JP4693374B2 - Manufacturing method of sintered silicon nitride - Google Patents

Manufacturing method of sintered silicon nitride Download PDF

Info

Publication number
JP4693374B2
JP4693374B2 JP2004214866A JP2004214866A JP4693374B2 JP 4693374 B2 JP4693374 B2 JP 4693374B2 JP 2004214866 A JP2004214866 A JP 2004214866A JP 2004214866 A JP2004214866 A JP 2004214866A JP 4693374 B2 JP4693374 B2 JP 4693374B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
raw material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004214866A
Other languages
Japanese (ja)
Other versions
JP2006036554A (en
Inventor
裕 小森田
弘喜 藤内
峰行 山賀
実 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2004214866A priority Critical patent/JP4693374B2/en
Publication of JP2006036554A publication Critical patent/JP2006036554A/en
Application granted granted Critical
Publication of JP4693374B2 publication Critical patent/JP4693374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls

Description

本発明は窒化けい素を主成分とする窒化けい素体の製造方法に係り、特に結晶組織が均質で粒界強度のばらつきが小さく、ベアリングボール等の軸受け転動体,切削工具,圧延治具,摺動部材等の構成材として使用した場合に、優れた機械的強度、耐摩耗性、転がり寿命特性を安定的に発揮し得る窒化けい素焼結体の製造方法に関する。 The present invention relates to a method for producing a silicon nitride body mainly composed of silicon nitride, and in particular, has a uniform crystal structure and a small variation in grain boundary strength, such as bearing rolling elements such as bearing balls, cutting tools, rolling jigs, The present invention relates to a method for producing a silicon nitride sintered body that can stably exhibit excellent mechanical strength, wear resistance, and rolling life characteristics when used as a constituent material for a sliding member or the like.

従来、回転軸を支持するベアリング(軸受)部材として、特にベアリングボールの構成材として、軸受鋼等の金属材料が一般に使用されていた。しかしながら、軸受鋼等の金属材料では耐摩耗性が十分ではないことから、例えば電子機器等のように5,000rpm以上の高速回転が要求される製品分野においては、軸受けの寿命のばらつきが大きくなり信頼性のある高速回転駆動が安定して得られないという問題点があった。   Conventionally, a metal material such as bearing steel has been generally used as a bearing (bearing) member for supporting a rotating shaft, particularly as a component of a bearing ball. However, since metal materials such as bearing steel do not have sufficient wear resistance, variations in bearing life will increase in product fields that require high-speed rotation of 5,000 rpm or more, such as electronic equipment. There was a problem that a reliable high-speed rotation drive could not be obtained stably.

上記のような問題点を解決する一手段として、近年になってベアリングボールの構成材として窒化珪素焼結体を用いることが試行されている。窒化珪素焼結体はセラミックスの中でも摺動特性に優れることから、一部の使用態様において耐摩耗性は十分であり、高速回転を行った場合においても信頼性が高い回転駆動をある程度の期間にわたって実現できることが確認されている。   As a means for solving the above-mentioned problems, recently, an attempt has been made to use a silicon nitride sintered body as a component of a bearing ball. Since the silicon nitride sintered body has excellent sliding characteristics among ceramics, the wear resistance is sufficient in some usage modes, and even when high-speed rotation is performed, highly reliable rotational driving is performed for a certain period of time. It has been confirmed that this can be realized.

従来の窒化けい素焼結体の焼結組成としては窒化けい素−希土類酸化物−酸化アルミニウム系、窒化けい素−酸化イットリウム−酸化アルミニウム−窒化アルミニウム−チタニウム系等が知られている。上記焼結組成における酸化イットリウム(Y)などの希土類酸化物等の焼結助剤は、従来から焼結助剤として一般に使用されており、焼結性を高めて焼結体を緻密化し高強度化するために添加されている。 Known sintered compositions of silicon nitride sintered bodies include silicon nitride-rare earth oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride-titanium system, and the like. Sintering aids such as rare earth oxides such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintering composition have been conventionally used as sintering aids, and the sintered body is improved by increasing the sinterability. It is added to increase the strength.

また、耐摩耗性、特に優れた摺動特性を必要とする転がり軸受け部材に使用される従来の窒化けい素焼結体として、例えば所定量の希土類酸化物,MgAlスピネル,炭化けい素,Ti,Zr,Hf等の酸化物を含有し、気孔率が1%以下であり、三点曲げ強度が900MPa以上であり、破壊靭性値が6.3MPa・m1/2以上である窒化けい素焼結体から成る耐摩耗性部材が提案されている(例えば、特許文献1参照)。 Further, as a conventional silicon nitride sintered body used for a rolling bearing member that requires wear resistance, particularly excellent sliding characteristics, for example, a predetermined amount of rare earth oxide, MgAl 2 O 4 spinel, silicon carbide, A silicon nitride ceramic containing an oxide such as Ti, Zr, Hf, having a porosity of 1% or less, a three-point bending strength of 900 MPa or more, and a fracture toughness value of 6.3 MPa · m 1/2 or more. A wear-resistant member made of a bonded body has been proposed (see, for example, Patent Document 1).

また、特に不純物を低減して耐摩耗性を損なう欠陥の発生が少なく均質な焼結体を形成するために、従来の焼結体は、一般的に原料粉末として例えばイミド熱分解法で合成した高純度窒化けい素微粉末を使用して製造されている。
特開2003−34581号公報
In addition, in order to form a homogeneous sintered body with reduced generation of defects that impair the wear resistance by reducing impurities, the conventional sintered body is generally synthesized as a raw material powder by, for example, an imide pyrolysis method Manufactured using high-purity silicon nitride fine powder.
JP 2003-34581 A

しかしながら、ベアリングボールの摺動特性は焼結体の表面精度や均質性により大きく影響されることが本発明者らの研究により明確になっている。従来の窒化珪素製ベアリングボールでは表面精度に影響を及ぼす助剤成分の偏析の大きさを抑制制御するため、高純度の窒化けい素原料を用いる必要があった。   However, the present inventors have clarified that the sliding characteristics of the bearing ball are greatly influenced by the surface accuracy and homogeneity of the sintered body. In conventional silicon nitride bearing balls, it is necessary to use a high-purity silicon nitride raw material in order to suppress and control the segregation of the auxiliary component that affects the surface accuracy.

また、転がり軸受け部材に使用される従来の窒化けい素焼結体は、上記したイミド熱分解法で合成した高価な原料粉末を使用して製造されている上に、機械的強度や破壊靭性値が高過ぎるため、焼結後の加工性が悪く、耐摩耗性部材製品の製造コストの上昇が不可避となる問題点があった。   In addition, conventional silicon nitride sintered bodies used for rolling bearing members are manufactured using expensive raw material powders synthesized by the imide pyrolysis method, and have mechanical strength and fracture toughness values. Since it is too high, there is a problem that workability after sintering is poor and an increase in manufacturing cost of the wear-resistant member product is unavoidable.

また、上記従来方法によって製造された窒化けい素焼結体では、曲げ強度や破壊靭性値、耐摩耗性が向上している反面、特に軸受け部材として必要な転がり特性および耐久性については不十分であり、さらなる改良が要請されている。特に窒化けい素製ベアリングボールの寿命と添加成分の影響との相関関係が十分に究明されておらず、寿命を長期化する対策が模索されている。   In addition, the silicon nitride sintered body produced by the above-described conventional method has improved bending strength, fracture toughness value, and wear resistance, but is insufficient in terms of rolling characteristics and durability particularly required as a bearing member. Further improvements are required. In particular, the correlation between the lifetime of silicon nitride bearing balls and the effect of additive components has not been fully investigated, and measures to extend the lifetime are being sought.

近年、精密機器用部材としてのセラミックス材料の需要が増加しており、このような用途においては、高硬度で軽量かつ耐摩耗性が優れるというセラミックスの特長が、高耐食性と低熱膨張性という性質とともに利用されている。特に、高硬度性と耐摩耗性との観点から、軸受などの摺動部を構成する耐摩耗性部材としての用途も急速に拡大している。   In recent years, the demand for ceramic materials as components for precision equipment has increased. In such applications, the characteristics of ceramics, which are high hardness, light weight, and excellent wear resistance, are combined with the properties of high corrosion resistance and low thermal expansion. It's being used. In particular, from the viewpoint of high hardness and wear resistance, the use as a wear resistant member constituting a sliding portion such as a bearing is rapidly expanding.

しかしながら、軸受などの転動ボールをセラミックス製耐摩耗性部材で構成した場合、転動ボールが高い応力レベルで繰り返し接触しながら転動したときに、耐摩耗性部材の転がり寿命が未だ十分ではなく、短期間の運転により耐摩耗性部材の表面が剥離したり、割れを生じてしまうため、軸受を装着した機器に振動を生じたり、損傷を引き起こす事故が発生し易く、いずれにしても機器構成部品材料としての耐久性および信頼性が低いという問題点があった。   However, when a rolling ball such as a bearing is made of a ceramic wear-resistant member, the rolling life of the wear-resistant member is still not sufficient when the rolling ball rolls while repeatedly contacting at a high stress level. Because the surface of the wear-resistant member peels off or cracks due to short-term operation, it is easy to cause an accident that causes vibration or damage to the device equipped with the bearing. There was a problem that durability and reliability as a component material were low.

本発明は上記のような課題要請に対処するためになされたものであり、特に金属窒化法で製造された窒化けい素粉末のように純度が低く安価な窒化けい素原料粉末を使用して形成した場合であっても、助剤成分の分散状態を制御することが可能であり、均質で粒界強度のばらつきが小さくすることができ、従来の窒化けい素焼結体と同等以上の機械的強度、耐摩耗性、転がり寿命特性に加え、加工性に優れた転がり軸受け部材として好適な窒化けい素焼結体の製造方法を提供することを目的とする。 The present invention has been made to cope with the above-described problems, and is formed by using low-purity and inexpensive silicon nitride raw material powder, such as silicon nitride powder produced by a metal nitriding method. Even in such a case, it is possible to control the dispersion state of the auxiliary component, and it is possible to reduce the variation in the grain boundary strength, which is uniform and mechanical strength equal to or higher than that of the conventional silicon nitride sintered body. Another object of the present invention is to provide a method for producing a silicon nitride sintered body suitable as a rolling bearing member having excellent workability in addition to wear resistance and rolling life characteristics.

本発明者は上記目的を達成するため、従来の窒化けい素焼結体を製造する際に、一般的に使用されていた窒化けい素原料粉末の種類、不純物量、焼結助剤や添加物の種類および添加量、および原料粉末の混合条件、焼成条件を種々変えて、それらの要素が焼結体の特性に及ぼす影響を実験により確認した。   In order to achieve the above-mentioned object, the present inventor, when producing a conventional silicon nitride sintered body, the type of silicon nitride raw material powder, the amount of impurities, the sintering aids and additives generally used. The effect of these elements on the properties of the sintered body was confirmed by experiments by changing the type and amount of addition, the mixing conditions of the raw material powder, and the firing conditions.

その結果、金属窒化法等で合成した安価で微細な窒化けい素原料粉末に希土類元素と,酸化アルミニウムや窒化アルミニウムなどのアルミニウム成分と,酸素元素と,必要に応じてTi,Hf,Zr,W,Mo,Ta,Nb,Crから成る群より選択される少なくとも1種とを所定量ずつ添加した原料混合体を均一に混合した後に成形・焼結したときに、さらには焼結した後に所定の条件で熱間静水圧プレス(HIP)処理したときに、従来の窒化けい素焼結体と同等以上の緻密性,機械的強度,耐摩耗性,転がり寿命特性に加えて、特に加工性に優れた転がり軸受部材として好適な窒化けい素焼結体が得られるという知見が得られた。   As a result, an inexpensive and fine silicon nitride raw material powder synthesized by a metal nitriding method or the like is added to a rare earth element, an aluminum component such as aluminum oxide or aluminum nitride, an oxygen element, and Ti, Hf, Zr, W as required. , Mo, Ta, Nb, Cr, when a raw material mixture to which at least one selected from the group consisting of Mo, Ta, Nb, and Cr is added in a predetermined amount is uniformly mixed and then molded and sintered, and further after sintering When processed under hot isostatic pressing (HIP) conditions, in addition to the same or better density, mechanical strength, wear resistance, and rolling life characteristics as conventional silicon nitride sintered bodies, it has excellent workability. The knowledge that a silicon nitride sintered body suitable as a rolling bearing member can be obtained was obtained.

特に、1ロット分の原料粉末を予め複数に分割し、各分割した原料粉末を個別に十分に混合した後に、各原料粉末を合体して一つの原料体として、さらに十分に混合した原料粉末を成形・焼結したときに、焼結助剤粉末同士の凝集が抑制され、均質な組織を有する窒化けい素焼結体が得られた。特に窒化珪素焼結体中に存在する焼結助剤成分の偏析凝集部の径を30μm以下にでき、表面欠陥が少なく耐摩耗性に優れた焼結体が得られるという知見も得られた。   In particular, the raw material powder for one lot is divided into a plurality of parts in advance, and each divided raw material powder is sufficiently mixed individually, and then the raw material powders are combined to form a single raw material body. When molded and sintered, aggregation of sintering aid powders was suppressed, and a silicon nitride sintered body having a homogeneous structure was obtained. In particular, it was found that the diameter of the segregation and agglomeration part of the sintering aid component present in the silicon nitride sintered body can be made 30 μm or less, and a sintered body with few surface defects and excellent wear resistance can be obtained.

また、焼結工程の前段階において真空雰囲気中で窒化けい素成形体を1500℃程度の温度まで加熱した後に、非酸化性雰囲気に切り替えて所定温度で加圧焼結することにより、窒化けい素のβ化率を95%以上にすることができ、焼結体の摺動特性を効果的に改善できるという知見も得た。   In addition, after heating the silicon nitride molded body in a vacuum atmosphere to a temperature of about 1500 ° C. in the pre-stage of the sintering process, the silicon nitride compact is switched to a non-oxidizing atmosphere and pressure sintered at a predetermined temperature, so that silicon nitride is obtained. It was also found that the β conversion ratio can be 95% or more, and the sliding characteristics of the sintered body can be effectively improved.

さらに、焼結体にTi元素を所定量含有せしめ、そのTi元素をTiNやTiCN等の化合物粒子として存在させることにより、焼結体の粒界強度のばらつきが減少し、焼結体の繰返し応力に対する抵抗力を大幅に高めることが可能になり、耐久性が優れたベアリングボールが得られるという知見も得られた。   Furthermore, by adding a predetermined amount of Ti element to the sintered body and causing the Ti element to exist as compound particles such as TiN and TiCN, variation in the grain boundary strength of the sintered body is reduced, and the repeated stress of the sintered body is reduced. It has become possible to significantly increase the resistance to the occurrence of a bearing ball with excellent durability.

本発明は上記知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

すなわち、本発明方法で得られる窒化けい素焼結体は、焼結助剤成分として希土類元素を3質量%以下、Al元素を3質量%以下、酸素元素を5質量%以下含有し、窒化けい素のβ化率が95%以上である窒化けい素焼結体であり、この窒化けい素焼結体の結晶組織において窒化けい素結晶粒子の短径に対する長径の比が2以上である窒化けい素針状結晶粒子の面積率が50%以上であることを特徴とする。 That is, the silicon nitride sintered body obtained by the method of the present invention contains 3% by mass or less of a rare earth element, 3% by mass or less of Al element, and 5% by mass or less of oxygen element as a sintering aid component. A silicon nitride sintered body having a β conversion ratio of 95% or more, and a silicon nitride needle shape in which the ratio of the major axis to the minor axis of the silicon nitride crystal grains is 2 or more in the crystal structure of the silicon nitride sintered body The area ratio of crystal grains is 50% or more.

本発明方法で得られるの窒化けい素焼結体において、窒化けい素のβ化率は95%以上であることが必要である。六方晶系の結晶構造を有するβ相型窒化けい素は、α相型窒化けい素と比較して高温度での安定性および構造強度に優れており耐摩耗性材料の要求特性を向上させる上で好適である。したがって、上記窒化けい素のβ化率を95%以上に高めることにより優れた耐摩耗特性を確保できる。 In the silicon nitride sintered body obtained by the method of the present invention , the β conversion ratio of silicon nitride needs to be 95% or more. Β-phase silicon nitride having a hexagonal crystal structure is superior to α-phase silicon nitride in terms of stability at high temperatures and structural strength, and improves the required properties of wear-resistant materials. It is suitable. Therefore, excellent wear resistance can be ensured by increasing the β conversion ratio of the silicon nitride to 95% or more.

本発明方法で得られるの窒化けい素焼結体のβ化率は、焼結体表面を研磨加工後にX線回折法(XRD法)により表面のα相およびβ相からの回折X線強度をそれぞれ測定し、下記算式(1)により算出される。 The β conversion ratio of the silicon nitride sintered body obtained by the method of the present invention is determined by the X-ray diffraction method (XRD method) after polishing the surface of the sintered body, and the diffracted X-ray intensity from the α phase and β phase on the surface. Measured and calculated by the following formula (1).

[数1]
β化率(%)
=最大β相ピーク強度/(最大α相ピーク強度+最大β相ピーク強度)×100
……(1)
[Equation 1]
Betaization rate (%)
= Maximum β-phase peak intensity / (maximum α-phase peak intensity + maximum β-phase peak intensity) × 100
...... (1)

上記のように窒化けい素のβ化率を95%以上に高めるためには、窒化けい素成形体の焼結段階において、真空度が1×10−3Torr以下の真空雰囲気中で成形体を約1500℃まで昇温した後に、非酸化性雰囲気に切り替えて所定の焼結温度で焼結し、温度1500℃以下となるまで5気圧以上の加圧を継続することにより、窒化けい素のβ化率を95%以上にすることができる。 As described above, in order to increase the β conversion ratio of silicon nitride to 95% or more, in the sintering stage of the silicon nitride molded body, the molded body is placed in a vacuum atmosphere with a vacuum degree of 1 × 10 −3 Torr or lower. After heating up to about 1500 ° C., switching to a non-oxidizing atmosphere and sintering at a predetermined sintering temperature, and continuing pressurization at 5 atm or higher until the temperature reaches 1500 ° C. or lower, β-silicon nitride The conversion rate can be 95% or more.

また、本発明方法で得られる窒化けい素焼結体の結晶組織において、窒化けい素結晶粒子の短径に対する長径の比(アスペクト比)が2以上である細長い窒化けい素針状結晶粒子の面積率を50%以上とすることにより、アスペクト比が高い針状の窒化けい素結晶粒子が複雑に入り組んだ高強度の焼結体が得られる。上記面積率が50%未満では焼結体の強度の改善効果が少ない。したがって上記アスペクト比が2以上である窒化けい素針状結晶粒子の面積率は50%以上とされるが、好ましくは70%以上、さらに好ましくは90%以上である。 Further, in the crystal structure of the silicon nitride sintered body obtained by the method of the present invention , the area ratio of elongated silicon nitride needle-like crystal particles in which the ratio of the major axis to the minor axis (aspect ratio) of the silicon nitride crystal particles is 2 or more By setting the content to 50% or more, a high-strength sintered body in which needle-like silicon nitride crystal particles having a high aspect ratio are complicated can be obtained. When the area ratio is less than 50%, the effect of improving the strength of the sintered body is small. Therefore, the area ratio of the silicon nitride needle crystal grains having an aspect ratio of 2 or more is set to 50% or more, preferably 70% or more, and more preferably 90% or more.

上記所定のアスペクト比を有する窒化けい素結晶粒子の面積率は、下記のように測定される。すなわち、焼結体において任意の2箇所の加工表面組織および2箇所の断面組織をエッチング処理して助剤成分を溶出させた後に、組織の拡大写真(倍率200倍程度)を撮影し、その写真内の100×100μm相当の領域に存在する各窒化けい素粒子の短径と長径とを測定し、短径に対する長径の比(アスペクト比)が2以上である窒化けい素粒子の領域全体に対する面積率をそれぞれ測定し、その4箇所の平均値として算出される。   The area ratio of the silicon nitride crystal particles having the predetermined aspect ratio is measured as follows. That is, after processing the arbitrary two processed surface structures and the two cross-sectional structures in the sintered body to elute the auxiliary component, an enlarged photograph of the structure (magnification of about 200 times) is taken, and the photograph The short diameter and the long diameter of each silicon nitride particle existing in a region corresponding to 100 × 100 μm are measured, and the area of the silicon nitride particles having a ratio of the long diameter to the short diameter (aspect ratio) of 2 or more with respect to the entire region Each rate is measured and calculated as an average value of the four locations.

また、上記窒化けい素焼結体において、酸素含有量が5質量%以下であることが必要である。焼結体の酸素含有量が5質量%を超えるように過量となると、粒界相の割合が増加し酸素やSiO等のガス成分に起因するポアや亀裂などの欠陥が発生しやすくなる。 The silicon nitride sintered body needs to have an oxygen content of 5% by mass or less. When the oxygen content of the sintered body is excessive so as to exceed 5% by mass, the ratio of the grain boundary phase increases, and defects such as pores and cracks due to gas components such as oxygen and SiO 2 tend to occur.

なお、焼結体中の酸素量(全酸素量)は不活性ガス融解−赤外線吸収法に準ずる酸素分析計により求めた値とし、窒化けい素焼結体を構成している酸素の全量を質量%で示したものである。従って、酸素が窒化けい素焼結体中に金属酸化物や酸窒化物などとして存在している場合は、その金属酸化物(および酸窒化物)量ではなく、金属酸化物(および酸窒化物)の酸素量に着目したものである。   The amount of oxygen in the sintered body (total oxygen amount) is a value determined by an oxygen analyzer in accordance with the inert gas melting-infrared absorption method, and the total amount of oxygen constituting the silicon nitride sintered body is mass%. It is shown by. Therefore, when oxygen is present in the silicon nitride sintered body as a metal oxide or oxynitride, not the amount of the metal oxide (and oxynitride) but the metal oxide (and oxynitride) It focuses on the amount of oxygen.

上記焼結体中の酸素量を調整低減するためには、焼結助剤として用いる希土類成分やアルミニウム成分として酸化物ではなく、窒化物等を用いたり、焼結途中で成形体を真空雰囲気中で加熱して気体成分の脱ガス処理したりすることによって可能である。   In order to adjust and reduce the amount of oxygen in the sintered body, a rare earth component or an aluminum component used as a sintering aid is not an oxide, but a nitride or the like, or the molded body is placed in a vacuum atmosphere during sintering. Or by degassing the gas component.

また本発明方法で得られる窒化けい素焼結体において、窒化けい素焼結体がTi元素を5質量%以下含有するとともに、このTi元素がTiNおよびTiCNの少なくとも一方の化合物として存在することが好ましい。上記Ti元素がTiNやTiCNなどの化合物として存在することにより、繰返し応力に対する抵抗力が増大化し、焼結体でベアリングボールを形成した場合に優れた転動特性および耐久性を発揮させることができる。 In the silicon nitride sintered body obtained by the method of the present invention, the silicon nitride sintered body preferably contains 5% by mass or less of Ti element, and this Ti element is present as at least one compound of TiN and TiCN. The presence of the Ti element as a compound such as TiN or TiCN increases resistance to repeated stress, and can exhibit excellent rolling characteristics and durability when a bearing ball is formed of a sintered body. .

上記Ti元素の存在形態は、窒化けい素焼結体の加工表面をX線回折(XRD)分析することにより確認できる。また、Ti化合物量は焼結体の加工表面をX線回折分析した場合に、窒化けい素のX線最大ピーク強度に対するTiCN化合物のX線最大ピーク強度の比が50%以下となるように調整することが好ましい。上記Ti化合物のX線最大ピーク強度比が50%を超えるように過大になると、助剤成分であるTiと他の成分(CやN)との反応量がばらついて耐摩耗性部材としての寿命特性が安定しない。したがって上記Ti化合物のX線最大ピーク強度比は50%以下とされるが、5〜35%の範囲がより好ましい。このTi化合物のX線最大ピーク強度比を50%以下とすることにより、この焼結体から成る耐摩耗性部材としてのベアリングボールの寿命時間(転がり疲労寿命)のばらつきを大幅に減少させることができ、ワイブル係数が10以上の窒化けい素焼結体が得られる。   The presence form of the Ti element can be confirmed by X-ray diffraction (XRD) analysis of the processed surface of the silicon nitride sintered body. The amount of Ti compound is adjusted so that the ratio of the maximum X-ray peak intensity of the TiCN compound to the maximum X-ray peak intensity of silicon nitride is 50% or less when the processed surface of the sintered body is subjected to X-ray diffraction analysis. It is preferable to do. If the X-ray maximum peak intensity ratio of the Ti compound exceeds 50%, the reaction amount between the auxiliary component Ti and other components (C and N) varies, and the life as a wear resistant member Characteristics are not stable. Therefore, the X-ray maximum peak intensity ratio of the Ti compound is 50% or less, but a range of 5 to 35% is more preferable. By making the X-ray maximum peak intensity ratio of this Ti compound 50% or less, it is possible to greatly reduce the variation in the life time (rolling fatigue life) of the bearing ball as the wear resistant member made of this sintered body. And a silicon nitride sintered body having a Weibull coefficient of 10 or more is obtained.

上記Ti化合物の生成量を上記範囲内にするためには、窒化けい素原料混合粉の成形体を焼成容器に収容して焼結する際に、焼成容器に対する成形体の充填率を40〜80%程度に調整するとともに、焼成雰囲気圧力を3〜10気圧程度に調整制御することにより達成できる。   In order to make the production amount of the Ti compound within the above range, when the compact of the silicon nitride raw material mixed powder is accommodated in the firing container and sintered, the filling ratio of the compact to the firing container is 40 to 80. It can be achieved by adjusting the firing atmosphere pressure to about 3 to 10 atm while adjusting to about%.

また、本発明方法で得られる窒化けい素焼結体において、前記窒化けい素焼結体の最大気孔径が3μm以下であることが好ましい。焼結体表面に残存したボイド、ピット等の気孔は、破壊や割れの起点になり易いが、この最大気孔径が3μm以下であれば、破壊や割れの発生確率は小さくなり動作信頼性が高い耐摩耗性部材が得られる。 In the silicon nitride sintered body obtained by the method of the present invention, it is preferable that the maximum pore diameter of the silicon nitride sintered body is 3 μm or less. Voids such as voids and pits remaining on the surface of the sintered body are likely to be the starting point of breakage and cracking. However, if the maximum pore diameter is 3 μm or less, the probability of occurrence of breakage and cracking is reduced and the operation reliability is high. A wear-resistant member is obtained.

さらに、本発明方法で得られる窒化けい素焼結体において、上記窒化けい素焼結体を研摩加工した後の30×30μmの表面領域に残存する気孔であり、径が1μm以上の気孔数が5個以下であることが好ましい。前記最大気孔径が3μm未満の気孔であっても、それらが多数残存する場合には当然破壊や割れの発生確率が高くなる。しかるに上記のように単位組織面積当りに残存する気孔で径が1μm以上の気孔の数を5個以下とすることにより、破壊や割れに起因する故障を低減でき機器の動作信頼性を高めることができる。 Furthermore, in the silicon nitride sintered body obtained by the method of the present invention, there are pores remaining in the surface region of 30 × 30 μm after the silicon nitride sintered body is polished, and the number of pores having a diameter of 1 μm or more is 5 The following is preferable. Even if the maximum pore diameter is less than 3 μm, if a large number of them remain, the probability of occurrence of breakage or cracking naturally increases. However, by reducing the number of pores remaining per unit tissue area with a diameter of 1 μm or more as described above to five or less, failure due to breakage or cracking can be reduced and the operational reliability of the equipment can be improved. it can.

さらに、本発明方法で得られる窒化けい素焼結体において、前記窒化けい素焼結体のヤング率が290GPa以上であることが好ましい。この窒化けい素焼結体のヤング率が290GPa以上であれば、後述する偏析凝集部の最大径が20〜40μm程度に大きくなっても、耐摩耗材として優れた転動特性と耐久性とを確保することができる。この事実は、偏析凝集部が大きくなるような不純物を多量に含有した原料粉末を使用した場合においても、または原料粉末の混合度合いが低く不均一な原料粉末を使用した場合においても、焼結体のヤング率を290GPa以上に高めることができれば、耐摩耗特性に優れた窒化けい素焼結体が得られることを意味している。 Furthermore, in the silicon nitride sintered body obtained by the method of the present invention , the Young's modulus of the silicon nitride sintered body is preferably 290 GPa or more. If the Young's modulus of this silicon nitride sintered body is 290 GPa or more, even if the maximum diameter of the segregated agglomerated portion described later is increased to about 20 to 40 μm, excellent rolling characteristics and durability are ensured as a wear resistant material. be able to. This fact is true even when a raw material powder containing a large amount of impurities that cause large segregation and agglomeration parts is used, or when a non-uniform raw material powder with a low mixing degree of the raw material powder is used. If the Young's modulus can be increased to 290 GPa or more, it means that a silicon nitride sintered body having excellent wear resistance can be obtained.

さらに、前記窒化けい素焼結体を構成する窒化けい素結晶粒子の最大長さが40μm以下であることことが好ましい。   Furthermore, it is preferable that the maximum length of the silicon nitride crystal particles constituting the silicon nitride sintered body is 40 μm or less.

上記窒化けい素結晶粒子の最大長さが40μmを超えるように長大に異常に粒成長した窒化けい素結晶粒子は焼結体の表面性状を悪化させて耐摩耗性および摺動特性を低下させる原因となるため、上記窒化けい素結晶粒子の最大長さは40μm以下にすることが好ましい。   Causes of silicon nitride crystal particles grown abnormally so that the maximum length of the silicon nitride crystal particles exceeds 40 μm deteriorates the surface properties of the sintered body and reduces the wear resistance and sliding properties Therefore, the maximum length of the silicon nitride crystal particles is preferably 40 μm or less.

上記窒化けい素結晶粒子の最大長さは、焼結体組織の拡大写真上で任意の測定領域(100μm×100μm)を3箇所選出し、各領域における結晶粒子の最大長さの平均値として測定される。   The maximum length of the silicon nitride crystal particles is measured as an average value of the maximum lengths of crystal particles in each region selected from three arbitrary measurement regions (100 μm × 100 μm) on an enlarged photograph of the sintered body structure. Is done.

上記窒化けい素結晶粒子の最大長さは、異常粒成長を防止する前記希土類元素,アルミニウム成分量および焼結条件を適正化することにより調整できる。   The maximum length of the silicon nitride crystal grains can be adjusted by optimizing the rare earth element, the amount of aluminum components, and the sintering conditions that prevent abnormal grain growth.

さらに、上記窒化けい素焼結体において、前記窒化けい素焼結体の結晶組織における助剤成分の偏析凝集部の最大径が30μm以下であることが好ましい。   Furthermore, in the silicon nitride sintered body, it is preferable that the maximum diameter of the segregation aggregate portion of the auxiliary component in the crystal structure of the silicon nitride sintered body is 30 μm or less.

ここで上記偏析凝集部の最大径とは、隣接する窒化珪素結晶粒子の間の粒界相に形成される焼結助剤成分の偏析部または凝集部の最大長さを言い、窒化けい素焼結体の表面または断面について、倍率が2000倍(50μmを10cmで表示する)程度以上の拡大写真において、偏析部または凝集部における最も長い対角線として定義される。   Here, the maximum diameter of the segregated agglomerated part means the maximum length of the segregated part or agglomerated part of the sintering aid component formed in the grain boundary phase between adjacent silicon nitride crystal grains, and silicon nitride sintering. With respect to the surface or cross section of the body, it is defined as the longest diagonal line in the segregation part or the aggregation part in an enlarged photograph with a magnification of about 2000 times (50 μm is displayed in 10 cm) or more.

上記偏析凝集部は脆弱であり破壊の起点になり易く、摺動性および耐摩耗性を低下させる。そのため、本発明において助剤成分の偏析凝集部の最大径は30μm以下とされるが、10μm以下、さらには5μm以下であることがより好ましい。さらに高機能の耐摩耗性部材を構成するためには上記偏析凝集部の最大径が0.1〜1.5μmの範囲であることがさらに好ましい。   The segregated and agglomerated part is fragile and tends to be a starting point of breakage, and lowers slidability and wear resistance. Therefore, in the present invention, the maximum diameter of the segregation aggregate portion of the auxiliary component is set to 30 μm or less, but is preferably 10 μm or less, more preferably 5 μm or less. Further, in order to constitute a highly functional wear-resistant member, it is more preferable that the maximum diameter of the segregated and agglomerated part is in the range of 0.1 to 1.5 μm.

なお上記拡大写真については特に限定されるものではないが、金属顕微鏡、電子顕微鏡、XDS、EPMA(電子プローブマイクロアナライザー)などが一般的でありカラーマッピング処理を行うと助剤成分を判断し易くなる。なお、拡大写真にて組織状態を判断する際に、ベアリングボールのように球面状部を写真にとると写真の端部が湾曲し歪んで撮影されるため、焼結体表面の助剤成分の存在状態を正確に示さないことが考えられるが、単位面積が50μm×50μmのように微小な範囲を撮影する場合には上記の撮影像の歪みは少なく実質的に問題は生じない。   The enlarged photograph is not particularly limited, but metal microscopes, electron microscopes, XDS, EPMA (Electron Probe Microanalyzer), etc. are common, and it becomes easy to judge the auxiliary component when color mapping is performed. . In addition, when judging the structure state in the enlarged photograph, since the end portion of the photograph is curved and distorted when the spherical portion is photographed like a bearing ball, the auxiliary component of the sintered body surface Although it is conceivable that the presence state is not accurately indicated, when a minute range such as a unit area of 50 μm × 50 μm is photographed, the above-described photographed image has little distortion and substantially no problem occurs.

なお上記偏析凝集部の最大径を低減するためには、助剤成分粉末の凝集を防止し原料窒化けい素粉末と焼結助剤粉末との均一な混合を達成することが重要である。助剤成分の凝集が起きると最大径が30μm以上の偏析凝集部が形成され易くなる。この偏析凝集部の生成を防止するためには、後述するように例えば、1ロット分(総量約5kg)の原料粉末を混合するに際し、原料粉末をそれぞれ2分割以上、好ましくは3〜5分割して比較的少量ずつ混合したものを最終的に1つに混ぜ合わせ均質化する方法が有効である。   In order to reduce the maximum diameter of the segregation and agglomeration part, it is important to prevent aggregation of the auxiliary component powder and achieve uniform mixing of the raw silicon nitride powder and the sintering auxiliary powder. When aggregation of the auxiliary component occurs, a segregated aggregate portion having a maximum diameter of 30 μm or more is easily formed. In order to prevent the formation of the segregation and agglomeration part, as described later, for example, when mixing the raw material powder for one lot (total amount of about 5 kg), the raw material powder is divided into two or more, preferably 3 to 5, respectively. It is effective to use a method in which relatively small amounts are mixed and finally homogenized.

なお、1ロット分で助剤成分粉末の凝集粒子の少ない混合粉末が得られれば特に問題ではないが、このような場合において凝集粒子の少ない均一な混合状態を得ようとすると混合時間が必要以上に長くなってしまうことが多く、必ずしも製造性が良いとは言えない。また、1度に大量に各原料粉末を混ぜ合わせると最終的な窒化けい素焼結体としたときに助剤成分の大きさが30μmを超える部位が生成し易くなる。   Note that there is no particular problem if a mixed powder with a small amount of agglomerated particles of the auxiliary component powder is obtained in one lot, but in such a case, an attempt to obtain a uniform mixed state with few agglomerated particles makes the mixing time longer than necessary. Therefore, it is not necessarily good for manufacturability. Further, when the raw material powders are mixed together in large quantities at once, a site where the size of the auxiliary component exceeds 30 μm tends to be generated when the final silicon nitride sintered body is obtained.

さらに他の混合方法として、まず窒化けい素粉末および複数種類の焼結助剤を混合する。その混合粉の中に特に分散性の悪い焼結助剤粉末は分割して順次添加する方法が有効である。例えば、分散性の悪い焼結助剤成分粉末の添加量を2分割以上、好ましくは3〜5分割し、1回目の添加を行い所定時間(30分以上が好ましい。)経過した後に2回目以降分を順に添加する方法である。   As another mixing method, first, silicon nitride powder and a plurality of types of sintering aids are mixed. A method in which the sintering aid powder having particularly poor dispersibility is divided and added sequentially in the mixed powder is effective. For example, the addition amount of the sintering aid component powder having poor dispersibility is divided into two or more, preferably 3 to 5, and added for the first time, and after a predetermined time (preferably 30 minutes or more) has passed, the second and subsequent times. This is a method of adding minutes in order.

このような方法によって原料粉末を均一に混合すれば、焼結助剤粉末同士の凝集を効果的に抑制することができるので、仮に偏析部や凝集部が存在したとしても窒化けい素焼結体中での助剤成分の偏析凝集部の最大径を30μm以下、好ましくは5μm以下にすることが可能となる。   If the raw material powder is uniformly mixed by such a method, the aggregation of the sintering aid powders can be effectively suppressed. Therefore, even if there is a segregation part or an aggregation part, In this case, the maximum diameter of the segregation and agglomeration part of the auxiliary component can be 30 μm or less, preferably 5 μm or less.

また、上記窒化けい素焼結体において、前記窒化けい素焼結体が不純物としてFeを10〜3500ppm含有するとともに、Caを10〜1000ppm含有していることが好ましい。焼結助剤としてアルミニウム成分を含有する場合、鉄およびカルシウム成分を微量に含有させることにより、窒化けい素から成る耐摩耗性部材の摺動性能を向上させることができる。不純物としての鉄の含有量が3500ppm以下であれば、耐摩耗性部材の摺動性能が良好である一方、鉄の含有量が10ppm以上であっても、強度や摺動性能の低下等の不都合を生じない。   In the silicon nitride sintered body, the silicon nitride sintered body preferably contains 10 to 3500 ppm of Fe as impurities and 10 to 1000 ppm of Ca. When an aluminum component is contained as a sintering aid, the sliding performance of the wear-resistant member made of silicon nitride can be improved by containing a small amount of iron and calcium components. If the content of iron as an impurity is 3500 ppm or less, the sliding performance of the wear-resistant member is good, but even if the iron content is 10 ppm or more, inconvenience such as a decrease in strength and sliding performance. Does not occur.

また、上記窒化けい素焼結体から成る耐摩耗性部材において、カルシウムの含有量が1000ppm以下であれば、耐摩耗性部材の摺動性能が良好である。一方、カルシウムの含有量が10ppm以上であっても、強度や摺動性能の低下等の不都合を生じない。なお、上記窒化けい素焼結体中のFe含有量およびCa含有量は、加圧分解―ICP発光分析法により測定できる。   Further, in the wear resistant member made of the silicon nitride sintered body, the sliding performance of the wear resistant member is good when the calcium content is 1000 ppm or less. On the other hand, even if the calcium content is 10 ppm or more, there is no inconvenience such as a decrease in strength and sliding performance. The Fe content and Ca content in the silicon nitride sintered body can be measured by pressure decomposition-ICP emission analysis.

さらに、上記窒化けい素焼結体において、前記窒化けい素焼結体のビッカース硬度Hvが1300〜1600であることが好ましい。   Further, in the silicon nitride sintered body, it is preferable that the silicon nitride sintered body has a Vickers hardness Hv of 1300 to 1600.

耐摩耗性部材を構成する窒化けい素焼結体に要求される硬度に関しては、ビッカース硬さでHv1300以上の特性を有することが好ましい。窒化けい素焼結体の硬度がビッカース硬さHvで1300未満となると、耐摩耗性の低下が著しくなる。特に、ベアリングボールなどに求められる摺動特性(転がり寿命特性)を十分に満足させることができなくなる。窒化けい素焼結体のビッカース硬さはHv1400以上であることがより好ましい。なお、上記ビッカース硬度Hvが1600を超えるように過大になると、相手材に対する攻撃性が顕著になるため、上記ビッカース硬度Hvは1300〜1600の範囲が好ましい。   Regarding the hardness required for the silicon nitride sintered body constituting the wear-resistant member, it is preferable that the Vickers hardness has a characteristic of Hv 1300 or more. When the hardness of the silicon nitride sintered body is less than 1300 in terms of Vickers hardness Hv, the wear resistance is significantly reduced. In particular, the sliding characteristics (rolling life characteristics) required for bearing balls and the like cannot be sufficiently satisfied. The Vickers hardness of the silicon nitride sintered body is more preferably Hv1400 or higher. In addition, when the Vickers hardness Hv becomes excessive so as to exceed 1600, the aggression against the counterpart material becomes remarkable. Therefore, the Vickers hardness Hv is preferably in the range of 1300 to 1600.

また、前記窒化けい素焼結体の破壊靭性値が6MPa・m1/2以上であることが好ましい。さらに、前記窒化けい素焼結体の三点曲げ試験における最低抗折強度が700MPa以上であり、かつ平均抗折強度が900MPa以上であることが好ましい。 The fracture toughness value of the silicon nitride sintered body is preferably 6 MPa · m 1/2 or more. Furthermore, it is preferable that the minimum bending strength in the three-point bending test of the silicon nitride sintered body is 700 MPa or more and the average bending strength is 900 MPa or more.

また上記窒化けい素焼結体において、前記窒化けい素焼結体が切削工具または軸受けの転動体であることが好ましい。さらに、上記窒化けい素焼結体で圧延治具を形成することも可能である。また、前記窒化けい素焼結体が軸受けの球状転動体である場合には、前記窒化けい素焼結体の圧砕強度が150N/mm以上であることが好ましい。この圧砕強度が150N/mm未満であると、軸受けの球状転動体の転がり寿命特性が低下してしまう。 In the silicon nitride sintered body, the silicon nitride sintered body is preferably a cutting tool or a rolling element of a bearing. Further, it is possible to form a rolling jig with the above silicon nitride sintered body. Further, when the silicon nitride sintered body is a spherical rolling element of a bearing, the crushing strength of the silicon nitride sintered body is preferably 150 N / mm 2 or more. When the crushing strength is less than 150 N / mm 2 , the rolling life characteristics of the spherical rolling element of the bearing are deteriorated.

また上記窒化けい素焼結体において、前記窒化けい素焼結体から成る転動ボールを調製する一方、SUJ2製鋼板の上面に設定した直径40mmの軌道上に上記転動ボールを配置し、この転動ボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボールの表面が剥離するまでの時間で定義される転がり疲労寿命が100時間以上であることが好ましい。上記過酷な条件で連続的に転動可能な転がり疲労寿命が100時間以上である場合に、信頼性が高い回転部を形成でき回転機器の信頼性を飛躍的に高めることが可能になる。   In the silicon nitride sintered body, a rolling ball made of the silicon nitride sintered body is prepared, and the rolling ball is arranged on a track having a diameter of 40 mm set on the upper surface of the SUJ2 steel plate. When the load is applied so that the maximum contact stress of 5.9 GPa is applied to the ball under the condition of a rotation speed of 1200 rpm, the surface of the rolling ball made of the silicon nitride sintered body is peeled off. It is preferable that the rolling fatigue life defined by time is 100 hours or more. When the rolling fatigue life that allows continuous rolling under the above severe conditions is 100 hours or more, a highly reliable rotating part can be formed, and the reliability of the rotating device can be dramatically improved.

なお、上記ビッカース硬度HvはJIS−R−1610で規定された測定法に準拠し試験荷重198.1Nで室温(25℃)にて測定した。また破壊靭性値(K1C)はJIS−R−1607で規定されたIF法に基づき測定し、Niiharaの式により算出したものである。圧砕強度は旧JIS規格B1501に準じた測定法により、インストロン型試験機で圧縮加重をかけ、破壊時の荷重を測定することにより測定した。さらに抗折強度はJIS−R−1601で規定された3点曲げ強さ試験に準じた測定法により測定した。 The Vickers hardness Hv was measured at room temperature (25 ° C.) with a test load of 198.1 N in accordance with the measurement method defined in JIS-R-1610. The fracture toughness value (K 1C ) is measured based on the IF method defined by JIS-R-1607, and is calculated by the Niihara equation. The crushing strength was measured by applying a compression load with an Instron type tester and measuring the load at the time of breaking by a measuring method according to the old JIS standard B1501. Furthermore, the bending strength was measured by a measuring method according to a three-point bending strength test defined by JIS-R-1601.

本発明に係る窒化けい素焼結体の製造方法は、酸素を1.5質量%以下、α相型窒化けい素を80質量%以上含有し、平均粒径が1μm以下であり金属窒化法で製造された窒化けい素粉末に、焼結助剤成分として希土類元素を1.5〜3質量%、Al元素を1〜3質量%、酸素元素を5質量%以下添加し、得られた原料混合体を2〜5の分割数で複数に分割し、分割した各原料混合体をそれぞれ個別に混合した後に、一つの原料体5kgとして合体して、さらに混合し得られた原料粉末を成形して成形体を調製し、この成形体を真空度が1×10−3torr以下の雰囲気で温度1500℃まで加熱して脱気処理を実施した後に、雰囲気を非酸化性ガス雰囲気に切り替え、温度が1600〜1900℃で0.5〜10時間に渡り、圧力が5気圧以上の加圧焼結を実施することにより得られた窒化けい素焼結体の結晶組織における助剤成分の偏析凝集部の最大径を30μm以下とすることを特徴とする。 The method for producing a silicon nitride sintered body according to the present invention contains 1.5% by mass or less of oxygen, 80% by mass or more of α-phase type silicon nitride, has an average particle size of 1 μm or less , and is produced by a metal nitriding method. The raw material mixture obtained by adding 1.5 to 3 % by mass of rare earth elements, 1 to 3% by mass of Al element, and 5% by mass or less of oxygen element as sintering aid components to the silicon nitride powder thus obtained. Is divided into a plurality of divisions of 2 to 5, and each divided raw material mixture is individually mixed, then combined as one raw material body 5 kg , and further mixed to form the raw material powder obtained and molded the body was prepared, after performing the deaeration treatment by heating to a temperature 1500 ° C. at a vacuum degree of the molded body is less atmosphere 1 × 10 -3 torr, switching the atmosphere to a non-oxidizing gas atmosphere, the temperature is 1600 The pressure is 5 for 0.5-10 hours at -1900 ° C. The maximum diameter of the segregation and agglomeration part of the auxiliary component in the crystal structure of the silicon nitride sintered body obtained by performing pressure sintering at a pressure higher than the pressure is 30 μm or less .

上記製造方法における窒化けい素成形体の焼結段階において、真空度が1×10−3Torr以下の真空雰囲気中で成形体を約1500℃まで昇温した後に、非酸化性雰囲気に切り替えて所定の焼結温度で焼結し、温度1500℃以下となるまで5気圧以上の加圧を継続することにより、窒化けい素のβ化率を95%以上にすることができる。 In the sintering step of the silicon nitride molded body in the above manufacturing method, the molded body is heated to about 1500 ° C. in a vacuum atmosphere with a vacuum degree of 1 × 10 −3 Torr or less, and then switched to a non-oxidizing atmosphere to be predetermined. The β-conversion rate of silicon nitride can be 95% or more by continuing the pressurization at 5 atm or more until the temperature reaches 1500 ° C. or less.

また、上記窒化けい素焼結体の製造方法において、焼結後、非酸化性雰囲気中で前記窒化けい素焼結体に対し、圧力30MPa以上の熱間静水圧プレス(HIP)処理を実施することが好ましい。このHIP処理を実施することにより、焼結時に残存したボイド等の気孔を低減したり、その大きさを小さくすることができる。従来のHIP処理では圧力が300気圧(約30MPa)未満の高圧ガスをHIP処理装置内に導入して焼結温度に近い温度で熱処理を実施していたが、大きなボイドが残存し易い問題があった。そこで本発明では300気圧(約30MPa)以上の圧力でHIP処理を実施する。特に、1000気圧以上、具体的には1000〜2000気圧(約100〜200MPa)の高圧ガスを導入してHIP処理することにより、最終的に焼結体に残存するボイド等の気孔の大きさおよび個数を大幅に減少させることができる。   Further, in the method for producing a silicon nitride sintered body, after sintering, the silicon nitride sintered body may be subjected to a hot isostatic pressing (HIP) treatment at a pressure of 30 MPa or more in a non-oxidizing atmosphere. preferable. By performing this HIP process, voids such as voids remaining during sintering can be reduced or the size thereof can be reduced. In conventional HIP processing, a high pressure gas having a pressure of less than 300 atm (about 30 MPa) is introduced into the HIP processing apparatus and heat treatment is performed at a temperature close to the sintering temperature. However, there is a problem that large voids tend to remain. It was. Therefore, in the present invention, the HIP treatment is performed at a pressure of 300 atm (about 30 MPa) or more. In particular, by introducing a high-pressure gas of 1000 atm or more, specifically 1000 to 2000 atm (about 100 to 200 MPa) and performing the HIP treatment, the size of pores such as voids remaining in the sintered body and The number can be greatly reduced.

具体的には、窒化けい素焼結体の最大気孔径を3μm以下にすることが可能であり、さらには、窒化けい素焼結体を研摩加工した後の30×30μmの表面領域に残存する径が1μm以上の気孔数を5個以下でにすることも可能である。   Specifically, the maximum pore diameter of the silicon nitride sintered body can be 3 μm or less, and further, the diameter remaining in the surface region of 30 × 30 μm after the silicon nitride sintered body is polished. It is also possible to reduce the number of pores of 1 μm or more to 5 or less.

上記製造方法によれば、安価な窒化けい素原料粉末に希土類元素,アルミニウム元素,酸素元素,必要に応じてTi,Hf,Zr等の成分を添加し、これらの成分と窒化けい素成分とが十分均一に混合されているため、これらの成分が希土類元素と共に窒化けい素原料粉末とむら無く反応して液相を生成して焼結促進剤として機能し、焼結体の緻密化を可能とするとともに結晶組織において粒成長を抑止する機能を果し、窒化けい素焼結体の機械的強度,耐摩耗性,転がり寿命特性に加えて、特に均一性および加工性に優れた窒化けい素焼結体が得られる。   According to the above manufacturing method, rare earth elements, aluminum elements, oxygen elements and, if necessary, components such as Ti, Hf, Zr, and the like are added to an inexpensive silicon nitride raw material powder. Because these components are mixed uniformly enough, these components react with the rare earth element evenly with the silicon nitride raw material powder to generate a liquid phase and function as a sintering accelerator, enabling the densification of the sintered body. In addition to the mechanical strength, wear resistance, and rolling life characteristics of the silicon nitride sintered body, the silicon nitride sintered body is particularly excellent in uniformity and workability. Is obtained.

本発明方法において使用され、耐摩耗性部材等を構成する窒化けい素焼結体の主成分となる窒化けい素粉末としては、例えば金属窒化法で合成された安価な窒化けい素原料粉末等を使用することができるが、焼結性、曲げ強度および破壊靭性値を考慮して、酸素含有量が1.5質量%以下、好ましくは0.9〜1.2質量%であるα相型窒化けい素を80質量%以上、好ましくは90〜97質量%含有し、平均粒径が0.2〜3μm、好ましくは1μm以下、さらに好ましくは0.2〜0.9μm程度の窒化けい素粉末を使用することが好ましい。上記α相型窒化けい素粉末は焼結条件によりβ相型窒化けい素焼結体となる。   As the silicon nitride powder that is used in the method of the present invention and is the main component of the silicon nitride sintered body constituting the wear-resistant member or the like, for example, an inexpensive silicon nitride raw material powder synthesized by a metal nitriding method is used. In consideration of the sinterability, bending strength and fracture toughness value, the α-phase type nitriding silicon having an oxygen content of 1.5% by mass or less, preferably 0.9 to 1.2% by mass. Silicon nitride powder containing 80% by mass or more, preferably 90 to 97% by mass, and having an average particle size of 0.2 to 3 μm, preferably 1 μm or less, more preferably about 0.2 to 0.9 μm is used. It is preferable to do. The α-phase type silicon nitride powder becomes a β-phase type silicon nitride sintered body depending on sintering conditions.

なお、窒化けい素原料粉末としてはα相型のものとβ相型のものとが知られているが、α相型の窒化けい素原料粉末では焼結体とした場合に強度が不足し易い傾向がある一方、β相型の窒化けい素原料粉末では、アスペクト比が高い窒化けい素結晶粒子が複雑に入り組んだ高強度の焼結体が得られる。   As the silicon nitride raw material powder, α-phase type and β-phase type powders are known, but the α-phase type silicon nitride raw material powder tends to have insufficient strength when formed into a sintered body. On the other hand, the β-phase type silicon nitride raw material powder can provide a high-strength sintered body in which silicon nitride crystal particles having a high aspect ratio are complicated.

本発明方法において、α相型窒化けい素粉末の配合量を80質量%以上の範囲に限定した理由は、80質量%以上の範囲で焼結体の曲げ強度、破壊靭性値および転がり寿命が格段に向上し、窒化けい素の優れた特性が顕著となるためである。一方、焼結性を考慮すると、97質量%までの範囲とする。好ましくは90〜95質量%の範囲とすることが好ましい。   In the method of the present invention, the reason why the blending amount of the α-phase type silicon nitride powder is limited to the range of 80% by mass or more is that the bending strength, fracture toughness value and rolling life of the sintered body are remarkably limited within the range of 80% by mass or more. This is because the excellent characteristics of silicon nitride become remarkable. On the other hand, considering the sinterability, the range is up to 97% by mass. Preferably it is set as the range of 90-95 mass%.

その結果、窒化けい素の出発原料粉末としては、焼結性、曲げ強度、破壊靭性値、転がり寿命を考慮して、酸素含有率が1.5質量%以下,好ましくは0.9〜1.2質量%であり、α相型窒化けい素を80質量%以上含有し、平均粒径が1μm以下、好ましくは0.6〜0.9μm程度の窒化けい素粉末を使用することが好ましい。   As a result, the silicon nitride starting material powder has an oxygen content of 1.5% by mass or less, preferably 0.9 to 1.% in consideration of sinterability, bending strength, fracture toughness value, and rolling life. It is preferable to use silicon nitride powder which is 2% by mass, contains α-phase type silicon nitride of 80% by mass or more, and has an average particle size of 1 μm or less, preferably about 0.6 to 0.9 μm.

特に平均粒径が0.8μm以下の微細な原料粉末を使用することにより、少量の焼結助剤であっても気孔率が1%以下の緻密な焼結体を形成することが可能である。この焼結体の気孔率はアルキメデス法により容易に計測できる。   In particular, by using fine raw material powder having an average particle size of 0.8 μm or less, it is possible to form a dense sintered body having a porosity of 1% or less even with a small amount of sintering aid. . The porosity of this sintered body can be easily measured by the Archimedes method.

上記窒化けい素原料粉末に焼結助剤として添加する希土類元素としては、Y,Ho,Er,Yb,La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなどの酸化物もしくは焼結操作により、これらの酸化物となる物質が単独で、または2種以上の酸化物を組み合せたものを含んでもよい。これらの焼結助剤は、窒化けい素原料粉末と反応して液相を生成し、焼結促進剤として機能する。焼結助剤の平均粒径は3μm以下が好ましい。   Examples of rare earth elements added as a sintering aid to the silicon nitride raw material powder include oxides such as Y, Ho, Er, Yb, La, Sc, Pr, Ce, Nd, Dy, Sm, and Gd, or sintering operations. Thus, these oxide substances may be used alone or in combination of two or more oxides. These sintering aids react with the silicon nitride raw material powder to form a liquid phase and function as a sintering accelerator. The average particle size of the sintering aid is preferably 3 μm or less.

上記焼結助剤の添加量は、希土類元素換算で原料粉末に対して3質量%以下の範囲とする。この添加量が3質量%未満の場合は、焼結体の緻密化あるいは高強度化が不十分であり、特に希土類元素がランタノイド系元素のように原子量が大きい元素の場合には、比較的低強度の焼結体が形成される。一方、添加量が3質量%を超える過量となると、過量の粒界相が生成し、気孔の発生量が増加したり、強度が低下し始めるので上記範囲とする。特に同様の理由により1.5〜2.5質量%とすることが望ましい。   The amount of the sintering aid added is in the range of 3% by mass or less based on the raw material powder in terms of rare earth elements. When the amount added is less than 3% by mass, densification or high strength of the sintered body is insufficient, and particularly when the rare earth element is an element having a large atomic weight such as a lanthanoid element, it is relatively low. A strong sintered body is formed. On the other hand, when the added amount exceeds 3% by mass, an excessive amount of grain boundary phase is generated, and the amount of pores generated increases or the strength starts to decrease. In particular, it is desirable to set it as 1.5 to 2.5 mass% for the same reason.

また、アルミニウム成分は酸化アルミニウム(Al)や窒化アルミニウム(AlN)などとして添加され、その添加量はAl元素換算で3質量%以下の範囲である。具体的には、Alは希土類元素の焼結促進剤の機能を促進し、低温での緻密化を可能にし、結晶組織において粒成長を制御する機能を果たし、Si焼結体の曲げ強度(抗折強度)をおよび破壊靭性値などの機械的強度を向上させるために3質量%以下の範囲で添加される。しかしながら、その添加量が1質量%未満の場合においては添加効果が不充分である一方、3質量%を超える過量となる場合には酸素含有量の上昇が起こり、これによる粒界相中の成分分布のむらが発生し転がり寿命が低下するので、Alの添加量は1〜3質量%の範囲とされるが、好ましくは1.5〜3質量%の範囲とすることが望ましい。 The aluminum component is added as aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), or the like, and the addition amount is in the range of 3 mass% or less in terms of Al element. Specifically, Al 2 O 3 promotes the function of a rare earth element sintering accelerator, enables densification at a low temperature, and functions to control grain growth in the crystal structure, and thus Si 3 N 4 sintering. In order to improve the bending strength (bending strength) of the body and the mechanical strength such as fracture toughness value, it is added in the range of 3% by mass or less. However, when the addition amount is less than 1% by mass, the effect of addition is insufficient. On the other hand, when the addition amount exceeds 3% by mass, the oxygen content rises, resulting in components in the grain boundary phase. Since uneven distribution occurs and the rolling life is shortened, the amount of Al 2 O 3 added is in the range of 1 to 3% by mass, preferably in the range of 1.5 to 3% by mass.

一方、AlNは焼結過程における窒化けい素成分の蒸発等を抑制するとともに、希土類元素の焼結促進剤としての機能をさらに助長する役目を果たすものであり、窒化物換算で3質量%以下の範囲で添加されることが望ましい。但し、その添加量が1質量%未満となると、上記機能が不十分となる一方、添加量が3質量%を超えるように過量となると、焼結体の機械的強度や耐摩耗性部材としての転がり寿命特性が低下するため、その添加量は窒化物換算で1〜3質量%の範囲とされる。   On the other hand, AlN serves to suppress the evaporation of silicon nitride components during the sintering process, and to further promote the function of rare earth elements as a sintering accelerator, and is 3% by mass or less in terms of nitride. It is desirable to add in a range. However, when the addition amount is less than 1% by mass, the above function becomes insufficient. On the other hand, when the addition amount exceeds 3% by mass, the mechanical strength of the sintered body and the wear resistance member are reduced. Since the rolling life characteristics are deteriorated, the amount added is in the range of 1 to 3% by mass in terms of nitride.

なお、前記窒化けい素粉末に、2〜4質量%のAlと1〜3質量%のAlNとを共に添加すると、焼結体の機械的特性をより効果的に高めることができるが、両者の合計量が過大になると、耐摩耗性部材としての転がり寿命特性が低下するため、原料混合体中におけるアルミニウム成分の合計含有量は酸化物換算で6質量%以下とすることが好ましい。 Incidentally, the nitride silicon powder, when both the addition of the Al 2 O 3 2-4 wt% and 1-3 wt% of AlN, it is possible to increase the mechanical properties of the sintered body more effectively When the total amount of both is excessive, the rolling life characteristics as the wear-resistant member are deteriorated. Therefore, the total content of aluminum components in the raw material mixture is preferably 6% by mass or less in terms of oxide.

一方、選択的に添加される成分としてのTi,Hf,Zr,W,Mo,Ta,Nb,Crの酸化物、炭化物、窒化物、珪化物、硼化物から成る群から選択される少なくとも1種の化合物は、上記の希土類酸化物等の焼結促進剤としての機能を促進するとともに、結晶組織において分散強化の機能を果し窒化けい素焼結体の機械的強度や転がり寿命を向上させるために元素換算で5質量%以下の範囲で含有される。特にTi,Mo,Hf化合物が好ましい。これらの化合物の添加量が元素換算で0.5質量%未満では添加効果が不十分である一方、5質量%を超える過量となる場合には焼結体の強度や転がり寿命の低下が起こるため、添加量は5質量%以下の範囲とする。特に0.5〜4質量%とすることが望ましい。   On the other hand, at least one selected from the group consisting of oxides, carbides, nitrides, silicides and borides of Ti, Hf, Zr, W, Mo, Ta, Nb, and Cr as components to be selectively added. In order to improve the mechanical strength and rolling life of the silicon nitride sintered body by promoting the function as a sintering accelerator such as the above-mentioned rare earth oxides, and also the function of strengthening dispersion in the crystal structure. It is contained in the range of 5% by mass or less in terms of element. Particularly preferred are Ti, Mo and Hf compounds. If the addition amount of these compounds is less than 0.5% by mass in terms of element, the effect of addition is insufficient. On the other hand, if the addition amount exceeds 5% by mass, the strength and rolling life of the sintered body are reduced. The added amount is in the range of 5% by mass or less. In particular, the content is desirably 0.5 to 4% by mass.

また、上記Ti,Hf,Zr,W,Mo,Ta,Nb,Crなどの化合物は、前記SiCと同様に結晶組織において分散強化の機能を果し、窒化けい素焼結体の機械的強度を向上させる。その結果、窒化けい素結晶組織中に希土類元素等を含む微細な粒界相が形成され、その粒界相中に形成される凝集偏析部の幅の最大値が30μm以下となり、さらには気孔率が1%以下、最低抗折強度が室温で700MPa以上であり、平均抗折強度が900MPa以上であり、破壊靭性値が6MPa・m1/2以上であり、圧砕強度が150MPa以上である機械的特性に優れた窒化けい素焼結体が得られる。なお上記平均抗折強度は、同一の焼結体から切り出した3本の抗折試験片についての各抗折強度の平均値である。 In addition, the compounds such as Ti, Hf, Zr, W, Mo, Ta, Nb, and Cr perform the function of dispersion strengthening in the crystal structure similarly to the SiC, and improve the mechanical strength of the silicon nitride sintered body. Let As a result, a fine grain boundary phase containing rare earth elements or the like is formed in the silicon nitride crystal structure, and the maximum width of the aggregated segregation portion formed in the grain boundary phase is 30 μm or less, and the porosity Is 1% or less, the minimum bending strength is 700 MPa or more at room temperature, the average bending strength is 900 MPa or more, the fracture toughness value is 6 MPa · m 1/2 or more, and the crushing strength is 150 MPa or more. A silicon nitride sintered body having excellent characteristics can be obtained. In addition, the said average bending strength is an average value of each bending strength about the three bending test pieces cut out from the same sintered compact.

なお前記Ti,Zr,Hf等の化合物は窒化けい素焼結体を黒色系に着色し不透明性を付与する遮光剤としても機能する。   The compounds such as Ti, Zr, and Hf also function as a light-shielding agent that imparts opacity by coloring the silicon nitride sintered body black.

また焼結体の気孔率は耐摩耗性部材の転がり寿命および曲げ強度に大きく影響するため1%以下とすることが好ましい。気孔率が1%を超えると、疲労破壊の起点となる気孔が急増して耐摩耗性部材の転がり寿命が低下するとともに、焼結体の強度低下が起こる。より好ましい気孔率は0.5%以下である。この気孔率は、前記各種の焼結助剤の選択による焼結性、成形圧力、焼成条件、焼結後のHIP処理条件等を制御することにより調整できる。   The porosity of the sintered body is preferably 1% or less because it greatly affects the rolling life and bending strength of the wear-resistant member. When the porosity exceeds 1%, the number of pores that become the starting point of fatigue failure increases rapidly, and the rolling life of the wear-resistant member decreases, and the strength of the sintered body decreases. A more preferable porosity is 0.5% or less. This porosity can be adjusted by controlling the sinterability, molding pressure, firing conditions, HIP treatment conditions after sintering, and the like by selecting the various sintering aids.

本発明方法で得られる窒化けい素焼結体は、例えば以下のようなプロセスを経て製造される。すなわち前記所定の微細粒径を有し、また酸素含有量が少ない微細な窒化けい素粉末に対して所定量の焼結助剤、AlやAlNなどのアルミニウム成分,有機バインダ等の必要な添加剤および必要に応じてTi等の化合物を加えて原料混合体を調製する。 The silicon nitride sintered body obtained by the method of the present invention is manufactured through the following process, for example. That is, a predetermined amount of sintering aid, an aluminum component such as Al 2 O 3 and AlN, an organic binder, etc. are necessary for the fine silicon nitride powder having the predetermined fine particle size and low oxygen content. A raw material mixture is prepared by adding a suitable additive and, if necessary, a compound such as Ti.

ここで、上記原料混合体の調製工程においては、焼結助剤成分の凝集を防止するため、各原料粉末すなわち焼結助剤粉末および窒化珪素粉末をあらかじめ分割して1回で混合処理する原料粉末重量を制限し、それらの分割された焼結助剤粉末と窒化珪素粉末とを十分に混合する。分割した他の原料粉末についても同様に混合して複数の混合粉末を調製する。そしてこれらの分割した均一な混合粉末を一つに統合してさらに十分に混合して原料粉末を調製し、成形後、脱脂工程を経て、焼結して窒化けい素焼結体を製造する方法を採用することを特徴としている。   Here, in the preparation process of the raw material mixture, in order to prevent the aggregation of the sintering aid component, each raw material powder, that is, the raw material of the sintering aid powder and the silicon nitride powder is previously divided and mixed at once. The powder weight is limited and the divided sintering aid powder and silicon nitride powder are mixed well. The other divided raw material powders are similarly mixed to prepare a plurality of mixed powders. A method for producing a silicon nitride sintered body by integrating these divided uniform mixed powders into one and further thoroughly mixing them to prepare raw material powder, followed by degreasing and sintering. It is characterized by adoption.

例えば、1ロット分(総量5kg)の原料粉末を混合するにあたり、原料粉末をそれぞれ2分割以上、好ましくは3〜5分割して比較的少量ずつ均一に混合した後に、さらに最終的に1つの原料混合体として合体して、さらに十分に混合する。   For example, when mixing the raw material powder for one lot (total amount 5 kg), after mixing the raw material powders into two or more, preferably 3 to 5 and mixing them uniformly in relatively small amounts, finally one raw material Combine as a mixture and mix well.

このように焼結助剤と窒化けい素原料粉末との配合体を少なくとも2分割してそれぞれ混合した後に、1つに統合して混合する製造方法とすることにより、より均質な原料混合体を得ることが可能となる。   In this way, a more homogeneous raw material mixture is obtained by combining the mixture of the sintering aid and the silicon nitride raw material powder into at least two parts and then mixing them together and then integrating them into one. Can be obtained.

次に得られた原料混合体を成形して所定形状の成形体を得る。原料混合体の成形法としては、汎用の金型プレス法やCIP(冷間静水圧プレス)法などが適用できる。特に球状のベアリングボールを製造する際には、冷間静水圧プレス(CIP)成形法が好適である。   Next, the obtained raw material mixture is molded to obtain a molded body having a predetermined shape. As a method for forming the raw material mixture, a general-purpose mold pressing method, a CIP (cold isostatic pressing) method, or the like can be applied. In particular, when producing a spherical bearing ball, a cold isostatic pressing (CIP) molding method is suitable.

上記金型プレス法やCIP成形法で成形体を形成する場合において、特に焼結後において気孔が発生し難い粒界相を形成するためには、原料混合体の成形圧力を120MPa以上に設定することが必要である。この成形圧力が120MPa未満である場合には、主として粒界相を構成する成分となる希土類元素化合物が凝集した箇所が形成され易い上に、十分に緻密な成形体となり得ず、クラックの発生が多い焼結体しか得られない。上記粒界相において助剤成分が凝集した箇所(偏析凝集部)は疲労破壊の起点となり易いため、耐摩耗性部材の寿命耐久性が低下してしまう。   When forming a molded body by the above-described mold pressing method or CIP molding method, the molding pressure of the raw material mixture is set to 120 MPa or more in order to form a grain boundary phase in which pores are unlikely to occur particularly after sintering. It is necessary. When this molding pressure is less than 120 MPa, a portion where the rare earth element compound that mainly constitutes the grain boundary phase is aggregated is easily formed, and a sufficiently dense molded body cannot be formed, and cracks are generated. Only a large number of sintered bodies can be obtained. Since the portion (segregation aggregate portion) where the auxiliary component aggregates in the grain boundary phase is likely to be a starting point of fatigue failure, the life durability of the wear-resistant member is lowered.

一方、200MPaを超えるように成形圧力を過大にした場合、成形型の耐久性が低下してしまうので、必ずしも製造性が良いとは言えない。そのため、上記成形圧力は120〜200MPaの範囲とすることが好ましい。   On the other hand, when the molding pressure is excessively increased to exceed 200 MPa, the durability of the molding die is lowered, so that the productivity is not necessarily good. Therefore, the molding pressure is preferably in the range of 120 to 200 MPa.

上記成形操作に引き続いて、成形体を非酸化性雰囲気中で温度600〜800℃、または空気中において温度400〜500℃で1〜2時間加熱して、予め添加していた有機バインダ成分を十分に除去し、脱脂する。   Subsequent to the molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours. Remove and degrease.

次に脱脂処理された成形体を窒素ガス、水素ガスやアルゴンガスなどの不活性ガスを充填した非酸化性雰囲気中で1600〜1900℃の温度で0.5〜10時間、常圧焼結または加圧焼結を行う。加圧焼結法としては、雰囲気加圧焼結、ホットプレス、熱間静水圧プレス(HIP)焼結など各種の加圧焼結法が用いられる。窒化けい素焼結体から成るベアリングボールを製造する際は常圧焼結または加圧焼結を実施した後にHIP焼結を行うことが好ましい。   Next, the degreased molded product is sintered under normal pressure at a temperature of 1600 to 1900 ° C. for 0.5 to 10 hours in a non-oxidizing atmosphere filled with an inert gas such as nitrogen gas, hydrogen gas or argon gas. Perform pressure sintering. As the pressure sintering method, various pressure sintering methods such as atmospheric pressure sintering, hot pressing, and hot isostatic pressing (HIP) sintering are used. When manufacturing a bearing ball made of a silicon nitride sintered body, it is preferable to perform HIP sintering after performing atmospheric pressure sintering or pressure sintering.

また上記通常の焼結後、得られた窒化けい素焼結体に対し、さらに非酸化性雰囲気中で、30MPa以上、好ましくは100MPa以上の加圧力で熱間静水圧プレス(HIP)処理を実施することにより、疲労破壊の起点となる焼結体の気孔の影響をより低減できるため、さらに改善された耐摩耗特性および転がり寿命特性を有する窒化けい素焼結体が得られる。   In addition, after the above normal sintering, the obtained silicon nitride sintered body is further subjected to hot isostatic pressing (HIP) treatment in a non-oxidizing atmosphere with a pressure of 30 MPa or more, preferably 100 MPa or more. As a result, the influence of the pores of the sintered body, which becomes the starting point of fatigue fracture, can be further reduced, so that a silicon nitride sintered body having further improved wear resistance characteristics and rolling life characteristics can be obtained.

上記製法によって製造された窒化けい素焼結体は全酸素量が5質量%以下で気孔率が1%以下、また抗折強度の最低値が常温で700MPa以上であり、平均値が900MPa以上であり機械的特性にも優れている。   The silicon nitride sintered body produced by the above method has a total oxygen amount of 5% by mass or less, a porosity of 1% or less, a minimum bending strength of 700 MPa or more at room temperature, and an average value of 900 MPa or more. Excellent mechanical properties.

また、圧砕強度が150N/mm以上であり、破壊靭性値が6MPa・m1/2以上である窒化けい素焼結体を得ることができる。 Also, a silicon nitride sintered body having a crushing strength of 150 N / mm 2 or more and a fracture toughness value of 6 MPa · m 1/2 or more can be obtained.

本発明に係る窒化けい素焼結体の製造方法によれば、安価な窒化けい素原料粉末に所定量の希土類元素,AlやAlNなどのアルミニウム成分,必要に応じてTi,Hf,Zr,等の元素を添加して原料混合体を調製しているため、焼結性が大幅に改善され、従来の窒化けい素焼結体と同等以上の緻密性および高い機械的強度に加えて、優れた耐摩耗性、特に転がり寿命特性および加工性が優れた転がり軸受部材として好適な窒化けい素焼結体が得られる。 According to the method for manufacturing a silicon nitride sintered body according to the present invention, a predetermined amount of rare earth elements, aluminum components such as Al 2 O 3 and AlN, and Ti, Hf, and Zr as necessary, in an inexpensive silicon nitride raw material powder. Since the raw material mixture is prepared by adding elements such as,, etc., the sinterability is greatly improved. In addition to the compactness and high mechanical strength equal to or higher than the conventional silicon nitride sintered body, it is excellent A silicon nitride sintered body suitable as a rolling bearing member having excellent wear resistance, particularly rolling life characteristics and workability can be obtained.

そのため、この窒化けい素焼結体を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な転動特性を維持することが可能であり、動作信頼性および耐久性に優れた回転機器を安価に提供することができる。また、他の用途としては、切削工具、圧延治具、逆止弁のチェックボール、エンジン部品、各種治工具、各種レール、各種ローラなど耐摩耗性を要求される様々な分野に適用可能である。   Therefore, when this silicon nitride sintered body is used as a rolling bearing member and a bearing portion is prepared, it is possible to maintain good rolling characteristics over a long period of time, and operational reliability and durability. Can be provided at low cost. In addition, as other applications, it can be applied to various fields that require wear resistance, such as cutting tools, rolling jigs, check valves for check valves, engine parts, various jigs, various rails, and various rollers. .

以上説明の通り、本発明に係る窒化けい素焼結体の製造方法によれば、安価な窒化けい素原料粉末に、所定量の希土類元素,Alなどのアルミニウム成分,必要に応じてTi,Hf,Zr,等の元素を添加して原料混合体を調製しているため、焼結性および加工性が大幅に改善され、従来の窒化けい素焼結体と同等以上の緻密性および高い機械的強度に加えて、優れた耐摩耗性が得られ、特に転がり寿命特性が優れた転がり軸受部材として好適な窒化けい素焼結体を安価に提供できる。 As described above, according to the method for manufacturing a silicon nitride sintered body according to the present invention, a predetermined amount of rare earth element, an aluminum component such as Al 2 O 3 , Ti Ti as required, etc. , Hf, Zr, and other elements are added to prepare the raw material mixture, so that the sinterability and workability are greatly improved, and the compactness and high mechanical strength equal to or higher than those of conventional silicon nitride sintered bodies In addition to mechanical strength, excellent wear resistance can be obtained, and in particular, a silicon nitride sintered body suitable as a rolling bearing member having excellent rolling life characteristics can be provided at low cost.

また、気孔の発生が抑制され、粒界相中における成分の分布むらが解消されるため、転がり寿命特性および耐久性が優れた窒化けい素焼結体が得られる。そのため、この窒化けい素焼結体を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な転動特性を維持することが可能であり、動作信頼性および耐久性に優れた回転機器を提供することができる。   Further, since the generation of pores is suppressed and uneven distribution of components in the grain boundary phase is eliminated, a silicon nitride sintered body having excellent rolling life characteristics and durability can be obtained. Therefore, when this silicon nitride sintered body is used as a rolling bearing member and a bearing portion is prepared, it is possible to maintain good rolling characteristics over a long period of time, and operational reliability and durability. It is possible to provide an excellent rotating device.

次に本発明の実施形態を以下に示す実施例を参照して具体的に説明する。   Next, the embodiments of the present invention will be specifically described with reference to the following examples.

[実施例1〜12]
金属窒化法で製造された窒化けい素原料粉末であり、酸素含有量が1.3質量%であり、α相型窒化けい素85%を含む平均粒径0.7μmのSi(窒化けい素)原料粉末と、焼結助剤として平均粒径0.8μmのY(酸化イットリウム)粉末と、アルミニウム成分として平均粒径0.9μmのAl粉末および平均粒径0.9μmのAlN粉末と、平均粒径0.8μmの酸化ハフニウム(HfO)等の希土類元素酸化物と、平均粒径1μmのTiO(酸化チタニウム)粉末、平均粒径1μmのMoC(炭化モリブデン)粉末等の耐火金属化合物粉末とを用意した。
[Examples 1 to 12]
A silicon nitride raw material powder produced by a metal nitriding method, having an oxygen content of 1.3% by mass and containing an α-phase type silicon nitride of 85% and an average particle size of 0.7 μm Si 3 N 4 (nitriding Silicon) raw material powder, Y 2 O 3 (yttrium oxide) powder having an average particle size of 0.8 μm as a sintering aid, Al 2 O 3 powder having an average particle size of 0.9 μm as an aluminum component, and an average particle size of 0 .9 μm AlN powder, rare earth element oxide such as hafnium oxide (HfO 2 ) having an average particle diameter of 0.8 μm, TiO 2 (titanium oxide) powder having an average particle diameter of 1 μm, Mo 2 C (average particle diameter of 1 μm) Refractory metal compound powder such as molybdenum carbide) powder was prepared.

上記窒化けい素原料粉末に対して、希土類元素量、アルミニウム元素量および耐火金属元素量が、表1に示す値になるように上記焼結助剤を所定量ずつ添加配合して各原料粉末を1ロット分(5Kg)ずつ調製した。次に、各原料粉末を表1に示す分割数で分割し、エチルアルコール中で粉砕媒体として窒化けい素製ボールを用いてボールミルにより24時間湿式混合した後に乾燥して原料体をそれぞれ調製した。そして分割して混合した複数の原料体を合体してさらに48時間混合することにより、助剤成分が凝集することなく均一に分散した各原料粉末を製造した。   To the silicon nitride raw material powder, the sintering aid is added and blended in predetermined amounts so that the rare earth element amount, aluminum element amount and refractory metal element amount are the values shown in Table 1. One lot (5 kg) was prepared. Next, each raw material powder was divided by the number of divisions shown in Table 1, and wet mixed with a ball mill using ethyl nitride balls as a grinding medium in ethyl alcohol for 24 hours and then dried to prepare raw material bodies. A plurality of raw material bodies divided and mixed were combined and further mixed for 48 hours to produce each raw material powder in which the auxiliary component was uniformly dispersed without aggregation.

この各原料粉末を150MPaの成形圧力で冷間静水圧プレス法(CIP法)により成形し、得られた成形体を不活性ガス雰囲気中において表1に示す焼結条件(圧力、温度、時間)で焼成し、さらに必要に応じて表1に示す条件(圧力、温度、時間)で熱間静水圧プレス(HIP)処理を実施することにより、表1に示すような各実施例に係る窒化けい素焼結体を作製した。   Each raw material powder was molded by a cold isostatic pressing method (CIP method) at a molding pressure of 150 MPa, and the obtained compact was sintered in an inert gas atmosphere as shown in Table 1 (pressure, temperature, time). The silicon nitride according to each example as shown in Table 1 is obtained by performing hot isostatic pressing (HIP) treatment under conditions (pressure, temperature, time) shown in Table 1 as necessary. A sintered body was produced.

なお、各実施例および比較例に係る窒化けい素焼結体は、寸法が3×3×10mmである強度測定用の四角柱状の試料(試験片)と、直径が9.525mm(3/8インチ)であるベアリングボール試料とに加工した。さらにベアリングボール試料には、日本工業規格(JIS)で規定されたベアリングボールのグレード3に相当する表面研磨加工を施した。   In addition, the silicon nitride sintered body according to each of Examples and Comparative Examples has a square columnar sample (test piece) for strength measurement having dimensions of 3 × 3 × 10 mm and a diameter of 9.525 mm (3/8 inch). ) To be a bearing ball sample. Further, the bearing ball sample was subjected to a surface polishing process corresponding to the grade 3 of the bearing ball defined by the Japanese Industrial Standard (JIS).

[比較例1〜7]
比較例1として、1ロット分(5Kg)の原料混合体を分割せずにそのままボールミルにより24時間湿式混合した点以外は、実施例1と同様に成形・脱脂・焼結して比較例1に係る棒状および球状の窒化けい素焼結体を調製した。
[Comparative Examples 1 to 7]
As Comparative Example 1, it was molded, degreased and sintered in the same manner as in Example 1 except that one lot (5 Kg) of the raw material mixture was wet-mixed for 24 hours by a ball mill without being divided. Such rod-like and spherical silicon nitride sintered bodies were prepared.

比較例2としてアルミニウム成分を添加しない点以外は実施例1と同一条件で処理することにより比較例2に係る棒状および球状の窒化けい素焼結体を調製した。   As Comparative Example 2, a rod-like and spherical silicon nitride sintered body according to Comparative Example 2 was prepared by treating under the same conditions as in Example 1 except that no aluminum component was added.

比較例3として希土類元素を過量に添加した点以外は実施例1と同一条件で処理することにより比較例3係る棒状および球状の窒化けい素焼結体を調製した。   As Comparative Example 3, a rod-like and spherical silicon nitride sintered body according to Comparative Example 3 was prepared by processing under the same conditions as in Example 1 except that an excessive amount of rare earth element was added.

また、比較例4として比較例1で得られた焼結体を温度1700℃の窒素ガス雰囲気中で100MPaの加圧力を作用させるHIP処理を1時間実施することにより、比較例4に係る棒状および球状の窒化けい素焼結体を調製した。   In addition, as a comparative example 4, the sintered body obtained in the comparative example 1 was subjected to HIP treatment in which a pressure of 100 MPa was applied in a nitrogen gas atmosphere at a temperature of 1700 ° C. for 1 hour. A spherical silicon nitride sintered body was prepared.

さらに比較例5として、金属窒化法で製造された窒化けい素粉末であり、酸素含有量が1.7質量%でα相型窒化けい素を70%含有する平均粒径1.5μmのSi原料粉末を使用した点以外は実施例2と同一条件で処理して比較例5に係る棒状および球状の窒化けい素焼結体を調製した。 Further, as Comparative Example 5, a silicon nitride powder produced by a metal nitriding method, Si 3 having an average particle size of 1.5 μm, containing an oxygen content of 1.7% by mass and an α-phase type silicon nitride of 70%. A rod-like and spherical silicon nitride sintered body according to Comparative Example 5 was prepared by processing under the same conditions as in Example 2 except that N 4 raw material powder was used.

さらに、比較例6としてイミド熱分解法で合成された窒化けい素原料粉末を使用した点および酸化ハフニウム(HfO)を使用した点以外は実施例2と同一条件で処理することにより比較例6に係る棒状および球状の窒化けい素焼結体を調製した。 Further, Comparative Example 6 was treated under the same conditions as Example 2 except that silicon nitride raw material powder synthesized by the imide pyrolysis method and hafnium oxide (HfO 2 ) were used as Comparative Example 6. Rod-like and spherical silicon nitride sintered bodies according to the above were prepared.

比較例7としてアルミニウム成分を過量に添加した点以外は実施例1と同一条件で処理することにより比較例7係る棒状および球状の窒化けい素焼結体を調製した。   As Comparative Example 7, a rod-like and spherical silicon nitride sintered body according to Comparative Example 7 was prepared by processing under the same conditions as in Example 1 except that the aluminum component was added in an excessive amount.

こうして得られた各実施例および比較例に係る各窒化けい素焼結体について、希土類元素含有量、アルミニウム元素含有量、酸素含有量、Fe含有量、Ca含有量、助剤成分の偏析凝集部の最大径、窒化けい素結晶粒子の最大長さ、気孔率、ビッカース硬度Hv、マイクロインデンテーション法における新原方式による破壊靭性値(K1C)、室温での抗折強度の最小値および平均値、圧砕強度、熱伝導率、およびベアリングボールとしての転がり疲労寿命およびその寿命のワイブル係数を測定して表1に示す結果を得た。 About each silicon nitride sintered body according to each Example and Comparative Example thus obtained, the rare earth element content, the aluminum element content, the oxygen content, the Fe content, the Ca content, the segregation aggregation part of the auxiliary component Maximum diameter, maximum length of silicon nitride crystal particles, porosity, Vickers hardness Hv, fracture toughness value (K 1C ) by the new original method in the microindentation method, minimum and average bending strength at room temperature, crushing The results shown in Table 1 were obtained by measuring strength, thermal conductivity, rolling fatigue life as a bearing ball, and Weibull coefficient of the life.

なお、上記希土類元素含有量、アルミニウム元素含有量、およびTiなどの他の元素含有量は、窒化けい素焼結体を溶解した後に、ICP(誘導結合型プラズマ発光分光分析法)による化学分析によって定量した。また、上記酸素含有量は不活性ガス融解−赤外線吸収法により測定した。また、Fe含有量およびCa含有量は、加圧分解―ICP発光分析法により測定した。また助剤成分の偏析凝集部の最大径は、各焼結体の表面2ヶ所、断面2ヶ所の合計4ヶ所について任意に観察領域(面積50μm×50μmに相当する領域)を設定し、各領域における偏析凝集部の最大径を測定し該4ヶ所の平均値で示した。また上記窒化けい素結晶粒子の最大長さは、焼結体組織の拡大写真上で任意の測定領域(100μm×100μm)を3箇所選出し、各領域における結晶粒子の最大長さの平均値として測定した。   The content of the rare earth element, the content of aluminum element, and the content of other elements such as Ti are quantified by chemical analysis using ICP (inductively coupled plasma emission spectroscopy) after melting the silicon nitride sintered body. did. The oxygen content was measured by an inert gas melting-infrared absorption method. The Fe content and Ca content were measured by pressure decomposition-ICP emission analysis. In addition, the maximum diameter of the segregation and agglomeration part of the auxiliary component is arbitrarily set as an observation area (area corresponding to an area of 50 μm × 50 μm) for a total of four places of two surfaces and two cross sections of each sintered body. The maximum diameter of the segregated and agglomerated part was measured and indicated by the average value of the four places. The maximum length of the silicon nitride crystal particles is selected from three arbitrary measurement regions (100 μm × 100 μm) on the enlarged photograph of the sintered body structure, and is the average value of the maximum lengths of the crystal particles in each region. It was measured.

なお、SEM等の拡大写真で焼結体組織を確認すると、偏析凝集部は通常の粒界相より色が濃く映し出される(例えば、白黒写真の場合、窒化けい素結晶粒子が黒色、粒界相が白色に映し出され、偏析凝集では白色が濃く映し出される)ので区別は可能である。また、必要に応じてEPMAにて希土類元素および耐火金属の存在を確認すると希土類元素の濃度が通常の粒界相より色濃く映し出されるので、この方法によっても区別可能である。   When the sintered body structure is confirmed by an enlarged photograph such as SEM, the segregated aggregate portion appears darker than the normal grain boundary phase (for example, in the case of a black and white photograph, the silicon nitride crystal particles are black, the grain boundary phase is Is displayed in white, and in segregation aggregation, white is projected darkly). Further, if the presence of rare earth elements and refractory metals is confirmed by EPMA as necessary, the concentration of rare earth elements is projected to be darker than the normal grain boundary phase, so that this method can also be distinguished.

さらに各焼結体の気孔率はアルキメデス法によって測定した。またビッカース硬度HvはJIS−R−1610に準拠して測定し、破壊靭性値(K1C)は、マイクロインデンテーション法における新原方式により測定し、熱伝導率はレーザーフラッシュ法により測定した。 Further, the porosity of each sintered body was measured by Archimedes method. The Vickers hardness Hv was measured in accordance with JIS-R-1610, the fracture toughness value (K 1C ) was measured by the Nihara method in the microindentation method, and the thermal conductivity was measured by the laser flash method.

なお、各測定値において、本実施例では便宜的に試料形状を四角柱状としたが、例えば真球状のベアリングボールについて各特性を測定する場合でも同様にラップ加工を施すことにより対応可能である。   In each measurement value, the sample shape is a quadrangular prism for the sake of convenience in this embodiment. However, for example, even when measuring each characteristic of a true spherical bearing ball, it can be handled by performing lapping similarly.

またベアリングボールとしての転がり疲労寿命は、下記のように評価した。すなわち、各実施例および比較例に係る窒化けい素焼結体を使用して直径9.525mmのベアリングボールを作製し、各ベアリングボール表面を研磨加工してグレード3の状態とした後に、図1に示すスラスト型転がり摩耗試験装置を用いて転がり疲労寿命を測定した。   Further, the rolling fatigue life as a bearing ball was evaluated as follows. That is, a bearing ball having a diameter of 9.525 mm was prepared using the silicon nitride sintered bodies according to the examples and comparative examples, and the surface of each bearing ball was polished to a grade 3 state. The rolling fatigue life was measured using the thrust type rolling wear test apparatus shown.

この試験装置は、装置本体1内に配置された平板状の軸受鋼板9と、この軸受鋼板9上面に配置された複数の転動ボール8としての窒化けい素製ベアリングボールと、この転動ボール8の上部に配置されたガイド板4と、このガイド板4に接続された駆動回転軸5と、上記転動ボール8の配置間隔を規制する保持器6とを備えて構成される。装置本体1内には、転動部を潤滑するための潤滑油7が充填される。上記軸受鋼板9およびガイド板4は、日本工業規格(JIS G 4805)で規定される高炭素クロム軸受鋼(SUJ2)で形成される。上記潤滑油7としては、パラフィン系潤滑油(40℃での粘度:67.2mm/S)やタービン油が使用される。 This test apparatus includes a flat bearing steel plate 9 disposed in the apparatus main body 1, a silicon nitride bearing ball as a plurality of rolling balls 8 disposed on the upper surface of the bearing steel plate 9, and the rolling ball. 8, a guide plate 4 disposed on the upper portion of the guide plate 8, a drive rotating shaft 5 connected to the guide plate 4, and a cage 6 that regulates the arrangement interval of the rolling balls 8. The apparatus main body 1 is filled with lubricating oil 7 for lubricating the rolling part. The bearing steel plate 9 and the guide plate 4 are made of high carbon chrome bearing steel (SUJ2) defined by Japanese Industrial Standard (JIS G 4805). As the lubricating oil 7, paraffinic lubricating oil (viscosity at 40 ° C .: 67.2 mm 2 / S) or turbine oil is used.

そして、各実施例および比較例に係る窒化けい素焼結体製ベアリングボールの転がり疲労寿命は、上記のように各窒化けい素焼結体から直径が9.525mm(3/8インチ)である3個の転動ボール8を調製する一方、SUJ2製軸受鋼板9の上面に設定した直径40mmの軌道上に上記3個の転動ボール8を配置し、タービン油の油浴潤滑条件下でこの転動ボール8に5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボール8の表面が剥離するまでの時間として測定した。上記各測定結果を下記表1〜2にまとめて示す。

Figure 0004693374
The rolling fatigue life of the bearing balls made of the silicon nitride sintered bodies according to the respective examples and comparative examples is 3 pieces each having a diameter of 9.525 mm (3/8 inch) from each silicon nitride sintered body as described above. On the other hand, the above-mentioned three rolling balls 8 are arranged on a raceway having a diameter of 40 mm set on the upper surface of the SUJ2 bearing steel plate 9, and this rolling is performed under oil bath lubrication conditions of turbine oil. When the ball 8 is rotated under the condition of a rotational speed of 1200 rpm with a load applied so that the maximum contact stress of 5.9 GPa acts, the surface of the rolling ball 8 made of a sintered silicon nitride body is peeled off. Measured as the time until. Each said measurement result is put together in the following Tables 1-2, and is shown.
Figure 0004693374

Figure 0004693374
Figure 0004693374

上記表1および表2に示す結果から明らかなように各実施例に係る窒化けい素焼結体およびその焼結体から形成された耐摩耗性部材としてのベアリングボールにおいては、均質な組成を有し所定の添加成分が含有されて形成されているため、気孔の発生が抑制されており、粒界相中における助剤成分の偏析凝集部の最大径が小さく、成分の分布むらは観察されず、強度特性についてはやや比較例よりも低いものがあるが、転がり寿命および耐久性に優れた窒化けい素製耐摩耗性部材が得られた。具体的には各実施例に係る窒化けい素焼結体で形成したベアリングボールを長時間高速稼動させた場合においても、不具合は全く発生しないことが判明した。それに対し、偏析凝集部の最大径が大きい比較例1等においては不具合が発生し転がり寿命および耐久性が低いことが確認された。   As is apparent from the results shown in Tables 1 and 2, the silicon nitride sintered body according to each example and the bearing ball as the wear-resistant member formed from the sintered body have a homogeneous composition. Since the predetermined additive component is contained and formed, the generation of pores is suppressed, the maximum diameter of the segregation and aggregation portion of the auxiliary component in the grain boundary phase is small, and uneven distribution of the component is not observed, Although the strength characteristics were somewhat lower than those of the comparative examples, a silicon nitride wear-resistant member having excellent rolling life and durability was obtained. Specifically, it has been found that even when a bearing ball formed of the silicon nitride sintered body according to each example is operated at a high speed for a long time, no problem occurs. On the other hand, in Comparative Example 1 and the like where the maximum diameter of the segregated aggregated portion is large, it was confirmed that a failure occurred and the rolling life and durability were low.

また、粒界相中における助剤成分の偏析凝集部の最大径が30μm以下である場合には、窒化けい素焼結体の抗折強度の最小値は700MPa以上であり平均値は900MPa以上と成り、優れた構造強度を有することが判明した。また、熱伝導率はいずれも40W/m・K以上であった。これに対して、偏析凝集部の最大径が50μm程度と大きくなる場合には、抗折強度の最低値が600MPaを下回ってしまった。   Further, when the maximum diameter of the segregation aggregate portion of the auxiliary component in the grain boundary phase is 30 μm or less, the minimum value of the bending strength of the silicon nitride sintered body is 700 MPa or more, and the average value is 900 MPa or more. It was found to have excellent structural strength. Further, the thermal conductivity was 40 W / m · K or more in all cases. On the other hand, when the maximum diameter of the segregated aggregated part is as large as about 50 μm, the minimum value of the bending strength is below 600 MPa.

一方、原料粉末混合段階において原料粉末を分割せずに一度に混合した比較例1においては、液相成分の凝集偏析が大きくなり、粒界相中の成分の分布むらが大きく、強度特性および転がり寿命が低下した。   On the other hand, in Comparative Example 1 in which the raw material powder was mixed at one time without dividing the raw material powder in the raw material powder mixing stage, the liquid phase component agglomerates and segregates, the distribution of the component in the grain boundary phase is large, the strength characteristics and rolling. Lifespan has decreased.

また、アルミニウム成分を含有しない比較例2においては、液相成分の凝集偏析が大きくなり、粒界相中の成分の分布むらが大きく、強度特性および転がり寿命が低下した。   Further, in Comparative Example 2 containing no aluminum component, the aggregation and segregation of the liquid phase component was increased, the distribution of the component in the grain boundary phase was uneven, and the strength characteristics and rolling life decreased.

さらに希土類成分を過量に添加した比較例3においても、液相成分の凝集偏析が大きくなり、粒界相中の成分の分布むらが大きく、強度特性および転がり寿命が低下した。   Further, in Comparative Example 3 in which the rare earth component was added in an excessive amount, the aggregation and segregation of the liquid phase component was increased, the distribution of the component in the grain boundary phase was large, and the strength characteristics and the rolling life were reduced.

一方、比較例4のように原料粉末を分割せずに一度に混合した原料で形成した焼結体にHIP処理を実施しても、三点曲げ強度は高いが、粒界相中における成分の分布むらの低減効果が十分ではなく、転がり寿命が低下した。   On the other hand, even if the HIP treatment is performed on the sintered body formed of the raw material mixed at once without dividing the raw material powder as in Comparative Example 4, the three-point bending strength is high, but the component in the grain boundary phase The effect of reducing the distribution unevenness was not sufficient, and the rolling life decreased.

また、金属窒化法で合成された原料粉末を使用してもα型窒化けい素の割合が低い(70%)窒化けい素原料粉末を使用した比較例5においては、粒界相中の成分の分布むらが大きくなるため、転がり寿命が低下することが判明した。   Further, in Comparative Example 5 using the silicon nitride raw material powder having a low ratio of α-type silicon nitride (70%) even when using the raw material powder synthesized by the metal nitriding method, the components in the grain boundary phase It has been found that the rolling life is reduced because of the uneven distribution.

さらにイミド熱分解法で合成された窒化けい素粉末を使用した比較例6においては、気孔率,抗折強度,破壊靭性値,粒界相中の偏析凝縮部の最大径,および転がり寿命の全ての特性について良好であったが、加工性に難点があり、また高価な原料粉末であるため、製造コストが大幅に増加することが再確認できた。   Furthermore, in Comparative Example 6 using silicon nitride powder synthesized by the imide pyrolysis method, the porosity, the bending strength, the fracture toughness value, the maximum diameter of the segregation condensation part in the grain boundary phase, and the rolling life are all However, it was reconfirmed that the manufacturing cost greatly increased because of the difficulty in workability and the expensive raw material powder.

また、アルミニウム成分を過量に添加した比較例7においては、強度特性および転がり寿命が低下した。   Further, in Comparative Example 7 in which the aluminum component was added in an excessive amount, the strength characteristics and the rolling life decreased.

このように本実施例に係る窒化けい素焼結体において、特に助剤成分の偏析凝集部の最大径を30μm以下とした窒化けい素焼結体でベアリングボール等の耐摩耗部材を構成した場合には、窒化けい素が有する優れた摺動特性をさらに向上させることができ、ハードディスクドライブなどの電子機器に用いた場合に生じ易い不具合を大幅に低減することが可能となった。   As described above, in the silicon nitride sintered body according to the present embodiment, particularly when the wear resistant member such as a bearing ball is constituted by the silicon nitride sintered body in which the maximum diameter of the segregation aggregate portion of the auxiliary component is 30 μm or less. In addition, the excellent sliding characteristics of silicon nitride can be further improved, and it is possible to greatly reduce problems that are likely to occur when used in electronic devices such as hard disk drives.

次に窒化けい素焼結体に反応物としてTiの炭化物や窒化物(TiCN)を形成し、その反応物量を制御した場合における転動・摺動特性・寿命に及ぼす影響について下記の実施例に基づいて説明する。   Next, the effects on rolling, sliding characteristics and life when Ti carbide or nitride (TiCN) is formed as a reactant in the sintered silicon nitride and the amount of the reactant is controlled are based on the following examples. I will explain.

[実施例13]
実施例1において調製したように、希土類元素としてのY、アルミニウム、酸素およびTiを所定量含有する原料混合体に、溶剤およびバインダ等を添加して混合解砕し、スプレードライヤーにて造粒し、この造粒粉を圧力150MPaの条件でCIP成形し、球状の成形体を多数形成した。この成形体を実施例1と同様に脱脂した後にカーボン製の焼成容器に表3に示す所定の充填率で充填し、温度1850℃で5時間焼結した。なお焼結時の雰囲気は窒素ガスとし、その雰囲気ガス圧力は表3に示す範囲で変化させることにより、焼成雰囲気を制御して雰囲気加圧焼結(GPS)工程を実施した。
[Example 13]
As prepared in Example 1, a raw material mixture containing a predetermined amount of Y, aluminum, oxygen and Ti as rare earth elements was mixed and crushed by adding a solvent and a binder, and granulated with a spray dryer. The granulated powder was CIP-molded under a pressure of 150 MPa to form a large number of spherical shaped bodies. This molded body was degreased in the same manner as in Example 1, and then filled in a carbon firing container at a predetermined filling rate shown in Table 3, and sintered at a temperature of 1850 ° C. for 5 hours. The atmosphere at the time of sintering was nitrogen gas, and the atmosphere gas pressure was changed within the range shown in Table 3, thereby controlling the firing atmosphere and performing the atmosphere pressure sintering (GPS) process.

図2は焼成容器10内への充填率が70%であり、5気圧の焼成雰囲気中で焼結した試料6の転動ボール8を焼成処理する状態を示す断面図であり、図3は焼成容器10内への充填率が30%であり、1気圧の焼成雰囲気中で焼結した試料1の転動ボール8を焼成処理する状態を示す断面図である。   FIG. 2 is a cross-sectional view showing a state in which the rolling ball 8 of the sample 6 sintered in a firing atmosphere at 5 atm has a filling rate in the firing container 10 of 70%, and FIG. It is sectional drawing which shows the state which the filling rate in the container 10 is 30%, and the rolling ball 8 of the sample 1 sintered in the baking atmosphere of 1 atmosphere is baking-processed.

さらに、各球状焼結体について、圧力200MPa、温度1850℃で1時間のHIP処理を実施した。これにより、各窒化けい素焼結体から成る直径9.525mmのベアリングボール試料を作製した。さらに各ベアリングボール試料表面には、日本工業規格(JIS)で規定されたベアリングボールのグレード3に相当する表面研磨加工を施した。   Further, each spherical sintered body was subjected to HIP treatment for 1 hour at a pressure of 200 MPa and a temperature of 1850 ° C. Thereby, a bearing ball sample having a diameter of 9.525 mm made of each silicon nitride sintered body was produced. Further, the surface of each bearing ball sample was subjected to a surface polishing process corresponding to the grade 3 of the bearing ball defined by Japanese Industrial Standards (JIS).

こうして調製した各ベアリングボールの研磨加工面について、X線回折法(XRD)により、窒化けい素のX線最大ピーク強度に対するTiCN化合物のX線最大ピーク強度の比を測定するとともに、各ベアリングボール試料を転動ボール8として、図1に示すスラスト型転がり摩耗試験装置に装着して転がり疲労寿命を測定し、この転がり疲労寿命のワイブル係数を測定した。測定結果を下記表3に示す。

Figure 0004693374
With respect to the polished surface of each bearing ball thus prepared, the ratio of the maximum X-ray peak intensity of the TiCN compound to the maximum X-ray peak intensity of silicon nitride is measured by X-ray diffraction (XRD). Was mounted on a thrust type rolling wear test apparatus shown in FIG. 1 to measure the rolling fatigue life, and the Weibull coefficient of the rolling fatigue life was measured. The measurement results are shown in Table 3 below.
Figure 0004693374

上記表3に示す結果から明らかなように、焼結雰囲気圧力および焼成容器内への成形体の充填率を高めて焼結時の雰囲気を適正に設定し、窒化けい素に対するTiCNのX線強度比を50%以下に制御した焼結体から成るベアリングボール試料2,5〜7においては、窒化けい素の粒界強度のばらつきが減少するために、繰返し応力に対する抵抗力が増大化して転動摺動特性および寿命が安定化し、9乃至10以上のワイブル係数が得られ、寿命特性が安定化したベアリングボールが得られた。特に、窒化けい素に対するTiCNのX線強度比が5〜35%の範囲において、寿命特性が安定したベアリングボールが得られた。   As is clear from the results shown in Table 3 above, the sintering atmosphere pressure and the filling ratio of the molded body into the firing container are increased to appropriately set the atmosphere during sintering, and the X-ray intensity of TiCN against silicon nitride In bearing ball samples 2, 5 to 7, which are made of a sintered body whose ratio is controlled to 50% or less, variation in the grain boundary strength of silicon nitride is reduced, so that the resistance to repeated stress is increased and rolling. The sliding characteristics and life were stabilized, a Weibull coefficient of 9 to 10 or more was obtained, and a bearing ball with stable life characteristics was obtained. In particular, a bearing ball having stable life characteristics was obtained when the X-ray intensity ratio of TiCN to silicon nitride was in the range of 5 to 35%.

一方、窒化けい素に対するTiCNのX線強度比が50%を超える焼結体から成るベアリングボール試料1,3においては、窒化けい素焼結体の助剤成分であるTiとCやNとの反応量がばらついてしまうため、粒界強度のばらつきが大きくなり、転動摺動特性および寿命が不安定化することが確認された。   On the other hand, in the bearing ball samples 1 and 3 made of a sintered body in which the X-ray intensity ratio of TiCN to silicon nitride exceeds 50%, the reaction of Ti, which is an auxiliary component of the silicon nitride sintered body, with C or N Since the amount varies, it has been confirmed that the variation in grain boundary strength becomes large and the rolling and sliding characteristics and the life become unstable.

以上の実施例においては本発明に係る窒化けい素焼結体を軸受けの転動体(ベアリングボール)に適用した場合を例にとって説明したが、本発明に係る窒化けい素焼結体は上記用途に限定されるものではなく、切削工具や圧延治具等の構成材として使用した場合にも優れた耐摩耗性,耐久性を発揮させることができる。ちなみに、実施例1に係る窒化けい素焼結体を用いて圧延用ロールを形成したところ、超硬材で形成した同一寸法の圧延用ロールと比較して、圧延痕や成形不良を生じるまでの耐用寿命を2.8〜3.4倍まで延伸することが可能であった。また、超硬材で形成した同一寸法の切削工具と比較して、切れ味の持続期間を2.4〜2.9倍まで延ばすことができ、優れた耐久性が確認された。   In the above embodiments, the case where the silicon nitride sintered body according to the present invention is applied to a rolling element (bearing ball) of a bearing has been described as an example. However, the silicon nitride sintered body according to the present invention is limited to the above application. In addition, it can exhibit excellent wear resistance and durability even when used as a constituent material for cutting tools, rolling jigs and the like. By the way, when the roll for rolling was formed using the silicon nitride sintered body according to Example 1, compared with the roll for roll of the same size formed of super hard material, the durability until a rolling mark or a molding defect was generated. It was possible to extend the life to 2.8 to 3.4 times. Moreover, compared with the cutting tool of the same dimension formed with the cemented carbide material, the duration of sharpness could be extended to 2.4 to 2.9 times, and the outstanding durability was confirmed.

本発明に係る窒化けい素焼結体で形成したベアリングボールの転がり疲労寿命を測定するためのスラスト型転がり摩耗試験装置の構成を示す断面図。Sectional drawing which shows the structure of the thrust type | mold rolling wear test apparatus for measuring the rolling fatigue life of the bearing ball formed with the silicon nitride sintered compact concerning this invention. 本発明に係る窒化けい素焼結体で形成したベアリングボールの焼成方法を示す断面図。Sectional drawing which shows the baking method of the bearing ball formed with the silicon nitride sintered compact concerning this invention. 本発明に係る窒化けい素焼結体で形成したベアリングボールの他の焼成方法を示す断面図。Sectional drawing which shows the other baking method of the bearing ball formed with the silicon nitride sintered compact concerning this invention.

符号の説明Explanation of symbols

1 装置本体
4 ガイド板
5 駆動回転軸
6 保持器
7 潤滑油
8 転動ボール
9 軸受け鋼板
10 焼成容器
DESCRIPTION OF SYMBOLS 1 Apparatus main body 4 Guide plate 5 Drive rotating shaft 6 Cage 7 Lubricating oil 8 Rolling ball 9 Bearing steel plate 10 Firing container

Claims (3)

酸素を1.5質量%以下、α相型窒化けい素を80質量%以上含有し、平均粒径が1μm以下であり金属窒化法で製造された窒化けい素粉末に、焼結助剤成分として希土類元素を1.5〜3質量%、Al元素を1〜3質量%、酸素元素を5質量%以下添加し、得られた原料混合体を2〜5の分割数で複数に分割し、分割した各原料混合体をそれぞれ個別に混合した後に、一つの原料体5kgとして合体して、さらに混合し得られた原料粉末を成形して成形体を調製し、この成形体を真空度が1×10−3torr以下の雰囲気で温度1500℃まで加熱して脱気処理を実施した後に、雰囲気を非酸化性ガス雰囲気に切り替え、温度が1600〜1900℃で0.5〜10時間に渡り、圧力が5気圧以上の加圧焼結を実施することにより得られた窒化けい素焼結体の結晶組織における助剤成分の偏析凝集部の最大径を30μm以下とすることを特徴とする窒化けい素焼結体の製造方法。 As a sintering aid component, silicon nitride powder containing 1.5% by mass or less of oxygen and 80% by mass or more of α-phase type silicon nitride and having an average particle size of 1 μm or less and manufactured by a metal nitriding method is used. Rare earth element 1.5-3 mass% , Al element 1-3 mass% , oxygen element 5 mass% or less are added, and the resulting raw material mixture is divided into a plurality of divisions of 2-5 and divided. After mixing each raw material mixture individually, they are united as one raw material body 5 kg , and further mixed to form a raw material powder to prepare a molded body. This molded body has a vacuum degree of 1 × After performing deaeration treatment by heating up to a temperature of 1500 ° C. in an atmosphere of 10 −3 torr or less, the atmosphere is switched to a non-oxidizing gas atmosphere, and the temperature is 1600 to 1900 ° C. for 0.5 to 10 hours. Is obtained by performing pressure sintering at 5 atm or higher. A method for producing a silicon nitride sintered body, wherein the maximum diameter of the segregation and aggregation portion of the auxiliary component in the crystal structure of the silicon nitride sintered body is 30 μm or less . 焼結後、非酸化性雰囲気中で前記窒化けい素焼結体に対し、圧力30MPa以上の熱間静水圧プレス(HIP)処理を実施することを特徴とする請求項記載の窒化けい素焼結体の製造方法。 After sintering, the non in an oxidizing atmosphere with respect to the silicon nitride sintered body, silicon nitride sintered body of claim 1, wherein the performing the above hot isostatic pressing pressure 30 MPa (HIP) process Manufacturing method. 得られた窒化けい素焼結体は、不純物としてFeを10〜300ppm、Caを10〜1000ppm含有していることを特徴とする請求項1に記載の窒化けい素焼結体の製造方法。 The resulting silicon nitride sintered body The manufacturing method of the silicon nitride sintered body according to claim 1, characterized in that it Fe a 10~3 5 00ppm, the Ca contained 10~1000ppm as an impurity.
JP2004214866A 2004-07-22 2004-07-22 Manufacturing method of sintered silicon nitride Active JP4693374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214866A JP4693374B2 (en) 2004-07-22 2004-07-22 Manufacturing method of sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214866A JP4693374B2 (en) 2004-07-22 2004-07-22 Manufacturing method of sintered silicon nitride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010159848A Division JP2011016716A (en) 2010-07-14 2010-07-14 Sintered silicon nitride

Publications (2)

Publication Number Publication Date
JP2006036554A JP2006036554A (en) 2006-02-09
JP4693374B2 true JP4693374B2 (en) 2011-06-01

Family

ID=35901945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214866A Active JP4693374B2 (en) 2004-07-22 2004-07-22 Manufacturing method of sintered silicon nitride

Country Status (1)

Country Link
JP (1) JP4693374B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150064B2 (en) * 2006-06-08 2013-02-20 株式会社東芝 Method for manufacturing wear-resistant member
WO2008032427A1 (en) 2006-09-13 2008-03-20 Kabushiki Kaisha Toshiba Slide member and bearing utilizing the same
CN104692806B (en) * 2007-03-15 2017-04-26 株式会社东芝 Sliding member
JP4950715B2 (en) * 2007-03-22 2012-06-13 株式会社東芝 Silicon nitride sintered body and sliding member using the same
JP5100201B2 (en) * 2007-05-16 2012-12-19 株式会社東芝 Silicon nitride sintered body and sliding member using the same
JP5487099B2 (en) * 2008-04-18 2014-05-07 株式会社東芝 Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
US9334193B2 (en) 2010-02-16 2016-05-10 Kabushiki Kaisha Toshiba Wear resistant member, and method for manufacturing the wear resistant member
JP6321608B2 (en) * 2014-11-21 2018-05-09 日本特殊陶業株式会社 Silicon nitride sintered body, method for producing the same, and rolling element for bearing
JP7408884B1 (en) 2022-03-10 2024-01-05 デンカ株式会社 Silicon nitride sintered body and sintering aid powder
WO2023171511A1 (en) * 2022-03-10 2023-09-14 デンカ株式会社 Sintered ceramic object, production method therefor, and sintering-aid powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328869A (en) * 2000-03-16 2001-11-27 Toshiba Corp Abrasion-resistant member and method for producing the same
JP2001354481A (en) * 2000-06-08 2001-12-25 Toshiba Corp Silicon nitride sintered compact and wear-resistant member obtained by using the same
JP2002326875A (en) * 2001-01-12 2002-11-12 Toshiba Corp Abrasion resistant member of silicon nitride and its manufacturing method
JP2003034581A (en) * 2001-07-24 2003-02-07 Toshiba Corp Silicon nitride abrasion resistant member and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328869A (en) * 2000-03-16 2001-11-27 Toshiba Corp Abrasion-resistant member and method for producing the same
JP2001354481A (en) * 2000-06-08 2001-12-25 Toshiba Corp Silicon nitride sintered compact and wear-resistant member obtained by using the same
JP2002326875A (en) * 2001-01-12 2002-11-12 Toshiba Corp Abrasion resistant member of silicon nitride and its manufacturing method
JP2003034581A (en) * 2001-07-24 2003-02-07 Toshiba Corp Silicon nitride abrasion resistant member and method for producing the same

Also Published As

Publication number Publication date
JP2006036554A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US7056850B2 (en) Wear-resistant silicon nitride member and method of manufacture thereof
JP4795588B2 (en) Wear resistant parts made of silicon nitride
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
JP6400478B2 (en) Wear-resistant material
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
US7521388B2 (en) Wear resistant member comprised of silicon nitride and process for producing the same
JP4693374B2 (en) Manufacturing method of sintered silicon nitride
JP2011016716A (en) Sintered silicon nitride
JP5289053B2 (en) Sliding member and bearing using the same
JP6334413B2 (en) Silicon nitride sintered body and sliding member using the same
JP6321608B2 (en) Silicon nitride sintered body, method for producing the same, and rolling element for bearing
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
JP4497787B2 (en) Rolling ball
JP4939736B2 (en) Manufacturing method of sintered silicon nitride
JP5349525B2 (en) Rolling element
JP4950715B2 (en) Silicon nitride sintered body and sliding member using the same
JP4869171B2 (en) Method for producing wear-resistant member made of silicon nitride
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JPH07223868A (en) Beta-sialon-based sintered material for sliding material and production thereof
JP2002068844A (en) Silicon nitride sintered compact having property of free- cutting and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150