JP4820840B2 - Method for producing wear-resistant member made of silicon nitride - Google Patents

Method for producing wear-resistant member made of silicon nitride Download PDF

Info

Publication number
JP4820840B2
JP4820840B2 JP2008116008A JP2008116008A JP4820840B2 JP 4820840 B2 JP4820840 B2 JP 4820840B2 JP 2008116008 A JP2008116008 A JP 2008116008A JP 2008116008 A JP2008116008 A JP 2008116008A JP 4820840 B2 JP4820840 B2 JP 4820840B2
Authority
JP
Japan
Prior art keywords
silicon nitride
wear
sintered body
mass
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008116008A
Other languages
Japanese (ja)
Other versions
JP2008273829A (en
Inventor
通泰 小松
弘喜 藤内
裕 小森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008116008A priority Critical patent/JP4820840B2/en
Publication of JP2008273829A publication Critical patent/JP2008273829A/en
Application granted granted Critical
Publication of JP4820840B2 publication Critical patent/JP4820840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Ceramic Products (AREA)

Description

本発明は窒化けい素を主成分とする耐摩耗性部材の製造方法に係り、特に耐摩耗性部材を転がり軸受け部材とした場合において、優れた耐摩耗性、特に転がり寿命特性を発揮でき、耐久性に優れた転がり軸受け部材として好適な窒化けい素製耐摩耗製部材の製造方法に関する。   The present invention relates to a method for manufacturing a wear-resistant member containing silicon nitride as a main component, and in particular, when the wear-resistant member is a rolling bearing member, can exhibit excellent wear resistance, in particular, rolling life characteristics, and durability. The present invention relates to a method for producing a silicon nitride wear-resistant member suitable as a rolling bearing member having excellent properties.

耐摩耗性部材は、例えば軸受部材、圧延用などの各種ロール材、コンプレッサ用ベーン、ガスタービン翼、カムローラなどのエンジン部品など、各種の分野で使用されている。このような耐摩耗性部材には、従来からセラミックス材料が用いられている。特に、窒化けい素焼結体は機械的強度や耐摩耗性に優れることから、種々の分野で幅広く使用されている。   Wear-resistant members are used in various fields such as bearing members, various roll materials for rolling, engine parts such as compressor vanes, gas turbine blades, cam rollers, and the like. Conventionally, ceramic materials have been used for such wear-resistant members. In particular, a sintered silicon nitride is excellent in mechanical strength and wear resistance, and thus is widely used in various fields.

従来の窒化けい素焼結体の焼結組成としては窒化けい素−希土類酸化物−酸化アルミニウム系、窒化けい素−希土類酸化物−酸化アルミニウム−酸化チタニウム系等が知られている。上記焼結組成における希土類酸化物等の焼結助剤は、焼結中にSi−希土類元素−Al−O−N等からなる粒界相(液相)を生成させ、焼結体を緻密化し高強度化をするために添加されている(例えば、特許文献1参照)。   Known sintered compositions of silicon nitride sintered bodies include silicon nitride-rare earth oxide-aluminum oxide, silicon nitride-rare earth oxide-aluminum oxide-titanium oxide, and the like. Sintering aids such as rare earth oxides in the above sintered composition generate grain boundary phases (liquid phases) composed of Si-rare earth elements-Al-O-N, etc. during sintering, and densify the sintered body. It is added to increase the strength (see, for example, Patent Document 1).

従来の窒化けい素焼結体は窒化けい素原料粉末に上記のような焼結助剤を添加物として加えて成形し、得られた成形体を焼成炉を使用して1650〜1900℃程度の高温で所定時間焼成した後に炉を自然冷却する方法で量産されている。一方で徐冷する方法も採用されている(例えば、特許文献2参照)。   A conventional silicon nitride sintered body is formed by adding the above sintering aid as an additive to silicon nitride raw material powder, and the resulting molded body is heated to a high temperature of about 1650 to 1900 ° C. using a firing furnace. Mass-produced by the method of naturally cooling the furnace after firing for a predetermined time. On the other hand, the method of slow cooling is also employ | adopted (for example, refer patent document 2).

上述した窒化けい素焼結体を用いた耐摩耗性部材の中でも、軸受部材は一般的に認知されてきている。このような軸受は種々の用途に用いられており、重要保安部品としての使用も検討されはじめている。このため、窒化けい素焼結体からなる軸受部材、すなわちボールやコロなどの転動体に対しては信頼性をより一層高めることが求められている。   Among the wear-resistant members using the silicon nitride sintered body described above, a bearing member has been generally recognized. Such bearings are used in various applications, and their use as important safety parts is also being studied. For this reason, it is required to further improve the reliability of bearing members made of a silicon nitride sintered body, that is, rolling elements such as balls and rollers.

例えば、転動体表面のキズや亀裂などの欠陥は、軸受自体はもとより、それを用いたシステム全体の破損などに繋がることから、そのような欠陥はできる限り排除するような工程がとられている。同様に、転動体の表面近傍に存在するポアなども信頼性の低下原因となるために、ボールやコロなどの最終形状に加工する際に除去している。
特開2001−328869号公報 特開平11−292632号公報
For example, defects such as scratches and cracks on the surface of the rolling element lead to damage of the entire system using the bearing as well as the bearing itself. Therefore, a process is taken to eliminate such defects as much as possible. . Similarly, pores or the like existing in the vicinity of the surface of the rolling element cause a decrease in reliability, and are therefore removed when processing into a final shape such as a ball or a roller.
JP 2001-328869 A JP-A-11-292632

しかしながら、上記従来方法によって製造された窒化けい素焼結体では、曲げ強度や破壊靭性値、耐摩耗性が向上しているものの充分ではなく、特に優れた摺動特性を必要とする転がり軸受け部材としての耐久性については不十分であり、さらなる改良が要請されている。   However, the silicon nitride sintered body produced by the above conventional method has improved bending strength, fracture toughness, and wear resistance, but is not sufficient, and as a rolling bearing member that requires particularly excellent sliding characteristics. As for the durability of the resin, it is insufficient, and further improvement is demanded.

近年、精密機器用部材としてのセラミックス材料の需要が増加しており、このような用途においては、高硬度で軽量で耐摩耗性が優れるというセラミックスの特長が、高耐食性と低熱膨張性という性質とともに利用されている。特に、高硬度と耐摩耗性との観点から、軸受などの摺動部を構成する耐摩耗性部材としての用途も急速に拡大している。   In recent years, the demand for ceramic materials as components for precision equipment has increased. In such applications, the characteristics of ceramics, which are high hardness, light weight, and excellent wear resistance, are combined with the properties of high corrosion resistance and low thermal expansion. It's being used. In particular, from the viewpoint of high hardness and wear resistance, the use as a wear resistant member constituting a sliding portion such as a bearing is rapidly expanding.

しかしながら、軸受などの転動ボールをセラミックス製耐摩耗性部材で構成した場合、転動ボールが高い応力レベルで繰り返し接触しながら転動したときに、耐摩耗性部材の転がり寿命が未だ十分ではなく、短期間の運転により耐摩耗性部材の表面が剥離したり、割れを生じてしまうため、軸受を装着した機器に振動を生じたり、損傷を引き起こす事故が発生し易く、いずれにしても機器構成部品材料としての耐久性および信頼性が低いという問題点があった。   However, when a rolling ball such as a bearing is made of a ceramic wear-resistant member, the rolling life of the wear-resistant member is still not sufficient when the rolling ball rolls while repeatedly contacting at a high stress level. Because the surface of the wear-resistant member peels off or cracks due to short-term operation, it is easy to cause an accident that causes vibration or damage to the device equipped with the bearing. There was a problem that durability and reliability as a component material were low.

また、従来の製造方法に基づく窒化けい素焼結体は、焼結後の段階で表面のみならず、比較的内部にまで達するようなキズや亀裂を有しており、これらが不良原因となったり、また製品不良にはならなくても、亀裂などを除去して信頼性の高い面を得るための製造工数(例えば亀裂が実質的になくなるところまで表面研磨を行う工程などに要する工数)が増大し、これにより転動体の製造コストの上昇を招いている。   In addition, the silicon nitride sintered body based on the conventional manufacturing method has not only the surface but also scratches and cracks that reach the inside relatively at the post-sintering stage. In addition, even if the product does not become defective, the number of manufacturing man-hours (for example, the number of man-hours required for surface polishing until the cracks are substantially eliminated) to remove the cracks and obtain a highly reliable surface increases. This increases the manufacturing cost of the rolling elements.

すなわち、窒化けい素成形体を焼結する際には、窒化けい素粉末(原料粉末)中に含まれる不純物酸素や焼結助剤に含まれる酸素の一部が蒸発してガス成分が発生する。このガス成分は焼結時に窒化けい素成形体の収縮開始時期とほぼ同時に発生する。通常の焼結法では成形体の収縮開始に伴って焼結体の表面部から緻密化がはじまるため、焼結体内部のガス成分を除去することが困難となる。   That is, when sintering a silicon nitride molded body, impurity oxygen contained in the silicon nitride powder (raw material powder) and part of oxygen contained in the sintering aid are evaporated to generate a gas component. . This gas component is generated almost simultaneously with the start of shrinkage of the silicon nitride molded body during sintering. In the normal sintering method, since densification starts from the surface portion of the sintered body as the compact starts to shrink, it is difficult to remove the gas components inside the sintered body.

上述したようなガス成分が焼結体中に残ると、窒化けい素焼結体中にポアが発生したり、また酸素がSiと結合してSiOとして残存することになる。従来の製造方法ではガス成分を十分に除去することができないため、ガス成分に起因するポアやSiOが比較的広範囲に残存し、これらによって内部に向けて伸びる亀裂などが発生する。このような亀裂を除去するためには、焼結体の表面をある程度の深さまで除去する必要があり、これにより不良発生や製造コストの上昇などを招いている。 When the gas components as described above remain in the sintered body, pores are generated in the silicon nitride sintered body, or oxygen is combined with Si to remain as SiO 2 . Since the gas component cannot be sufficiently removed by the conventional manufacturing method, pores and SiO 2 resulting from the gas component remain in a relatively wide range, thereby generating cracks extending toward the inside. In order to remove such cracks, it is necessary to remove the surface of the sintered body to a certain depth, which leads to the occurrence of defects and an increase in manufacturing costs.

また、焼結後に例えばHIP処理を施し、焼結助剤により形成される液相でポアを埋めることによって、窒化けい素焼結体を高密度化させることはできるものの、ポアが存在していた部分には液相成分の偏析が生じることになる。液相成分は窒化けい素結晶粒より強度や硬度が低いため、そのような液相成分の偏析は窒化けい素焼結体を耐摩耗性部材として使用した際に破壊の起点となってしまう。従って、このような偏析物も除去する必要がある。   In addition, although the silicon nitride sintered body can be densified by performing, for example, HIP treatment after sintering and filling the pores with a liquid phase formed by a sintering aid, a portion where pores existed In this case, segregation of the liquid phase component occurs. Since the liquid phase component is lower in strength and hardness than the silicon nitride crystal grains, such segregation of the liquid phase component becomes a starting point of breakage when the silicon nitride sintered body is used as a wear resistant member. Therefore, it is necessary to remove such segregated materials.

いずれにしても、従来の窒化けい素焼結体の製造方法では、ガス成分に起因するポア、亀裂、液相成分の偏析などが、焼結体のある程度の深さまで分布することが避けられないという問題があった。これらの欠陥は不良原因となったり、また転動体の信頼性を高めることが可能な表面を得る際に、焼結体表面の加工しろ(加工により除去する幅)を増大させる原因となっており、これらが転動体などの耐摩耗性部材の製造コストを増大させている。   In any case, in the conventional method of manufacturing a silicon nitride sintered body, it is inevitable that pores, cracks, segregation of liquid phase components, etc. caused by gas components are distributed to a certain depth of the sintered body. There was a problem. These defects are the cause of defects and the cause of increasing the machining margin (width to be removed by machining) of the sintered body surface when obtaining a surface that can improve the reliability of the rolling elements. These increase the manufacturing cost of wear-resistant members such as rolling elements.

本発明は上記のような課題要請に対処するためになされたものであり、高強度、高靭性特性に加えて、特に摺動特性が優れた耐摩耗性部材およびその製造方法を提供することを目的とする。   The present invention has been made in order to cope with the above-described demand for problems, and provides a wear-resistant member having excellent sliding characteristics in addition to high strength and high toughness characteristics, and a method for producing the same. Objective.

特に、不良発生や製造コストの増大原因となるガス成分の除去を容易にし、これにより例えば耐摩耗性部材に求められる各種特性に加えて、製造コストの低減を図ることを可能にした耐摩耗性部材の製造方法を提供することを目的としている。   In particular, it is easy to remove the gas components that cause defects and increase the manufacturing cost, which makes it possible to reduce the manufacturing cost in addition to various characteristics required for wear-resistant members, for example. It aims at providing the manufacturing method of a member.

本発明者は上記目的を達成するため、従来の窒化けい素焼結体を製造する際に、一般的に使用されていた窒化けい素原料粉末の種類、焼結助剤や添加物の種類および添加量、焼成条件を種々変えて、それらの要素が焼結体の特性に及ぼす影響を実験により確認した。   In order to achieve the above-mentioned object, the inventor of the present invention, when producing a conventional silicon nitride sintered body, the types of silicon nitride raw material powders, the types of sintering aids and additives, and the additions generally used. The effect of these elements on the properties of the sintered body was confirmed by experiments by varying the amount and firing conditions.

その結果、微細な窒化けい素原料粉末に希土類酸化物、アルミナ、さらに必要に応じてマグネシア、窒化アルミニウム、酸化チタンなどを所定量ずつ添加した原料混合体を成形脱脂し、得られた成形体を焼結する途中において所定の条件で保持操作を実施することにより脱酸素処理(酸素濃度の低減化)を施した後に、本焼結を実施したとき、または焼結した後、所定の条件で熱間静水圧プレス(HIP)処理したときに、高強度および高靭性特性に加えて、特に摺動特性の転がり寿命が優れた窒化けい素焼結体製耐摩耗性部材が得られることが判明した。   As a result, a raw material mixture obtained by adding a predetermined amount of rare earth oxide, alumina and, if necessary, magnesia, aluminum nitride, titanium oxide, etc., to fine silicon nitride raw material powder is molded and degreased, and the resulting molded body is obtained. After performing deoxygenation treatment (reduction of oxygen concentration) by performing a holding operation under predetermined conditions during sintering, heat is applied under predetermined conditions after performing main sintering or after sintering. It has been found that a wear resistant member made of a silicon nitride sintered body having an excellent rolling life of sliding characteristics in addition to high strength and high toughness characteristics can be obtained when subjected to an isostatic pressing (HIP).

また、前記焼結温度から、上記希土類元素により焼結時に形成された液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷したときに焼結体組織中の気孔径をさらに小さくできることが判明した。   In addition, when the cooling rate of the sintered body from the sintering temperature to the temperature at which the liquid phase formed by sintering with the rare earth element solidifies is gradually reduced to 100 ° C./hour or less, the sintered body structure It has been found that the pore diameter of can be further reduced.

さらに、窒化けい素の最終的な織密化焼結が生じる温度(1600〜1850℃)に到達する以前に、ある程度の温度まで真空中で昇温し、さらにそのような温度で所定時間保持することによって、焼結体中の酸素やSiOなどのガス成分を外部に向けて移動ならびに排出することができ、最終的に外周部の酸素濃度、すなわちポアや亀裂などの欠陥が内部にまで侵入する原因となるガス成分濃度を低下させることが可能であることを見出した。 Furthermore, before reaching the temperature at which final densification and sintering of silicon nitride occurs (1600 to 1850 ° C.), the temperature is raised to a certain temperature in a vacuum and further maintained at such a temperature for a predetermined time. As a result, gas components such as oxygen and SiO 2 in the sintered body can be moved and discharged to the outside, and finally the oxygen concentration in the outer periphery, that is, defects such as pores and cracks penetrate into the inside. It has been found that the gas component concentration that causes the failure can be reduced.

本発明は上記知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

すなわち、本発明に係る耐摩耗性部材の製造方法は、酸素を1.5質量%以下、α相型窒化けい素を75〜97質量%含有し、平均粒径が1.0μm以下の窒化けい素粉末に、希土類元素を酸化物に換算して1〜10質量%と、アルミニウムおよびマグネシウムの少なくとも一方を酸化物に換算して0.2〜5質量%と、窒化アルミニウムを5質量%以下と、Ti,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して0.2〜5質量%とを添加した原料混合体を成形して成形体を調製し、得られた成形体を脱脂後、焼結する途中、0.01Pa以下の真空中で温度1250〜1600℃の温度または窒素雰囲気中で温度1500℃〜1600℃で0.5〜10時間保持した後、温度1650℃〜1850℃で本焼結し、上記焼結温度から、前記希土類元素により焼結時に形成された液相が凝固するまでに至る焼結体の冷却速度を毎時100℃以下にして徐冷することにより、全酸素が4.5質量%以下、気孔率が0.5%以下、粒界相中の最大気孔径が0.2μm以下である窒化けい素焼結体から成る耐摩耗性部材を調製することを特徴とする。 That is, the method for producing a wear-resistant member according to the present invention includes silicon nitride containing oxygen of 1.5% by mass or less, α-phase type silicon nitride of 75 to 97% by mass, and an average particle size of 1.0 μm or less. In the raw powder, the rare earth element is converted to an oxide of 1 to 10% by mass, at least one of aluminum and magnesium is converted to an oxide of 0.2 to 5% by mass, and the aluminum nitride is 5% by mass or less. , Ti, Hf, Zr, W, Mo, Ta, Nb, Cr, at least one selected from the group consisting of oxides, and forming a raw material mixture added with 0.2 to 5 mass% in terms of oxide In the middle of sintering after degreasing and then sintering the obtained molded body, the temperature was 1250 ° C. to 1600 ° C. in a vacuum of 0.01 Pa or less or a temperature of 1500 ° C. to 1600 ° C. in a nitrogen atmosphere . after holding for 5 to 10 hours, a temperature of 165 Sintering is performed at a cooling rate of 100 ° C. or less per hour from the above sintering temperature until the liquid phase formed by sintering with the rare earth element solidifies. Thus, a wear-resistant member made of a silicon nitride sintered body having a total oxygen of 4.5% by mass or less, a porosity of 0.5% or less, and a maximum pore diameter in a grain boundary phase of 0.2 μm or less is prepared. It is characterized by doing.

また、上記耐摩耗性部材において、前記窒化けい素焼結体の三点曲げ強度が900MPa以上であり、破壊靭性値が6.5MPa・m1/2以上であり、この窒化けい素焼結体からなる耐摩耗性部材の上面に設定した直径40mmの軌道上に直径が9.525mmである3個のSUJ2製転動鋼球を配置し、この転動鋼球に400Kgの荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素製耐摩耗性部材の表面が剥離するまでの回転数で定義される転がり寿命が1×10回以上である耐摩耗性部材とすることも可能である。 Further, in the wear-resistant member, the silicon nitride sintered body has a three-point bending strength of 900 MPa or more and a fracture toughness value of 6.5 MPa · m 1/2 or more, and is composed of this silicon nitride sintered body. Three SUJ2 rolling steel balls having a diameter of 9.525 mm are arranged on a track having a diameter of 40 mm set on the upper surface of the wear-resistant member, and rotated with a load of 400 kg applied to the rolling steel balls. A wear resistant member having a rolling life defined by the number of revolutions until the surface of the silicon nitride wear resistant member peels when it is rotated under a condition of several 1200 rpm is 1 × 10 8 times or more; It is also possible to do.

さらに、前記窒化けい素焼結体の圧砕強度が200MPa以上であり、破壊靭性値が6.5MPa・m1/2以上であり、この窒化けい素焼結体からなる耐摩耗性部材から直径が9.525mmである3個の転動ボールを調製する一方、SUJ2製鋼板の上面に設定した直径40mmの軌道上に上記3個の転動ボールを配置し、この転動ボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボールの表面が剥離するまでの時間で定義される転がり疲労寿命が400時間以上である耐摩耗性部材とすることも可能である。 Furthermore, the crushing strength of the silicon nitride sintered body is 200 MPa or more, the fracture toughness value is 6.5 MPa · m 1/2 or more, and the diameter of the wear-resistant member made of this silicon nitride sintered body is 9. While preparing three rolling balls of 525 mm, the above three rolling balls are arranged on a 40 mm diameter track set on the upper surface of the SUJ2 steel plate, and the maximum contact of 5.9 GPa with the rolling balls Rolling fatigue life defined by the time until the surface of the rolling ball made of a silicon nitride sintered body is peeled when rotating under the condition of a rotational speed of 1200 rpm with a load applied so that stress acts. It is also possible to use a wear-resistant member having a length of 400 hours or longer.

なお、耐摩耗性部材がボール形状である場合の耐摩耗性(転がり疲労寿命)の測定方法として、直径9.525mm(=3/8インチ)のボールを基準値として挙げているが、本発明はこのサイズに限定されるものではない。例えば、ボールのサイズが直径9.525mm(=3/8インチ)と異なる場合は、最大接触応力をボールのサイズに合せて変更して測定するものとする。この場合、最大接触応力の変更については、単位Paが1Pa=1.02×10−5kgf/cmであることから、測定対象のボールのサイズに合せて比例計算して算出するものとする。また、本発明の耐摩耗性部材はボールのサイズが異なったとしても転がり疲労寿命が400時間以上得られるものである。 As a method for measuring wear resistance (rolling fatigue life) when the wear-resistant member has a ball shape, a ball having a diameter of 9.525 mm (= 3/8 inch) is cited as a reference value. Is not limited to this size. For example, when the ball size is different from 9.525 mm (= 3/8 inch) in diameter, the maximum contact stress is changed according to the ball size and measured. In this case, since the unit Pa is 1 Pa = 1.02 × 10 −5 kgf / cm 2 , the change in the maximum contact stress is calculated by proportional calculation according to the size of the ball to be measured. . In addition, the wear resistant member of the present invention has a rolling fatigue life of 400 hours or more even if the ball size is different.

また、本発明で得られる耐摩耗性部材において、前記窒化けい素焼結体がアルミニウム,マグネシウムの少なくとも一方を酸化物に換算して5質量%以下含有することが好ましい。また、前記窒化けい素焼結体が窒化アルミニウムを5質量%以下含有することが好ましい。さらに前記窒化けい素焼結体がTi,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有することが好ましい。   In the wear-resistant member obtained in the present invention, the silicon nitride sintered body preferably contains 5% by mass or less of at least one of aluminum and magnesium in terms of oxide. The silicon nitride sintered body preferably contains 5% by mass or less of aluminum nitride. Furthermore, it is preferable that the silicon nitride sintered body contains at least one selected from the group consisting of Ti, Hf, Zr, W, Mo, Ta, Nb, and Cr in an amount of 5% by mass or less in terms of oxide.

さらに、前記窒化けい素焼結体からなる耐摩耗性部材が転がり軸受け部材であるときに、特に優れた摺動特性および耐久性を発揮させることが可能である。   Further, when the wear-resistant member made of the silicon nitride sintered body is a rolling bearing member, it is possible to exhibit particularly excellent sliding characteristics and durability.

上記本発明で得られる耐摩耗性部材において、前記窒化けい素焼結体が窒化けい素を主成分とし、微量の酸素を含有する焼結体であって、前記酸素濃度が中心部に比べて0.2質量%以上2質量%以下の範囲で低減された低酸素濃度の外周部を有することが好ましい。また、窒化けい素焼結体が、ビッカース硬さでHv1200以上の硬度を有することが好ましい。   In the wear-resistant member obtained in the present invention, the silicon nitride sintered body is a sintered body containing silicon nitride as a main component and containing a small amount of oxygen, and the oxygen concentration is 0 compared to the central portion. It is preferable to have an outer peripheral portion with a low oxygen concentration reduced in a range of 2% by mass or more and 2% by mass or less. The silicon nitride sintered body preferably has a Vickers hardness of Hv 1200 or higher.

このように、窒化けい素焼結体の外周部の酸素濃度を低減することによって、ポアや亀裂などの欠陥の侵入深さが浅くなり、これら欠陥に起因する不良発生を抑制することができると共に、表面加工に要するコストや手間を削減することが可能となる。これらによって、窒化けい素焼結体から転動体などの耐摩耗性部材を作製する際の製造コストを低減することができる。   In this way, by reducing the oxygen concentration in the outer peripheral portion of the silicon nitride sintered body, the penetration depth of defects such as pores and cracks becomes shallow, and the occurrence of defects due to these defects can be suppressed, Costs and labor required for surface processing can be reduced. By these, the manufacturing cost at the time of producing wear-resistant members, such as a rolling element, from a silicon nitride sintered compact can be reduced.

本発明で使用する窒化けい素焼結体の外周部は中心部に対する焼結助剤中の金属成分の濃度差が0.2質量%未満であることが好ましい。このように、本発明で使用する窒化けい素焼結体はあくまでも不要な酸素の除去を実現したものであり、他の金属成分の分布については従来の焼結体と同等であるため、窒化けい素焼結体としての本来の特性(強度や摺動特性など)は維持されている。   In the outer peripheral portion of the silicon nitride sintered body used in the present invention, the concentration difference of the metal component in the sintering aid relative to the central portion is preferably less than 0.2% by mass. As described above, the silicon nitride sintered body used in the present invention has realized removal of unnecessary oxygen to the last, and the distribution of other metal components is the same as that of the conventional sintered body. The original properties (strength, sliding properties, etc.) as a knot are maintained.

本発明で使用する窒化けい素焼結体においては、外周部と中心部との酸素濃度の差が0.2質量%以上2質量%以下であれば上述したような作用・効果を得ることができるものの、焼結体全体としての酸素濃度があまり高すぎると、窒化けい素焼結体本来の特性が損なわれるおそれがあるため、焼結体全体としての酸素濃度は6質量%以下とすることが好ましい。特に4.5質量%以下がさらに好ましい。   In the silicon nitride sintered body used in the present invention, if the difference in oxygen concentration between the outer peripheral portion and the central portion is 0.2% by mass or more and 2% by mass or less, the above-described operations and effects can be obtained. However, if the oxygen concentration of the entire sintered body is too high, the original characteristics of the silicon nitride sintered body may be impaired. Therefore, the oxygen concentration of the entire sintered body is preferably 6% by mass or less. . Particularly preferred is 4.5% by mass or less.

また、上記耐摩耗性部材において、前記中心部に対する前記酸素濃度の差が1質量%以下の中間部を形成することが好ましい。このような中間部を設けることにより、酸素濃度の傾斜をよりなだらかにでき、部材の不良発生率や表面加工に要するコストを一層抑制することができる。   In the wear-resistant member, it is preferable to form an intermediate portion having a difference in oxygen concentration with respect to the central portion of 1% by mass or less. By providing such an intermediate portion, the gradient of the oxygen concentration can be made gentler, and the defect occurrence rate of members and the cost required for surface processing can be further suppressed.

本発明の耐摩耗性部材の製造方法は、窒化けい素粉末を主成分とする原料組成物を所望の形状に成形する工程と、前記成形工程により得られた成形体を、0.01Pa以下の真空中にて1200〜1500℃の範囲の温度まで昇温すると共に、前記1200〜1500℃の範囲の温度で1〜10時間保持する工程と、前記真空処理後の成形体を窒素雰囲気中にて1600〜1800℃の範囲の温度で焼結する工程とを有することが好ましい。   The method for producing a wear-resistant member of the present invention comprises a step of molding a raw material composition mainly composed of silicon nitride powder into a desired shape, and a molded body obtained by the molding step, having a pressure of 0.01 Pa or less. The temperature is raised to a temperature in the range of 1200 to 1500 ° C. in a vacuum, and the step of holding the temperature in the range of 1200 to 1500 ° C. for 1 to 10 hours, and the molded body after the vacuum treatment in a nitrogen atmosphere And sintering at a temperature in the range of 1600 to 1800 ° C.

本発明の耐摩耗性部材は、上記のように調製した窒化けい素焼結体から成ることを特徴としている。本発明の耐摩耗性部材は、ベアリングボールのような軸受部材(転動体)に対して有効であり、特に、直径が9mm以上というような比較的大きいベアリングボールに対して効果的である。   The wear resistant member of the present invention is characterized by comprising a silicon nitride sintered body prepared as described above. The wear-resistant member of the present invention is effective for a bearing member (rolling element) such as a bearing ball, and is particularly effective for a relatively large bearing ball having a diameter of 9 mm or more.

本発明の好ましい態様として、窒化けい素焼結体が、窒化けい素を主成分とし、かつ微量の酸素を含有する焼結体であって、焼結体の中央部と外周部との間に0.2質量%以上2質量%以下の酸素濃度差が存在するものである。すなわち、外周部は中央部に比べて0.2質量%以上2質量%以下の範囲で酸素濃度が低減された、低酸素濃度領域とされている。   As a preferred embodiment of the present invention, the silicon nitride sintered body is a sintered body containing silicon nitride as a main component and containing a small amount of oxygen, and 0 between the center portion and the outer peripheral portion of the sintered body. There is an oxygen concentration difference of 2% by mass or more and 2% by mass or less. That is, the outer peripheral portion is a low oxygen concentration region in which the oxygen concentration is reduced in the range of 0.2% by mass or more and 2% by mass or less compared to the central portion.

図2は本発明で得られる窒化けい素焼結体における酸素濃度が異なる各領域を模式的に示す図である。なお、図2はボール形状を有する窒化けい素焼結体2を一例として示したものであり、本発明はこれに限定されるものではない。ここでは、窒化けい素焼結体の中心Oから半径Rの5%までの範囲を中心部Aとする。さらに、外周部Bは窒化けい素焼結体の外表面Sから半径Rの1%までの範囲、言い換えると中心Oから半径Rの99%から100%までの範囲である。なお、板材などについては厚さを基準とした同様な領域を示すものとする。   FIG. 2 is a view schematically showing regions having different oxygen concentrations in the silicon nitride sintered body obtained by the present invention. FIG. 2 shows a silicon nitride sintered body 2 having a ball shape as an example, and the present invention is not limited to this. Here, the range from the center O of the silicon nitride sintered body to 5% of the radius R is defined as the center portion A. Further, the outer peripheral portion B is in the range from the outer surface S of the silicon nitride sintered body to 1% of the radius R, in other words, from 99% to 100% of the radius R from the center O. In addition, about board | plate materials etc., the same area | region shall be shown on the basis of thickness.

上記した窒化けい素焼結体の中心部Aの酸素濃度をC(質量%)、外周部Bの酸素濃度をC(質量%)としたとき、外周部Bの酸素濃度Cは(C−2)〜(C−0.2)の範囲、すなわち(C−2)≦C≦(C−0.2)<Cを満足するものである。このような中心部Aと外周部Bの酸素濃度差(0.2質量%以上の濃度差)は、後に詳述する本発明の製造方法、すなわち窒化けい素の最終的な緻密化焼結が生じる温度に到達する以前に、ある程度の温度まで真空中で昇温すると共に、そのような温度で所定時間保持する工程を実施し、焼結体中の酸素やSiOなどのガス成分を外部に向けて移動させ、さらには焼結体外に排出することにより達成されたものである。 When the oxygen concentration in the central portion A of the silicon nitride sintered body is C 1 (mass%) and the oxygen concentration in the outer peripheral portion B is C 2 (mass%), the oxygen concentration C 2 in the outer peripheral portion B is (C 1 -2) range of ~ (C 1 -0.2), i.e. (C 1 -2) ≦ C 2 ≦ (C 1 -0.2) < is to satisfy C 1. The oxygen concentration difference (concentration difference of 0.2% by mass or more) between the central portion A and the outer peripheral portion B is caused by the manufacturing method of the present invention described later in detail, that is, final densification and sintering of silicon nitride. Before reaching the generated temperature, the temperature is raised to a certain temperature in vacuum and a process of holding the temperature at such a temperature for a predetermined time is carried out, so that gas components such as oxygen and SiO 2 in the sintered body are exposed to the outside. This is achieved by moving the substrate toward the outside and further discharging it out of the sintered body.

窒化けい素焼結体の外周部Bに低酸素濃度領域を形成するということは、外周部Bの残存酸素量やそれがSiと結合して生成されるSiO量が少ないことを意味する。従って、酸素やSiOなどのガス成分に起因するポアや亀裂などの欠陥の侵入深さが浅くなり、これら欠陥に起因する不良発生を抑制することができると共に、表面加工に要するコストや手間を削減することができる。すなわち、窒化けい素焼結体およびそれを用いた耐摩耗性部材の製造コストを低減することが可能となる。 The formation of the low oxygen concentration region in the outer peripheral portion B of the silicon nitride sintered body means that the amount of residual oxygen in the outer peripheral portion B and the amount of SiO 2 produced by combining it with Si are small. Therefore, the depth of penetration of defects such as pores and cracks caused by gas components such as oxygen and SiO 2 becomes shallow, and the occurrence of defects due to these defects can be suppressed, and the cost and labor required for surface processing can be reduced. Can be reduced. That is, it becomes possible to reduce the manufacturing cost of the silicon nitride sintered body and the wear resistant member using the same.

ここで、中心部Aの酸素濃度Cと外周部Bの酸素濃度Cの差が0.2質量%未満であると、上述した低酸素濃度領域としての効果を外周部Bに付与することができない。一方、酸素濃度差が2質量%を超えるということは、外周部Bの酸素濃度が極端に減少していることを意味し、外周部Bの織密化が十分に進行しないおそれがあることから、逆に外周部Bの強度や耐摩耗性などが低下してしまう。中心部Aと外周部Bの酸素濃度差は0.5〜1.5質量%の範囲とすることがより好ましい。 Here, when the difference in the oxygen concentration C 2 of the oxygen concentration C 1 and the outer peripheral portion B of the central portion A is less than 0.2 wt%, to confer the effect of the low oxygen concentration region described above on the outer peripheral portion B I can't. On the other hand, the oxygen concentration difference exceeding 2% by mass means that the oxygen concentration in the outer peripheral portion B is extremely reduced, and the densification of the outer peripheral portion B may not proceed sufficiently. On the contrary, the strength and wear resistance of the outer peripheral portion B are lowered. The difference in oxygen concentration between the central portion A and the outer peripheral portion B is more preferably in the range of 0.5 to 1.5 mass%.

さらに、本発明で得られる窒化けい素焼結体において、中心部Aと外周部Bの間の中間部(図1に示す窒化けい素焼結体では領域C)の酸素濃度Cは、中心部Aの酸素濃度Cに対して1質量%以下の濃度差を有している。このように、本発明で使用する窒化けい素焼結体は、中心部Aから外周部Bに向けて酸素濃度が徐々に減少する、すなわち濃度傾斜している。これによって、窒化けい素焼結体の不良発生率や表面加工に要するコストや手間をより一層抑制することができる。 Furthermore, in the silicon nitride sintered body obtained by the present invention, the oxygen concentration C 3 in the intermediate portion (region C in the silicon nitride sintered body shown in FIG. 1) between the central portion A and the outer peripheral portion B is the central portion A. The oxygen concentration C 1 has a concentration difference of 1% by mass or less. As described above, in the silicon nitride sintered body used in the present invention, the oxygen concentration gradually decreases from the central portion A toward the outer peripheral portion B, that is, the concentration is inclined. As a result, the defect occurrence rate of the silicon nitride sintered body and the cost and labor required for surface processing can be further suppressed.

本発明で得られる窒化けい素焼結体において、具体的な酸素濃度は焼結体全体の平均値として6質量%以下であることが好ましい。窒化けい素焼結体中の全酸素濃度(全酸素量)が6質量%を超えると、窒化けい素焼結体本来の特性が損なわれるおそれが大きい。また、外周部Bの具体的な酸素濃度は3〜4質量%の範囲であることが、酸素やSiOなどのガス成分に起因するポアや亀裂などの欠陥の発生を抑制する上で好ましい。また、欠陥の侵入深さを低減する上でも、上記した全酸素濃度範囲は有効である。上記酸素濃度は4.5質量%以下であることが特に好ましい。 In the silicon nitride sintered body obtained in the present invention, the specific oxygen concentration is preferably 6% by mass or less as an average value of the entire sintered body. When the total oxygen concentration (total oxygen amount) in the silicon nitride sintered body exceeds 6% by mass, the original characteristics of the silicon nitride sintered body are likely to be impaired. In addition, the specific oxygen concentration in the outer peripheral portion B is preferably in the range of 3 to 4% by mass in order to suppress the occurrence of defects such as pores and cracks due to gas components such as oxygen and SiO 2 . Also, the total oxygen concentration range described above is effective in reducing the depth of defect penetration. The oxygen concentration is particularly preferably 4.5% by mass or less.

なお、上述した中心部A、中間部Cおよび外周部Bの各酸素濃度は、各領域から任意の測定点を3点選び出し、これら各測定点の酸素濃度をEPMAなどで測定し、これら測定値を平均した値を示すものとする。焼結体中の全酸素濃度(全酸素量)は不活性ガス融解−赤外線吸収法に準ずる酸素分析計により求めた値とする。また、本発明における焼結体の全酸素量とは、窒化けい素焼結体を構成している酸素の全量を質量%で示したものである。従って、酸素が窒化けい素焼結体中に金属酸化物や酸窒化物などとして存在している場合は、その金属酸化物(および酸窒化物)量ではなく、金属酸化物(および酸窒化物)の酸素量に着目したものである。   In addition, as for each oxygen concentration of the center part A, the intermediate part C, and the outer peripheral part B, three arbitrary measurement points are selected from each region, and the oxygen concentration at each measurement point is measured with EPMA or the like, and these measured values are measured. The average value is shown. The total oxygen concentration (total oxygen amount) in the sintered body is a value determined by an oxygen analyzer according to the inert gas melting-infrared absorption method. Further, the total oxygen amount of the sintered body in the present invention indicates the total amount of oxygen constituting the silicon nitride sintered body in mass%. Therefore, when oxygen is present in the silicon nitride sintered body as a metal oxide or oxynitride, not the amount of the metal oxide (and oxynitride) but the metal oxide (and oxynitride) It focuses on the amount of oxygen.

本発明の好ましい態様において、前記窒化けい素焼結体は、上述したように酸素濃度に関しては中心部Aと外周部Bとの間に濃度差を有し、さらには焼結体全体として濃度頃斜しているものの、それ以外の成分すなわち焼結助剤として添加した化合物中の金属成分については従来の焼結体と同様に均一に分布されており、中心部Aと外周部Bとの金属成分の濃度差は0.2質量%未満とされている。   In a preferred aspect of the present invention, the silicon nitride sintered body has a concentration difference between the central portion A and the outer peripheral portion B with respect to the oxygen concentration as described above, and further, the sintered body as a whole has a concentration gradient. However, the other components, that is, the metal components in the compound added as a sintering aid, are uniformly distributed in the same manner as in the conventional sintered body, and the metal components in the central portion A and the outer peripheral portion B. The concentration difference is less than 0.2% by mass.

このように、本発明で得られる窒化けい素焼結体はあくまでも不要な酸素の除去を実現したものであり、他の金属成分の分布については従来の焼結体と同等とされており、窒化けい素結晶粒およびその間に存在する粒界相(ガラス相)により構成される基本的な焼結体の微構造は維持されているため、窒化けい素焼結体としての本来の特性、すなわち強度、硬度、破壊靱性値、摺動特性(転がり寿命特性など)などは維持されている。   As described above, the silicon nitride sintered body obtained by the present invention has realized removal of unnecessary oxygen, and the distribution of other metal components is equivalent to that of the conventional sintered body. Since the microstructure of the basic sintered body composed of the elementary crystal grains and the grain boundary phase (glass phase) existing between them is maintained, the original characteristics of the silicon nitride sintered body, ie, strength and hardness The fracture toughness value, sliding characteristics (rolling life characteristics, etc.) are maintained.

耐摩耗性部材に要求される硬度に関しては、ビッカース硬さでHv1200以上の特性を有することが好ましい。窒化けい素焼結体の硬度がビッカース硬さでHv1200未満となると、耐摩耗性の低下が著しくなる。特に、ベアリングボールなどに求められる摺動特性(転がり寿命特性)を十分に満足させることができなくなる。窒化けい素焼結体のビッカース硬さはHv1300以上であることがより好ましい。   Regarding the hardness required for the wear-resistant member, it is preferable that the Vickers hardness has a characteristic of Hv 1200 or more. When the hardness of the silicon nitride sintered body is less than Hv 1200 in terms of Vickers hardness, the wear resistance is significantly reduced. In particular, the sliding characteristics (rolling life characteristics) required for bearing balls and the like cannot be sufficiently satisfied. The Vickers hardness of the silicon nitride sintered body is more preferably Hv1300 or more.

また本発明に係る窒化けい素製耐摩耗性部材の製造方法は、酸素を1.5質量%以下、α相型窒化けい素を75〜97質量%含有し、平均粒径が1.0μm以下の窒化けい素粉末に、希土類元素を酸化物に換算して1〜10質量%添加した原料混合体を成形して成形体を調製し、得られた成形体を脱脂後、焼結する途中で温度1250℃〜1600℃で所定時間保持した後、温度1650℃〜1850℃で本焼結することを特徴とする。   The method for producing a wear resistant member made of silicon nitride according to the present invention contains 1.5% by mass or less of oxygen, 75 to 97% by mass of α-phase type silicon nitride, and an average particle size of 1.0 μm or less. A raw material mixture obtained by adding 1 to 10% by mass of a rare earth element in terms of oxide to the silicon nitride powder is prepared to prepare a molded body, and after the obtained molded body is degreased and sintered After holding at a temperature of 1250 ° C. to 1600 ° C. for a predetermined time, main sintering is performed at a temperature of 1650 ° C. to 1850 ° C.

さらに、上記製造方法において、上記焼結温度から、上記希土類元素により焼結時に形成された液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷することにより、気孔径をさらに小さくすることができる。   Furthermore, in the above production method, by slowly cooling the sintered body at a cooling rate of 100 ° C. or less per hour from the sintering temperature to a temperature at which the liquid phase formed by sintering with the rare earth element solidifies. The pore diameter can be further reduced.

また上記製造方法において、前記窒化けい素粉末にアルミニウムおよびマグネシウムの少なくとも一方を酸化物に換算して5質量%以下添加することが好ましい。また、前記窒化けい素粉末に窒化アルミニウムを5質量%以下添加することが好ましい。さらに、前記窒化けい素粉末にTi,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下添加することが好ましい。   Moreover, in the said manufacturing method, it is preferable to add 5 mass% or less in conversion of an oxide at least one of aluminum and magnesium to the said silicon nitride powder. Further, it is preferable to add 5% by mass or less of aluminum nitride to the silicon nitride powder. Further, it is preferable that at least one selected from the group consisting of Ti, Hf, Zr, W, Mo, Ta, Nb, and Cr is added to the silicon nitride powder in an amount of 5% by mass or less in terms of oxide.

また焼結後、前記窒化けい素焼結体に対し、300気圧以上の非酸化性雰囲気中で温度1600℃〜1850℃で熱間静水圧プレス(HIP)処理を実施することが好ましい。   Moreover, it is preferable to implement a hot isostatic pressing (HIP) process at a temperature of 1600 ° C. to 1850 ° C. in a non-oxidizing atmosphere of 300 atm or higher after sintering.

上記製造方法によれば、耐摩耗性部材を構成する窒化けい素焼結体を調製する際に、焼結途中で窒化けい素成形体を所定条件下で保持操作を実施した後に、本焼結して形成されているため、焼結体の酸素濃度が効果的に減少し、この酸素に起因する気孔の発生が抑制されて最大気孔径を極微小化することが可能である。そして、応力が作用した場合に疲労破壊の起点となり易い気孔が減少するため、疲労寿命および耐久性に優れた耐摩耗性部材が得られる。また保持操作による脱酸作用が進行しても焼結性が向上し気孔が減少することにより、全酸素量が6質量%以下、好ましくは4.5質量%以下であり、窒化けい素結晶組織中に希土類元素等を含む粒界相が形成され、その粒界相中の最大気孔径が0.3μm以下であり、気孔率が0.5%以下、三点曲げ強度が室温で900MPa以上であり、破壊靭性値が6.5MPa・m1/2以上であり、圧砕強度が200MPa以上の機械的特性に優れた窒化けい素製耐摩耗性部材が得られる。 According to the above manufacturing method, when preparing the silicon nitride sintered body constituting the wear-resistant member, the silicon nitride formed body is subjected to the holding operation under predetermined conditions during the sintering, and then the main sintering is performed. Therefore, the oxygen concentration of the sintered body is effectively reduced, generation of pores due to this oxygen is suppressed, and the maximum pore diameter can be made extremely small. And since the pore which tends to become a starting point of fatigue failure when stress acts is reduced, a wear resistant member excellent in fatigue life and durability can be obtained. Further, even if the deoxidation action by the holding operation proceeds, the sinterability is improved and the pores are reduced, so that the total oxygen amount is 6% by mass or less, preferably 4.5% by mass or less, and the silicon nitride crystal structure A grain boundary phase containing a rare earth element or the like is formed therein, the maximum pore diameter in the grain boundary phase is 0.3 μm or less, the porosity is 0.5% or less, and the three-point bending strength is 900 MPa or more at room temperature. In addition, a wear resistant member made of silicon nitride excellent in mechanical properties having a fracture toughness value of 6.5 MPa · m 1/2 or more and a crushing strength of 200 MPa or more is obtained.

本発明方法において使用され、耐摩耗性部材を構成する窒化けい素焼結体の主成分となる窒化けい素粉末としては、焼結性、曲げ強度、破壊靭性値および転がり寿命を考慮して、酸素含有量が1.5質量%以下、好ましくは0.5〜1.2質量%であるα相型窒化けい素を75〜97質量%、好ましくは80〜95質量%含有し、平均粒径が1.0μm以下、好ましくは0.4〜0.8μm程度の微細な窒化けい素粉末を使用することが好ましい。   The silicon nitride powder used in the method of the present invention and constituting the main component of the silicon nitride sintered body constituting the wear-resistant member includes oxygen, taking into consideration sinterability, bending strength, fracture toughness value and rolling life. The α-phase type silicon nitride having a content of 1.5% by mass or less, preferably 0.5 to 1.2% by mass is contained in an amount of 75 to 97% by mass, preferably 80 to 95% by mass, and the average particle size is It is preferable to use fine silicon nitride powder of 1.0 μm or less, preferably about 0.4 to 0.8 μm.

また、不純物酸素量が1.5質量%を超えるような窒化けい素粉末を用いると、中心部と外周部の酸素濃度差は大きくなるものの、焼結体全体としての酸素濃度が増加し、気孔率が増大するなどして窒化けい素焼結体が低強度化し易い。言い換えると、本発明では窒化けい素原料粉末が1.5質量%までの不純物酸素を含んでいても十分な効果が得られることから、必ずしも純度の高い原料粉末を使用する必要はなく、この点からもコストダウンが可能である。窒化けい素原料粉末のより好ましい酸素含有量は0.5〜1.2質量%の範囲である。   Further, when silicon nitride powder having an impurity oxygen amount exceeding 1.5 mass% is used, the oxygen concentration difference between the central portion and the outer peripheral portion is increased, but the oxygen concentration as a whole of the sintered body is increased, and the pores are increased. The strength of the silicon nitride sintered body tends to be reduced due to an increase in the rate. In other words, in the present invention, since a sufficient effect can be obtained even if the silicon nitride raw material powder contains impurity oxygen of up to 1.5 mass%, it is not always necessary to use a high-purity raw material powder. Cost reduction. A more preferable oxygen content of the silicon nitride raw material powder is in the range of 0.5 to 1.2% by mass.

なお、窒化けい素原料粉末としてはα相型のものとβ相型のものとが知られているが、α相型の窒化けい素原料粉末では焼結体とした場合に強度が不足し易い傾向がある一方、β相型の窒化けい素原料粉末では高温度焼成が必要であるが、アスペクト比が高い窒化けい素結晶粒子が複雑に入り組んだ高強度の焼結体が得られる。したがって、本発明においてはα相型原料粉末を高温度で焼成して窒化けい素焼結体としては、β相型の窒化けい素結晶粒子を主成分とする焼結体とすることが好適である。   As the silicon nitride raw material powder, α-phase type and β-phase type powders are known, but the α-phase type silicon nitride raw material powder tends to have insufficient strength when formed into a sintered body. On the other hand, β-phase type silicon nitride raw material powder requires high-temperature firing, but a high-strength sintered body in which silicon nitride crystal particles having a high aspect ratio are complicated is obtained. Accordingly, in the present invention, the α-phase type raw material powder is fired at a high temperature, and the silicon nitride sintered body is preferably a sintered body mainly composed of β-phase type silicon nitride crystal particles. .

本発明において、α相型窒化けい素粉末の配合量を75〜97質量%の範囲に限定した理由は、75質量%以上の範囲で焼結体の曲げ強度、破壊靭性値および転がり寿命が格段に向上し、窒化けい素の優れた特性が顕著となるためである。一方、焼結性を考慮すると、97質量%までの範囲とする。好ましくは80〜95質量%の範囲とすることが好ましい。さらに好ましくは85〜90質量%の範囲である。   In the present invention, the reason why the blending amount of the α-phase type silicon nitride powder is limited to the range of 75 to 97% by mass is that the bending strength, fracture toughness value and rolling life of the sintered body are markedly within the range of 75% by mass or more. This is because the excellent characteristics of silicon nitride become remarkable. On the other hand, considering the sinterability, the range is up to 97% by mass. Preferably it is set as the range of 80-95 mass%. More preferably, it is the range of 85-90 mass%.

その結果、窒化けい素の出発原料粉末としては、焼結性、曲げ強度、破壊靭性値、転がり寿命を考慮して、酸素含有率が1.5質量%以下,好ましくは0.5〜1.2質量%であり、α相型窒化けい素を90質量%以上含有し、平均粒径が1.0μm以下、好ましくは0.4〜0.8μm程度の微細な窒化けい素粉末を使用することが好ましい。   As a result, the silicon nitride starting material powder has an oxygen content of 1.5% by mass or less, preferably 0.5 to 1% in consideration of sinterability, bending strength, fracture toughness, and rolling life. Use a fine silicon nitride powder that is 2% by mass, contains α-phase type silicon nitride of 90% by mass or more, and has an average particle size of 1.0 μm or less, preferably about 0.4 to 0.8 μm. Is preferred.

特に平均粒径が0.7μm以下の微細な原料粉末を使用することにより、少量の焼結助剤であっても気孔率が0.5%以下の緻密な焼結体を形成することが可能である。この焼結体の気孔率はアルキメデス法により容易に計測できる。   In particular, by using fine raw material powder with an average particle size of 0.7 μm or less, it is possible to form a dense sintered body with a porosity of 0.5% or less even with a small amount of sintering aid. It is. The porosity of this sintered body can be easily measured by the Archimedes method.

また本発明で得られる耐摩耗性部材を構成する窒化けい素焼結体に含有される全酸素量は6質量%以下に規定される。この焼結体の全酸素量が6質量%を超えると結晶粒界相中の最大気孔径が大きくなり疲労破壊の起点となり易く、耐摩耗性部材の転がり(疲労)寿命が低下する。好ましくは4.5質量%以下とする。   Further, the total amount of oxygen contained in the silicon nitride sintered body constituting the wear resistant member obtained in the present invention is specified to be 6% by mass or less. If the total oxygen content of the sintered body exceeds 6% by mass, the maximum pore diameter in the grain boundary phase becomes large and tends to be the starting point of fatigue failure, and the rolling (fatigue) life of the wear-resistant member is reduced. Preferably it is 4.5 mass% or less.

なお、本発明で規定する「焼結体の全酸素量」とは、窒化けい素焼結体を構成している酸素の全量を質量%で示したものである。したがって、酸素が窒化けい素焼結体中に金属酸化物や酸窒化物等として存在している場合は、その金属酸化物(および酸窒化物)量ではなく、その金属酸化物(および酸窒化物)中の酸素量に着目したものである。   The “total oxygen content of the sintered body” defined in the present invention indicates the total amount of oxygen constituting the silicon nitride sintered body in mass%. Therefore, when oxygen is present in the silicon nitride sintered body as a metal oxide, oxynitride, or the like, not the amount of the metal oxide (and oxynitride) but the metal oxide (and oxynitride) ) Is focused on the amount of oxygen in it.

さらに本発明で得られる耐摩耗性部材を構成する窒化けい素焼結体の粒界相中の最大気孔径は0.3μm以下に規定される。この最大気孔径が0.3μmを超えると、特に疲労破壊の起点となり易く、耐摩耗性部材の転がり(疲労)寿命が低下する。好ましくは0.2μm以下とする。   Furthermore, the maximum pore diameter in the grain boundary phase of the silicon nitride sintered body constituting the wear resistant member obtained in the present invention is defined to be 0.3 μm or less. When the maximum pore diameter exceeds 0.3 μm, it is particularly likely to become a starting point of fatigue failure, and the rolling (fatigue) life of the wear-resistant member is reduced. Preferably, it is 0.2 μm or less.

また窒化けい素原料粉末に焼結助剤として添加する希土類元素としては、YHo,Er,Yb,La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなどの酸化物もしくは焼結操作により、これらの酸化物となる物質が単独で、または2種以上の酸化物を組み合せたものを含んでもよい。これらの焼結助剤は、窒化けい素原料粉末と反応して液相を生成し、焼結促進剤として機能する。   The rare earth element added as a sintering aid to the silicon nitride raw material powder includes oxides such as YHo, Er, Yb, La, Sc, Pr, Ce, Nd, Dy, Sm, and Gd, or sintering operations. These oxide substances may be used alone or in combination of two or more kinds. These sintering aids react with the silicon nitride raw material powder to form a liquid phase and function as a sintering accelerator.

上記焼結助剤の添加量は、酸化物換算で原料粉末に対して1〜10質量%の範囲とする。この添加量が1質量%未満の場合は、焼結体の緻密化あるいは高強度化が不十分であり、特に希土類元素がランタノイド系元素のように原子量が大きい元素の場合には、比較的低強度で比較的に低熱伝導率の焼結体が形成される。一方、添加量が10質量%を超える過量となると、過量の粒界相が生成し、気孔の発生量が増加したり、強度が低下し始めるので上記範囲とする。特に同様の理由により2〜8質量%とすることが望ましい。   The amount of the sintering aid added is in the range of 1 to 10% by mass with respect to the raw material powder in terms of oxide. When the amount added is less than 1% by mass, densification or increase in strength of the sintered body is insufficient, and in particular, when the rare earth element is an element having a large atomic weight such as a lanthanoid element, it is relatively low. A strong and relatively low thermal conductivity sintered body is formed. On the other hand, when the added amount exceeds 10% by mass, an excessive amount of grain boundary phase is generated, and the amount of pores generated increases or the strength starts to decrease, so the above range is set. In particular, it is desirable to set it as 2-8 mass% for the same reason.

また本発明において選択的な添加成分として使用するアルミニウム(Al)およびマグネシウム(Mg)の少なくとも一方の酸化物(Al,MgO)は、上記希土類元素の焼結促進剤の機能を促進し低温での緻密化を可能にし結晶組織において粒成長を制御する機能を果し、Si焼結体の曲げ強度および破壊靭性値などの機械的強度を向上させるために5質量%以下の範囲で添加される。このAlおよびMgの添加量が酸化物換算で0.2質量%未満の場合においては添加効果が不十分である一方、5質量%を超える過量となる場合には酸素含有量の上昇が起こるため、添加量は5質量%以下、好ましくは0.2〜5質量%の範囲とする。特に0.5〜3質量%とすることが望ましい。 Also, at least one oxide (Al 2 O 3 , MgO) of aluminum (Al) and magnesium (Mg) used as a selective additive component in the present invention promotes the function of the rare earth element sintering accelerator. In order to improve the mechanical strength such as the bending strength and fracture toughness value of the Si 3 N 4 sintered body by performing densification at a low temperature and controlling the grain growth in the crystal structure, Add in range. When the addition amount of Al and Mg is less than 0.2% by mass in terms of oxide, the effect of addition is insufficient. On the other hand, when the excess amount exceeds 5% by mass, the oxygen content increases. The addition amount is 5% by mass or less, preferably 0.2 to 5% by mass. In particular, the content is desirably 0.5 to 3% by mass.

さらに他の選択的な添加成分としての窒化アルミニウム(AlN)は、焼結過程における窒化けい素の蒸発などを抑制するとともに、上記希土類元素の焼結促進剤としての機能をさらに助長する役目を果すものであり、5質量%以下の範囲で添加されることが望ましい。   Furthermore, aluminum nitride (AlN) as another optional additive component serves to suppress the evaporation of silicon nitride during the sintering process and further promote the function of the rare earth element as a sintering accelerator. It is desirable that it is added in the range of 5% by mass or less.

AlNの添加量が0.1質量%未満の場合においては、より高温度での焼結が必要になる一方、5質量%を超える過量となる場合には過量の粒界相を生成したり、または窒化けい素に固溶し始め、気孔が増加し気孔率の上昇が起こるため、添加量は5質量%以下の範囲とする。特に焼結性,強度,転がり寿命共に良好な性能を確保するためには添加量を0.1〜3質量%の範囲とすることが望ましい。   When the amount of AlN added is less than 0.1% by mass, sintering at a higher temperature is required, whereas when the amount exceeds 5% by mass, an excessive amount of grain boundary phase is generated, Alternatively, since the solid solution starts to be dissolved in silicon nitride, the pores are increased and the porosity is increased, so that the addition amount is set to 5 mass% or less. In particular, in order to ensure good performance in terms of sinterability, strength, and rolling life, it is desirable that the addition amount be in the range of 0.1 to 3% by mass.

また本発明において他の選択的な添加成分として、Ti,Hf,Zr,W,Mo,Nb,Crを、酸化物,炭化物、窒化物、けい化物、硼化物として添加してもよい。これらの化合物は、上記希土類元素の焼結促進剤としての機能を促進すると共に、結晶組織において分散強化の機能を果しSi焼結体の機械的強度を向上させるものであり、特に、Ti,Moの化合物が好ましい。これらの化合物の添加量が酸化物換算で0.1質量%未満の場合においては添加効果が不十分である一方、5質量%を超える過量となる場合には機械的強度や転がり寿命の低下が起こるため、添加量は5質量%以下の範囲とする。特に0.2〜3質量%とすることが望ましい。 In the present invention, Ti, Hf, Zr, W, Mo, Nb, and Cr may be added as oxides, carbides, nitrides, silicides, and borides as other optional additive components. These compounds promote the function of the rare earth element as a sintering accelerator, and also serve to enhance the mechanical strength of the Si 3 N 4 sintered body by performing a dispersion strengthening function in the crystal structure. A compound of Ti and Mo is preferred. When the addition amount of these compounds is less than 0.1% by mass in terms of oxide, the addition effect is insufficient, whereas when the excess amount exceeds 5% by mass, the mechanical strength and rolling life are reduced. For this reason, the addition amount is set to a range of 5 mass% or less. In particular, the content is desirably 0.2 to 3% by mass.

また上記Ti,Mo等の化合物は窒化けい素セラミックス焼結体を黒色系に着色し不透明性を付与する遮光剤としても機能する。   The compounds such as Ti and Mo also function as a light-shielding agent that imparts opacity by coloring the silicon nitride ceramic sintered body black.

また焼結体の気孔率は耐摩耗性部材の転がり寿命および強度に大きく影響するため0.5%以下となるように製造する。気孔率が0.5%を超えると、疲労破壊の起点となる気孔が急増して耐摩耗性部材の転がり寿命が低下するとともに、焼結体の強度低下が起こる。   Further, since the porosity of the sintered body greatly affects the rolling life and strength of the wear-resistant member, it is manufactured so as to be 0.5% or less. When the porosity exceeds 0.5%, the number of pores that become the starting point of fatigue failure increases rapidly, and the rolling life of the wear-resistant member is reduced, and the strength of the sintered body is reduced.

さらに上記のように窒化けい素焼結体の気孔率を0.5%以下にし、また窒化けい素結晶組織に形成される粒界相中の最大気孔径が0.3μm以下であり、全酸素量が4.5質量%以下であり、スラスト型転がり摩耗試験装置を使用した場合に、所定の転がり寿命を与えるような窒化けい素焼結体を得るためには、前記原料で調製した窒化けい素成形体を脱脂後、焼結する途中で温度1250〜1600℃で0.5〜10時間保持した後に、温度1650〜1850℃で2〜10時間程度、常圧焼結または加圧焼結することが重要である。また焼結操作完了直後における焼結体の冷却速度を毎時100℃以下にして徐冷することにより、気孔径をさらに小さくすることができる。   Further, as described above, the porosity of the silicon nitride sintered body is 0.5% or less, the maximum pore diameter in the grain boundary phase formed in the silicon nitride crystal structure is 0.3 μm or less, and the total amount of oxygen is In order to obtain a silicon nitride sintered body that gives a predetermined rolling life when a thrust type rolling wear test apparatus is used, the silicon nitride molding prepared with the above raw material is used. After the body is degreased, it is held at a temperature of 1250 to 1600 ° C. for 0.5 to 10 hours in the course of sintering, and then subjected to atmospheric pressure sintering or pressure sintering at a temperature of 1650 to 1850 ° C. for about 2 to 10 hours. is important. In addition, the pore diameter can be further reduced by gradually cooling the sintered body immediately after completion of the sintering operation at a cooling rate of 100 ° C. or less.

特に、焼結工程の途中において1250〜1600℃の温度で0.5〜10時間保持することにより生成する液相(結晶粒界相)中の酸素濃度を減少させ液相を高融点化し、液相の溶融時に生じる泡状の気孔の発生を抑制し、かつ最大気孔径を極微小化し、焼結体の転がり寿命を改善することが可能になる。この焼結途中における保持操作は、特に温度が1350〜1450℃の真空雰囲気で処理した場合に顕著な効果を発揮するが、温度が1500〜1600℃の窒素雰囲気中の処理でも同程度の効果が発揮される。   In particular, during the sintering process, the oxygen concentration in the liquid phase (grain boundary phase) generated by holding at a temperature of 1250 to 1600 ° C. for 0.5 to 10 hours is reduced to increase the melting point of the liquid phase. It is possible to suppress the generation of bubble-like pores generated when the phases are melted and to minimize the maximum pore diameter, thereby improving the rolling life of the sintered body. This holding operation in the middle of sintering exhibits a remarkable effect particularly when the treatment is performed in a vacuum atmosphere at a temperature of 1350 to 1450 ° C., but the same effect can be obtained even in a treatment in a nitrogen atmosphere at a temperature of 1500 to 1600 ° C. Demonstrated.

また、焼結後に液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷した場合に、液相中の酸素濃度の低減化がさらに促進されるので、転がり寿命を改善した焼結体が得られる。   In addition, when the cooling rate of the sintered body that reaches the temperature at which the liquid phase solidifies after sintering is set to 100 ° C./hour or lower and the temperature is gradually cooled, the oxygen concentration in the liquid phase is further reduced. A sintered body with improved life can be obtained.

焼結温度を1650℃未満とした場合には、焼結体の緻密化が不十分で気孔率が0.5vol.%を超えた値になり、機械的強度および転がり寿命が共に低下してしまう。一方焼結温度が1850℃を超えると窒化けい素成分自体が蒸発分解し易くなる。特に加圧焼結ではなく、常圧焼結を実施した場合には、1800℃付近より窒化けい素の分解蒸発が始まる。   When the sintering temperature is less than 1650 ° C., the sintered body is not sufficiently densified and the porosity is 0.5 vol. %, The mechanical strength and rolling life are both reduced. On the other hand, if the sintering temperature exceeds 1850 ° C., the silicon nitride component itself tends to evaporate and decompose. In particular, when pressureless sintering is performed instead of pressure sintering, decomposition and evaporation of silicon nitride starts from around 1800 ° C.

上記焼結操作完了直後における焼結体の冷却速度は気孔径を低減したり、粒界相を結晶化させるためにも重要な制御因子であり、冷却速度が毎時100℃を超えるような急速冷却を実施した場合には、焼結体組織の粒界相が非結晶質(ガラス相)となり、焼結体に生成した液相中での酸素濃度の低減化が不十分となり、焼結体の転がり寿命特性が低下してしまう。   The cooling rate of the sintered body immediately after completion of the above sintering operation is an important control factor for reducing the pore diameter and crystallizing the grain boundary phase, and rapid cooling such that the cooling rate exceeds 100 ° C. per hour. In this case, the grain boundary phase of the sintered body structure becomes amorphous (glass phase), and the oxygen concentration in the liquid phase generated in the sintered body is insufficiently reduced. Rolling life characteristics will deteriorate.

上記冷却速度を厳密に調整すべき温度範囲は、所定の焼結温度(1650〜1850℃)から、前記の焼結助剤の反応によって生成する液相が凝固するまでの温度範囲で十分である。ちなみに前記のような焼結助剤を使用した場合の液相凝固点は概略1600〜1500℃程度である。そして少なくとも焼結温度から上記液相凝固温度に至るまでの焼結体の冷却速度を毎時100℃以下、好ましくは50℃以下、さらに好ましくは25℃以下に制御することにより、焼結体の全酸素量が6質量%以下となり、また最大気孔径が0.3μm以下となり、気孔率も0.5%以下となり、転がり寿命特性および耐久性に優れた窒化けい素焼結体が得られる。前述の1300〜1600℃での途中保持処理と組み合わせると、さらに効果的である。   The temperature range in which the cooling rate should be strictly adjusted is sufficient from the predetermined sintering temperature (1650 to 1850 ° C.) to the solidification of the liquid phase generated by the reaction of the sintering aid. . Incidentally, the liquid phase freezing point in the case of using the above sintering aid is about 1600 to 1500 ° C. And by controlling the cooling rate of the sintered body at least from the sintering temperature to the liquid phase solidification temperature to 100 ° C./hour, preferably 50 ° C. or less, more preferably 25 ° C. or less, The amount of oxygen is 6% by mass or less, the maximum pore diameter is 0.3 μm or less, the porosity is also 0.5% or less, and a silicon nitride sintered body excellent in rolling life characteristics and durability can be obtained. It is more effective when combined with the above-mentioned midway holding treatment at 1300 to 1600 ° C.

本発明で得られる耐摩耗性部材を構成する窒化けい素焼結体は、例えば以下のようなプロセスを経て製造される。すなわち前記所定の微細粒径を有し、また酸素含有量が少ない微細な窒化けい素粉末に対して所定量の焼結助剤、有機バインダ等の必要な添加剤および必要に応じてAl,Mg,AlN,Ti等の化合物を加えて原料混合体を調整し、次に得られた原料混合体を成形して所定形状の成形体を得る。原料混合体の成形法としては、汎用の一軸プレス法、金型プレス法、ドクターブレード法、ラバープレス法、CIP法のような公知の成形法が適用できる。   The silicon nitride sintered body constituting the wear-resistant member obtained by the present invention is manufactured through the following process, for example. That is, for a fine silicon nitride powder having the predetermined fine particle size and low oxygen content, a predetermined amount of sintering aid, necessary additives such as an organic binder, and Al, Mg as required , AlN, Ti, etc. are added to adjust the raw material mixture, and then the obtained raw material mixture is molded to obtain a molded body having a predetermined shape. As a forming method of the raw material mixture, a known forming method such as a general-purpose uniaxial pressing method, a die pressing method, a doctor blade method, a rubber pressing method, or a CIP method can be applied.

上記金型プレス法で成形体を形成する場合において、特に焼結後において気孔が発生し難い粒界相を形成するためには、原料混合体の成形圧力を120MPa以上に設定することが必要である。この成形圧力が120MPa未満である場合には、主として粒界相を構成する成分となる希土類元素化合物が凝集した箇所が形成され易い上に、十分に緻密な成形体となり得ず、クラックの発生が多い焼結体しか得られない。上記粒界相の凝集した箇所は疲労破壊の起点となり易いため、耐摩耗性部材の寿命耐久性が低下してしまう。一方、成形圧力を200MPaを超えるように過大にした場合、成形型の耐久性が低下してしまうので、必ずしも製造性が良いとは言えない。そのため、上記成形圧力は120〜200MPaの範囲が好ましい。   In the case of forming a molded body by the above-mentioned mold pressing method, it is necessary to set the molding pressure of the raw material mixture to 120 MPa or more in order to form a grain boundary phase in which pores are not easily generated particularly after sintering. is there. When this molding pressure is less than 120 MPa, a portion where the rare earth element compound, which is a component that mainly constitutes the grain boundary phase, is easily aggregated, and a sufficiently dense molded body cannot be formed, and cracks are generated. Only a large number of sintered bodies can be obtained. Since the location where the grain boundary phase is aggregated is likely to be a starting point of fatigue failure, the life durability of the wear-resistant member is lowered. On the other hand, if the molding pressure is excessively set to exceed 200 MPa, the durability of the molding die is lowered, so that the productivity is not necessarily good. Therefore, the molding pressure is preferably in the range of 120 to 200 MPa.

上記成形操作に引き続いて、成形体を非酸化性雰囲気中で温度600〜800℃、または空気中で温度400〜500℃で1〜2時間加熱して、予め添加していた有機バインダ成分を十分に除去し、脱脂する。   Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours to sufficiently remove the organic binder component added in advance. Remove and degrease.

次に脱脂処理された成形体を焼結する途中で焼成炉内を減圧する真空処理を実施する。   Next, vacuum processing is performed in which the inside of the firing furnace is depressurized during the sintering of the degreased compact.

すなわち、0.01Pa以下の真空中にて1250〜1600℃の範囲の温度まで昇温すると共に、この1250〜1600℃の範囲の温度で0.5〜10時間保持する。このような真空処理を実施することによって、焼結体中の酸素やSiOなどのガス成分を外部に向けて移動させ、さらにはガス成分を外部に排出することができる。ガス成分の排出は特に外周部から生じるため、最終的に外周部の酸素濃度を低下させることが可能となる。 That is, the temperature is raised to a temperature in the range of 1250 to 1600 ° C. in a vacuum of 0.01 Pa or less, and held at a temperature in the range of 1250 to 1600 ° C. for 0.5 to 10 hours. By carrying out such a vacuum treatment, it is possible to move gas components such as oxygen and SiO 2 in the sintered body to the outside, and to discharge the gas components to the outside. Since the discharge of the gas component occurs particularly from the outer peripheral portion, it is possible to finally reduce the oxygen concentration in the outer peripheral portion.

真空処理時の温度が1250℃未満であると、ガス成分の排出が十分に進行せず、最終的な焼結体の外周部の酸素濃度を十分に低下させることができないおそれがある。一方、真空処理時の温度が1600℃を超えると実質的に本焼結と変わりがなくなり、外周部から早期に緻密化が始まるため、中間部などのガス成分の除去が行われなくなる場合が生じる。真空処理時の保持時間についても同様であり、上記した範囲から外れるとガス成分の排出が不十分となったり、あるいはガス成分を排出し過ぎるおそれがある。   If the temperature during the vacuum treatment is less than 1250 ° C., the discharge of gas components does not proceed sufficiently, and the oxygen concentration in the outer peripheral portion of the final sintered body may not be sufficiently reduced. On the other hand, if the temperature during the vacuum treatment exceeds 1600 ° C., there is substantially no difference from the main sintering, and densification starts early from the outer peripheral portion, so that the removal of gas components such as the intermediate portion may not be performed. . The same applies to the holding time during the vacuum treatment, and if it is out of the above range, the gas component may be insufficiently discharged or the gas component may be excessively discharged.

次に上記真空処理(保持操作)に引き続いて、成形体について、窒素ガスやアルゴンガスなどの不活性ガス雰囲気中で1650〜1850℃の温度で所定時間、常圧焼結または雰囲気加圧焼結を行う。加圧焼結法としては、雰囲気加圧焼結、ホットプレス、HIP処理など各種の加圧焼結法が用いられる。   Next, following the vacuum treatment (holding operation), the compact is sintered at atmospheric pressure or atmospheric pressure at a temperature of 1650 to 1850 ° C. for a predetermined time in an inert gas atmosphere such as nitrogen gas or argon gas. I do. As the pressure sintering method, various pressure sintering methods such as atmospheric pressure sintering, hot pressing, and HIP treatment are used.

なお、上記焼結工程は真空処理工程に引き続いて行ってもよいし、あるいは一旦常温もしくはその近傍の温度まで炉冷し、その後に窒素を炉内に導入してから改めて焼結温度まで昇温して実施してもよい。   The above sintering step may be performed subsequent to the vacuum processing step, or once cooled in the furnace to room temperature or a temperature in the vicinity thereof, then nitrogen is introduced into the furnace, and then the temperature is raised to the sintering temperature again. May be implemented.

また上記焼結後、得られた窒化けい素焼結体に対し、さらに300気圧以上の非酸化性雰囲気中で温度1600℃〜1850℃で熱間静水圧プレス(HIP)処理を実施することにより、疲労破壊の起点となる焼結体の気孔の影響をより低減できるため、さらに改善された摺動特性および転がり寿命特性を有する耐摩耗性部材が得られる。   In addition, after the sintering, the obtained silicon nitride sintered body is further subjected to a hot isostatic pressing (HIP) treatment at a temperature of 1600 ° C. to 1850 ° C. in a non-oxidizing atmosphere of 300 atm or higher, Since the influence of the pores of the sintered body that becomes the starting point of fatigue fracture can be further reduced, a wear-resistant member having further improved sliding characteristics and rolling life characteristics can be obtained.

特に、上記窒化けい素焼結体をベアリングボールのような軸受部材に適用する場合には、常圧焼結または雰囲気加圧焼結後にHIP処理を行うことが有効である。   In particular, when the silicon nitride sintered body is applied to a bearing member such as a bearing ball, it is effective to perform HIP treatment after atmospheric pressure sintering or atmospheric pressure sintering.

上記製法によって製造された窒化けい素製耐摩耗性部材は全酸素量が6質量%以下で気孔率が0.5%以下、最大気孔径が0.3μm以下であり、また三点曲げ強度が常温で900MPa以上と機械的特性にも優れている。   The silicon nitride wear-resistant member manufactured by the above method has a total oxygen amount of 6% by mass or less, a porosity of 0.5% or less, a maximum pore diameter of 0.3 μm or less, and a three-point bending strength. Excellent mechanical properties of 900 MPa or more at room temperature.

また、圧砕強度が200MPa以上、破壊靭性値が6.5MPa・m1/2以上である窒化けい素製耐摩耗性部材を得ることもできる。 It is also possible to obtain a silicon nitride wear-resistant member having a crushing strength of 200 MPa or more and a fracture toughness value of 6.5 MPa · m 1/2 or more.

さらに、本発明の製造方法によれば、ビッカース硬さでHv1200以上の硬度を有し、かつ焼結体の中央部に対して0.2質量%以上2質量%以下の酸素濃度差が設けられた外周部、すなわち低酸素領域とされた外周部を有する窒化けい素焼結体(耐摩耗性部材)を再現性よく得ることができる。   Furthermore, according to the production method of the present invention, the Vickers hardness is Hv 1200 or more, and an oxygen concentration difference of 0.2% by mass or more and 2% by mass or less is provided with respect to the central portion of the sintered body. Thus, a silicon nitride sintered body (abrasion resistant member) having an outer peripheral portion, that is, an outer peripheral portion defined as a low oxygen region can be obtained with good reproducibility.

本発明に係る耐摩耗性部材の製造方法によれば、焼結工程の途中で所定の保持操作を実施した後に本焼結を実施して形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、転がり寿命特性および耐久性が優れた耐摩耗性部材が得られる。そのため、この耐摩耗性部材を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な摺動転動特性を維持することが可能であり、動作信頼性および耐久性に優れた回転機器を提供することができる。また、他の用途としては、エンジン部品、各種治工具、各種レール、各種ローラなど耐摩耗性を要求される様々な分野に適用可能である。   According to the method for manufacturing a wear-resistant member according to the present invention, the oxygen concentration of the sintered body is reduced because the main body is formed after performing a predetermined holding operation during the sintering process. In addition, the generation of pores is suppressed, the maximum pore diameter can be made extremely small, and a wear-resistant member having excellent rolling life characteristics and durability can be obtained. Therefore, when this wear-resistant member is used as a rolling bearing member and a bearing portion is prepared, it is possible to maintain good sliding rolling characteristics over a long period of time, and operational reliability and durability. It is possible to provide an excellent rotating device. In addition, as other applications, it can be applied to various fields that require wear resistance, such as engine parts, various jigs and tools, various rails, and various rollers.

すなわち、本発明で使用する窒化けい素焼結体は各種の用途に使用することが可能であるものの、特に耐摩耗性部材に対して有効である。この窒化けい素焼結体を適用し得る耐摩耗性部材は、軸受部材、圧延用などの各種ロール材、コンプレッサ用ベーン、ガスタービン翼、カムローラなどのエンジン部品などが挙げられるが、これらのうちでもベアリングボールのように全面が摺動部となる軸受部材(転動体)に対して効果的である。特に、直径が9mm以上というような比較的大きいベアリングボールに対して本発明は効果的である。   That is, although the silicon nitride sintered body used in the present invention can be used for various applications, it is particularly effective for wear-resistant members. Examples of wear-resistant members to which this silicon nitride sintered body can be applied include bearing members, various roll materials for rolling, engine parts such as compressor vanes, gas turbine blades, cam rollers, etc. It is effective for a bearing member (rolling element) whose entire surface is a sliding portion like a bearing ball. In particular, the present invention is effective for a relatively large bearing ball having a diameter of 9 mm or more.

なお、耐摩耗性部材として使用する窒化けい素焼結体には、必要に応じて表面研摩や被覆処理などの仕上げ加工を行ってもよいことは言うまでもない。言い換えると、窒化けい素焼結体がそのまま耐摩耗性部材として使用可能な場合は、窒化けい素焼結体が直接耐摩耗性部材となる。   Needless to say, the silicon nitride sintered body used as the wear-resistant member may be subjected to finish processing such as surface polishing or coating treatment as necessary. In other words, when the silicon nitride sintered body can be used as it is as a wear resistant member, the silicon nitride sintered body becomes a direct wear resistant member.

本発明に係る耐摩耗性部材およびその製造方法によれば、焼結工程の途中で所定の保持操作を実施した後に本焼結を実施して形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、転がり寿命特性および耐久性が優れた耐摩耗性部材が得られる。そのため、この耐摩耗性部材を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な摺動転動特性を維持することが可能であり、動作信頼性および耐久性に優れた回転機器を提供することができる。   According to the wear-resistant member and the method of manufacturing the same according to the present invention, since the main body is formed after performing a predetermined holding operation during the sintering process, the oxygen concentration of the sintered body is reduced. Thus, the generation of pores is suppressed and the maximum pore diameter can be minimized, and a wear-resistant member having excellent rolling life characteristics and durability can be obtained. Therefore, when this wear-resistant member is used as a rolling bearing member and a bearing portion is prepared, it is possible to maintain good sliding rolling characteristics over a long period of time, and operational reliability and durability. It is possible to provide an excellent rotating device.

次に本発明の実施形態を以下に示す実施例を参照して具体的に説明する。   Next, the embodiments of the present invention will be specifically described with reference to the following examples.

[実施例1〜2]
実施例1として、酸素量が1.1質量%であり、α相型窒化けい素97%を含む平均粒径0.55μmのSi(窒化けい素)原料粉末86質量%に、焼結助剤として平均粒径0.9μmのY(酸化イットリウム)粉末5質量%と、平均粒径0.7μmのAl(アルミナ)粉末5質量%と、平均粒径1.0μmのAlN(窒化アルミニウム)粉末2質量%、平均粒径0.5μmのTiO(酸化チタン)粉末2質量%を添加し、エチルアルコール中で粉砕媒体として窒化けい素製ボールを用いて96時間湿式混合したのち乾燥して原料混合体を調製した。
[Examples 1-2]
As Example 1, the amount of oxygen was 1.1% by mass and the Si 3 N 4 (silicon nitride) raw material powder having an average particle size of 0.55 μm containing α-phase type silicon nitride 97% was sintered to 86% by mass. As a binder, 5% by mass of Y 2 O 3 (yttrium oxide) powder having an average particle size of 0.9 μm, 5% by mass of Al 2 O 3 (alumina) powder having an average particle size of 0.7 μm, and an average particle size of 1. 2% by mass of 0 μm AlN (aluminum nitride) powder and 2% by mass of TiO 2 (titanium oxide) powder having an average particle size of 0.5 μm were added, and a silicon nitride ball was used as a grinding medium in ethyl alcohol for 96 hours. After wet mixing, the raw material mixture was prepared by drying.

次に得られた原料粉末混合体に有機バインダを所定量添加し調合造粒粉としたのち、130MPaの成形圧力でプレス成形し、曲げ強度測定用サンプルとして50mm×50mm×厚さ5mmの成形体と、転がり寿命測定用サンプルとして直径80mm×厚さ6mmの成形体とを多数製作した。次に得られた成形体を450℃の空気気流中において4時間脱脂したのち、常温から加熱し10−2Pa以下の真空雰囲気中にて温度1400℃で2時間にわたる途中保持操作を実施した後、0.7MPaの窒素ガス雰囲気中にて温度1750℃で4時間焼結した後に、1500℃まで温度降下するまでの冷却速度をそれぞれ100℃/hrとなるように調整して焼結体を徐冷した。次に得られた焼結体に対して窒素ガス雰囲気中で圧力100MPaにて温度1700℃で1時間加熱する熱間静水圧プレス(HIP)処理を実施することにより、実施例1に係る窒化けい素製耐摩耗性部材を調製した。 Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture to prepare a blended granulated powder, which is then press-molded at a molding pressure of 130 MPa, and a molded product of 50 mm × 50 mm × thickness 5 mm as a sample for measuring bending strength. A large number of compacts having a diameter of 80 mm and a thickness of 6 mm were produced as rolling life measurement samples. Next, after degreasing the obtained molded body in an air stream at 450 ° C. for 4 hours, heating from room temperature and carrying out a holding operation for half an hour at a temperature of 1400 ° C. in a vacuum atmosphere of 10 −2 Pa or less. After sintering for 4 hours at a temperature of 1750 ° C. in a nitrogen gas atmosphere of 0.7 MPa, the cooling rate until the temperature drops to 1500 ° C. is adjusted to 100 ° C./hr, respectively, and the sintered body is gradually adjusted. Chilled. Next, the obtained sintered body is subjected to a hot isostatic pressing (HIP) treatment in which a pressure of 100 MPa is applied at a temperature of 1700 ° C. for 1 hour in a nitrogen gas atmosphere, whereby the silicon nitride according to Example 1 is obtained. A raw wear-resistant member was prepared.

また、実施例2として、焼結途中での保持操作を1×10Paの窒素ガス雰囲気中にて温度1600℃で2時間保持して実施した点以外は実施例1と同一条件で処理することにより実施例2に係る窒化けい素製耐摩耗性部材を調製した。 Further, as Example 2, the holding operation in the middle of sintering was carried out under the same conditions as Example 1 except that the holding operation was carried out in a nitrogen gas atmosphere of 1 × 10 4 Pa at a temperature of 1600 ° C. for 2 hours. Thus, a silicon nitride wear-resistant member according to Example 2 was prepared.

[比較例1〜3]
比較例1として真空雰囲気中で温度1400℃での途中保持操作を実施しない点以外は実施例1と同一条件で処理することにより比較例1に係る窒化けい素製耐摩耗性部材を調製した。また、本発明の好ましい範囲外の一例である比較例2として、焼結途中での保持操作を1×10Paの窒素ガス雰囲気中にて温度1600℃で2時間実施した点、さらに焼結後の冷却速度を従来の自然冷却による炉冷である500℃/hrとした点以外は実施例1と同一条件で処理して比較例2に係る窒化けい素製耐摩耗性部材を調製した。さらに、比較例3として酸素量が1.7質量%であり、α相型窒化けい素を91%含む平均粒径1.5μmのSi(窒化けい素)原料粉末を使用した点以外は実施例1と同一条件で処理することにより比較例3に係る窒化けい素製耐摩耗性部材を調製した。
[Comparative Examples 1-3]
As Comparative Example 1, a silicon nitride wear-resistant member according to Comparative Example 1 was prepared by processing under the same conditions as in Example 1 except that the intermediate holding operation at a temperature of 1400 ° C. was not performed in a vacuum atmosphere. Further, as Comparative Example 2 which is an example outside the preferable range of the present invention, the holding operation during the sintering was performed at a temperature of 1600 ° C. for 2 hours in a nitrogen gas atmosphere of 1 × 10 4 Pa, further sintering. A silicon nitride wear-resistant member according to Comparative Example 2 was prepared by treating under the same conditions as in Example 1 except that the subsequent cooling rate was 500 ° C./hr, which was furnace cooling by conventional natural cooling. Further, as Comparative Example 3, except that Si 3 N 4 (silicon nitride) raw material powder having an oxygen content of 1.7 mass% and an average particle size of 1.5 μm containing 91% α-phase type silicon nitride was used. Were treated under the same conditions as in Example 1 to prepare a silicon nitride wear-resistant member according to Comparative Example 3.

こうして得られた実施例1〜2および比較例1〜3に係る各窒化けい素製耐摩耗性部材について全酸素量、気孔率、粒界相中の最大気孔径、室温での3点曲げ強度、マイクロインデンテーション法における新原方式による破壊靭性値および転がり寿命を測定して表1に示す結果を得た。   For each silicon nitride wear-resistant member according to Examples 1 and 2 and Comparative Examples 1 to 3 thus obtained, the total oxygen content, porosity, maximum pore diameter in the grain boundary phase, and three-point bending strength at room temperature The results shown in Table 1 were obtained by measuring the fracture toughness value and rolling life according to the Shinhara method in the microindentation method.

なお、焼結体の気孔率はアルキメデス法によって測定する一方、粒界相中の最大気孔径は、焼結体の断面の中から、単位面積100μm×100μmを任意の3個所選択しSEM等の拡大写真により測定し、その中から最も大きな気孔径を計測した。なお、最大気孔径としては拡大写真中に示される最も長い対角線を採用した。   The porosity of the sintered body is measured by the Archimedes method, while the maximum pore diameter in the grain boundary phase is selected from three sections of a unit area of 100 μm × 100 μm from the cross section of the sintered body. The largest pore diameter was measured from the enlarged photograph. As the maximum pore diameter, the longest diagonal line shown in the enlarged photograph was adopted.

また、窒化けい素焼結体中の全酸素量の計測は、不活性ガス融解−赤外線吸収法に準ずる酸素分析計により測定した。   Further, the total oxygen amount in the silicon nitride sintered body was measured with an oxygen analyzer according to an inert gas melting-infrared absorption method.

また、三点曲げ強度については焼結体から3mm×40mm×厚さ4mmの曲げ試験片を作成し、スパン(支点距離)を30mmとし、荷重の印加速度を0.5mm/minに設定した条件で測定した。   For the three-point bending strength, a bending test piece of 3 mm × 40 mm × thickness 4 mm was prepared from the sintered body, the span (fulcrum distance) was set to 30 mm, and the load application speed was set to 0.5 mm / min. Measured with

また各耐摩耗性部材の転がり特性は、図1に示すようなスラスト型転がり摩耗試験装置を使用して測定した。この試験装置は、装置本体1内に配置された平板状の耐摩耗性部材2と、この耐摩耗性部材2上面に配置された複数の転動鋼球3と、この転動鋼球3の上部に配置されたガイド板4と、このガイド板4に接続された駆動回転軸5と、上記転動鋼球3の配置間隔を規制する保持器6とを備えて構成される。装置本体1内には、転動部を潤滑するための潤滑油7が充填される。上記転動鋼球3およびガイド板4は、日本工業規格(JIS G 4805)で規定される高炭素クロム軸受鋼(SUJ2)で形成される。上記潤滑油7としては、パラフィン系潤滑油(40℃での粘度:67.2mm/S)やタービン油が使用される。 The rolling characteristics of each wear-resistant member were measured using a thrust type rolling wear test apparatus as shown in FIG. The test apparatus includes a flat wear-resistant member 2 disposed in the apparatus main body 1, a plurality of rolling steel balls 3 disposed on the upper surface of the wear-resistant member 2, and the rolling steel balls 3. A guide plate 4 disposed at the top, a drive rotary shaft 5 connected to the guide plate 4, and a cage 6 that regulates the spacing between the rolling steel balls 3 are configured. The apparatus main body 1 is filled with lubricating oil 7 for lubricating the rolling part. The rolling steel balls 3 and the guide plate 4 are made of high carbon chromium bearing steel (SUJ2) defined by Japanese Industrial Standards (JIS G 4805). As the lubricating oil 7, paraffinic lubricating oil (viscosity at 40 ° C .: 67.2 mm 2 / S) or turbine oil is used.

本実施例に係る板状の耐摩耗性部材の転がり寿命は、耐摩耗性部材2の上面に設定した直径40mmの軌道上に直径が9.525mmである3個のSUJ2製転動鋼球を配置し、タービン油の油浴潤滑条件下で、この転動鋼球3に400Kgの荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素製耐摩耗性部材2の表面が剥離するまでの回転数を転がり寿命として測定した。各測定結果を下記表1に示す。

Figure 0004820840
The rolling life of the plate-like wear-resistant member according to this example is obtained by measuring three SUJ2 rolling steel balls having a diameter of 9.525 mm on a track having a diameter of 40 mm set on the upper surface of the wear-resistant member 2. The above-mentioned silicon nitride wear-resistant member is arranged and rotated under conditions of 1200 rpm with a load of 400 kg applied to the rolling steel balls 3 under oil bath lubrication conditions of turbine oil. The number of rotations until the surface of 2 was peeled was measured as the rolling life. Each measurement result is shown in Table 1 below.
Figure 0004820840

上記表1に示す結果から明らかなように各実施例に係る窒化けい素製耐摩耗性部材においては、焼結工程途中で所定の保持操作を実施した後に本焼結を実施して形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、強度特性が良好であり、転がり寿命が10回を超え耐久性に優れた窒化けい素製耐摩耗性部材が得られた。 As is clear from the results shown in Table 1, the silicon nitride wear-resistant member according to each example is formed by carrying out main sintering after performing a predetermined holding operation during the sintering process. Therefore, the oxygen concentration of the sintered body is reduced, the generation of pores is suppressed, the maximum pore diameter is miniaturized, the strength characteristics are good, the rolling life is more than 10 8 times, and the durability is excellent A wear resistant member made of silicon nitride was obtained.

一方、焼結工程の途中での保持操作を実施しない比較例1においては、酸素の低減効果が少なく気孔の残存が多く、強度特性および転がり寿命が低下した。   On the other hand, in Comparative Example 1 in which the holding operation in the middle of the sintering process was not performed, the effect of reducing oxygen was small and many pores remained, resulting in a decrease in strength characteristics and rolling life.

一方、比較例2のように焼結体の冷却速度を大きく設定し、急激に冷却した場合は脱酸素効果が十分ではなく、また最大気孔径の縮小効果が少なくなり転がり寿命が低下した。   On the other hand, when the cooling rate of the sintered body was set large as in Comparative Example 2 and cooled rapidly, the deoxygenation effect was not sufficient, and the effect of reducing the maximum pore diameter was reduced, resulting in a reduction in rolling life.

また、原料粉末中の酸素量が過大である比較例3においては、焼結途中の保持操作および徐冷を実施しても気孔率が大きく、また最大気孔径も大きくなるため、強度および転がり寿命が共に低下することが判明した。   Further, in Comparative Example 3 in which the amount of oxygen in the raw material powder is excessive, the porosity and the maximum pore diameter are increased even if the holding operation and slow cooling during the sintering are performed, so that the strength and rolling life are increased. It was found that both decreased.

次に本発明に係る耐摩耗性部材を軸受材の転動ボールに適用した場合について以下の実施例および比較例を参照して具体的に説明する。   Next, the case where the wear resistant member according to the present invention is applied to a rolling ball of a bearing material will be specifically described with reference to the following examples and comparative examples.

[実施例1B〜2Bおよび比較例1B〜3B]
前記実施例1〜2および比較例1〜3において作成した調合造粒粉をそれぞれ金型に充填加圧して球状の予備成形体を調製した。さらに各予備成形体を120MPaの成形圧でラバープレス処理を実施することにより、圧砕強度測定用および転がり寿命測定用サンプルとしての直径11mmの球状成形体をそれぞれ調製した。
[Examples 1B to 2B and Comparative Examples 1B to 3B]
Each of the prepared granulated powders prepared in Examples 1 and 2 and Comparative Examples 1 to 3 was filled and pressed into a mold to prepare a spherical preform. Further, each preform was subjected to a rubber press treatment at a molding pressure of 120 MPa to prepare spherical molded bodies having a diameter of 11 mm as samples for crushing strength measurement and rolling life measurement.

次に各球状成形体について、実施例1と同一条件で脱脂処理を行った後に、表2に示す焼結途中での保持条件,焼結条件,焼結後の冷却速度およびHIP条件で処理し、さらに得られた焼結体を研摩加工して直径が9.525mmであり、表面粗さが0.01μmRaであるボール状に形成することにより、それぞれ実施例1B〜2Bおよび比較例1B〜3Bに係る耐摩耗性部材としての軸受用転動ボールを調製した。なお、上記表面粗さは、触針式表面粗さ測定器を使用し、転動ボールの赤道上を測定して求めた中心線平均粗さ(Ra)として測定した。   Next, each spherical molded body was degreased under the same conditions as in Example 1, and then processed under the holding conditions, sintering conditions, cooling rate after sintering, and HIP conditions shown in Table 2. Further, the obtained sintered bodies were polished to form balls having a diameter of 9.525 mm and a surface roughness of 0.01 μmRa, so that Examples 1B to 2B and Comparative Examples 1B to 3B were formed. A rolling ball for a bearing as a wear-resistant member according to the above was prepared. The surface roughness was measured as the center line average roughness (Ra) obtained by measuring the equator of the rolling ball using a stylus type surface roughness measuring instrument.

また上記のようにして調製した各実施例および比較例に係る耐摩耗性部材としての転動ボールについて、全酸素量,気孔率,粒界相中の最大気孔径,圧砕強度,破壊靭性値および転がり疲労寿命を測定した。   For the rolling balls as wear-resistant members according to the examples and comparative examples prepared as described above, the total oxygen content, the porosity, the maximum pore diameter in the grain boundary phase, the crushing strength, the fracture toughness value, and The rolling fatigue life was measured.

なお、転がり疲労寿命は、図1に示すスラスト型転がり摩耗試験装置を使用して測定した。ここで前記実施例1等においては評価対象が平板状の耐摩耗性部材2であり、この耐摩耗性部材2の表面を転動するボールはSUJ2製転動鋼球3であったが、本実施例1B〜2Bおよび比較例1B〜3Bの窒化けい素製転動ボール8を評価対象とするため、耐摩耗性部材2の代わりにSUJ2製の軸受鋼板9を配置した。   The rolling fatigue life was measured using a thrust type rolling wear test apparatus shown in FIG. Here, in Example 1 or the like, the evaluation object is the flat wear-resistant member 2, and the ball rolling on the surface of the wear-resistant member 2 was SUJ2 rolling steel ball 3. In order to evaluate the rolling balls 8 made of silicon nitride of Examples 1B to 2B and Comparative Examples 1B to 3B, a bearing steel plate 9 made of SUJ2 was arranged instead of the wear resistant member 2.

そして各転動ボールの転がり疲労寿命は、上記のように各耐摩耗性部材から直径が9.525mmである3個の転動ボール8を調製する一方、SUJ2製鋼板9の上面に設定した直径40mmの軌道上に上記3個の転動ボール8を配置し、タービン油の油浴潤滑条件下でこの転動ボール8に5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボール8の表面が剥離するまでの時間として転がり疲労寿命を測定した。測定結果を下記表2に示す。

Figure 0004820840
The rolling fatigue life of each rolling ball is as follows. The three rolling balls 8 having a diameter of 9.525 mm are prepared from each wear-resistant member as described above, while the diameter set on the upper surface of the SUJ2 steel plate 9 is set. The three rolling balls 8 are arranged on a 40 mm track, and a load is applied so that a maximum contact stress of 5.9 GPa acts on the rolling balls 8 under the oil bath lubrication conditions of the turbine oil. When rotating under the condition of 1200 rpm, the rolling fatigue life was measured as the time until the surface of the silicon nitride sintered body rolling ball 8 was peeled off. The measurement results are shown in Table 2 below.
Figure 0004820840

上記表2に示す結果から明らかなように各実施例に係る窒化けい素製転動ボールにおいては、焼結工程途中で所定の保持操作を実施した後に本焼結を実施して形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、圧砕強度が高く、転がり疲労寿命が400時間を超え耐久性に優れた窒化けい素製転動ボールが得られた。   As is clear from the results shown in Table 2 above, the silicon nitride rolling balls according to the respective examples are formed by carrying out the main sintering after performing a predetermined holding operation during the sintering process. Therefore, the oxygen concentration of the sintered body is reduced, the generation of pores is suppressed, the maximum pore diameter is miniaturized, the crushing strength is high, the rolling fatigue life exceeds 400 hours, and the silicon nitride has excellent durability. A rolling ball was obtained.

一方、焼結工程の途中での保持操作を実施しない比較例1Bにおいては、酸素の低減効果が少なく気孔の残存が多く、圧砕強度および転がり疲労寿命が低下した。   On the other hand, in Comparative Example 1B in which the holding operation in the middle of the sintering process was not carried out, the effect of reducing oxygen was small and many pores remained, and the crushing strength and rolling fatigue life were reduced.

一方、比較例2Bのように焼結体の冷却速度を大きく設定し、急激に冷却した場合は脱酸素効果が十分ではなく、また最大気孔径の縮小化効果が少なくなり転がり疲労寿命が低下した。   On the other hand, when the cooling rate of the sintered body is set to a large value as in Comparative Example 2B and rapidly cooled, the deoxygenation effect is not sufficient, and the effect of reducing the maximum pore diameter is reduced and the rolling fatigue life is reduced. .

また、原料粉末中の酸素量が過大である比較例3Bにおいては、焼結途中の保持操作および徐冷を実施しても気孔率が大きく、また最大気孔径も大きくなるため、圧砕強度および転がり疲労寿命が共に低下することが判明した。   Further, in Comparative Example 3B in which the amount of oxygen in the raw material powder is excessive, the porosity and the maximum pore diameter are increased even if the holding operation and slow cooling during the sintering are performed, so that the crushing strength and rolling are increased. It was found that both fatigue lives were reduced.

なお、上記各実施例に係る窒化けい素製転動ボールの転がり疲労寿命を測定する際に、直径9.525mmの転動ボールを3個使用したが、他の直径を選択するとともに配置個数を変えた場合においても、その荷重条件や転動条件に応じた転がり特性が得られることが確認されている。   In addition, when measuring the rolling fatigue life of the silicon nitride rolling balls according to each of the above examples, three rolling balls having a diameter of 9.525 mm were used. Even in the case of changing, it has been confirmed that rolling characteristics corresponding to the load conditions and rolling conditions can be obtained.

次に前記実施例以外の組成または処理条件によって調製した板状の耐摩耗性部材について以下の実施例および比較例を参照して具体的に説明する。   Next, a plate-like wear-resistant member prepared according to a composition or processing conditions other than the above-described examples will be specifically described with reference to the following examples and comparative examples.

[実施例3〜27]
実施例3〜27として実施例1において使用した窒化けい素原料粉末と、Y粉末と、Al粉末と、表3に示すように平均粒径0.9〜1.0μmの各種希土類酸化物粉末の他に、平均粒径0.5μmのMgO粉末と、平均粒径1.0μmのAlN粉末の他に平均粒径0.4〜0.5μmの各種化合物粉末を表3に示す組成比となるように調合して原料混合体をそれぞれ調製した。
[Examples 3 to 27]
The silicon nitride raw material powder used in Example 1 as Examples 3 to 27, Y 2 O 3 powder, Al 2 O 3 powder, and an average particle size of 0.9 to 1.0 μm as shown in Table 3 In addition to various rare earth oxide powders, Table 3 shows MgO powder having an average particle size of 0.5 μm and various compound powders having an average particle size of 0.4 to 0.5 μm in addition to AlN powder having an average particle size of 1.0 μm. The raw material mixtures were prepared by blending so as to achieve the composition ratio shown.

次に得られた各原料混合体を実施例1と同一条件で成形脱脂処理した後、焼結途中において表3に示す条件で保持操作を実施した後、本焼結を実施し、さらにHIP処理することにより、それぞれ実施例3〜27に係る窒化けい素製耐摩耗性部材を製造した。   Next, each raw material mixture obtained was molded and degreased under the same conditions as in Example 1, followed by holding operation under the conditions shown in Table 3 during sintering, followed by main sintering, and further HIP treatment As a result, silicon nitride wear-resistant members according to Examples 3 to 27 were produced.

[比較例4〜9]
一方比較例4〜9として表3に示すようにYを過少量に添加したもの(比較例4)、Yを過量に添加したもの(比較例5)、TiOを過量に添加したもの(比較例6)、Alを過量に添加したもの(比較例7)、AlNを過量に添加したもの(比較例8)、MgOを過量に添加したもの(比較例9)の原料混合体をそれぞれ調製した。
[Comparative Examples 4 to 9]
On the other hand, as shown in Table 3 as Comparative Examples 4 to 9, Y 2 O 3 was added in an excessive amount (Comparative Example 4), Y 2 O 3 was added in an excessive amount (Comparative Example 5), and TiO 2 was excessive. (Comparative Example 6), Al 2 O 3 added excessively (Comparative Example 7), AlN added excessively (Comparative Example 8), MgO added excessively (Comparative Example 9) ) Raw material mixtures were prepared.

次に得られた各原料混合体を実施例3と同一条件で成形脱脂処理した後、表3に示す条件で焼結途中において保持操作を実施した後、本焼結し、さらにHIP処理することにより、それぞれ比較例4〜9に係る窒化けい素製耐摩耗性部材を製造した。   Next, each obtained raw material mixture was molded and degreased under the same conditions as in Example 3, and then held in the course of sintering under the conditions shown in Table 3, followed by main sintering and further HIP treatment. Thus, silicon nitride wear-resistant members according to Comparative Examples 4 to 9 were produced.

こうして製造した各実施例および比較例に係る各窒化けい素製耐摩耗性部材について、実施例1と同一条件で全酸素量、気孔率、粒界相中の最大気孔径、室温での三点曲げ強度、破壊靭性値および転がり寿命を測定して下記表3に示す結果を得た。

Figure 0004820840
For each silicon nitride wear-resistant member according to each of the examples and comparative examples thus manufactured, the total oxygen content, the porosity, the maximum pore diameter in the grain boundary phase, and three points at room temperature under the same conditions as in Example 1. The bending strength, fracture toughness value and rolling life were measured and the results shown in Table 3 below were obtained.
Figure 0004820840

上記表3に示す結果から明らかなように、所定量の希土類元素を含み、酸素量を規定した原料成形体の焼結工程の途中で所定条件で保持操作を実施するとともに、焼結後に徐冷して製造された各実施例に係る耐摩耗性部材においては、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、強度特性が良好であり、転がり寿命が10回を超えており、耐久性に優れた窒化けい素製耐摩耗性部材が得られている。 As is clear from the results shown in Table 3 above, a holding operation is performed under predetermined conditions in the course of the sintering process of the raw material compact that includes a predetermined amount of rare earth element and has an oxygen content defined, and is gradually cooled after sintering. In the wear-resistant member according to each of the examples manufactured as above, the oxygen concentration of the sintered body is reduced, the generation of pores is suppressed, the maximum pore diameter is miniaturized, and the strength characteristics are good. Further, a wear resistant member made of silicon nitride having a rolling life exceeding 10 8 times and excellent in durability has been obtained.

一方、比較例4〜9で示すように、希土類成分の添加量が本発明で規定する好ましい範囲外とした焼結体では、焼結途中での保持操作および焼結後の徐冷を実施しても、耐摩耗性部材表面の転がり寿命が低く、焼結体の全酸素量,気孔率,最大気孔径,三点曲げ強度等のいずれかの特性において本発明で規定する特性要件が満たされていないことが確認できる。   On the other hand, as shown in Comparative Examples 4 to 9, in the sintered body in which the addition amount of the rare earth component is outside the preferable range specified in the present invention, the holding operation during the sintering and the slow cooling after the sintering are performed. However, the rolling life of the surface of the wear-resistant member is low, and the characteristic requirements specified in the present invention are satisfied in any of the characteristics such as the total oxygen content, porosity, maximum pore diameter, and three-point bending strength of the sintered body. It can be confirmed that it is not.

次に上記実施例3〜27および比較例4〜9に係る耐摩耗性部材を軸受材の転動ボールに適用した場合について以下の実施例および比較例を参照して具体的に説明する。   Next, the case where the wear-resistant members according to Examples 3 to 27 and Comparative Examples 4 to 9 are applied to rolling balls of bearing materials will be specifically described with reference to the following Examples and Comparative Examples.

[実施例3B〜27Bおよび比較例4B〜9B]
前記実施例3〜27および比較例4〜9において作成した調合造粒粉をそれぞれ金型に充填加圧して球状の予備成形体を調製した。さらに各予備成形体を100MPaの成形圧でラバープレス処理を実施することにより、圧砕強度測定用および転がり寿命測定用サンプルとしての直径11mmの球状成形体をそれぞれ調製した。
[Examples 3B to 27B and Comparative Examples 4B to 9B]
Each of the prepared granulated powders prepared in Examples 3 to 27 and Comparative Examples 4 to 9 was filled and pressed into a mold to prepare a spherical preform. Further, each preform was subjected to a rubber press treatment at a molding pressure of 100 MPa to prepare spherical molded bodies having a diameter of 11 mm as samples for crushing strength measurement and rolling life measurement.

次に各球状成形体について、実施例1と同一条件で脱脂処理を行った後に、表4に示す焼結途中での保持条件,焼結条件,焼結後の冷却速度およびHIP条件で処理し、さらに得られた焼結体を研摩加工して直径が9.525mmであり、表面粗さが0.01μmRaであるボール状に形成することにより、それぞれ実施例3B〜27Bおよび比較例4B〜9Bに係る耐摩耗性部材としての軸受用転動ボールを調製した。なお、上記表面粗さは、触針式表面粗さ測定器を使用し、転動ボールの赤道上を測定して求めた算術平均粗さ(Ra)として測定した。   Next, each spherical molded body was degreased under the same conditions as in Example 1, and then treated under the holding conditions, sintering conditions, cooling rate after sintering, and HIP conditions shown in Table 4. Further, the obtained sintered bodies were polished to form balls having a diameter of 9.525 mm and a surface roughness of 0.01 μmRa, so that Examples 3B to 27B and Comparative Examples 4B to 9B were obtained. A rolling ball for a bearing as a wear-resistant member according to the above was prepared. The surface roughness was measured as the arithmetic average roughness (Ra) obtained by measuring the equator of the rolling ball using a stylus type surface roughness measuring instrument.

また上記のようにして調製した各実施例および比較例に係る耐摩耗性部材としての転動ボールについて、全酸素量,気孔率,粒界相中の最大気孔径,圧砕強度,破壊靭性値および転がり疲労寿命を実施例1Bと同様にして測定した。測定結果を下記表4に示す。

Figure 0004820840
For the rolling balls as wear-resistant members according to the examples and comparative examples prepared as described above, the total oxygen content, the porosity, the maximum pore diameter in the grain boundary phase, the crushing strength, the fracture toughness value, and The rolling fatigue life was measured in the same manner as in Example 1B. The measurement results are shown in Table 4 below.
Figure 0004820840

上記表4に示す結果から明らかなように、所定量の希土類元素を含み、酸素量を規定した原料成形体の焼結工程の途中で所定条件で保持操作を実施するとともに、焼結後に徐冷して製造された各実施例に係る転動ボールにおいては、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、圧砕強度特性が良好であり、転がり疲労寿命が400時間を超えており、耐久性に優れた窒化けい素製転動ボールが得られている。   As is clear from the results shown in Table 4 above, a holding operation is performed under predetermined conditions in the course of the sintering process of the raw material compact that includes a predetermined amount of rare earth elements and has a specified amount of oxygen, and is gradually cooled after sintering. In the rolling ball according to each example manufactured as described above, the oxygen concentration of the sintered body is reduced, the generation of pores is suppressed, the maximum pore diameter is miniaturized, and the crushing strength characteristics are good. The rolling fatigue life exceeds 400 hours, and a silicon nitride rolling ball excellent in durability is obtained.

一方、比較例4B〜9Bで示すように、希土類成分の添加量が本発明で規定する範囲外とした焼結体では、焼結途中での保持操作および焼結後の徐冷を実施しても、転動ボールの転がり疲労寿命が低く、焼結体の全酸素量,気孔率,最大気孔径,三点曲げ強度等のいずれかの特性において本発明で規定する特性要件が満たされていないことが確認できる。   On the other hand, as shown in Comparative Examples 4B to 9B, in the sintered body in which the addition amount of the rare earth component is out of the range specified in the present invention, the holding operation during the sintering and the slow cooling after the sintering are performed. However, the rolling fatigue life of the rolling ball is low, and the characteristic requirements specified in the present invention are not satisfied in any of the characteristics such as the total oxygen content, porosity, maximum pore diameter, and three-point bending strength of the sintered body. Can be confirmed.

次に、酸素濃度が異なる部位を形成した本発明の耐摩耗制部材の具体的な実施例およびその評価結果について述べる。   Next, specific examples of the wear resistant member of the present invention in which parts having different oxygen concentrations are formed and the evaluation results thereof will be described.

[実施例101〜105および比較例101〜102]
酸素含有量が1.2質量%の窒化けい素(Si)粉末に、焼結助剤として希土類化合物粉末とアルミニウム化合物粉末、さらに他の金属化合物粉末を、表5に示す組成で添加し、湿式ボールミルを用いて混合した後に乾燥して、それぞれ原料混合物を調製した。
[Examples 101 to 105 and Comparative examples 101 to 102]
To the silicon nitride (Si 3 N 4 ) powder having an oxygen content of 1.2% by mass, a rare earth compound powder and an aluminum compound powder as a sintering aid, and other metal compound powders are added in the composition shown in Table 5. Then, they were mixed using a wet ball mill and then dried to prepare respective raw material mixtures.

次に、得られた各原料混合物に有機バインダを所定量添加して混合した後、CIP法(成形圧力=100MPa)により球状の成形体をそれぞれ作製した。得られた各成形体を450℃の空気気流中にて脱脂した後、常温から1200〜1500℃の温度まで0.01Pa以下の真空中で昇温し、さらに同温度で2〜6時間保持した。引き続いて炉内に窒素ガスを導入し、1600〜1700℃で2〜5時間焼結することにより、それぞれ直径10mmの球状焼結体(窒化けい素焼結体)を得た。   Next, a predetermined amount of an organic binder was added to and mixed with each of the obtained raw material mixtures, and then spherical molded bodies were produced by the CIP method (molding pressure = 100 MPa). Each obtained molded body was degreased in an air stream at 450 ° C., and then heated in a vacuum of 0.01 Pa or less from room temperature to a temperature of 1200 to 1500 ° C., and further held at the same temperature for 2 to 6 hours. . Subsequently, nitrogen gas was introduced into the furnace and sintered at 1600 to 1700 ° C. for 2 to 5 hours to obtain spherical sintered bodies (silicon nitride sintered bodies) each having a diameter of 10 mm.

また、本発明との比較例101として、真空中での昇温および保持を実施せずに、窒素雰囲気中で常温から昇温して焼結する以外は、実施例102と同様にして球状焼結体(窒化けい素焼結体)を作製した。さらに、比較例102として、全酸素量が6質量%を超えるような組成比にする以外は、実施例101と同様にして球状焼結体(窒化けい素焼結体)を作製した。   In addition, as Comparative Example 101 with the present invention, spherical firing was performed in the same manner as in Example 102, except that sintering was performed by raising the temperature from room temperature in a nitrogen atmosphere without performing heating and holding in vacuum. A sintered body (silicon nitride sintered body) was produced. Further, as Comparative Example 102, a spherical sintered body (silicon nitride sintered body) was produced in the same manner as Example 101, except that the composition ratio was such that the total oxygen amount exceeded 6 mass%.

このようにして得た実施例101〜105および比較例101〜102による各球状焼結体について、中心部と外周部の酸素濃度、およびビッカース硬さを測定した。酸素濃度の測定値については、球状焼結体の断面において、中心部と外周部から任意の測定点を3点選び出し、各測定点の酸素濃度をEPMAで測定し、これら測定値を平均した値を示す。ビッカース硬さはJIS R−1610(試験荷重98.07N)に準じて測定した。   For each of the spherical sintered bodies according to Examples 101 to 105 and Comparative Examples 101 to 102 obtained in this manner, the oxygen concentration and Vickers hardness at the central part and the outer peripheral part were measured. Regarding the measured value of the oxygen concentration, in the cross section of the spherical sintered body, three arbitrary measurement points were selected from the central portion and the outer peripheral portion, the oxygen concentration at each measurement point was measured with EPMA, and these measured values were averaged. Indicates. Vickers hardness was measured according to JIS R-1610 (test load 98.07 N).

さらに、各球状焼結体の中心部と外周部における焼結助剤の金属成分量の濃度差も求めた。また、各球状焼結体について、焼結後の割れやカケによる不良発生率を調べた。これらの測定結果を表5に示す。なお、各測定にあたり、焼結体は焼き上り面をそのまま残した状態で測定した。

Figure 0004820840
Furthermore, the concentration difference in the amount of metal component of the sintering aid at the center and the outer periphery of each spherical sintered body was also determined. Moreover, about each spherical sintered compact, the defect generation rate by the crack after a sintering and a chip was investigated. These measurement results are shown in Table 5. In each measurement, the sintered body was measured in a state where the burned-up surface was left as it was.
Figure 0004820840

表5から明らかなように、本発明の実施例による各窒化けい素焼結体は中心部と外周部の酸素濃度差が大きいことが分かる。そして、外周部に欠陥の発生原因となるガス成分量が少ないことから、焼結体の割れやカケなどによる不良発生率が低いことが分かる。さらに、外周部の欠陥が少ないことから、表面加工に要する手間やコストも削減することができる。なお、各実施例による窒化けい素焼結体について、不活性ガス融解−赤外線吸収法に準ずる酸素分析計により全酸素量を測定したところ、いずれも全酸素量は6質量%以下であった。   As can be seen from Table 5, each silicon nitride sintered body according to the example of the present invention has a large difference in oxygen concentration between the central portion and the outer peripheral portion. And since there is little gas component amount which becomes the cause of generation | occurrence | production of a defect in an outer peripheral part, it turns out that the defect generation rate by the crack of a sintered compact, a crack, etc. is low. Furthermore, since there are few defects in the outer peripheral portion, labor and cost required for surface processing can be reduced. In addition, about the silicon nitride sintered compact by each Example, when the total oxygen amount was measured with the oxygen analyzer according to an inert gas fusion-infrared absorption method, all the total oxygen amount was 6 mass% or less.

[実施例106〜110および比較例103]
実施例101〜105および比較例101の各窒化けい素焼結体と同組成によって、それぞれ直径10mmのベアリングボール素球を作製した。各素球の焼結は、実施例101〜105および比較例101と同様に焼結したものに対し、さらにHIP処理を施した。これら各素球について、表面から30μmの外周部、表面から1mmの中間部、および中心部の3箇所の酸素濃度を、実施例101と同様にして測定した。その結果を表6に示す。また、各素球に対して、直径9.525mm、表面粗さRa0.3μmとなるように研磨加工を施して、それぞれ仕上げ球とした。

Figure 0004820840
[Examples 106 to 110 and Comparative Example 103]
Bearing ball balls each having a diameter of 10 mm were produced using the same composition as each of the silicon nitride sintered bodies of Examples 101 to 105 and Comparative Example 101. For sintering of each element ball, HIP treatment was further applied to those sintered in the same manner as in Examples 101 to 105 and Comparative Example 101. For each of these elementary spheres, the oxygen concentration at the three locations of the outer peripheral portion of 30 μm from the surface, the intermediate portion of 1 mm from the surface, and the central portion was measured in the same manner as in Example 101. The results are shown in Table 6. Each elementary sphere was polished to have a diameter of 9.525 mm and a surface roughness Ra of 0.3 μm to obtain finished spheres.
Figure 0004820840

表6から明らかなように、本発明の実施例による各ベアリングボール(仕上げ球)は、酸素濃度が中心部から外周部にいくに従って減少しており、実質的に酸素が濃度傾斜していることが分かる。   As is apparent from Table 6, in each bearing ball (finishing ball) according to the embodiment of the present invention, the oxygen concentration decreases from the central portion to the outer peripheral portion, and the oxygen concentration is substantially inclined. I understand.

[実施例111〜113および比較例104〜108]
実施例107と同様な組成および製法を適用して、それぞれ表7に示す直径を有するベアリングボール素球を作製した。さらに、比較例104については、実施例107と同様な組成および製法を適用して、直径2mmのベアリングボール素球を作製した。比較例105〜108としては、比較例103と同様な組成および製法(真空昇温および保持なし)を適用して、それぞれ表7に示す直径を有するベアリングボール素球を作製した。これら各素球の外周部、中間部および中心部の酸素濃度を、実施例101と同様にして測定した。また、焼結後の焼結体の不良発生率についても測定した。焼結体の不良発生率としては、焼結後に目視により焼結体表面に割れが存在することが確認できるものの割合を測定した。その結果を表7に示す。

Figure 0004820840
[Examples 111 to 113 and Comparative Examples 104 to 108]
By applying the same composition and manufacturing method as in Example 107, bearing ball balls each having a diameter shown in Table 7 were produced. Further, for Comparative Example 104, the same composition and manufacturing method as in Example 107 were applied to produce a ball bearing ball having a diameter of 2 mm. As Comparative Examples 105 to 108, the same composition and manufacturing method (without vacuum temperature increase and holding) as in Comparative Example 103 were applied to produce bearing ball base balls having the diameters shown in Table 7, respectively. The oxygen concentration in the outer peripheral part, the intermediate part, and the central part of each elementary sphere was measured in the same manner as in Example 101. Moreover, it measured also about the defect incidence rate of the sintered compact after sintering. As the defect occurrence rate of the sintered body, the ratio of those that could be confirmed visually to have cracks on the surface of the sintered body after sintering was measured. The results are shown in Table 7.
Figure 0004820840

表7から明らかなように、直径9mm以上のベアリングボール素球において、中心部と外周部に明確な酸素濃度差が生じることが分かる。そして、これら素球(窒化けい素焼結体)は不良発生率が低いことが分かる。一方、直径2mmのベアリングボール素球では、ほとんど酸素濃度傾斜が生じていない。これは直径2mmと小型のボールの場合、ボールの体積が小さいため、そこに存在する不要なガス成分が相対的に少なく、真空処理の効果が小さいためである。また、比較例105〜比較例108のように真空処理を実施していないベアリングボール素球(窒化けい素焼結体)は不良発生率が高いことが分かる。このことから、本発明は特に直径9mm以上のベアリングボールに対して有効であることが分かる。   As is clear from Table 7, it can be seen that a clear difference in oxygen concentration occurs between the central portion and the outer peripheral portion of the ball bearing ball having a diameter of 9 mm or more. And it turns out that these elementary spheres (silicon nitride sintered body) have a low defect occurrence rate. On the other hand, in the ball bearing ball having a diameter of 2 mm, almost no oxygen concentration gradient occurs. This is because in the case of a small ball having a diameter of 2 mm, since the volume of the ball is small, there are relatively few unnecessary gas components present therein, and the effect of the vacuum treatment is small. It can also be seen that bearing ball base balls (silicon nitride sintered bodies) that are not subjected to vacuum treatment as in Comparative Examples 105 to 108 have a high defect occurrence rate. From this, it can be seen that the present invention is particularly effective for bearing balls having a diameter of 9 mm or more.

なお、本発明の好ましい範囲外の一例である比較例104は直径2mmと小型のボールに対し真空処理を施しても酸素濃度の傾斜がみられないことを示した一例であり、耐摩耗性部材として直径2mmのベアリングボールを本発明から除外するものではない。例えば、比較例104と比較例108を比べて分かる通り、真空処理を施した比較例104の方が不良発生率は小さくなっており小型のボールに対しても本発明は有効であると言える。   In addition, Comparative Example 104, which is an example outside the preferable range of the present invention, is an example showing that the inclination of the oxygen concentration is not observed even when vacuum treatment is performed on a small ball having a diameter of 2 mm. As an example, a bearing ball having a diameter of 2 mm is not excluded from the present invention. For example, as can be seen from comparison between the comparative example 104 and the comparative example 108, it can be said that the comparative example 104 subjected to the vacuum treatment has a smaller defect occurrence rate, and the present invention is effective for a small ball.

[実施例114〜115]
酸素含有量が0.8質量%の窒化けい素粉末87.2質量%に対して、酸化イットリウム粉末を5質量%、酸化アルミニウム粉末を3質量%、窒化アルミニウム粉末を4質量%、および酸化チタン粉末を0.8質量%添加して混合し、原料混合物を調製した。
[Examples 114 to 115]
5% by mass of yttrium oxide powder, 3% by mass of aluminum oxide powder, 4% by mass of aluminum nitride powder, and titanium oxide with respect to 87.2% by mass of silicon nitride powder having an oxygen content of 0.8% by mass 0.8% by mass of powder was added and mixed to prepare a raw material mixture.

次に、得られた原料混合物に有機バインダを所定量添加して混合した後、CIP法(成形圧力=100MPa)により球状の成形体をそれぞれ作製した。得られた各成形体を450℃の空気気流中にて脱脂した後、表8に示す条件で真空昇温および真空処理を施した。その後、窒素雰囲気中にて1650℃×5時間の条件で焼結し、さらにHIP処理を行って、それぞれ直径15mmのベアリング素球(窒化けい素焼結体)を得た。   Next, a predetermined amount of an organic binder was added to and mixed with the obtained raw material mixture, and then spherical molded bodies were produced by the CIP method (molding pressure = 100 MPa). Each obtained compact was degreased in an air stream at 450 ° C., and then subjected to vacuum temperature increase and vacuum treatment under the conditions shown in Table 8. Thereafter, sintering was performed in a nitrogen atmosphere under conditions of 1650 ° C. × 5 hours, and further HIP treatment was performed to obtain bearing balls (silicon nitride sintered bodies) each having a diameter of 15 mm.

このようにして得た各素球について、外周部、中間部および中心部の3箇所の酸素濃度を、実施例101と同様にして測定した。さらに、各素球を表面粗さRaが0.1μmとなるように研磨加工した後、耐摩耗性試験を行った。耐摩耗性試験は、図1に示すスラスト試験機を用い、ベアリングボールの表面が薄利するまでの時間を測定した。これらの結果を表8に示す。

Figure 0004820840
With respect to each of the elementary spheres thus obtained, the oxygen concentration at three locations of the outer peripheral portion, the intermediate portion, and the central portion was measured in the same manner as in Example 101. Further, each element ball was polished so that the surface roughness Ra was 0.1 μm, and then an abrasion resistance test was performed. In the abrasion resistance test, a thrust tester shown in FIG. 1 was used, and the time until the surface of the bearing ball was thinned was measured. These results are shown in Table 8.
Figure 0004820840

表8から明らかなように、本発明の窒化けい素焼結体を用いたベアリングボールは耐摩耗性に優れることが分かる。   As can be seen from Table 8, it can be seen that the bearing ball using the silicon nitride sintered body of the present invention is excellent in wear resistance.

上記実施例の耐摩耗性部材を構成する窒化けい素焼結体によれば、例えば耐摩耗性部材に求められる各種特性を満足させた上で、不良発生率を低減することができると共に、加工に要するコストなどを削減することが可能となる。従って、各実施例に係る窒化けい素焼結体を用いることによって、信頼性や寿命特性に優れると共に、製造コストの低減を図った耐摩耗性部材を提供することが可能となる。   According to the silicon nitride sintered body constituting the wear-resistant member of the above embodiment, for example, while satisfying various characteristics required for the wear-resistant member, it is possible to reduce the defect occurrence rate and to process it. Costs required can be reduced. Therefore, by using the silicon nitride sintered body according to each embodiment, it is possible to provide a wear-resistant member that is excellent in reliability and life characteristics and that is reduced in manufacturing cost.

本発明で得られる耐摩耗性部材の転がり寿命特性を測定するためのスラスト型転がり摩耗試験装置の構成を示す断面図。Sectional drawing which shows the structure of the thrust type | mold rolling wear test apparatus for measuring the rolling life characteristic of the wear-resistant member obtained by this invention. 本発明で得られる耐摩耗性部材を構成する窒化けい素焼結体における酸素濃度が異なる各領域を模式図に示す図。The figure which shows each area | region where oxygen concentration differs in the silicon nitride sintered compact which comprises the wear-resistant member obtained by this invention in a schematic diagram.

符号の説明Explanation of symbols

1 装置本体
2 耐摩耗性部材
3 転動鋼球
4 ガイド板
5 駆動回転軸
6 保持器
7 潤滑油
8 転動ボール(窒化けい素製)
9 軸受鋼板(SUJ2製)
A 中心部
B 外周部
C 中間部
DESCRIPTION OF SYMBOLS 1 Apparatus body 2 Wear-resistant member 3 Rolling steel ball 4 Guide plate 5 Drive rotary shaft 6 Cage 7 Lubricating oil 8 Rolling ball (made of silicon nitride)
9 Bearing steel plate (SUJ2)
A Center part B Outer part C Middle part

Claims (9)

酸素を1.5質量%以下、α相型窒化けい素を75〜97質量%含有し、平均粒径が1.0μm以下の窒化けい素粉末に、希土類元素を酸化物に換算して1〜10質量%と、アルミニウムおよびマグネシウムの少なくとも一方を酸化物に換算して0.2〜5質量%と、窒化アルミニウムを5質量%以下と、Ti,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して0.2〜5質量%とを添加した原料混合体を成形して成形体を調製し、得られた成形体を脱脂後、焼結する途中、0.01Pa以下の真空中で温度1250〜1600℃の温度または窒素雰囲気中で温度1500℃〜1600℃で0.5〜10時間保持した後、温度1650℃〜1850℃で本焼結し、上記焼結温度から、前記希土類元素により焼結時に形成された液相が凝固するまでに至る焼結体の冷却速度を毎時100℃以下にして徐冷することにより、全酸素が4.5質量%以下、気孔率が0.5%以下、粒界相中の最大気孔径が0.2μm以下である窒化けい素焼結体から成る耐摩耗性部材を調製することを特徴とする窒化けい素製耐摩耗性部材の製造方法。 In the case of silicon nitride powder containing oxygen of 1.5 mass% or less and α-phase type silicon nitride of 75 to 97 mass% and having an average particle size of 1.0 μm or less, rare earth elements are converted into oxides and 1 to 10% by mass, 0.2 to 5% by mass in terms of oxide of at least one of aluminum and magnesium, 5% by mass or less of aluminum nitride, Ti, Hf, Zr, W, Mo, Ta, Nb, A raw material mixture is prepared by converting at least one selected from the group consisting of Cr into an oxide and 0.2 to 5% by mass is added to prepare a molded body, and after degreasing the obtained molded body During sintering, after holding at a temperature of 1250 to 1600 ° C. in a vacuum of 0.01 Pa or less or at a temperature of 1500 to 1600 ° C. for 0.5 to 10 hours in a nitrogen atmosphere, at a temperature of 1650 to 1850 ° C. From the sintering temperature, the main sintering By slowly cooling the sintered body at a cooling rate of 100 ° C./hour or less until the liquid phase formed during sintering with the rare earth element solidifies, the total oxygen is 4.5% by mass or less and the porosity is 0. A method for producing a wear-resistant member made of silicon nitride, characterized by preparing a wear-resistant member made of a sintered silicon nitride having a maximum pore diameter of 5% or less and a grain boundary phase of 0.2 μm or less . 焼結後、前記窒化けい素焼結体に対し、300気圧以上の非酸化性雰囲気中で温度1600℃〜1850℃で熱間静水圧プレス(HIP)処理を実施することを特徴とする請求項1記載の窒化けい素製耐摩耗性部材の製造方法。 The hot isostatic pressing (HIP) treatment is performed on the silicon nitride sintered body at a temperature of 1600 ° C to 1850 ° C in a non-oxidizing atmosphere of 300 atm or higher after sintering. The manufacturing method of the wear-resistant member made from silicon nitride of description. 前記窒化けい素焼結体から成る耐摩耗性部材を転がり軸受け部材とすることを特徴とする請求項1記載の耐摩耗性部材の製造方法。 2. The method for producing a wear-resistant member according to claim 1, wherein the wear-resistant member made of the silicon nitride sintered body is a rolling bearing member. 前記窒化けい素焼結体が、微量の酸素を含有する焼結体であって、酸素の濃度が中心部に比べて0.2質量%以上2質量%以下の範囲で低減された低酸素濃度の外周部を形成することを特徴とする請求項1記載の耐摩耗性部材の製造方法。 The silicon nitride sintered body is a sintered body containing a small amount of oxygen, and has a low oxygen concentration in which the oxygen concentration is reduced in the range of 0.2% by mass or more and 2% by mass or less compared to the central part. 2. A method for manufacturing a wear-resistant member according to claim 1, wherein an outer peripheral portion is formed. 前記窒化けい素焼結体の硬度をビッカース硬さでHv1200以上とすることを特徴とする請求項1記載の耐摩耗性部材の製造方法。 The method for manufacturing a wear-resistant member according to claim 1, wherein the silicon nitride sintered body has a Vickers hardness of Hv 1200 or higher. 請求項記載の耐摩耗性部材の製造方法において、前記外周部は前記中心部に対する焼結助剤中の金属成分の濃度差を0.2質量%未満とすることを特徴とする耐摩耗性部材の製造方法。 5. The method for producing a wear-resistant member according to claim 4 , wherein the outer peripheral portion has a concentration difference of a metal component in the sintering aid with respect to the central portion of less than 0.2% by mass. Manufacturing method of member. 請求項記載の耐摩耗性部材の製造方法において、前記中心部に対する前記酸素濃度の差が1質量%以下の中間部を形成することを特徴とする耐摩耗性部材の製造方法。 5. The method for manufacturing a wear-resistant member according to claim 4 , wherein an intermediate portion in which the difference in oxygen concentration with respect to the central portion is 1% by mass or less is formed. 請求項記載の耐摩耗性部材の製造方法において、前記耐摩耗性部材はベアリングボールであることを特徴とする耐摩耗性部材の製造方法。 5. The method for manufacturing a wear-resistant member according to claim 4 , wherein the wear-resistant member is a bearing ball. 請求項記載の耐摩耗性部材の製造方法において、前記ベアリングボールの直径を9mm以上とすることを特徴とする耐摩耗性部材の製造方法。 9. The method for manufacturing a wear-resistant member according to claim 8 , wherein a diameter of the bearing ball is 9 mm or more.
JP2008116008A 2001-01-12 2008-04-25 Method for producing wear-resistant member made of silicon nitride Expired - Lifetime JP4820840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116008A JP4820840B2 (en) 2001-01-12 2008-04-25 Method for producing wear-resistant member made of silicon nitride

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001005010 2001-01-12
JP2001005010 2001-01-12
JP2001052653 2001-02-27
JP2001052653 2001-02-27
JP2008116008A JP4820840B2 (en) 2001-01-12 2008-04-25 Method for producing wear-resistant member made of silicon nitride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001399360A Division JP4795588B2 (en) 2001-01-12 2001-12-28 Wear resistant parts made of silicon nitride

Publications (2)

Publication Number Publication Date
JP2008273829A JP2008273829A (en) 2008-11-13
JP4820840B2 true JP4820840B2 (en) 2011-11-24

Family

ID=40052293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116008A Expired - Lifetime JP4820840B2 (en) 2001-01-12 2008-04-25 Method for producing wear-resistant member made of silicon nitride

Country Status (1)

Country Link
JP (1) JP4820840B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945382B2 (en) * 2010-01-07 2016-07-05 株式会社ニッカトー Silicon nitride sintered body and wear-resistant member
US9719942B2 (en) 2010-01-07 2017-08-01 Nikkato Corporation Sintered ceramic and ceramic sphere
KR102408531B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride ball with toughness and strength

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505179B2 (en) * 1986-12-16 1996-06-05 日本碍子株式会社 High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2008273829A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4795588B2 (en) Wear resistant parts made of silicon nitride
US7056850B2 (en) Wear-resistant silicon nitride member and method of manufacture thereof
JP6400478B2 (en) Wear-resistant material
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP5002155B2 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
JP5830439B2 (en) Rolling element and manufacturing method thereof
JP5268750B2 (en) Impact resistant member and manufacturing method thereof
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
JP4693374B2 (en) Manufacturing method of sintered silicon nitride
JP2011016716A (en) Sintered silicon nitride
US20230093291A1 (en) Silicon nitride sintered body, wear-resistant member using the same, and method for producing silicon nitride sintered body
JP4497787B2 (en) Rolling ball
JP2736387B2 (en) Silicon nitride-based sintered body for rolling bearing material and method for producing the same
JP2004002067A (en) Wear-resistant member and its production process
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP4869171B2 (en) Method for producing wear-resistant member made of silicon nitride
JP5349525B2 (en) Rolling element
JP4939736B2 (en) Manufacturing method of sintered silicon nitride
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2001130966A (en) Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same
JP2008230922A (en) Silicon nitride sintered compact and sliding member using the same
JP2002068844A (en) Silicon nitride sintered compact having property of free- cutting and production method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4820840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

EXPY Cancellation because of completion of term