in the 20 × 20 μm region were excluded from the objects of confirmation. The results are shown in Table 2.

本発明において、表2に示す耐剥離性および相手材の損耗性は、図3に示す試験装置10を用いて確認した。この試験装置10は、装置本体11内に配置された円板状の試験片12と、この試験片12上面に配置された複数の転動鋼球13と、この転動鋼球13の上部に配置されたガイド板14と、このガイド板14に接続された駆動回転軸15と、上記転動鋼球13の配置間隔を規制する保持器16とを備えて構成される。装置本体11内には、転動部を潤滑するための潤滑油17を充填した。上記転動鋼球13およびガイド板14は、日本工業規格(JIS G 4805)で規定される高炭素クロム軸受鋼(SUJ2)で形成した。上記潤滑油17としては、パラフィン系潤滑油(40℃での粘度:67.2mm2/S)を使用した。なお、試験片12は窒化珪素粒子や気孔の測定用の試験片と同じものを使用し、上記窒化珪素粒子や気孔の測定前の加工と同一の条件で加工した。   In the present invention, the peel resistance shown in Table 2 and the wear resistance of the mating material were confirmed using the test apparatus 10 shown in FIG. The test apparatus 10 includes a disk-shaped test piece 12 arranged in the apparatus main body 11, a plurality of rolling steel balls 13 arranged on the upper surface of the test piece 12, and an upper part of the rolling steel balls 13. The guide plate 14 is arranged, a drive rotary shaft 15 connected to the guide plate 14, and a cage 16 that regulates the arrangement interval of the rolling steel balls 13. The apparatus main body 11 was filled with lubricating oil 17 for lubricating the rolling part. The rolling steel balls 13 and the guide plate 14 were made of high carbon chrome bearing steel (SUJ2) defined by Japanese Industrial Standard (JIS G 4805). As the lubricating oil 17, a paraffinic lubricating oil (viscosity at 40 ° C .: 67.2 mm 2 / S) was used. The test piece 12 was the same as the test piece for measuring silicon nitride particles and pores, and was processed under the same conditions as those before the measurement of the silicon nitride particles and pores.

本実施例および比較例に係る円板状の試験片の耐剥離性および相手材の損耗度を評価する際の条件は下記の通りとした。試験片12の上面に設定した直径40mmの軌道上に直径が9.35mmである3個のSUJ2製転動鋼球を相手材として配置し、パラフィン系潤滑油の油浴潤滑条件下で、この転動鋼球13に39.2MPaの荷重を印加した状態で回転数1200rpmの条件下で回転させた。そして、耐剥離性については、試験片12の表面が剥離するまでの時間を求め、100時間未満の場合には「×」、100時間以上・700時間未満の場合には「△」、700時間以上・2000時間未満の場合には「○」、2000時間以上の場合には「◎」と評価した。各実施例および比較例の耐剥離性の評価結果を表2に示す。   The conditions at the time of evaluating the peel resistance of the disk-shaped test piece according to the present example and the comparative example and the degree of wear of the counterpart material were as follows. Three SUJ2 rolling steel balls having a diameter of 9.35 mm are arranged as mating members on a 40 mm diameter track set on the upper surface of the test piece 12, The rolling steel ball 13 was rotated under the condition of a rotational speed of 1200 rpm with a load of 39.2 MPa applied. And about peeling resistance, the time until the surface of the test piece 12 peels is calculated | required, and when it is less than 100 hours, it is "x", when it is 100 hours or more and less than 700 hours, "(triangle | delta)", 700 hours Above, less than 2000 hours were evaluated as “◯”, and over 2000 hours were evaluated as “◎”. Table 2 shows the evaluation results of the peel resistance of each example and comparative example.

また、本実施例および比較例に係る相手材の損耗性を評価する際の条件は、上記と耐剥離性の評価方法と同様な条件下で、転動鋼球13を500時間回転させた。相手材の損耗性については、次のようにして評価した。試験前後の転動鋼球の直径をマイクロメーターで10箇所測定する。そして、試験前の転動鋼球で得られた10箇所の直径の平均値D1とし、試験後の転動鋼球で得られた10箇所の直径のうち最も小さな直径を最小直径D2としたとき、損耗度(%)=((D1−D2)/D1×100、として相手材の損耗性を評価した。ここで、損耗度が、0.01%以上の場合を「×」、0.005%以上・0.01%未満の場合を「△」、0.001%以上・0.005%未満の場合を「◎」、0.001%未満の場合を「◎」と評価した。各実施例および比較例の相手材の損耗性の評価結果を表2に示す。なお、100時間未満で、試験片に剥離が生じたものについては、相手材の摩耗性は確認しなかった。   Moreover, the conditions at the time of evaluating the wear resistance of the counterpart material which concerns on a present Example and a comparative example made the rolling steel ball 13 rotate for 500 hours on the conditions similar to the above and the peeling resistance evaluation method. The wear resistance of the mating material was evaluated as follows. The diameter of the rolling steel balls before and after the test is measured at 10 locations with a micrometer. And when it is set as the average value D1 of the diameter of 10 places obtained with the rolling steel ball before a test, and the smallest diameter among the diameters of 10 places obtained with the rolling steel ball after the test is set to the minimum diameter D2. Degree of wear (%) = ((D1−D2) / D1 × 100), the wear resistance of the counterpart material was evaluated. Here, when the degree of wear was 0.01% or more, “x”, 0.005 % Or less and less than 0.01% were evaluated as “△”, 0.001% or more and less than 0.005% as “◎”, and less than 0.001% as “「 ”. The evaluation results of the wear properties of the counterpart materials of the examples and comparative examples are shown in Table 2. In addition, the wear properties of the counterpart materials were not confirmed for samples in which the test piece peeled off in less than 100 hours.

Figure 2014073944
Figure 2014073944

Figure 2014073944
Figure 2014073944

実施例1〜12によれば、窒化珪素粒子の粒度分布、Mgおよび希土類元素の配合比および焼成工程における圧力を本発明の範囲内で製造することにより、得られた窒化珪素質焼結体である試験片の加工された表面において任意に設定した20×20μmの領域に存在する窒化珪素粒子の長軸長Lの平均値が5.0μm以下、短軸長Sに対する長軸長Lの比(L/S)の平均値が5以下であり、加工された表面において任意に設定した300×300μmの領域において、個々の面積が0.01μm以上の気孔を面積比で0.01〜5%含み、その気孔のうち最も隣接する気孔同士の重心間距離の平均値が5μm以上であり、当該重心間距離の変動係数が1.5以下である窒化珪素質焼結体の窒化珪素焼結体を得ることができた。その結果、その窒化珪素質焼結体の耐剥離性および相手材の損耗性は、いずれも良好であった。 According to Examples 1-12, the silicon nitride-based sintered body obtained by producing the particle size distribution of silicon nitride particles, the mixing ratio of Mg and rare earth elements and the pressure in the firing step within the scope of the present invention. The average value of the major axis length L of silicon nitride particles existing in a 20 × 20 μm region arbitrarily set on the processed surface of a certain test piece is 5.0 μm or less, and the ratio of the major axis length L to the minor axis length S ( L / S) has an average value of 5 or less, and in an area of 300 × 300 μm arbitrarily set on the processed surface, pores each having an area of 0.01 μm 2 or more are 0.01 to 5% by area ratio. And a silicon nitride sintered body of a silicon nitride sintered body in which the average value of the distance between the centers of gravity of the pores adjacent to each other among the pores is 5 μm or more and the variation coefficient of the distance between the centers of gravity is 1.5 or less Could get. As a result, the peel resistance of the silicon nitride sintered body and the wear resistance of the counterpart material were both good.

さらに、実施例1〜12では、いずれもMgおよび希土類元素(RE)の各々を酸化物換算した場合の比(RExOy/MgO)が、0.05〜5の範囲となり、加えて、加工された表面において任意に設定した20×20μmの領域において、長軸長Lが1.0〜4.0μm、かつアスペクト比(L/S)が4以下である窒化珪素粒子を50〜150個含み、加工された表面において任意に設定した300×300μmの領域において、上記気孔の面積比が0.01〜2%であり、上記重心間距離の平均値が5〜425μmであり、当該重心間距離の変動係数が0.5〜1.5となった。   Furthermore, in each of Examples 1 to 12, the ratio (RExOy / MgO) in the case of converting each of Mg and rare earth elements (RE) into oxides was in the range of 0.05 to 5, and was additionally processed. In a 20 × 20 μm region arbitrarily set on the surface, it contains 50 to 150 silicon nitride particles having a major axis length L of 1.0 to 4.0 μm and an aspect ratio (L / S) of 4 or less. In the 300 × 300 μm region arbitrarily set on the formed surface, the area ratio of the pores is 0.01 to 2%, the average value of the distance between the centroids is 5 to 425 μm, and the variation in the distance between the centroids The coefficient was 0.5 to 1.5.

一方で、窒化珪素粒子の粒度分布、Mgおよび希土類元素の配合比および焼成工程における圧力が本発明の範囲外で製造した比較例1〜6では、得られた窒化珪素質焼結体である試験片の窒化珪素粒子の形態(長軸長・アスペクト比)または空孔の面積比・分散状態が悪く、もって耐剥離性および相手材の損耗性は、実施例1〜12に対し低い評価となった。   On the other hand, in Comparative Examples 1 to 6 in which the particle size distribution of silicon nitride particles, the blending ratio of Mg and rare earth elements, and the pressure in the firing process were manufactured outside the scope of the present invention, the test that is the obtained silicon nitride sintered body The shape (major axis length / aspect ratio) of the piece of silicon nitride particles or the area ratio / dispersion state of the pores are poor, and therefore the peeling resistance and the wear resistance of the counterpart material are lower than those of Examples 1-12. It was.

次いで、実施例13〜24について説明する。実施例13〜24では、原料である窒化珪素粉末のFe含有率の水準を変化させた点以外は、上記実施例1〜12と基本的には同一の製造方法で窒化珪素質焼結体を作成し、その窒化珪素粒子およびFe偏析部の発生状態ならびに耐剥離性および相手材の損耗性の評価を行った。   Next, Examples 13 to 24 will be described. In Examples 13 to 24, a silicon nitride-based sintered body was manufactured by the same production method as in Examples 1 to 12 except that the level of Fe content in the silicon nitride powder as a raw material was changed. The silicon nitride particles and the generation state of the Fe segregation part, the peel resistance, and the wear resistance of the counterpart material were evaluated.

各実施例および比較例ともに、表3に示すd10〜d90及び(d90−d10)/d50およびFe含有率の窒化珪素粉末に対し、酸化マグネシウム(MgO)、酸化イットリウム(Y)を各々粉末の状態で表2に示す割合で添加した原料粉末を準備し、上記実施例1〜12と同一条件で原料スラリーを作製した。そして、この原料スラリーを用いて、上記実施例1〜12と同一条件で、直径80mm、厚さ6mmの円板状の成形体を作成し、この成形体を焼結することにより窒化珪素質焼結体からなる試験片を多数作成した。 In each of the examples and comparative examples, magnesium oxide (MgO) and yttrium oxide (Y 2 O 3 ) were respectively added to the silicon nitride powders having d10 to d90 and (d90-d10) / d50 and Fe content shown in Table 3. The raw material powder added in the ratio shown in Table 2 in the state of powder was prepared, and the raw material slurry was produced on the same conditions as the said Examples 1-12. Then, using this raw material slurry, a disk-shaped molded body having a diameter of 80 mm and a thickness of 6 mm is prepared under the same conditions as in Examples 1 to 12, and the molded body is sintered to sinter silicon nitride. A number of test pieces made of ligations were prepared.

上記得られた試験片について、上記実施例1〜12と同様に加工し、その後、その窒化珪素粒子の長軸長Lおよび短軸長Sならびにアスペクト比(L/S)および気孔の分布を求め、さらに当該試験片を用い耐剥離性および相手材の損耗性を評価した。なお、気孔の分布(面積比等)は、表4に示すように、窒化珪素粒子の粒度分布、Mgおよび希土類元素の配合比および焼成工程における圧力が実施例1〜12と同レベルの場合と、ほぼ同様であった。   About the obtained test piece, it processed similarly to the said Examples 1-12, and calculated | required the long axis length L and the short axis length S, the aspect-ratio (L / S), and pore distribution of the silicon nitride particle | grains after that. Furthermore, peeling resistance and wear resistance of the counterpart material were evaluated using the test piece. In addition, as shown in Table 4, the pore size distribution (area ratio, etc.) is the same as that in Examples 1 to 12, in which the particle size distribution of silicon nitride particles, the mixing ratio of Mg and rare earth elements, and the pressure in the firing step are the same. It was almost the same.

ここで、実施例13〜24では、Fe偏析部の分布を確認した。実施例1〜12と同様に加工された試験片の表面において、任意に設定した200×200μmの領域についてEPMAで面分析し、当該面分析の画像に基づきFeの分布を確認した。そして、この面分析の画像に存在するFe偏析部のうち最大径が0.1〜10μmの個数を測定した。次いで、上記範囲の最大径を有するFe偏析部のみを特定し、画像処理によりその重心を求め、最も隣接したFe偏析部同士の重心間距離を算出し、その平均値および変動係数を求めた。その結果を表4に示す。なお、上記200×200μmの領域に一部が含まれるFe偏析部は、確認の対象から除外した。   Here, in Examples 13 to 24, the distribution of the Fe segregation part was confirmed. On the surface of the test piece processed in the same manner as in Examples 1 to 12, a 200 × 200 μm region set arbitrarily was subjected to surface analysis with EPMA, and the distribution of Fe was confirmed based on the image of the surface analysis. And the number whose maximum diameter is 0.1-10 micrometers among the Fe segregation part which exists in the image of this surface analysis was measured. Next, only the Fe segregation part having the maximum diameter in the above range was specified, the center of gravity was determined by image processing, the distance between the center of gravity of the most adjacent Fe segregation parts was calculated, and the average value and coefficient of variation were determined. The results are shown in Table 4. In addition, the Fe segregation part partially contained in the 200 × 200 μm region was excluded from confirmation.

実施例13〜24によれば、Fe成分を3000ppm以下含み、当該Fe成分が偏析したFe偏析部を有する場合であっても、加工された表面において任意に設定した200×200μmの領域において、最大径が0.1〜10μmのFe偏析部を5〜50個含み、Fe偏析部のうち最も隣接する偏析部間の重心間距離の平均値が5μm以上であり、当該重心間距離の変動係数が1.2以下となるよう組織制御された窒化珪素焼結体を得ることができた。その結果、その窒化珪素質焼結体の耐剥離性および相手材の損耗性は、いずれも良好であった。   According to Examples 13 to 24, even when the Fe component is 3000 ppm or less and the Fe component has a segregated Fe part, the maximum is obtained in a 200 × 200 μm region arbitrarily set on the processed surface. 5 to 50 Fe segregating parts having a diameter of 0.1 to 10 μm, the average value of the distance between the centers of gravity between the most adjacent segregating parts among the Fe segregating parts is 5 μm or more, and the coefficient of variation of the distance between the centers of gravity is A silicon nitride sintered body whose structure was controlled to be 1.2 or less could be obtained. As a result, the peel resistance of the silicon nitride sintered body and the wear resistance of the counterpart material were both good.

Figure 2014073944
Figure 2014073944

Figure 2014073944
Figure 2014073944

10 試験装置
11 装置本体
12 試験片
13 転動鋼球
14 ガイド板
15 駆動回転軸
16 保持器
17 潤滑油
DESCRIPTION OF SYMBOLS 10 Test apparatus 11 Apparatus main body 12 Test piece 13 Rolling steel ball 14 Guide plate 15 Drive rotary shaft 16 Cage 17 Lubricating oil

Claims (4)

Mgおよび少なくとも1種の希土類元素を酸化物換算で0.5〜20質量%含む窒化珪素質焼結体の製造方法であって、50%累積粒子径(d50)が0.2〜3μmであり、当該50%累積粒子径(d50)と10%累積粒子径(d10)および90%累積粒子径(d90)との関係である(d90−d10)/d50が0.5〜8の範囲の窒化珪素粉末に、Mgおよび少なくとも1種の希土類元素(RE)を含む焼結助剤を、Mgおよび少なくとも1種の希土類元素(RE)を酸化物換算した場合の比(RExOy/MgO)が0.05〜5の範囲となるよう添加し、混合して原料粉末を形成する原料粉末調整工程と、前記原料粉末で形成した成形体を0.2〜10MPaの圧力下にて窒素雰囲気中で焼成する焼成工程を有する窒化珪素質焼結体の製造方法。   A method for producing a silicon nitride-based sintered body containing 0.5 to 20% by mass of Mg and at least one rare earth element in terms of oxide, wherein the 50% cumulative particle size (d50) is 0.2 to 3 μm. The nitriding is a relationship between the 50% cumulative particle size (d50), the 10% cumulative particle size (d10) and the 90% cumulative particle size (d90) (d90-d10) / d50 in the range of 0.5-8. The ratio (RExOy / MgO) when a sintering aid containing Mg and at least one kind of rare earth element (RE) is converted into an oxide in terms of Mg and at least one kind of rare earth element (RE) is 0. A raw material powder adjusting step of adding and mixing to form a raw material powder in a range of 05 to 5, and a molded body formed of the raw material powder is fired in a nitrogen atmosphere under a pressure of 0.2 to 10 MPa Silicon nitride having a firing step Manufacturing method of the sintered body. 前記焼成工程において、成形体の収縮率が90%となる温度H3に対し、(H3−200℃)〜(H3+200℃)の範囲で成形体を所定時間加熱する温度域を有する請求項1に記載の窒化珪素質焼結体の製造方法。   The said baking process WHEREIN: It has the temperature range which heats a molded object for the predetermined time in the range of (H3-200 degreeC)-(H3 + 200 degreeC) with respect to temperature H3 from which the shrinkage | contraction rate of a molded object becomes 90%. A method for producing a silicon nitride sintered body. 前記焼成工程において、焼結助剤の液相化が開始する温度H1に対し、(H1−300℃)〜(H1−10℃)の範囲で成形体を所定時間加熱する温度域を有する請求項2に記載の窒化珪素質焼結体の製造方法。   The said baking process WHEREIN: It has the temperature range which heats a molded object for the predetermined time in the range of (H1-300 degreeC)-(H1-10 degreeC) with respect to temperature H1 which liquid phase conversion of a sintering adjuvant starts. 3. A method for producing a silicon nitride sintered body according to 2. 前記焼成工程において、焼結助剤の液相化が開始する温度H1に対し、H1〜(H1+200℃)の範囲で成形体を所定時間加熱する温度域を有する請求項3に記載の窒化珪素質焼結体の製造方法。   4. The silicon nitride material according to claim 3, wherein in the firing step, the silicon nitride material has a temperature range in which the molded body is heated for a predetermined time in a range of H1 to (H1 + 200 ° C.) with respect to a temperature H1 at which the liquid phase of the sintering aid starts. A method for producing a sintered body.
JP2012223020A 2012-10-05 2012-10-05 Method for producing silicon nitride sintered body Active JP6037217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223020A JP6037217B2 (en) 2012-10-05 2012-10-05 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223020A JP6037217B2 (en) 2012-10-05 2012-10-05 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JP2014073944A true JP2014073944A (en) 2014-04-24
JP6037217B2 JP6037217B2 (en) 2016-12-07

Family

ID=50748413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223020A Active JP6037217B2 (en) 2012-10-05 2012-10-05 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP6037217B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088842A (en) * 2014-10-29 2016-05-23 京セラ株式会社 Communication equipment exterior component and communication equipment having the same
JP2018197180A (en) * 2017-05-24 2018-12-13 日本電気硝子株式会社 Production method of sintered body and sintered body
WO2021241583A1 (en) * 2020-05-26 2021-12-02 株式会社 東芝 Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111214A1 (en) 2011-06-30 2012-12-31 St Microelectronics Srl POWER REDUCED THICKNESS DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265276A (en) * 2001-03-07 2002-09-18 Hitachi Metals Ltd Silicon nitride powder and silicon nitride sintered compact
WO2008111307A1 (en) * 2007-03-15 2008-09-18 Kabushiki Kaisha Toshiba Silicon nitride sintered body and sliding member using the same
JP2011132126A (en) * 2000-03-16 2011-07-07 Toshiba Corp Wear-resistant member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132126A (en) * 2000-03-16 2011-07-07 Toshiba Corp Wear-resistant member
JP2002265276A (en) * 2001-03-07 2002-09-18 Hitachi Metals Ltd Silicon nitride powder and silicon nitride sintered compact
WO2008111307A1 (en) * 2007-03-15 2008-09-18 Kabushiki Kaisha Toshiba Silicon nitride sintered body and sliding member using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7016002943; 阿部 弘: セラミックサイエンスシリーズ5 エンジニアリングセラミックス , 19870925, p.82-87 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088842A (en) * 2014-10-29 2016-05-23 京セラ株式会社 Communication equipment exterior component and communication equipment having the same
JP2018197180A (en) * 2017-05-24 2018-12-13 日本電気硝子株式会社 Production method of sintered body and sintered body
WO2021241583A1 (en) * 2020-05-26 2021-12-02 株式会社 東芝 Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body
CN115667185A (en) * 2020-05-26 2023-01-31 株式会社东芝 Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JP6037217B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP4795588B2 (en) Wear resistant parts made of silicon nitride
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
JP6400478B2 (en) Wear-resistant material
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
JP5830439B2 (en) Rolling element and manufacturing method thereof
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
JP6037217B2 (en) Method for producing silicon nitride sintered body
JP6037218B2 (en) Silicon nitride sintered body and sliding member using the same
JP5002155B2 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
US20230093291A1 (en) Silicon nitride sintered body, wear-resistant member using the same, and method for producing silicon nitride sintered body
EP2733132A1 (en) Aln substrate and method for producing same
JP5989602B2 (en) Silicon nitride sintered body, manufacturing method thereof, and rolling element for bearing
JP5726021B2 (en) Spherical body and rolling support device using the same
JP6321608B2 (en) Silicon nitride sintered body, method for producing the same, and rolling element for bearing
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2003300780A (en) Wear resistant member made of silicon nitride and production method therefor
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP2015009327A (en) Cutting insert
JP5349525B2 (en) Rolling element
JP4651330B2 (en) Method for producing ceramic sintered body and ceramic sintered body
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2007308368A (en) Method for producing silicon nitride wear resistant member
JP2006036553A (en) Silicon nitride sintered compact and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161020

R150 Certificate of patent or registration of utility model

Ref document number: 6037217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350