JP2000192168A - Silicon carbide composite material and its production - Google Patents

Silicon carbide composite material and its production

Info

Publication number
JP2000192168A
JP2000192168A JP10369299A JP36929998A JP2000192168A JP 2000192168 A JP2000192168 A JP 2000192168A JP 10369299 A JP10369299 A JP 10369299A JP 36929998 A JP36929998 A JP 36929998A JP 2000192168 A JP2000192168 A JP 2000192168A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
component
thermal conductivity
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369299A
Other languages
Japanese (ja)
Other versions
JP4228444B2 (en
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP36929998A priority Critical patent/JP4228444B2/en
Publication of JP2000192168A publication Critical patent/JP2000192168A/en
Application granted granted Critical
Publication of JP4228444B2 publication Critical patent/JP4228444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To increase the thermal conductivity of the composite material by controlling the asepect ractio of particles essentially consisting of silicon carbide to the value above the specified one and allowing the thermal conductivity in the 1st direction and that in the 2nd direction orthogonal to the 1st direction to satisfy specified relation. SOLUTION: This material is the one in which the aspect ratio of silicon carbide particles is controlled to >1, and there is anisotropy in thermal conductivity. Namely, the relation of 0.7Kx<=Ky<=0.9Kx is valid between the thermal conductivity Kx in the 1st direction of the material and the thermal conductivity Ky in the 2nd direction orthogonal to the 1st direction. In the case a planar radiating substrate is formed by using this material, ordinarily, the 1st direction is applied as the main plane direction, and the 2nd direction is applied as the thickness direction. In the case of being increasing the thermal conductivity in the main face direction, in the producing process of the material, the main planes of the powder particles are orientated to the main plane of the substrate as much as possible. The degree of the anisotropy is remarkable, mainly, as the aspect ratio is made higher, but, it is influenced also by the amt. of the silicon carbide particles, and the amt. is preferably controlled to 50 to 80 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種装置・機器に
用いられる放熱基板、特に半導体装置の放熱基板に用い
られる高い熱伝導性を有する炭化珪素系複合材料および
それを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation substrate used for various devices and equipment, and particularly to a silicon carbide composite material having high thermal conductivity used for a heat dissipation substrate of a semiconductor device and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年半導体装置の高速演算・高集積化に
対する市場の要求は急速に高まりつつある。それととも
に、同装置の半導体素子搭載用放熱基板には、同素子か
ら発生する熱をより一層効率良く逃がすため、その熱伝
導率のより一層の向上が求められてきた。さらに同素子
ならびに同基板に隣接配置された同装置内の他の部材
(周辺部材)との間の熱歪みをより一層小さくするため
に、より一層それらに近い熱膨張係数を有するものであ
ることも求められてきた。具体的には、半導体素子とし
て通常用いられるSi、GaAsの熱膨張係数がそれぞ
れ4.2×10-6/℃、6.5×10-6/℃であり、半
導体装置の外囲器材として通常用いられるアルミナセラ
ミックスのそれが6.5×10-6/℃程度であることか
ら、同基板の熱膨張係数はこれらの値に近いことが望ま
れる。
2. Description of the Related Art In recent years, market demands for high-speed operation and high integration of semiconductor devices have been rapidly increasing. At the same time, the heat dissipation board for mounting the semiconductor element of the device has been required to further improve the thermal conductivity in order to more efficiently release the heat generated from the element. Furthermore, other elements in the same device and the same device arranged adjacent to the same substrate
In order to further reduce the thermal strain between them and (peripheral members), it has been required to have a thermal expansion coefficient much closer to them. Specifically, Si usually used as the semiconductor element, the thermal expansion coefficient of GaAs are each 4.2 × 10 -6 /℃,6.5×10 -6 / ℃ , usually as an envelope material of a semiconductor device Since the alumina ceramic used is about 6.5 × 10 −6 / ° C., it is desired that the thermal expansion coefficient of the substrate be close to these values.

【0003】また近年のエレクトロニクス機器の応用範
囲の著しい拡張にともない、半導体装置の使用範囲はよ
り一層多様化しつつある。その中で、高出力の交流変換
機器・周波数変換機器等のいわゆる半導体パワーデバイ
ス機器への利用が増えつつある。これらのデバイスで
は、半導体素子からの発熱が半導体メモリーやマイクロ
プロセッサーに比べ数倍から数十倍(通常例えば数十W)
にも及ぶ。このためこれらの機器に使われる放熱基板
は、その熱伝導率を格段に向上させるとともに、その熱
膨張係数の周辺部材のそれとの整合性を高めることが重
要である。したがってその基本構造も、通常は例えば以
下のようになっている。まずSi半導体素子を第一の放
熱基板である高熱伝導性の窒化アルミニウム(以下単に
AlNとも言う)セラミック基板上に載せる。次いでそ
の第一の放熱基板の下に銅等のより高熱伝導性の金属か
らなる第二の放熱基板を配置する。さらにこの第二の基
板の下に、これを水冷または空冷可能な放熱機構を配置
する。以上のような構造によって外部に遅滞なく熱を逃
がす。したがって複雑な放熱構造とならざるを得ない。
この構造においては、第一の放熱基板であるAlNセラ
ミックスに170W/m・K程度のものを用いるとする
と、第二の放熱基板は、この第一の基板から伝達された
熱をその下の放熱機構に遅滞なく逃がす必要がある。こ
のため第二の基板としては、室温で少なくとも200W
/m・K以上の高い熱伝導率と第一の基板との熱膨張係
数の整合のため、10×10-6/℃以下、特に8×10
-6/℃以下の低い熱膨張係数を有するものが要求され
る。
[0003] Further, with the remarkable expansion of the application range of electronic equipment in recent years, the use range of semiconductor devices has been further diversified. Among them, applications to so-called semiconductor power device devices such as high-output AC converters and frequency converters are increasing. In these devices, the heat generated by the semiconductor elements is several times to several tens times (typically, for example, several tens of watts) compared to semiconductor memories and microprocessors.
Extend to For this reason, it is important for the heat radiation board used in these devices to remarkably improve the thermal conductivity and to improve the matching of the thermal expansion coefficient with that of the peripheral members. Therefore, the basic structure is usually as follows, for example. First, the Si semiconductor element is mounted on a high thermal conductive aluminum nitride (hereinafter, also simply referred to as AlN) ceramic substrate which is a first heat dissipation substrate. Next, a second heat radiating substrate made of a metal having higher thermal conductivity such as copper is arranged under the first heat radiating substrate. Further, a heat dissipating mechanism capable of water-cooling or air-cooling this is disposed below the second substrate. The above structure allows heat to escape to the outside without delay. Therefore, a complicated heat dissipation structure is inevitable.
In this structure, assuming that AlN ceramics, which is the first radiating substrate, is about 170 W / m · K, the second radiating substrate uses the heat transmitted from the first substrate to radiate heat thereunder. It is necessary to escape to the mechanism without delay. For this reason, the second substrate should be at least 200 W at room temperature.
/ M · K or higher and 10 × 10 -6 / ° C or lower, especially 8 × 10
A material having a low thermal expansion coefficient of -6 / ° C or less is required.

【0004】特にパワーデバイスの内でも実用時の発熱
量の大きなものでは、放熱基板自体の温度も100℃以
上に昇温することがあるため、このような温度での高い
熱伝導率を要求される場合もある。したがって、このよ
うな温度下でも150W/m・K以上の熱伝導率のもの
が要求される。またその容量が大きくなればなるほどS
i半導体素子のサイズも大きくなる。それ故それを搭載
する放熱基板も大きくせざるを得ない。例えばパソコン
用の基板が高々20〜40mm角程度のであるのに対
し、容量の大きなパワーデバイスでは、200mm角を
越えるものも求められつつある。このような大きな基板
では、実装時のその寸法精度のみならず高温でその精度
の低下しないことが要求されている。すなわち高温で基
板に反りや変形が生じると、上記した基板の下に配置さ
れる放熱機構(ラジエターやフィン等)との界面に隙間が
でき放熱効率が落ちる。また最悪の場合半導体素子が破
壊する場合もある。それ故高温での放熱基板の優れた熱
伝導性の確保は、重要な課題である。
[0004] In particular, among power devices having a large heat value in practical use, the temperature of the heat radiation substrate itself may rise to 100 ° C or more, so that a high thermal conductivity at such a temperature is required. In some cases. Therefore, a material having a thermal conductivity of 150 W / m · K or more is required even at such a temperature. Also, the larger the capacity, the more S
The size of the i semiconductor element also increases. Therefore, the heat radiation board on which it is mounted must be large. For example, while a substrate for a personal computer has a size of at most about 20 to 40 mm square, a power device having a large capacity is required to have a size exceeding 200 mm square. In such a large substrate, it is required that not only the dimensional accuracy at the time of mounting but also the accuracy does not decrease at high temperatures. That is, when the substrate is warped or deformed at a high temperature, a gap is formed at an interface with a heat radiation mechanism (such as a radiator or a fin) disposed below the substrate, thereby lowering the heat radiation efficiency. In the worst case, the semiconductor element may be destroyed. Therefore, ensuring excellent thermal conductivity of the heat dissipation board at high temperatures is an important issue.

【0005】またこのような基板には、従来より例えば
Cu−W系やCu−Mo系の複合合金からなるものが用
いられてきた。これらの基板は、原料が高価なためにコ
スト高となるとともに重量が大きくなるという問題があ
った。そこで、最近は安価で軽量な材料として各種のア
ルミニウム(以下単にAlとも言う)複合合金が注目され
るようになってきた。中でもAlと炭化珪素(以下単に
SiCとも言う)を主成分とするAl−SiC系複合合
金は、それらの原料が比較的安価であり、軽量かつ高熱
伝導性である。なお通常市販されている純粋なAl、S
iC単体の密度は、それぞれ2.7g/cm3程度、
3.2g/cm3程度、熱伝導率は、それぞれ240W
/m・K程度、200〜300W/m・K程度までであ
るが、さらにその純度や欠陥濃度を調整すれば、その熱
伝導率のレベルはさらに向上するものと思われる。その
ため、特に注目されている材料である。また純粋なSi
C単体、Al単体の熱膨張係数はそれぞれ4.2×10
-6/℃程度、24×10-6/℃程度であり、それらを複
合化することによって、その熱膨張係数が広い範囲で制
御可能となる。したがってこの点でも有利である。
For such a substrate, a substrate made of, for example, a Cu-W or Cu-Mo composite alloy has been used. These substrates have a problem that the cost is high and the weight is large because the raw material is expensive. Accordingly, recently, various aluminum (hereinafter, also simply referred to as Al) composite alloys have been attracting attention as inexpensive and lightweight materials. Above all, Al-SiC-based composite alloys containing Al and silicon carbide (hereinafter also simply referred to as SiC) as main components are relatively inexpensive, lightweight, and have high thermal conductivity. In addition, pure Al, S which is usually commercially available
The density of iC alone is about 2.7 g / cm 3 ,
About 3.2 g / cm 3 , each having a thermal conductivity of 240 W
/ M · K, up to about 200 to 300 W / m · K, but it is expected that the level of thermal conductivity will be further improved by further adjusting its purity and defect concentration. Therefore, it is a material that has received special attention. Also pure Si
The thermal expansion coefficients of C alone and Al alone are 4.2 × 10
-6 / ° C. and 24 × 10 -6 / ° C., and by combining them, the thermal expansion coefficient can be controlled in a wide range. Therefore, this point is also advantageous.

【0006】かかるAl−SiC系複合合金およびその
製造方法については、(1)特開平1−501489号公
報、(2)特開平2−343729号公報、(3)特開昭6
1−222668号公報および(4)特開平9−1577
73号公報に開示されている。(1)は、SiCとAlの
混合物中のAlを溶融させて鋳造法によって固化する方
法に関するものである。(2)、(3)は、いずれもSiC
多孔体の空隙にAlを溶浸する方法に関するものであ
る。この内(3)は、加圧下でAlを溶浸する、いわゆる
加圧溶浸法に関するものである。また(4)は、SiCと
Alの混合粉末の成形体かまたはそれをホットプレスし
たものを型内に配置し、これを真空中、Alの融点以上
の温度で液相焼結する方法に関するものである。
[0006] The Al-SiC-based composite alloy and the method for producing the same are described in (1) JP-A-1-501489, (2) JP-A-2-343729, and (3) JP-A-Sho-6.
1-222668 and (4) JP-A-9-1577.
No. 73 is disclosed. (1) relates to a method in which Al in a mixture of SiC and Al is melted and solidified by a casting method. (2) and (3) are both SiC
The present invention relates to a method for infiltrating Al into voids of a porous body. Of these, (3) relates to a so-called pressure infiltration method in which Al is infiltrated under pressure. Further, (4) relates to a method of sintering a compact of a mixed powder of SiC and Al or a hot-pressed compact thereof in a mold and subjecting the compact to a liquid phase sintering at a temperature equal to or higher than the melting point of Al in a vacuum. It is.

【0007】本発明者等は、特願平9−136164号
にて、(5)液相焼結法によって得られ、その熱伝導率が
180W/m・K以上のアルミニウム−炭化珪素系複合
材料を提示している。この複合材料は、例えば10〜7
0重量%の粒子状SiC粉末とAl粉末との混合粉末を
成形した後、99体積%の窒素を含み、酸素濃度が20
0ppm以下、露点が−20℃以下の非酸化性雰囲気
中、600〜750℃で焼結する工程によって得られ
る。また本発明者等は、特願平9−93467号にて、
(6)その熱膨張係数が18×10-6/℃以下、その熱伝
導率が230W/m・K以上であり、焼結後の寸法が実
用寸法に近い、いわゆるネットシェイプなアルミニウム
−炭化珪素系複合材料も提示している。さらに本発明者
等は、特願平10−41447号にて、(7)常圧焼結法
とHIP法とを組み合わせた同複合材料の製造方法を提
案している。それによれば、例えば粒子状SiCを10
〜70重量%混合したAl−SiC系混合粉末の成形体
を、窒素ガスを99%以上含む非酸化性雰囲気中、60
0℃以上、Alの溶融温度以下の温度範囲で常圧焼結
し、その後金属容器に封入して700℃以上の温度でH
IPすることによって、均質でその熱伝導率が200W
/m・K以上のアルミニウム−炭化珪素系複合材料が得
られている。
The present inventors have disclosed in Japanese Patent Application No. Hei 9-136164 (5) an aluminum-silicon carbide composite material obtained by (5) a liquid phase sintering method and having a thermal conductivity of 180 W / m · K or more. Is presented. This composite material is, for example, 10-7
After molding a mixed powder of 0 wt% of particulate SiC powder and Al powder, it contains 99% by volume of nitrogen and has an oxygen concentration of 20%.
It is obtained by a step of sintering at 600 to 750 ° C in a non-oxidizing atmosphere having 0 ppm or less and a dew point of -20 ° C or less. Further, the present inventors have filed Japanese Patent Application No. 9-93467.
(6) A so-called net-shaped aluminum-silicon carbide having a coefficient of thermal expansion of 18 × 10 −6 / ° C. or less, a thermal conductivity of 230 W / m · K or more, and a dimension after sintering close to a practical dimension. Based composites are also presented. Further, the present inventors have proposed in Japanese Patent Application No. 10-41447 a method (7) for producing the same composite material by combining the normal pressure sintering method and the HIP method. According to this, for example, particulate SiC
The Al-SiC-based mixed powder compact of about 70% by weight was mixed in a non-oxidizing atmosphere containing 99% or more of nitrogen gas for 60 days.
Normal pressure sintering in a temperature range of 0 ° C. or higher and Al melting temperature or lower, then sealing in a metal container and H 2 at a temperature of 700 ° C. or higher
By IP, it is homogeneous and its thermal conductivity is 200W
/ M · K or more is obtained.

【0008】さらに(8)特開平9−157773号公報
には、Al粉末とSiC粉末との混合物をホットプレス
し、成形と焼結とを同時に行う方法が開示されている。
その方法は、Al10〜80体積%、残部SiCの混合
粉末を成形し、Alの溶融点以上の温度下500kg/
cm2以上の圧力でホットプレスするものである。この
方法によって150〜280W/m・Kの熱伝導率のア
ルミニウム−炭化珪素系複合材料が得られている。
Further, (8) Japanese Patent Application Laid-Open No. 9-157773 discloses a method in which a mixture of an Al powder and a SiC powder is hot-pressed to simultaneously perform molding and sintering.
The method is to form a mixed powder of 10 to 80% by volume of Al and the balance of SiC, and to form 500 kg /
Hot pressing is performed at a pressure of 2 cm 2 or more. According to this method, an aluminum-silicon carbide composite material having a thermal conductivity of 150 to 280 W / m · K is obtained.

【0009】また主成分金属をアルミニウムから銅に置
き換えた銅−炭化珪素系の複合材料については、その文
献は少ないが、本発明者等の探索知見によれば、この複
合材料は、アルミニウムを銅(以下単にCuとも言う)に
置き換えれば、以上述べた製造方法とほぼ同様の方法に
よって得られる。なお純粋なCu単体の密度は8.9g
/cm3程度、その熱伝導率は395W/m・K程度、
その熱膨張係数は17×10-6/℃程度である。したが
って、アルミニウム系のものに比べ得られる複合材料の
密度は大きくなるので、軽量化による効果は小さい。そ
の一方で銅はその熱伝導率がアルミニウムのそれに比べ
約60%大きく、またその熱膨張係数がアルミニウムの
それに比べ約40%小さい。このためアルミニウム系の
ものに比べ高い熱伝導率で低い熱膨張係数が必要な基板
材料の製造には有利な材料である。なお銅はアルミニウ
ムに比べ溶融温度がかなり高く重量も嵩むので、アルミ
ニウム系に比べ製造コスト面でいくぶん不利である。
[0009] Although there are few documents about copper-silicon carbide based composite materials in which the main component metal is replaced by copper instead of aluminum, according to the findings of the present inventors, this composite material is obtained by replacing aluminum with copper. (Hereinafter simply referred to as Cu), it can be obtained by a method substantially similar to the manufacturing method described above. The density of pure Cu is 8.9 g.
/ Cm 3 , its thermal conductivity is about 395 W / m · K,
Its thermal expansion coefficient is about 17 × 10 −6 / ° C. Therefore, the density of the composite material obtained is higher than that of an aluminum-based composite material, and the effect of weight reduction is small. Copper, on the other hand, has a thermal conductivity that is about 60% greater than that of aluminum and a coefficient of thermal expansion that is about 40% smaller than that of aluminum. Therefore, it is an advantageous material for manufacturing a substrate material that requires a high thermal conductivity and a low thermal expansion coefficient as compared with aluminum-based materials. Since copper has a much higher melting temperature and a higher weight than aluminum, it is somewhat disadvantageous in terms of manufacturing cost as compared with aluminum.

【0010】[0010]

【発明が解決しようとする課題】以上述べたような複合
材料を大きな放熱量を要求される基板、特に半導体パワ
ーデバイス用の基板のように実用サイズが比較的大きく
放熱量の多い放熱基板として使用するためには、以下に
述べる解決すべきいくつかの課題が残っている。とりわ
け同基板の周辺部材が熱膨張係数の比較的小さいもので
ある場合には、これら部材とのその整合性も配慮する必
要がある。その一方で従来以上に高い熱伝導率のものが
要求される。例えば半導体パワーデバイス用の基板の熱
伝導率のレベルは、今後は280W/m・Kを越える高
いものが要求されるものと考えられる。しかしながら、
上述した従来の方法で得られる炭化珪素系複合材料で
は、その熱伝導率が高々260W/m・K程度であり、
またそのレベルはいずれもSiC量の増加とともに低下
する。したがって熱膨張係数の低い基板には利用できな
いこともある。
The composite material as described above is used as a substrate which requires a large amount of heat radiation, particularly a heat radiation substrate having a relatively large practical size and a large amount of heat radiation, such as a substrate for a semiconductor power device. In order to do so, there remain some issues to be solved as described below. In particular, when the peripheral members of the substrate have relatively small coefficients of thermal expansion, it is necessary to consider their matching with these members. On the other hand, a material having a higher thermal conductivity than before is required. For example, it is considered that a high thermal conductivity level of a substrate for a semiconductor power device exceeding 280 W / m · K will be required in the future. However,
The silicon carbide-based composite material obtained by the conventional method described above has a thermal conductivity of at most about 260 W / m · K,
In addition, each of the levels decreases with an increase in the amount of SiC. Therefore, it may not be used for a substrate having a low coefficient of thermal expansion.

【0011】例えば上記(8)の特開平9−157773
号公報に記載のAl−SiC系のものでは、その熱膨張
係数を10×10-6/℃以下にしようとすると、そのS
iC量を80体積%以上にしなければならない。その結
果157W/m・K以下の熱伝導率のものしか得られな
い。また上記(5)特願平9−136164号公報に記載
のAl−SiC系のものでは、同じ熱膨張係数のものを
得ようとすると、そのSiC量を60体積%以上にしな
ければならない。その結果200W/m・K程度の熱伝
導率のものしか得られない。また常圧焼結法とHIP法
を組み合わせた(7)の方法で作製されたものでも、同じ
熱膨張係数のものを得ようとすると、そのSiC量を6
0重量%以上にしなければならない。したがって200
W/m・K程度以下の熱伝導率のものしか得られない。
For example, Japanese Patent Application Laid-Open No. 9-157773 described in the above (8)
No. intended for Al-SiC system described in JP, when you try to its thermal expansion coefficient 10 × 10 -6 / ℃ below, the S
iC amount must be 80% by volume or more. As a result, only those having a thermal conductivity of 157 W / m · K or less can be obtained. Further, in the case of the above-mentioned (5) Al-SiC-based material described in Japanese Patent Application No. 9-136164, in order to obtain the same thermal expansion coefficient, the SiC amount must be 60% by volume or more. As a result, only those having a thermal conductivity of about 200 W / m · K can be obtained. Further, even in the case of the one manufactured by the method (7) in which the normal pressure sintering method and the HIP method are combined, if the same thermal expansion coefficient is to be obtained, the SiC amount is 6%.
It must be at least 0% by weight. Therefore 200
Only those having a thermal conductivity of about W / m · K or less can be obtained.

【0012】また上記(1)に記載のAl−SiC系複合
材料の製造方法では、Al溶湯を鋳型に流し込み、Si
C粒子を分散させて固化する鋳造法を用いる。したがっ
てAlとSiCの密度差により冷却時に成形体中のSi
C粒子の偏析が生じ、固化体の組成が不均一になり易
い。このため固化体の表面がAlまたはAl合金からな
る被覆層(以下この層をAl被覆層とも言う)により覆わ
れるのは避けられない。通常この被覆層の厚みは、固化
体の表面の部所によってかなりばらつく。さらにこの被
覆層からなる固化体の表面部とその内部との間では熱膨
張係数にかなり差があるため、両者の界面に熱が伝わる
とそこに熱応力が生じることになる。それ故この被覆層
を残してこの素材を半導体素子搭載用の放熱基板に用い
ると、発生した熱応力によって基板に反りや変形が生
じ、その結果半導体素子や周辺部材と基板との間に亀裂
が生じたり、半導体素子や周辺部材が変形したり、破壊
したりする。したがって、この被覆層は予め完全に除去
する必要がある。しかもこの除去は、上記のように被覆
層の厚みにばらつきがあるため、軟質延性のAlを主成
分とする相と剛性の高いSiCを含む相とが共存す部分
の加工となる。したがって難加工となる。
In the method for producing an Al—SiC composite material according to the above (1), the molten Al is poured into a mold,
A casting method in which C particles are dispersed and solidified is used. Therefore, due to the density difference between Al and SiC, Si
Segregation of C particles occurs, and the composition of the solidified body tends to be non-uniform. Therefore, it is inevitable that the surface of the solidified body is covered with a coating layer made of Al or an Al alloy (hereinafter, this layer is also referred to as an Al coating layer). Usually, the thickness of the coating layer varies considerably depending on the location on the surface of the solidified body. Furthermore, since there is a considerable difference in the thermal expansion coefficient between the surface of the solidified body composed of the coating layer and the inside thereof, when heat is transmitted to the interface between them, thermal stress is generated there. Therefore, if this material is used as a heat dissipation board for mounting semiconductor devices while leaving this coating layer, the substrate will be warped or deformed by the generated thermal stress, and as a result, cracks will occur between the semiconductor device and peripheral members and the substrate. Or a semiconductor element or a peripheral member is deformed or broken. Therefore, it is necessary to completely remove this coating layer in advance. In addition, since the thickness of the coating layer varies as described above, the removal is processing of a portion where a soft ductile phase mainly composed of Al and a phase containing SiC having high rigidity coexist. Therefore, it becomes difficult to process.

【0013】上記(2)および(3)のAl−SiC系複合
材料の製造方法では、AlがSiC多孔体の空隙に溶浸
される。この場合鉄鋼の鋳造時に発生するような溶融A
lの引け巣を防ぎ、またSiCの空隙内にAlを完全に
充填して緻密な複合合金を得る必要がある。このため通
常SiC多孔体の外周に過剰なAlが溶浸剤として配置
される。溶浸後この過剰なAlが溶浸体の外周に溶出固
着し、その除去に多大の手間がかかる。また予めAlと
SiCを主成分とする混合粉末を成形し、焼結する上記
(5)に記載された方法でもAlの融点を越える温度で焼
結すると、軽度ではあるがこれと同じ現象が生じる。
In the above-mentioned methods (2) and (3) for producing an Al—SiC composite material, Al is infiltrated into the voids of the porous SiC material. In this case, the melting A which is generated during the casting of steel
It is necessary to obtain a dense composite alloy by preventing shrinkage cavities of 1 and completely filling Al in the voids of SiC. For this reason, excess Al is usually disposed as an infiltrant on the outer periphery of the porous SiC body. After the infiltration, the excess Al is eluted and fixed on the outer periphery of the infiltrated body, and it takes a lot of trouble to remove it. In addition, a mixed powder mainly composed of Al and SiC is previously molded and sintered.
In the method described in (5), when the sintering is performed at a temperature exceeding the melting point of Al, the same phenomenon occurs, albeit mildly.

【0014】そこでこのような外周へのAlの溶出固着
を防止するために、上記(6)に記載されたように、Al
を溶浸する前にSiC多孔体の外周にその溶出防止剤と
同溶浸を促す溶浸促進剤との混合物からなる薄い層を塗
布・形成することも一策ではある。しかしながらこれら
の層の塗布および溶浸後の除去には手間がかかる。
Therefore, in order to prevent such elution and fixation of Al on the outer periphery, as described in (6) above,
Before infiltration, a thin layer made of a mixture of the anti-elution agent and an infiltration accelerator that promotes the infiltration is also applied and formed on the outer periphery of the porous SiC body. However, applying these layers and removing them after infiltration is troublesome.

【0015】また上記(3)の加圧溶浸法では、一軸加圧
可能な型内にSiC多孔体を配置し、その上部にAlま
たはAl合金を置いて、真空中でAlを溶融させつつこ
れを外部から一軸加圧してSiC多孔体内に強制的に充
填する工程を踏む。この場合最終的に溶浸体は温度勾配
をつけて下部から徐々に冷却する。この時溶浸体内部の
SiC骨格部とAlによって充填された部分の熱膨張係
数の差が大きいために、冷却時にAlが溶浸体内に引け
てAlが未溶浸の部分(上述の引け巣に相当する)ができ
易い。したがって、冷却時の温度勾配と加圧・加熱のプ
ログラムとを同時に精度良く制御できる複雑な制御機構
が必要になる。したがってその装置はかなり高価なもの
となる。
In the pressure infiltration method (3), a porous SiC body is placed in a mold that can be uniaxially pressed, and Al or an Al alloy is placed on the porous body. This is subjected to a step of forcibly filling the SiC porous body by applying uniaxial pressure from the outside. In this case, finally, the infiltration body is gradually cooled from the lower part with a temperature gradient. At this time, since the difference in thermal expansion coefficient between the SiC skeleton portion inside the infiltrated body and the portion filled with Al is large, Al is pulled into the infiltrated body during cooling and Al is not infiltrated (the above-described shrinkage cavity). (Equivalent to). Therefore, a complicated control mechanism that can simultaneously and accurately control the temperature gradient during cooling and the pressurization / heating program is required. The device is therefore quite expensive.

【0016】さらに上記(4)に記載された型内ホットプ
レスによる方法では、以下に述べるような生産上・品質
上の問題がある。例えばホットプレス装置に連続式のも
のを用いると、真空雰囲気にするとともにその温度をA
lの溶融点以上に上げるため、型の外への溶融物の流出
を抑える必要がある。したがって成分量のばらつきを抑
え目的とする均一組成のものを得ようとすると、非常に
高価な製造装置が必要となる。一方同装置をバッチ式に
する場合には、溶融物の型外への流出は、連続式のもの
に比べいくぶん抑えることはできる。しかしその一方で
成形体の型への装填、所定の温度プログラムでの保持と
冷却の一連の工程を断続的に繰り返すことになるため、
この方式は生産性に欠ける。
Further, the method using hot pressing in a mold described in the above (4) has problems in production and quality as described below. For example, when a continuous type hot press device is used, a vacuum atmosphere is set and the temperature is set to A.
In order to increase the melting point to 1 or more, it is necessary to suppress the outflow of the melt out of the mold. Therefore, in order to suppress variations in the component amounts and obtain a target having a uniform composition, an extremely expensive manufacturing apparatus is required. On the other hand, when the apparatus is of a batch type, the outflow of the melt out of the mold can be somewhat suppressed as compared with the continuous type. However, on the other hand, a series of steps of loading the molded body into the mold, holding at a predetermined temperature program and cooling are intermittently repeated,
This method lacks productivity.

【0017】以上詳述したように、従来のAl−SiC
系の複合材料の製造には品質上・生産上のいくつかの課
題をかかえている。したがってAl−SiC系の複合材
料は、特に半導体パワーモジュールのような高い放熱性
を要求される基板の一つとして、その性能面で最近有望
視されているにもかかわらず、従来から行われてきた鋳
造法、溶浸法、焼結法、ホットプレス法やそれらを組み
合わせたいずれの方法でも、満足のゆく本来の性能レベ
ルのものは得られていない。その理由の一つとして以下
のことが考えられる。すなわちAlとSiCの間の濡れ
性を改善してAl融液のSiC粒子間への自発的な浸透
を促したり、空孔の発生を抑えるためにAl中にSi等
の従成分を添加したり、またはこれらの従成分を不純物
として含むAlを用いたりする場合が多々あった。この
ためこれらの従成分の介在によって複合材料の熱伝導率
の低下は避けられなかった。特にSiC自体がAlに匹
敵するか、またはそれを凌ぐ高い熱伝導率を有しなが
ら、従来のAl−SiC系の複合材料では、その量の多
い組成域での熱伝導性が低い。
As described in detail above, the conventional Al-SiC
There are several quality and production issues associated with the production of composite materials. Therefore, Al-SiC-based composite materials have been used as one of the substrates requiring high heat dissipation, such as semiconductor power modules, despite their recent promising performance. The casting method, the infiltration method, the sintering method, the hot pressing method, or any combination thereof have not been able to obtain satisfactory original performance levels. The following can be considered as one of the reasons. That is, the wettability between Al and SiC is improved to promote spontaneous infiltration of the Al melt between the SiC particles, or a minor component such as Si is added to Al to suppress generation of vacancies. In some cases, Al containing these subcomponents as impurities is used. For this reason, a decrease in the thermal conductivity of the composite material was unavoidable due to the presence of these auxiliary components. In particular, while the SiC itself has a high thermal conductivity comparable or superior to Al, the conventional Al-SiC-based composite material has low thermal conductivity in a composition region where the amount is large.

【0018】一般に物質の熱伝導率は、以下の式に示さ
れるように物質の密度、比熱、熱拡散率の関数である。 熱伝導率=密度×比熱×熱拡散率 式(1) ここで複合材料の場合、比熱はその成分組成比率によっ
て決まる。したがって、組成が同じであれば、その熱伝
導率向上のためにはその密度と熱拡散率を上げることが
必要である。上記した従来のAl−SiC系の複合材料
では、その密度が99%以上のものでもその熱伝導率が
200W/m・K程度あり、熱伝導率向上のためには、
特に熱拡散率を向上させる必要がある。
In general, the thermal conductivity of a substance is a function of the density, specific heat, and thermal diffusivity of the substance as shown in the following equation. Thermal conductivity = Density x Specific heat x Thermal diffusivity Equation (1) Here, in the case of a composite material, the specific heat is determined by the composition ratio of the components. Therefore, if the composition is the same, it is necessary to increase the density and the thermal diffusivity in order to improve the thermal conductivity. In the above-mentioned conventional Al-SiC-based composite material, even if its density is 99% or more, its thermal conductivity is about 200 W / m · K.
In particular, it is necessary to improve the thermal diffusivity.

【0019】Al−SiC系の複合材料では、その熱拡
散率はAlとSiCのそれぞれの熱拡散率および両相界
面の密着状態によって決まるものと考えられる。両相界
面の密着の程度は、基本的に密度が高ければ高いほど向
上する。それ故Al−SiC系の複合材料の熱拡散率を
増加させる最重要ポイントは、両成分相の熱拡散率、特
にSiC相のそれを増加させることであると考えられ
る。
It is considered that the thermal diffusivity of an Al-SiC-based composite material is determined by the thermal diffusivity of Al and SiC and the state of close contact between the two phases. The degree of adhesion at the interface between the two phases basically improves as the density increases. Therefore, it is considered that the most important point for increasing the thermal diffusivity of the Al-SiC-based composite material is to increase the thermal diffusivity of both component phases, particularly that of the SiC phase.

【0020】[0020]

【課題を解決するための手段】したがって、本発明の目
的は、以上述べた従来の炭化珪素系複合材料の品質上・
生産上の課題を克服するため、従来になく熱伝導性に優
れたアルミニウム−炭化珪素系ならびに銅−炭化珪素系
の複合材料およびその安価な製造方法を提供することで
ある。本発明者等は、上記した従来の課題を解決するた
めに、特にSiC量の多い組成域での熱伝導性の向上を
重点に置いて検討を重ねてきた。その結果、既に特願平
10−26003号にて、この課題をほぼ克服できる手
段を提案した。しかしながら、このような複合材料を特
に高出力のパワーモジュールの放熱基板に用いる場合、
その主面のより一層広いものが今後要求されるものと思
われる。このため特に主面方向の高い放熱性が要求され
るものと思われる。本発明者等は、この課題を克服する
ためその後研究を続けた結果、ある特定の結晶粒子から
なる炭化珪素粉末を用いることによって熱伝導に異方性
があり、ある方向に対し極めて高い熱伝導性を示す炭化
珪素系複合材料の得られることを見出した。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the quality of the conventional silicon carbide composite material described above.
An object of the present invention is to provide an aluminum-silicon carbide-based material and a copper-silicon carbide-based composite material having excellent heat conductivity and a low-cost production method thereof. In order to solve the above-mentioned conventional problems, the present inventors have repeated studies with an emphasis on improving thermal conductivity particularly in a composition region having a large amount of SiC. As a result, Japanese Patent Application No. 10-26003 has already proposed a means that can substantially overcome this problem. However, when such a composite material is used for a heat dissipation board of a power module, particularly for a high output power,
It is expected that a broader main surface will be required in the future. For this reason, it seems that high heat dissipation in the main surface direction is particularly required. The present inventors have continued research to overcome this problem, and as a result, the use of silicon carbide powder composed of specific crystal grains has anisotropy in heat conduction, and extremely high heat conduction in a certain direction. It has been found that a silicon carbide-based composite material exhibiting properties can be obtained.

【0021】ちなみに結晶の形状が板状である、特に六
方晶系のSiC単結晶の熱伝導性とその異方性について
は、例えば「High Temperature-Hi
ghPressures」第29巻(1997年)第7
3〜79頁に掲載のOveNilsson等の論文に記
述されている。その第78頁のTable 1及びFi
gure5によれば、気相合成された六方晶6H型単結
晶の熱伝導率は、室温で330W/m・Kであり、昇温
とともに低下する。同表には他の文献の値も載っている
が、400W/m・Kを越えるデータもある。なお同表
の値は、結晶のC軸方向すなわち試料の厚み方向の値で
ある。また同頁には、他の文献を引用し、C軸方向の熱
伝導率がそれに垂直な方向のそれより30%低くなるこ
とが記載されており、彼らは「そのように仮定すると、
合成された結晶の主面方向の熱伝導率は、最高純度のも
のに近い470W/m・Kになる」と言っている。本発
明者は、多結晶の粉末の場合にも同じ六方晶系粒子から
なるものを用い、これとアルミニウムや銅とを複合化す
ることによって、主面方向に優れた熱伝導性を持つ材料
開発を進めてきた。
The thermal conductivity and the anisotropy of a hexagonal SiC single crystal having a plate-like crystal shape are described in, for example, "High Temperature-Hi".
ghPressures "Vol. 29 (1997) No. 7
It is described in a paper by OveNilsson et al. On pages 3-79. Table 1 and Fi on page 78
According to Gure5, the thermal conductivity of the hexagonal 6H single crystal synthesized by vapor phase is 330 W / m · K at room temperature, and decreases with increasing temperature. The table also contains values from other documents, but some data exceed 400 W / m · K. The values in the table are values in the C-axis direction of the crystal, that is, the thickness direction of the sample. The same page also cited other documents and stated that the thermal conductivity in the C-axis direction was 30% lower than that in the direction perpendicular thereto, and they stated, "Assuming that,
The thermal conductivity of the synthesized crystal in the principal plane direction is 470 W / m · K, which is close to that of the highest purity. ” The present inventor has developed a material having excellent thermal conductivity in the main surface direction by using the same hexagonal particles also in the case of polycrystalline powder and combining this with aluminum and copper. Has been advanced.

【0022】すなわち本発明で提供される炭化珪素系複
合材料は、アルミニウムまたは銅を主成分とする金属を
第一成分とし、炭化珪素を主成分とする粒子を第二成分
とする炭化珪素系複合材料であって、同炭化珪素を主成
分とする粒子は、そのアスペクト比が1を越え、その第
一の方向の熱伝導率をKx、同方向に直交する第二の方
向の熱伝導率をKyとした時、0.7Kx≦Ky≦0.
9Kxの関係を満たす炭化珪素系複合材料である。この
材料の好ましい炭化珪素粒子量の範囲は、50〜80重
量%である。また本発明には、その炭化珪素粒子が板
状、特に六角板状であり、その厚みがC軸方向であるも
のを含む。またそのアスペクト比が、1.25以上であ
るものを含む。
That is, the silicon carbide-based composite material provided by the present invention is a silicon carbide-based composite material containing a metal mainly composed of aluminum or copper as a first component and particles mainly composed of silicon carbide as a second component. The particles having the aspect ratio of more than 1 and having a thermal conductivity of Kx in a first direction and a thermal conductivity in a second direction orthogonal to the same direction in the particles having the silicon carbide as a main component. Ky, 0.7Kx ≦ Ky ≦ 0.
It is a silicon carbide based composite material satisfying the relationship of 9Kx. The preferable range of the silicon carbide particle amount of this material is 50 to 80% by weight. The present invention also includes the silicon carbide particles having a plate shape, particularly a hexagonal plate shape, and having a thickness in the C-axis direction. In addition, those having an aspect ratio of 1.25 or more are included.

【0023】また本発明の材料には、炭化珪素粒子が、
酸素含有量1重量%以下、鉄を含む成分の含有量が鉄元
素に換算して0.01重量%以下、アルミニウムを含む
成分の含有量がアルミニウム元素に換算して0.01重
量%以下の高純度であり、かつ低欠陥であるものが含ま
れる。
The material of the present invention contains silicon carbide particles,
The oxygen content is 1% by weight or less, the content of the component containing iron is 0.01% by weight or less in terms of iron element, and the content of the component containing aluminum is 0.01% by weight or less in terms of aluminum element. Includes those with high purity and low defects.

【0024】また第一成分がアルミニウムを主成分とす
る金属の場合には、Kxが300W/m・K以上、銅を
主成分とするものの場合には、Kxが330W/m・K
以上のものが、好ましいものとして挙げられる。さらに
本発明には、これらの炭化珪素系複合材料を用いたパワ
ーモジュール等の各種半導体装置も含まれる。
When the first component is a metal containing aluminum as a main component, Kx is 300 W / m · K or more, and when the first component is a metal containing copper as a main component, Kx is 330 W / m · K.
The above are preferred. Furthermore, the present invention also includes various semiconductor devices such as power modules using these silicon carbide composite materials.

【0025】本発明の炭化珪素系複合材料の製造方法
は、アルミニウムまたは銅を主成分とする金属からなる
第一成分と、板状でそのアスペクト比が1を越える結晶
粒子からなる炭化珪素粉末を主成分とする第二成分とを
含んだ原料を準備する工程と、これらの原料を混合して
混合物とする工程と、同混合物を成形し成形体とする工
程と、同成形体をアルミニウムまたは銅を主成分とする
金属の融点以上の温度で加熱し焼結体とする工程とを含
む製造方法である。この方法は、炭化珪素粉末の混合量
が、50〜80重量%とする方法も含む。またその第二
成分粉末の結晶粒子の主面が、六角板状であるものも含
む。またその結晶粒子のアスペクト比が1.25以上で
あるものも含む。なおこの場合のアスペクト比は、上記
結晶粒子の主面の最大径(通常対角線の長さ)の厚みに
対する比率である。すなわち同比が大きくなるほど粒子
はより扁平になる。
The method for producing a silicon carbide-based composite material according to the present invention comprises the steps of: preparing a first component composed of a metal containing aluminum or copper as a main component; and a silicon carbide powder composed of plate-like crystal grains having an aspect ratio of more than 1. A step of preparing a raw material containing a second component as a main component, a step of mixing these raw materials to form a mixture, a step of molding the mixture to form a molded body, and forming the molded body into aluminum or copper. And heating to a sintered body at a temperature equal to or higher than the melting point of the metal containing as a main component. This method includes a method in which the mixing amount of the silicon carbide powder is 50 to 80% by weight. Also included are those in which the main surfaces of the crystal grains of the second component powder have a hexagonal plate shape. Also included are those having an aspect ratio of the crystal grains of 1.25 or more. The aspect ratio in this case is a ratio of the maximum diameter (usually the length of a diagonal line) of the main surface of the crystal grain to the thickness. That is, the larger the ratio, the flatter the particles.

【0026】なおこの焼結体とする工程には、成形体を
上記温度で加熱した後、さらに加圧下で鍛造する工程も
含まれる。本発明ではこの方法を鍛造法とも言う。さら
に同工程には、常圧下または機械的な加圧下で上記温度
に加熱し焼結する工程も含まれる。本発明ではこの方法
を焼結法とも言う。特に機械的な加圧下で焼結する方法
をホットプレス法とも言う。また本発明には、以上述べ
た各種の方法で得られた焼結体をさらにアルミニウムま
たは銅を主成分とする金属の融点Tm未満の温度Thで
加熱する熱処理工程をも含む。
The step of forming the sintered body includes a step of heating the formed body at the above-mentioned temperature and further forging it under pressure. In the present invention, this method is also called a forging method. Further, this step includes a step of sintering by heating to the above temperature under normal pressure or mechanical pressure. In the present invention, this method is also called a sintering method. In particular, a method of sintering under mechanical pressure is also called a hot press method. The present invention also includes a heat treatment step of further heating the sintered body obtained by the various methods described above at a temperature Th lower than the melting point Tm of a metal containing aluminum or copper as a main component.

【0027】また上記方法には、原料を準備する工程に
おいて、酸素量が1重量%以下、鉄を含む成分の量が鉄
元素に換算して0.01重量%以下、アルミニウムを含
む成分の量がアルミニウム元素に換算して0.01重量
%以下の炭化珪素粉末を用いる方法もある。このような
粉末は、炭化珪素粉末を不活性ガス雰囲気中1600〜
2400℃の温度範囲で加熱する予備加熱処理の工程を
経ても得られる。またさらにこのような粉末は、炭化珪
素粉末をフッ酸、硝酸または塩酸の内の少なくとも1種
の酸を含む水溶液中に浸漬することによっても得られ
る。またこのような粉末は、この予備酸処理後予備加熱
処理をすることによっても得られる。
In the above method, in the step of preparing the raw material, the amount of oxygen is 1% by weight or less, the amount of the component containing iron is 0.01% by weight or less in terms of iron element, and the amount of the component containing aluminum is 0.01% by weight or less. May use a silicon carbide powder of 0.01% by weight or less in terms of aluminum element. Such a powder is prepared by mixing silicon carbide powder in an inert gas atmosphere at 1600 to
It can also be obtained through a preheating step of heating in a temperature range of 2400 ° C. Further, such a powder can be obtained by immersing the silicon carbide powder in an aqueous solution containing at least one acid selected from hydrofluoric acid, nitric acid and hydrochloric acid. Such a powder can also be obtained by performing a preliminary heating treatment after the preliminary acid treatment.

【0028】[0028]

【発明の実施の形態】本発明によって提供される炭化珪
素系複合材料には、大別するとアルミニウムを主成分と
する金属からなる第一成分と炭化珪素を主成分とする第
二成分とを含む複合材料(以下Al−SiC系複合材料
または単にAl−SiC系、Al系とも言う)と、銅を
主成分とする金属からなる第一成分と炭化珪素を主成分
とする第二成分とを含む複合材料(以下Cu−SiC系
複合材料または単にCu−SiC系、Cu系とも言う)
とがある。本発明は、これらの材料に着目し、放熱基板
(ヒートシンク)、特に半導体装置用の放熱基板の熱伝導
性を向上させるためになされたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon carbide-based composite material provided by the present invention roughly includes a first component composed of a metal mainly composed of aluminum and a second component mainly composed of silicon carbide. Includes a composite material (hereinafter also referred to as an Al-SiC-based composite material or simply an Al-SiC-based or Al-based material), a first component composed of a metal mainly containing copper, and a second component mainly composed of silicon carbide. Composite material (hereinafter also referred to as Cu-SiC-based composite material or simply Cu-SiC-based, Cu-based)
There is. The present invention focuses on these materials,
(Heat sink), in particular, to improve the thermal conductivity of a heat dissipation substrate for a semiconductor device.

【0029】本発明の炭化珪素系複合材料は、炭化珪素
粒子のアスペクト比が1を越え、熱伝導に異方性があ
る。すなわち本発明の複合材料の第一の方向の熱伝導率
をKx、同方向に直交する第二の方向の熱伝導率をKy
とした時、0.7Kx≦Ky≦0.9Kxの関係を満た
す。複合材料を利用して板状の放熱基板とする場合、こ
の第一の方向を通常その主面方向に、第二の方向を厚み
方向に当てる。なおこのKxおよびKyは、ともにほぼ
複合材料の組成複合則にそって変わる。熱膨張係数につ
いても同様である。また本発明の複合材料には、その炭
化珪素粒子が六角板状でその厚みがC軸方向であるもの
がある。さらに同粒子のアスペクト比が、1.25以上
のものがある。
The silicon carbide composite material of the present invention has an aspect ratio of silicon carbide particles exceeding 1, and has anisotropy in heat conduction. That is, the thermal conductivity of the composite material of the present invention in the first direction is Kx, and the thermal conductivity in the second direction orthogonal to the same direction is Ky.
Satisfies the relationship 0.7Kx ≦ Ky ≦ 0.9Kx. In the case of using a composite material to form a plate-shaped heat radiation substrate, the first direction is usually applied to the main surface direction, and the second direction is applied to the thickness direction. Note that both Kx and Ky change substantially according to the compositional rules of the composite material. The same applies to the coefficient of thermal expansion. Some of the composite materials of the present invention have silicon carbide particles having a hexagonal plate shape and a thickness in the C-axis direction. Further, there are particles having the aspect ratio of 1.25 or more.

【0030】本発明の材料を板状の放熱基板に用い、そ
の主面方向の熱伝導性を高めようとする場合、この異方
性を最大限利用する。そのため本発明の材料の製造過程
において粉末粒子の主面を可能な限り基板の主面方向に
配向させる。KyとKxの比率すなわち熱伝導の異方性
の度合いは、主にこのアスペクト比の影響を受ける。同
比が大きくなればなるほどその度合いは高くなる。また
SiC粒子の量にも多少影響される。すなわちその量が
多くなれば、それは高くなる。なお上記のように板状の
基板として用いる場合、この配向による熱伝導の異方性
が顕著に現れるのは、SiC量が50重量%以上の場合
である。またその量が80重量%を越えると、硬質の同
粒子が多くなり成形ならびに焼結が困難となるとともに
焼結後の仕上げ加工も難しくなる。したがって本発明の
材料のSiC量は、50〜80重量%の範囲とする。
In the case where the material of the present invention is used for a plate-shaped heat radiation substrate and the thermal conductivity in the main surface direction is to be enhanced, this anisotropy is utilized to the maximum. Therefore, in the production process of the material of the present invention, the main surface of the powder particles is oriented as much as possible in the main surface direction of the substrate. The ratio of Ky and Kx, that is, the degree of anisotropy of heat conduction is mainly affected by this aspect ratio. The greater the ratio, the greater the degree. It is also somewhat affected by the amount of SiC particles. That is, the higher the amount, the higher it. When used as a plate-like substrate as described above, the anisotropy of heat conduction due to this orientation appears remarkably when the amount of SiC is 50% by weight or more. On the other hand, if the amount exceeds 80% by weight, the hard particles are increased, so that molding and sintering become difficult, and finishing after sintering becomes difficult. Therefore, the SiC content of the material of the present invention is in the range of 50 to 80% by weight.

【0031】また本発明の材料には、炭化珪素粒子が酸
素含有量1重量%以下、鉄を含む成分の含有量が鉄元素
に換算して0.01重量%以下、アルミニウムを含む成
分の含有量がアルミニウム元素に換算して0.01重量
%以下の高純度であり、かつ低欠陥であるものが含まれ
る。
In the material of the present invention, the silicon carbide particles have an oxygen content of 1% by weight or less, an iron-containing component has a content of 0.01% by weight or less in terms of iron element, and an aluminum-containing component. Includes those having a high purity of 0.01% by weight or less in terms of aluminum element and low defects.

【0032】以上述べた本発明の複合材料は、そのSi
C粒子の量・アスペクト比・純度にもよるが、その第一
成分がアルミニウムを主成分とする金属の場合、その熱
伝導率Kxを300W/m・K以上とすることができ
る。同様に第一成分が銅を主成分とする金属の場合、そ
の熱伝導率Kxを330W/m・K以上とすることがで
きる。なおこの熱伝導率Kxのレベルは、SiC粒子の
量・純度が同じならば、そのアスペクト比の影響を受け
る。例えばアスペクト比が1に近くその熱伝導が等方性
のこれまでのものに比べ、同比が1.25以上の本発明
のものは、Kxが高くなる。したがってアスペクト比の
高いSiC粒子を選び、同粒子の主面を放熱基板の主面
方向に配向させれば、主面方向の熱伝導率(この場合は
これがKx)が従来に無く高い材料が得られる。また厚
み方向に配向させれば、厚み方向の熱伝導率(この場合
はこれがKx)が従来に無く高い材料が得られる。同様
に主面が矩形状の基板の場合、成形時の給紛手段や型に
給紛後の成形手段を考慮すれば、矩形基板の長さ方向・
幅方向への粒子主面を配向させることもできる。
The composite material of the present invention described above has a
Although depending on the amount, aspect ratio and purity of the C particles, when the first component is a metal containing aluminum as a main component, the thermal conductivity Kx can be 300 W / m · K or more. Similarly, when the first component is a metal mainly composed of copper, its thermal conductivity Kx can be set to 330 W / m · K or more. Note that the level of the thermal conductivity Kx is affected by the aspect ratio if the amount and purity of the SiC particles are the same. For example, the present invention having an aspect ratio close to 1 and having the same or higher thermal conductivity of 1.25 or more than that of the prior art having an isotropic heat conductivity has a higher Kx. Therefore, if a SiC particle having a high aspect ratio is selected and the main surface of the particle is oriented in the main surface direction of the heat radiation substrate, a material having a high thermal conductivity (in this case, Kx) in the main surface direction can be obtained. Can be In addition, if the material is oriented in the thickness direction, a material having a high thermal conductivity (in this case, Kx) in the thickness direction can be obtained, which is higher than ever before. Similarly, when the main surface is a rectangular substrate, the lengthwise direction of the rectangular substrate can be reduced by taking into account the feeding means during molding and the molding means after feeding.
The main surface of the particles in the width direction can also be oriented.

【0033】次に本発明の炭化珪素系複合材料の製造方
法について述べる。その方法は、前述のように、アルミ
ニウムまたは銅を主成分とする金属からなる第一成分
と、アスペクト比が1を越える結晶粒子からなる炭化珪
素粉末を主成分とする第二成分とを含んだ原料を準備す
る工程と、同第一成分と同第二成分とを含む原料を混合
して混合物とする工程と、同混合物を成形し成形体とす
る工程と、同成形体をアルミニウムまたは銅を主成分と
する金属の融点以上の温度で加熱し焼結体とする工程と
を含む方法である。すなわち炭化珪素原料粉末に上記の
ものを用いたことに特徴がある。炭化珪素粉末の混合量
は、50〜80重量%の範囲にするのが好ましい。同量
をこの範囲とする理由は、前記の通りである。なお上記
方法で焼結時の加圧が、熱伝導の異方性を助長する。ま
た粉末成形時の加圧の方向やその成形の方向に異方性を
持たせることによっても、同じ効果がある。これは加圧
方向と直交する方向にSiC粒子の主面が配向し易くな
るからである。成形時の給粉や粉末を重点した後の型に
振動を加えることも有効である。以下この方法と、熱伝
導の異方性や熱伝導率のレベルとの相関について説明す
る。
Next, a method for producing the silicon carbide composite material of the present invention will be described. The method includes, as described above, a first component composed of a metal mainly composed of aluminum or copper and a second component mainly composed of silicon carbide powder composed of crystal grains having an aspect ratio exceeding 1. A step of preparing a raw material, a step of mixing a raw material containing the first component and the second component to form a mixture, a step of molding the mixture to form a molded body, and forming the molded body into aluminum or copper. Heating at a temperature equal to or higher than the melting point of the metal as the main component to form a sintered body. That is, it is characterized in that the above-mentioned material is used as the silicon carbide raw material powder. The mixing amount of the silicon carbide powder is preferably in the range of 50 to 80% by weight. The reason for setting the same amount in this range is as described above. In addition, pressurization at the time of sintering in the above method promotes anisotropy of heat conduction. The same effect can also be obtained by giving anisotropy to the direction of pressing and the direction of molding during powder molding. This is because the main surface of the SiC particles is easily oriented in a direction perpendicular to the pressing direction. It is also effective to apply vibration to the mold after emphasizing powder supply and powder during molding. Hereinafter, the correlation between this method and the level of the thermal conductivity anisotropy and thermal conductivity will be described.

【0034】前述のように熱伝導の異方性は、特にアス
ペクト比が1を越える、特に1.25以上の結晶粒子か
らなる炭化珪素粉末を用いることによって促される。ア
スペクト比は、大きいほど望ましい。特に5以上である
のが望ましい。その上限は無いが、通常は50程度まで
である。その扁平度合いやその主面の最大径が大きくな
り過ぎると、材料中での同粒子の均等分布が損なわれ
る。その結果均質なものが得難くなるからである。なお
このような形状の粒子は、調製されたものを入手して用
いてもよいが、例えばボールミル等での粉砕混合時に個
々の粒子に高加重を負荷して調製してもよい。また前述
のように、最終材料の熱伝導の異方性を高めるために
は、混合粉末を成形する場合、板状粒子の主面を特定方
向に配向するようにする。例えばそれに適した成形法に
は、押出成形、射出成形法、ドクターブレード成形法等
がある。また前述のように成形体を焼結する場合、同時
に加圧することによっても同様の効果がある。例えばホ
ットプレス法や加圧下での鍛造法がこれに適している。
成形時に配向させた粒子をさらにその配向を助長するよ
うに焼結時の加圧方向を選べば、さらにその効果は大き
くなる。
As described above, the anisotropy of heat conduction is promoted by using silicon carbide powder composed of crystal grains having an aspect ratio of more than 1, especially 1.25 or more. The larger the aspect ratio, the better. In particular, it is desirable to be 5 or more. Although there is no upper limit, it is usually up to about 50. If the degree of flatness or the maximum diameter of the main surface becomes too large, the uniform distribution of the particles in the material is impaired. As a result, it is difficult to obtain a homogeneous product. The particles having such a shape may be obtained and used, but may be prepared by applying a high load to the individual particles at the time of pulverization and mixing in a ball mill or the like. Further, as described above, in order to increase the anisotropy of heat conduction of the final material, when the mixed powder is formed, the main surface of the plate-like particles is oriented in a specific direction. For example, suitable molding methods include extrusion molding, injection molding, and doctor blade molding. In the case of sintering the compact as described above, the same effect can be obtained by applying pressure at the same time. For example, a hot press method or a forging method under pressure is suitable for this.
If the pressing direction during sintering is selected so as to further promote the orientation of the particles oriented at the time of molding, the effect is further enhanced.

【0035】以下本発明の複合材料の熱伝導率のレベル
を向上させる手段について述べる。その第一は、酸素、
陽イオン不純物、特に鉄やアルミニウムを含む不純物の
少ない炭化珪素原料粉末を使うことである。これによっ
て、得られる炭化珪素結晶粒子中の不純物や欠陥の量を
少なくすることができる。その結果複合材料の熱伝導率
の異方性には余り関係は無いが、そのレベルを上げるこ
とができる。特に結晶粒子中の酸素含有量が1重量%以
下、鉄を含む成分の含有量が鉄元素に換算して0.01
重量%以下、アルミニウムを含む成分の含有量がアルミ
ニウム元素に換算して0.01重量%以下の高純度の炭
化珪素粉末を使い、同程度の不純物量・欠陥量の炭化珪
素結晶粒子であるのが望ましい。酸素量や鉄・アルミニ
ウムを含む不純物量がこの量を越えると、熱伝導率が大
きく低下することがある。なお前述のように、この不純
物レベルの炭化珪素粉末は、炭化珪素粉末を不活性ガス
雰囲気中1600〜2400℃の温度範囲で加熱する予
備加熱処理の工程を経ても得られる。この場合雰囲気ガ
ス中には、SiC粒子中に固溶して同結晶内に格子欠陥
を作り易い窒素や炭素成分が共存しないことが重要であ
る。雰囲気ガスの圧力は高い方が望ましく、例えば高圧
下HIP(熱間静水圧成形)処理を行っても良い。温度が
1600℃未満では、同熱処理での欠陥低減の効果が小
さくなり易い。また2400℃を越えるとSiCが昇華
・分解し易くなり、収率が低下する場合がある。
The means for improving the thermal conductivity level of the composite material of the present invention will be described below. The first is oxygen,
It is to use a silicon carbide raw material powder having a small amount of cationic impurities, particularly impurities containing iron and aluminum. Thereby, the amount of impurities and defects in the obtained silicon carbide crystal particles can be reduced. As a result, although the anisotropy of the thermal conductivity of the composite material has little relation, the level can be increased. In particular, the oxygen content in the crystal particles is 1% by weight or less, and the content of the component containing iron is 0.01% in terms of iron element.
A high-purity silicon carbide powder having a content of a component containing aluminum of 0.01% by weight or less in terms of aluminum element is used, and silicon carbide crystal particles having the same amount of impurities and defects are used. Is desirable. If the amount of oxygen or the amount of impurities including iron and aluminum exceeds this amount, the thermal conductivity may be significantly reduced. As described above, the silicon carbide powder at the impurity level can also be obtained through a preheating step of heating the silicon carbide powder in an inert gas atmosphere in a temperature range of 1600 to 2400 ° C. In this case, it is important that the atmosphere gas does not contain a nitrogen or carbon component which tends to form a lattice defect in the crystal by forming a solid solution in the SiC particles. It is desirable that the pressure of the atmosphere gas be higher. For example, HIP (hot isostatic pressing) treatment may be performed under high pressure. When the temperature is lower than 1600 ° C., the effect of reducing defects in the heat treatment tends to be small. On the other hand, when the temperature exceeds 2400 ° C., sublimation / decomposition of SiC is likely to occur, and the yield may decrease.

【0036】さらにこのような粉末は、炭化珪素粉末を
フッ酸、硝酸または塩酸の内の少なくとも1種の酸を含
む水溶液中に浸漬することによっても得られる。この処
理によって、粉末中の粒子表面に存在する陽イオン不純
物、鉄(Fe)、クロミウム(Cr)、バナジウム(V)、ニッ
ケル(Ni)等の遷移金属を含む不純物、とりわけ鉄(F
e)や酸素、炭素を溶解除去することができる。これに
よって、SiC結晶粒子中でのフォノン散乱の原因とな
る不純物の量が少なくなり、得られる複合材料の熱伝導
性は向上する。すなわちこれらの成分は、高温下で粒子
表面から同内部に拡散し、欠陥を形成し熱伝導率の低下
を招き易いからである。この予備酸処理後予備加熱処理
をすることによって、さらに高純度かつ低欠陥のSiC
粉末が得られる。
Further, such a powder can be obtained by immersing the silicon carbide powder in an aqueous solution containing at least one of hydrofluoric acid, nitric acid and hydrochloric acid. By this treatment, cationic impurities present on the surface of the particles in the powder, impurities containing transition metals such as iron (Fe), chromium (Cr), vanadium (V), nickel (Ni), especially iron (F)
e), oxygen and carbon can be dissolved and removed. This reduces the amount of impurities that cause phonon scattering in the SiC crystal particles, and improves the thermal conductivity of the obtained composite material. That is, these components diffuse from the particle surface to the inside at a high temperature to form defects and easily cause a decrease in thermal conductivity. By performing a pre-heating treatment after the pre-acid treatment, SiC with higher purity and lower defects can be obtained.
A powder is obtained.

【0037】またSiC結晶中のキャリヤ濃度もその熱
拡散率に影響するものと考えられる。一般にSiCは、
過剰電子を持つn型半導体や過剰空格子を持つp型半導
体になりうる材料である。したがって、これらの過剰な
電子や空格子(キャリヤ)濃度が増加すると、それがSi
C結晶粒子中のフォノンを散乱させる一因となる。この
ためSiCの熱伝導性が低下するものと考えられる。S
iCには、6H、4H、3C、15R等の結晶型の異な
る多形が存在する。前述のように、これらの中でも熱伝
導性の高いのは、6Hまたは4H型であるが、特に6H
型のSiCは、n型半導体であり、結晶内の不純物の量
が同程度のレベルであれば、他の結晶型のものに比べて
キャリヤ濃度が低い。それ故本発明の炭化珪素系複合材
料に用いるSiC原料は、6H型のものが望ましい。こ
の点でも本発明のSiC粉末は、特に六方晶系で板状、
すなわち六角板状の偏平粒子からなるものが望ましい。
そのキャリヤ濃度は、1×1019個/cm3以下である
のが望ましい。なお本発明の炭化珪素系複合材料の製造
に供するSiC原料は、全量この6H型であるのが望ま
しいが、他の結晶型のものが一部混在しても構わない。
It is considered that the carrier concentration in the SiC crystal also affects its thermal diffusivity. Generally, SiC is
It is a material that can be an n-type semiconductor having excess electrons or a p-type semiconductor having excess vacancies. Therefore, as these excess electron and vacancy (carrier) concentrations increase,
This contributes to scattering of phonons in the C crystal particles. Therefore, it is considered that the thermal conductivity of SiC is reduced. S
In iC, there are polymorphs having different crystal forms such as 6H, 4H, 3C, and 15R. As described above, among these, the 6H or 4H type has a high thermal conductivity.
Type SiC is an n-type semiconductor and has a lower carrier concentration than those of other crystal types if the amount of impurities in the crystal is of the same level. Therefore, the SiC raw material used for the silicon carbide based composite material of the present invention is desirably a 6H type. Also in this regard, the SiC powder of the present invention is particularly hexagonal and plate-like,
That is, those made of hexagonal plate-like flat particles are desirable.
The carrier concentration is desirably 1 × 10 19 / cm 3 or less. The SiC raw material used for producing the silicon carbide-based composite material of the present invention is desirably of the 6H type in its entirety, but may be partially mixed with another crystal type.

【0038】なおSiC粒子の表面に存在する前記不純
物の量は、酸抽出法によって確認できる。その手順は、
SiC粉末を100℃に保持された硝酸とフッ酸からな
る混酸水溶液中に約2時間浸漬し同表面に存在する不純
物を溶出した後、その溶出物をIPC発光分光分析法に
よって定量する。またSiC粒子の内部に存在する不純
物の量も確認したい場合には、加圧酸分解法によって不
純物を溶出する。この場合は、SiC粉末を190〜2
30℃に保持された硝酸とフッ酸からなる混酸水溶液中
に約40時間浸漬する。これによってSiC粒子の表面
のみならず内部の不純物も抽出できるので、同様にその
溶出物をIPC発光分光分析法によって定量する。Si
C粒子の積層欠陥の量は、対象とするSiC粒子を透過
型電子顕微鏡で直接観察することによって確認できる。
また複合化後の炭化珪素系複合材料中のSiC粒子の不
純物や積層欠陥の量を確認する場合には、まず第一成分
を酸等で分離除去後、残留したSiC粒子を同様な手順
で分析・評価する。なおSiC粒子のキャリヤ濃度の確
認は困難であるが、同粒子の集合体である粉末であれ
ば、ラマン分光分析によって確認できる。
The amount of the impurities present on the surface of the SiC particles can be confirmed by an acid extraction method. The procedure is
The SiC powder is immersed in a mixed acid aqueous solution of nitric acid and hydrofluoric acid maintained at 100 ° C. for about 2 hours to elute impurities present on the surface, and the eluted substance is quantified by IPC emission spectroscopy. When it is desired to check the amount of impurities present inside the SiC particles, the impurities are eluted by the acid decomposition under pressure. In this case, the SiC powder is 190 to 2
It is immersed in a mixed acid aqueous solution of nitric acid and hydrofluoric acid maintained at 30 ° C. for about 40 hours. As a result, impurities not only on the surface of the SiC particles but also inside can be extracted, and the eluate is similarly quantified by IPC emission spectroscopy. Si
The amount of stacking faults of the C particles can be confirmed by directly observing the target SiC particles with a transmission electron microscope.
When confirming the amount of impurities and stacking faults of the SiC particles in the silicon carbide composite material after the compounding, first, the first component is separated and removed with an acid or the like, and the remaining SiC particles are analyzed in a similar procedure. ·evaluate. Note that it is difficult to confirm the carrier concentration of the SiC particles, but it can be confirmed by Raman spectroscopy if the powder is an aggregate of the particles.

【0039】アルミニウムまたは銅を主成分とする第一
成分の原料は、市販のものを用いればよい。ただし作製
された複合材料の熱伝導率を下げないためには、その純
度は高い方が望ましい。例えば99%以上のものを用い
るのが望ましい。なお本発明で用いる第一成分の原料の
使用形態は、塊状・粉末状他のいかなる形態であっても
よいが、通常は粉末状のものを用いる。原料粉末内に介
在する不純物種としては、特にアルミニウムに固溶し易
い遷移金属元素、特に8a族元素を含む成分を含む成分
は、可能な限り少ないのが望ましい。したがって、市販
のアルミニウム合金粉末を用いる場合には、これらの合
金を作るための成分の少ないものを選ぶのが望ましい。
なおさらにアルミニウムまたはアルミニウム合金の原料
粉末のアルミニウム純度を高めるためには、市販の粉末
の純度を上げるため、同粉末を溶湯噴霧法、物理的また
は化学的な処理法によって調製された粉末を準備する必
要がある。
The raw material of the first component containing aluminum or copper as a main component may be a commercially available one. However, in order not to lower the thermal conductivity of the produced composite material, it is desirable that its purity is high. For example, it is desirable to use one having 99% or more. The raw material of the first component used in the present invention may be in any form such as a lump, a powder, or the like, but usually a powder is used. As the impurity species interposed in the raw material powder, it is desirable that a component containing a transition metal element particularly easily soluble in aluminum, particularly a component containing a Group 8a element, be as small as possible. Therefore, when a commercially available aluminum alloy powder is used, it is desirable to select a powder having few components for producing these alloys.
In order to further increase the aluminum purity of the raw material powder of aluminum or aluminum alloy, in order to increase the purity of commercially available powder, prepare a powder prepared by melting the powder, a physical or chemical treatment method. There is a need.

【0040】以上述べたように、本発明で使用する原料
は、第二成分のSiC粉末として可能な限りアスペクト
比が大きく、高純度かつ低欠陥のものを用い、第一成分
のアルミニウムや銅を主成分とする原料も高純度のもの
を用いるのが望ましい。原料の混合方法は、原料の形態
・性状に合わせ原料純度が低下しない方法であれば、既
存の方法でよい。また混合物は、その成形性を高めるた
めに、例えば顆粒状に造粒してその嵩を下げるのが好ま
しい。混合物の成形法については、通常のいかなる方法
であってもよい。
As described above, the raw materials used in the present invention are those having the largest possible aspect ratio, high purity and low defect as SiC powder of the second component, and aluminum and copper of the first component. It is desirable to use a high-purity material as a main component. The method of mixing the raw materials may be any existing method as long as the raw material purity does not decrease according to the form and properties of the raw materials. Further, in order to enhance the formability of the mixture, it is preferable to reduce the bulk by, for example, granulating the mixture into granules. The method for molding the mixture may be any ordinary method.

【0041】本発明の材料の製造方法では、焼結固化に
鍛造法を採用するのが望ましい。すなわち前記した鍛造
法は、熱伝導の異方性のみならず、そのレベルの向上を
も促す。特に事前の加熱方法は、急速かつ均一な短時間
加熱のできる方法が望ましい。例えば鍛造時の加熱を電
磁誘導方式やプラズマ誘導加熱方式で15分以内で均熱
化する。鍛造によって炭化珪素粒子が破砕され、その隙
間への浸透が容易になる。また第一成分と炭化珪素との
界面反応物は、熱伝導性が低いが、その生成が少なくな
る。また第一成分には高い熱電導性の高純度のものを用
いた方が良いが、高純度のものは炭化珪素との濡れ性に
乏しい。したがって従来の方法ではその濡れ密着性を改
善するため、熱伝導性を犠牲にして合金成分を添加して
いた。しかしながら、鍛造によれば第一成分に高純度の
ものを用いても、急速な圧縮で十分密着し、相対密度1
00%のものが容易に得られる。さらに従来の方法に比
べ生産性が高い。以上の理由から鍛造によって固化する
と、高熱伝導性かつ緻密な複合材料が安価に得られる。
In the method for producing a material according to the present invention, it is desirable to employ a forging method for sintering and solidifying. That is, the above-mentioned forging method promotes not only anisotropy of heat conduction but also an improvement in the level. In particular, as the prior heating method, a method capable of rapid and uniform short-time heating is desirable. For example, the heating during forging is soaked within 15 minutes by an electromagnetic induction method or a plasma induction heating method. Silicon carbide particles are crushed by forging, and penetration into the gaps becomes easy. The interface reactant between the first component and silicon carbide has low thermal conductivity, but generates less. Further, it is better to use a first component having high purity with high thermal conductivity, but a high purity component has poor wettability with silicon carbide. Therefore, in the conventional method, in order to improve the wet adhesion, alloy components are added at the expense of thermal conductivity. However, according to forging, even if a high purity material is used as the first component, it adheres sufficiently by rapid compression and has a relative density of 1%.
00% is easily obtained. Furthermore, the productivity is higher than the conventional method. For the above reasons, when solidified by forging, a dense composite material having high thermal conductivity can be obtained at low cost.

【0042】また本発明の製造方法には、前述のよう
に、焼結工程で得られた素材をさらに第一成分金属の融
点Tm未満の温度Thで熱処理してもよい。この手段に
よっても、その熱伝導性を高めることができる。その理
由は、この熱処理によって第一成分金属中に固容した合
金成分が粒子外に吐き出されるからである。この場合熱
処理工程の温度Thが、Th>Tm−100の関係を満
たす温度であるのが望ましい。
In the manufacturing method of the present invention, as described above, the material obtained in the sintering step may be further heat-treated at a temperature Th lower than the melting point Tm of the first component metal. This means can also increase the thermal conductivity. The reason is that the alloy component solidified in the first component metal is discharged out of the particles by this heat treatment. In this case, it is desirable that the temperature Th of the heat treatment step be a temperature that satisfies the relationship of Th> Tm-100.

【0043】[0043]

【実施例】(実施例1) 原料として、いずれもその平
均粒径(この場合最大径の平均値)が50μmで、表1
に記載の各種予備処理を行ったSiC原料粉末と、表2
に記載のAl系原料および表3に記載のCu系原料とを
準備した。ラマン分光分析によって確認したSiC原料
粉末のキャリヤ濃度は、いずれのものも1×1017個/
cm3程度であった。なお表1の予備処理欄に「なし」
と記述のものは、該当する予備処理をしていないもので
ある。予備酸処理は、表に記載の濃度・温度の酸水溶液
中に記載の時間浸漬後、純水で洗浄する過程を3回繰り
返し、それを温風乾燥する手順によって行った。したが
って、例えば原料S2の場合は、原料S1のSiC粉末
をまず室温の濃度10%のフッ酸水溶液に30分間浸漬
し、その後純水で洗浄し、この一連の操作を3回繰り返
した後、温風によって脱水・乾燥した。また予備加熱処
理は、粉末を炭化珪素質のケースに装入し、ヒーターが
タングステン製の炉にセットし、アルゴンガス雰囲気
中、記載の同ガス圧力下・記載の温度で1時間保持する
方法で行った。同表に記載の各SiC粉末中の不純物量
は、前記した条件の加圧酸分解法によって同粉末から不
純物含有成分を溶解抽出し、その抽出物をIPC発光分
光法によって分析して得た値であり、粒子表面のみでな
くその内部も含めた粒子全体に存在する量である。表1
にはFe(鉄)以外の本発明で言う陽イオン元素(遷移金
属元素)の量は記載されていないが、それら個々の量
は、いずれの番号の原料においても高々500ppmで
あった。またC(炭素)の量は、いずれの番号の原料に
おいても高々500ppmであった。なおSiC粉末粒
子のアスペクト比は、1000倍の走査型電子顕微鏡の
視野内の全ての板状粒子の最大径(本実施例ではその平
均値が50μm)を同板状粒子の厚みで除した個々のア
スペクト比を計量粒子数で割って求めた。焼結体のそれ
についても同様である。
Examples (Example 1) As raw materials, all had an average particle diameter (in this case, an average of the maximum diameter) of 50 μm.
Table 2 shows the SiC raw material powders subjected to various pretreatments described in Table 2.
And the Cu-based material described in Table 3 were prepared. The carrier concentration of the SiC raw material powder confirmed by Raman spectroscopy was 1 × 10 17 /
cm 3 . Note that "None" is displayed in the preliminary processing column of Table 1.
In the description, the corresponding preliminary processing has not been performed. The preliminary acid treatment was performed by a procedure of immersing in an aqueous acid solution having the concentration and temperature shown in the table for the time shown in the table, followed by washing with pure water three times, and drying it with warm air. Therefore, for example, in the case of the raw material S2, the SiC powder of the raw material S1 is first immersed in a 10% hydrofluoric acid aqueous solution at room temperature for 30 minutes, then washed with pure water, and this series of operations is repeated three times. Dehydrated and dried by wind. The preheating treatment is a method in which the powder is charged into a silicon carbide case, the heater is set in a furnace made of tungsten, and is held in an argon gas atmosphere under the same gas pressure and at the described temperature for 1 hour. went. The amount of impurities in each SiC powder described in the same table is a value obtained by dissolving and extracting an impurity-containing component from the powder by the pressurized acid decomposition method under the conditions described above, and analyzing the extract by IPC emission spectroscopy. Is the amount present not only on the particle surface but also on the entire particle including the inside. Table 1
Does not describe the amount of the cation element (transition metal element) other than Fe (iron) according to the present invention, but the amount of each of them was at most 500 ppm in the raw materials of any numbers. Further, the amount of C (carbon) was at most 500 ppm in the raw materials of any numbers. The aspect ratio of the SiC powder particles was determined by dividing the maximum diameter of all the plate-like particles in the field of view of the scanning electron microscope at a magnification of 1000 (the average value in this example is 50 μm) by the thickness of the plate-like particles. Was determined by dividing the aspect ratio by the number of weighed particles. The same applies to that of the sintered body.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】第二成分として表1に記載の各SiC原料
粉末、第一成分として表2に記載のAl系原料粉末A1
1または表3に記載のCu系原料粉末C11を選び、そ
れぞれの組合わせで本発明の熱間鍛造による方法によっ
て、SiCを50重量%含む炭化珪素系複合材料試片を
それぞれ作製した。表4の原料欄に作製した28種類の
原料の組み合わせを示す。まず表1に記載の各SiC原
料粉末50重量%と、残部50重量%が上記A11また
はC11の原料粉末となるように秤取し、バインダーと
してパラフィンを3重量%添加し、エタノール中3時間
混合した。得られたスラリーを噴霧乾燥して造粒粉末と
した。これを乾式粉末成形プレスによって、成形圧力7
ton/cm2で直径100mm、厚み10mmに成形
した後、大気中400℃でバインダーを除去し成形体と
した。これらの各成形体を電磁誘導加熱方式の加熱炉内
にセットし、大気中で加熱した。加熱条件は、昇温速度
を600℃/分、保持温度をAl−SiC系の場合は6
70℃、Cu−SiC系の場合は1090℃、保持時間
を10秒とした。その後これらの成形体を直ちに予め別
途加熱された鍛造型内に入れて、9ton/cm2の圧
力で鍛造した。なお鍛造型はAl−SiC系、Cu−S
iC系いずれの場合もダイス鋼製のものを用い、型の加
熱温度はいずれも450℃とした。鍛造体の最終厚み
は、いずれの試料もほぼ10mmであった。その後試料
を研削加工仕上げした。なお六角板状でアスペクト比が
1を越えるSiC粒子を用いた試料鍛造体の厚み方向の
破断面と径方向の表面を走査型電子顕微鏡で観察したと
ころ、試料中のSiC板状粒子は、その主面がほぼ試料
の主面径方向に沿って配列しているのが確認された。な
お表中の*印は、比較例である。
Each of the SiC raw material powders shown in Table 1 as the second component, and the Al-based raw material powder A1 shown in Table 2 as the first component
1 or a Cu-based raw material powder C11 described in Table 3 was selected, and a silicon carbide-based composite material specimen containing 50% by weight of SiC was produced by the hot forging method of the present invention in each combination. The raw material column in Table 4 shows combinations of the 28 types of raw materials produced. First, 50% by weight of each SiC raw material powder shown in Table 1 and the remaining 50% by weight were weighed so as to become the raw material powder of A11 or C11, and 3% by weight of paraffin was added as a binder and mixed in ethanol for 3 hours. did. The obtained slurry was spray-dried to obtain a granulated powder. This was pressed by a dry powder molding press at a molding pressure of 7
After molding to a diameter of 100 mm and a thickness of 10 mm at ton / cm 2 , the binder was removed at 400 ° C. in the atmosphere to obtain a molded body. Each of these compacts was set in a heating furnace of an electromagnetic induction heating system and heated in the atmosphere. The heating conditions were as follows: the temperature rising rate was 600 ° C./min, and the holding temperature was 6 in the case of Al—SiC system.
70 ° C., 1090 ° C. in the case of Cu—SiC, and a holding time of 10 seconds. Thereafter, these compacts were immediately placed in a separately heated forging die and forged at a pressure of 9 ton / cm 2 . The forging die is made of Al-SiC, Cu-S
In each case of iC type, a die steel was used, and the heating temperature of the mold was 450 ° C. in all cases. The final thickness of the forged body was approximately 10 mm for each sample. Thereafter, the sample was finished by grinding. In addition, when the fracture surface in the thickness direction and the surface in the radial direction of the sample forged body using a hexagonal plate-shaped SiC particle having an aspect ratio exceeding 1 were observed with a scanning electron microscope, the SiC plate-like particles in the sample showed that It was confirmed that the main surfaces were arranged substantially along the radial direction of the main surface of the sample. In addition, * mark in a table | surface is a comparative example.

【0048】[0048]

【表4】 [Table 4]

【0049】各鍛造体試料の実測した単重と体積から計
算した見かけ密度と、主成分の密度とその組成比率から
複合則によって計算した理論密度とからその空孔率と相
対密度(以下各表には、%単位で単に「密度」と表記す
る。)を、またレーザーフラッシュ法によって鍛造体の
径方向の熱伝導率Kxと厚み方向の熱伝導率Kyとを、
差動トランス式熱膨張係数測定装置によってその熱膨張
係数を、さらに前記した加圧酸分解法と発光分光分析の
組み合わせによってそのSiC結晶粒子中の不純物量
を、それぞれ求めた。これらの結果を表4に示す。なお
別途予備加熱処理の雰囲気ガスを窒素または炭素を含む
ガスに切り換えて行ったSiC原料粉末S1を用いて、
表4と同様の第一成分との組成・組み合わせ、同様の成
形・鍛造の手順で作製した鍛造体は、その熱伝導率が事
前の酸処理を行ったもので、Kx方向でAl−SiC系
で表4の試料11程度、Cu−SiC系で表4の試料2
5程度であり、予備酸処理を行わなかったものでは、こ
れより低下してKx方向でAl−SiC系で190W/
m・K程度、Cu−SiC系で250W/m・K程度で
あり、予備加熱処理の効果は小さくなった。
From the apparent density calculated from the actually measured unit weight and volume of each forged body sample, and from the theoretical density calculated from the density of the main component and its composition ratio according to the compound rule, the porosity and relative density (hereinafter referred to as the respective tables) Is simply expressed as “density” in units of%), and the thermal conductivity Kx in the radial direction and the thermal conductivity Ky in the thickness direction of the forged body by the laser flash method.
The coefficient of thermal expansion was determined by a differential transformer type thermal expansion coefficient measuring apparatus, and the amount of impurities in the SiC crystal particles was determined by a combination of the above-mentioned pressurized acid decomposition method and emission spectroscopy. Table 4 shows the results. In addition, using the SiC raw material powder S1 which was separately performed by switching the atmosphere gas of the preheating treatment to a gas containing nitrogen or carbon,
The forged body produced by the same composition / combination with the first component as shown in Table 4 and the same molding / forging procedure has a thermal conductivity that has been subjected to a prior acid treatment, and has an Al—SiC system in the Kx direction. And about 11 in Table 4 and about Cu-SiC sample 2 in Table 4
In the case where the preliminary acid treatment was not performed, the value was lower than that of the pre-acid treatment.
The effect of the preliminary heat treatment was reduced by about m · K and about 250 W / m · K in the case of Cu—SiC.

【0050】なお別途第二成分にアスペクト比の異なる
表1のS1、S4〜S9のSiC粉末を選び、SiC量
が48、70、80重量%のAl−SiC系試料を作製
した。使用した第一成分粉末、混合から仕上げ加工まで
の工程および評価内容は、上記と同様にした。なお焼結
試料のSiC粒子中の不純物量は、表示していないが、
表4の同じSiC原料のものと同じであった。なお表中
の*印は、比較例である。
Separately, SiC powders of S1, S4 to S9 of Table 1 having different aspect ratios were selected as the second component, and Al-SiC samples having SiC contents of 48, 70 and 80% by weight were prepared. The used first component powder, the steps from mixing to finishing, and the contents of evaluation were the same as described above. Although the amount of impurities in the SiC particles of the sintered sample is not shown,
It was the same as that of the same SiC raw material in Table 4. In addition, * mark in a table | surface is a comparative example.

【0051】[0051]

【表5】 [Table 5]

【0052】以上の結果より、以下のことが分かる。
(1)アスペクト比が1を越える六角板状の粒子からなる
SiC原料粉末を用い、本発明の第一の製造方法で作製
された鍛造体では、その主面方向にSiC粒子の主面が
配向し、同方向の熱伝導率Kxが厚み方向のそれKyよ
りも大きくなる。Ky/Kx値は、SiC粒子のアスペ
クト比が大きくなるほど小さくなる。すなわち熱伝導の
異方性が増す。またアスペクト比が1を越え同一であれ
ば、SiC粒子の量とともに同異方性は増す。特に表5
の実施例では、SiC量が50重量%未満の場合、Ky
/Kx値が0.9以下となるアスペクト比は2以上とな
る。SiC量が70重量%以上になると、アスペクト比
10以上で0.7に近い値となる。(2)SiC原料粉
末と第一成分との混合物成形体を鍛造する第一の製造方
法では、SiC原料粉末に予備処理(予備酸処理や予備
加熱処理)を施すと、同処理を施さない場合に比べSi
C粒子中の不純物が減り、その結果より高熱伝導性の材
料が得られる。特に予備酸処理後、予備加熱処理を施し
た場合、その効果は顕著である。その理由は、SiC粒
子内の不純物量が減少したことおよび鍛造による高速高
密度化によって、同粒子内の欠陥や歪みの発生が少な
く、かつ主成分間の密着度の高い材料が得られたことに
よるものと考えられる。
From the above results, the following can be understood.
(1) In a forged body manufactured by the first manufacturing method of the present invention using SiC raw material powder composed of hexagonal plate-like particles having an aspect ratio exceeding 1, the main surface of the SiC particles is oriented in the main surface direction. Then, the thermal conductivity Kx in the same direction becomes larger than that in the thickness direction Ky. The Ky / Kx value decreases as the aspect ratio of the SiC particles increases. That is, the anisotropy of heat conduction increases. If the aspect ratio exceeds 1 and remains the same, the anisotropy increases with the amount of SiC particles. In particular, Table 5
In the embodiment of the present invention, when the amount of SiC is less than 50% by weight, Ky
The aspect ratio at which the / Kx value is 0.9 or less is 2 or more. When the SiC amount is 70% by weight or more, the aspect ratio becomes a value close to 0.7 at an aspect ratio of 10 or more. (2) In the first manufacturing method of forging a molded body of a mixture of the SiC raw material powder and the first component, when the SiC raw material powder is subjected to a preliminary treatment (a preliminary acid treatment or a preliminary heating treatment), the same treatment is not performed. Si compared to
Impurities in the C particles are reduced, and as a result, a material having higher thermal conductivity is obtained. In particular, when a preliminary heating treatment is performed after the preliminary acid treatment, the effect is remarkable. The reason for this is that the amount of impurities in the SiC particles was reduced, and high-speed densification by forging resulted in a material with less occurrence of defects and strains in the particles and high adhesion between the main components. It is thought to be due to.

【0053】(実施例2) 表1のS12のSiC粉
末、表2のA11アルミニウム粉末および表3のC11
銅粉末を用いて、実施例1と同じ製造方法(粉末調製な
いし熱間鍛造の工程を経る方法)によって、表6に記載
のSiC量のAl−SiC系およびCu−SiC系鍛造
体試料を作成し、実施例1と同様の評価をした。その結
果を表5に示す。なお実施例1同様試料中のSiC板状
粒子は、その主面がほぼ試料の主面方向に沿って配列し
ていることが確認された。
Example 2 SiC powder of S12 of Table 1, A11 aluminum powder of Table 2 and C11 of Table 3
Using the copper powder, the Al-SiC-based and Cu-SiC-based forged body samples having the SiC amount shown in Table 6 were prepared by the same manufacturing method as in Example 1 (the method of passing through the steps of powder preparation or hot forging). Then, the same evaluation as in Example 1 was performed. Table 5 shows the results. As in Example 1, it was confirmed that the main surfaces of the SiC plate-like particles in the sample were arranged substantially along the main surface direction of the sample.

【0054】[0054]

【表6】 [Table 6]

【0055】以上の結果より、アスペクト比の同じ板状
粒子からなるSiCの量を変えて複合材料を調製する
と、その量の増加とともに熱伝導の異方性は大きくなる
ことが分かる。
From the above results, it can be understood that when the amount of SiC composed of plate-like particles having the same aspect ratio is changed to prepare a composite material, the anisotropy of heat conduction increases as the amount increases.

【0056】(実施例3) 表1のS14のSiC粉末
(予備酸処理と予備加熱処理を施したアスペクト比が5
の六角平板状)、表2のA12アルミニウム粉末および
表3のC12銅粉末を用い、主に本発明の第二の製造方
法によってAl−SiC系、Cu−SiC系複合材料を
作製・評価した。その結果を表7に示す。なおいずれの
試料もそのSiC量を70重量%とした。同表中「製法
区分」欄に乾式、押出と記された試料は、それぞれ混合
粉末の成形が乾式成形法、押出成形法によって行われた
ものである。また同欄に焼結、HP、鍛造と記した試料
は、その焼結がそれぞれ窒素雰囲気下の常圧焼結、窒素
雰囲気下のホットプレス焼結、実施例1と同じ条件下で
の気中熱間鍛造によって行われたものである。なお比較
のために同じ組成で実施例1と同じ手順の第一の製造方
法(成形が乾式成形法で焼結が熱間鍛造法成)による試
料も作製した。乾式成形法による成形体の調製手順は、
実施例1と同様にし、同じ形状の成形体を得た。押出成
形法による成形体は、以下のように調製した。まず上記
原料粉末をSiC70重量%の組成割合で秤量後、有機
バインダーとしてメチルセルロースを粉末総重量に対し
3重量%、さらに水と少量の可塑剤を添加し、3時間ニ
ーダーで混練した。得られた混合物を断面が120mm
幅・12mm高さの押出シートを作製した。このシート
を直径110mmの円板状に打ち抜き、金属製のトレー
上に載せて温風乾燥して成形体とした。その後この成形
体を平滑な炭化珪素製のトレー上に搭載して、減圧下4
00℃で有機バインダーを除去した。なおこの成形体
は、焼結によって実施例1と同程度のサイズの円板形状
となった。
Example 3 The SiC powder of S14 in Table 1 (with an aspect ratio of 5 after pre-acid treatment and pre-heating treatment)
Hex flat plate), A12 aluminum powder in Table 2 and C12 copper powder in Table 3 were used to produce and evaluate Al-SiC-based and Cu-SiC-based composite materials mainly by the second production method of the present invention. Table 7 shows the results. In each sample, the amount of SiC was set to 70% by weight. In the same table, the samples described as dry and extruded in the column of "manufacturing method" are those in which the mixed powder was formed by the dry molding method and the extrusion molding method, respectively. In the same column, the samples described as sintering, HP, and forging were sintered under normal pressure in a nitrogen atmosphere, hot press sintering in a nitrogen atmosphere, and in the air under the same conditions as in Example 1. It was performed by hot forging. For comparison, a sample having the same composition and the same production procedure as in Example 1 was also prepared by a first manufacturing method (forming was performed by dry forming and sintering was performed by hot forging). The procedure for preparing a molded body by dry molding is as follows.
A molded article having the same shape was obtained in the same manner as in Example 1. A molded article by the extrusion molding method was prepared as follows. First, the above raw material powder was weighed at a composition ratio of 70% by weight of SiC, and then methylcellulose as an organic binder was added at 3% by weight based on the total weight of the powder, water and a small amount of a plasticizer were added, and the mixture was kneaded with a kneader for 3 hours. The obtained mixture has a cross section of 120 mm.
An extruded sheet having a width of 12 mm was prepared. This sheet was punched into a disk having a diameter of 110 mm, placed on a metal tray, and dried with hot air to obtain a molded body. Thereafter, the compact is mounted on a smooth silicon carbide tray, and
The organic binder was removed at 00 ° C. In addition, this compact was formed into a disk shape having a size similar to that of Example 1 by sintering.

【0057】前記した熱間鍛造は、実施例1と同一条件
で行った。また上記常圧焼結は、各成形体を窒素気流中
Al−SiC系では670℃で、Cu−SiC系では1
090℃で、それぞれ30分間加熱する手順で行った。
ホットプレスは、各成形体を炭化珪素製の型内に入れて
昇温し、Al−SiC系のものは670℃で、Cu−S
iC系のものは1090℃で、窒素雰囲気中1MPaの
機械的な圧力を負荷する手順で行った。これらの成形法
や焼結法を組み合わせた工程を経た試料を、実施例1同
様直径100mm、厚み10mmのサイズに仕上げ加工
した後、実施例1と同じ手順で評価をした。なおいずれ
のものも実施例1と同様に試料中のSiC板状粒子は、
その主面がほぼ試料の主面方向に沿って配列しているこ
とが確認された。同表の結果から成形方法は乾式成形よ
りも押出成形の方が、熱伝導の異方性に効果的である
(例えば表7の試料60と42の対比より)。また焼結
方法は常圧下よりも機械的加圧下で行う方が熱伝導の異
方性に効く(例えば表7の試料63と65の対比よ
り)。
The hot forging described above was performed under the same conditions as in Example 1. In the normal pressure sintering, each compact is heated at 670 ° C. in an Al—SiC system in a nitrogen stream and 1 ° C. in a Cu—SiC system.
Heating was performed at 090 ° C. for 30 minutes each.
The hot press puts each compact in a silicon carbide mold and raises the temperature.
In the case of the iC type, the procedure was such that a mechanical pressure of 1 MPa was applied at 1090 ° C. in a nitrogen atmosphere. A sample that had undergone a process combining these molding methods and sintering methods was finished to a size of 100 mm in diameter and 10 mm in thickness as in Example 1, and was evaluated in the same procedure as in Example 1. In each case, as in Example 1, the SiC plate-like particles in the sample were:
It was confirmed that the main surfaces were arranged substantially along the main surface direction of the sample. From the results in the table, the extrusion method is more effective for heat conduction anisotropy than the dry molding method.
(Eg, from comparison of samples 60 and 42 in Table 7). In addition, the sintering method is more effective in heat conduction anisotropy when performed under mechanical pressure than under normal pressure (for example, from the comparison of samples 63 and 65 in Table 7).

【0058】[0058]

【表7】 [Table 7]

【0059】(実施例4) 実施例1ないし3で得られ
た下記表8の素材欄に記載された試料を、窒素気流中、
同表の処理温度欄に記載の各温度で3時間熱処理した。
その結果を同じ表に示す。なお同表の融点欄の温度は、
第一成分の液層が生成し始める各素材の温度であり、示
差熱分析(DTA)によって確認したものである。表には
熱処理後の熱伝導率を実施例1と同様にして求め、その
値を示した。なお同表には、熱処理後の空孔率、相対密
度、熱膨張係数およびSiC粒子中の不純物量は示さな
かったが、出発素材とほぼ同じレベルであった。同表の
結果から以下の点が分かる。すなわち本発明の第一・第
二の製造方法によって作製された素材を、さらにそれぞ
れの素材の第一成分の金属の融点未満の温度で加熱処理
することによって、その熱伝導性が向上する。その理由
は、この処理によって第一成分の結晶相内に固溶してい
た合金成分の一部が、同相外に排出されるため同相自体
の格子歪みが減少し、高熱伝導性である純主成分に近い
ものなることによるものと考えられる。なおその処理温
度Thの好適範囲は、第一成分の融点Tm未満かつTm
−100を越える温度範囲とするのが望ましいことも分
かる。
Example 4 The samples obtained in Examples 1 to 3 and described in the material column of Table 8 below were placed in a nitrogen stream.
Heat treatment was performed for 3 hours at each temperature described in the processing temperature column in the same table.
The results are shown in the same table. The temperature in the melting point column in the table is
The temperature of each material at which the liquid layer of the first component starts to be formed, which was confirmed by differential thermal analysis (DTA). In the table, the thermal conductivity after the heat treatment was obtained in the same manner as in Example 1, and the value was shown. Although the porosity, the relative density, the coefficient of thermal expansion, and the amount of impurities in the SiC particles after the heat treatment were not shown in the same table, they were at substantially the same level as the starting material. The following points can be seen from the results in the table. That is, the heat conductivity of the raw materials produced by the first and second production methods of the present invention is improved by further performing a heat treatment at a temperature lower than the melting point of the metal of the first component of each raw material. The reason for this is that part of the alloy component dissolved in the crystal phase of the first component by this treatment is discharged out of the same phase, so that the lattice distortion of the same phase itself is reduced, and the high thermal conductivity This is considered to be due to being close to the component. The preferable range of the processing temperature Th is less than the melting point Tm of the first component and Tm.
It can also be seen that it is desirable to set the temperature range over -100.

【0060】[0060]

【表8】 [Table 8]

【0061】(実施例5) 以上述べた実施例の試料番
号1、4、14、15、18、28、48、55、6
0、64、66、70、82および84のものと同じ方
法で得た炭化珪素系複合材料を、それぞれ50個ずつ長
さ200mm、幅200mm、厚み3mmの形状の基材
に仕上げ加工した。これを図1に模式的に示すようなパ
ワーモジュールに放熱基板として実装して、各実装段階
も含めて温度サイクル試験を行った。図1において、1
は本発明の上記複合材料からなる第二の放熱基板、2は
同基板上に配置され、その上面に(図示しないが)銅回路
が形成されたセラミックスからなる電気絶縁性の第一の
基板、3はSi半導体素子、4は第二の放熱基板の下に
配置された放熱構造体である。なおこのジャケットは、
本実施例では水冷ジャケットであるが、他に空冷のフィ
ン等もある。なお同図には半導体素子周辺の配線等につ
いては省略してある。本実施例では、Si半導体素子を
第一のセラミックス製基板を介して6個搭載したモジュ
ールとした。
(Example 5) Sample Nos. 1, 4, 14, 15, 18, 28, 48, 55, and 6 of the examples described above.
The silicon carbide-based composite materials obtained by the same method as those of the samples 0, 64, 66, 70, 82, and 84 were each subjected to finish processing into 50 base materials each having a length of 200 mm, a width of 200 mm, and a thickness of 3 mm. This was mounted on a power module as schematically shown in FIG. 1 as a heat radiating substrate, and a temperature cycle test was performed including each mounting step. In FIG. 1, 1
Is a second heat radiation substrate made of the composite material of the present invention, 2 is disposed on the same substrate, on the upper surface thereof (not shown) an electrically insulating first substrate made of ceramics formed with a copper circuit, Reference numeral 3 denotes a Si semiconductor element, and reference numeral 4 denotes a heat dissipation structure disposed below the second heat dissipation board. This jacket,
In this embodiment, a water-cooled jacket is used, but there are also air-cooled fins and the like. It should be noted that wiring and the like around the semiconductor element are omitted in FIG. In the present embodiment, a module in which six Si semiconductor elements are mounted via the first ceramic substrate is used.

【0062】実装に先立ち第二の基板に直接第一の基板
を半田付けできないため、第二の基板の主面に予め平均
厚み10μmの無電解ニッケルメッキ層と平均厚み5μ
mの電解ニッケルメッキ層を形成した。この内各4個の
試片は、ニッケルメッキ上に直径5mmの半球状のAg
−Sn系半田によって直径1mmの銅線をメッキ面に垂
直な方向に取り付けた。この試片の基板本体を治具に固
定して銅線を掴みメッキ面に垂直な方向に引っ張り、基
板へのメッキ層の密着強度を確認した。その結果いずれ
の基板のメッキ層も1kg/mm2以上の引っ張り力で
も剥がれなかった。またメッキ層が形成された別の試片
の内から10個を抜き取って、−60℃で30分保持、
150℃で30分保持の昇降温を1000サイクル繰り
返すヒートサイクル試験を実施し、試験後上記と同様の
密着強度を確認したところ、いずれの試片もメッキの密
着性で上記レベルを満足する結果が得られた。以上の結
果より本発明の複合材料からなる基板へのメッキの密着
性は、実用上問題の無いレベルであることが判明した。
Since the first substrate cannot be directly soldered to the second substrate prior to mounting, an electroless nickel plating layer having an average thickness of 10 μm and an average thickness of 5 μm are formed on the main surface of the second substrate in advance.
m of electrolytic nickel plating layer was formed. Each of the four specimens is a 5 mm diameter hemispherical Ag on nickel plating.
A copper wire having a diameter of 1 mm was attached by a Sn-based solder in a direction perpendicular to the plating surface. The substrate body of this sample was fixed to a jig, a copper wire was grasped and pulled in a direction perpendicular to the plating surface, and the adhesion strength of the plating layer to the substrate was confirmed. As a result, the plating layers on any of the substrates were not peeled off even with a tensile force of 1 kg / mm 2 or more. Also, 10 samples were taken out of another sample on which the plating layer was formed, and held at −60 ° C. for 30 minutes.
A heat cycle test was performed by repeating 1000 cycles of raising and lowering the temperature at 150 ° C. for 30 minutes, and after the test, the same adhesion strength as above was confirmed. Obtained. From the above results, it was found that the adhesion of the plating to the substrate made of the composite material of the present invention was at a level having no practical problem.

【0063】次に第二の基板上に搭載するセラミックス
製の第一の基板として、熱伝導率が150W/m・K、
熱膨張係数が4.5×10-6/℃、3点曲げ強度450
MPaの窒化アルミニウムセラミックス製の基板Aおよ
び熱伝導率が120W/m・K、熱膨張係数が3.7×
10-6/℃、3点曲げ強度1300MPaの窒化珪素セ
ラミックス製の基板Bの二種の銅回路を形成した第一の
基板を、それぞれ18個ずつ準備した。これらの基板の
形状は、いずれも長さ90mm、幅60mm、厚み1m
mとした。これらの基板を第二の基板の200mm角の
主面上に2行3列で等間隔に配置し、同基板のニッケル
メッキ層を形成した面上にAg−Sn系半田によって固
定した。次にこのアッセンブリーの第二の基板の裏面側
と水冷ジャケットとを、その接触面にシリコンオイルコ
ンパウンドを塗布介在させてボルト閉め固定した。なお
この場合の第一の基板の取り付け穴は、予め素材段階で
その四隅に開けておいた下穴部に炭酸ガスレーザーを照
射して、それを直径3mmまで拡げる方法によって形成
した。この加工は他のセラミックス材やCu−W、Cu
−Moを対象とした場合に比べ、高精度かつ高速で行う
ことができた。この傾向は特に熱伝導率が高くなればな
るほど顕著であった。
Next, the first ceramic substrate mounted on the second substrate has a thermal conductivity of 150 W / m · K,
Coefficient of thermal expansion 4.5 × 10 -6 / ° C, 3-point bending strength 450
A substrate made of aluminum nitride ceramics of MPa, thermal conductivity of 120 W / m · K, and thermal expansion coefficient of 3.7 ×
Eighteen first substrates on which two types of copper circuits were formed, each of which was a substrate B made of silicon nitride ceramic having a 10-6 / ° C and a three-point bending strength of 1300 MPa, were prepared. Each of these substrates has a length of 90 mm, a width of 60 mm, and a thickness of 1 m.
m. These substrates were arranged at equal intervals in two rows and three columns on a 200 mm square main surface of the second substrate, and were fixed on the surface of the same substrate on which the nickel plating layer was formed by Ag-Sn solder. Next, the back surface side of the second substrate of this assembly and the water-cooled jacket were fixed with bolts closed by applying a silicone oil compound to the contact surface thereof. In this case, the mounting holes of the first substrate were formed by irradiating a carbon dioxide laser to the prepared holes previously formed in the four corners at the material stage and expanding the holes to a diameter of 3 mm. This processing is performed with other ceramic materials, Cu-W, Cu
-Higher accuracy and higher speed than in the case of Mo. This tendency was particularly remarkable as the thermal conductivity increased.

【0064】これらの各試片の中から第一の基板がAと
Bの物を各15個ずつ選び、上記と同じ単サイクル条件
で3000サイクルのヒートサイクル試験を行い、その
100サイクル毎のモジュールの出力の変化を確認し
た。その結果、全てのモジュールが、実用上問題が無い
とされる1000サイクルまで、その出力の低下は観測
されなかった。ただし、第一の基板の材質種を問わず1
000サイクルを越えた1100サイクル以降の確認
で、第二の基板に熱膨張係数が10×10-6/℃以上か
つ主面方向の熱伝導率Kxが250W/m・K以下の1
および4の板を用いたもので、ヒートサイクルによるモ
ジュールの若干の出力低下が観測された。特に熱伝導率
Kyが180W/m・Kの1の板および183W/m・
Kの4の板を用いたもので、1100サイクル終了後に
同出力の若干の低下したものが、15個中1個観測され
た。この出力の低下した試料では、第一・第二の両基板
の半田付けされた接合界面の第一の基板側に微細な亀裂
の発生が認められた。また膨張係数が11.0×10-6
/℃の48を用いたモジュールでは、2000サイクル
終了後、これと同様の原因による若干の出力低下が15
個中1個観測された。以上述べたもの以外には3000
サイクル終了までこのような異常は無かった。
From each of these test pieces, 15 first substrates A and B were selected and subjected to a heat cycle test of 3000 cycles under the same single cycle conditions as described above. The change in output was confirmed. As a result, the output of all modules did not decrease until 1000 cycles, which is considered to be practically no problem. However, regardless of the material type of the first substrate, 1
After 1100 cycles after 000 cycles, it was confirmed that the second substrate had a thermal expansion coefficient of 10 × 10 −6 / ° C. or more and a thermal conductivity Kx in the main surface direction of 250 W / m · K or less.
In the case of using the plates Nos. 4 and 4, a slight decrease in the output of the module due to the heat cycle was observed. In particular, one plate having a thermal conductivity Ky of 180 W / m · K and 183 W / m · K
In the case of using a plate No. 4 of K, one out of 15 samples whose output slightly decreased after the completion of 1100 cycles was observed. In the sample in which the output was reduced, generation of a fine crack was observed on the first substrate side of the soldered joint interface between the first and second substrates. The expansion coefficient is 11.0 × 10 -6
In the module using 48 at a temperature of / ° C, a slight decrease in output due to the same cause was observed after 15 cycles of 2000 cycles.
One of them was observed. 3000 other than the above
There were no such abnormalities until the end of the cycle.

【0065】以上の結果より、本発明の炭化珪素系複合
材料からなる第一の基板を用いたパワーモジュールは、
実用上問題の無いレベルのものとなることが分かる。中
でも熱伝導率が250W/m・K以上、さらにはAl−
SiCではKxが300W/m・K以上、Cu−SiC
系ではKxが330W/m・K以上の材料を第一の基板
に用いたものは、過酷な熱サイクル条件下でも上記のよ
うな大型のモジュール用基板として利用可能なことが分
かる。
From the above results, the power module using the first substrate made of the silicon carbide-based composite material of the present invention is:
It can be seen that the level is practically no problem. Among them, the thermal conductivity is 250 W / m · K or more,
In SiC, Kx is 300 W / m · K or more, Cu-SiC
It can be seen that in the system, a material using Kx of 330 W / m · K or more for the first substrate can be used as a large module substrate as described above even under severe thermal cycling conditions.

【0066】なお本発明の材料をこの種のモジュールに
比べ低出力・低熱(サイクル)負荷の高容量のパーソナル
コンピューター等の半導体素子搭載装置に放熱基板とし
て実装・評価も行ったが、その信頼性・実用性能上何ら
問題は無かった。
The material of the present invention was also mounted and evaluated as a heat dissipation board on a semiconductor device mounting device such as a personal computer having a low output and a low heat (cycle) load and a high capacity compared to this type of module. -There was no problem in practical performance.

【0067】[0067]

【発明の効果】以上詳述したように、本発明によれば炭
化珪素(SiC)として、アスペクト比が1を越える結晶
粒子からなる粉末を用い、方向性のある成形を行った
り、焼結時に加圧することによって、同粒子の一方向へ
の配向を促進させ、熱伝導に異方性のあるAl−SiC
系またはCu−SiC系の炭化珪素系複合材料が提供で
きる。この材料は、その第一の方向の熱伝導率をKxと
し、同方向に直交する方向の熱伝導率をKyとすると、
Ky/Kx比が0.7〜0.9の範囲内のものもある。
特にSiC粒子の量を50〜80重量%とすること、そ
の粒子のアスペクト比を1.25以上にすることによっ
て、安定してこの比のものが得られる。その結果特に高
い熱伝導性を有する第一の方向に放熱主面を合わせるこ
とにより、主面方向に高い放熱効率の放熱基板が提供で
きる。また特に予め酸に浸漬したり加熱する予備処理を
施して、遷移金属を含む成分他の不純物量を減らし純化
した炭化珪素粉末原料を用い、粉末成形時や最終の固化
を鍛造で行うことによって、従来に無い極めて高い熱伝
導性の同複合材料が得られる。またこの予備処理による
炭化珪素の純化工程および/または固化後のAl系成分
またはCu系成分の融点未満の温度下での加熱処理工程
を、従来からの焼結法・ホットプレス法等に適用するこ
とによって、その熱伝導性をさらに高めることができ
る。したがって、本発明の炭化珪素複合材料は、半導体
素子を搭載する放熱基板、特に高出力のパワーモジュー
ル用の高信頼性の放熱基板として有用である。
As described in detail above, according to the present invention, as silicon carbide (SiC), powder composed of crystal grains having an aspect ratio exceeding 1 is used to perform directional molding or sintering. By applying pressure, Al-SiC having anisotropic heat conduction is promoted in one direction of the particles.
-Based or Cu-SiC-based silicon carbide based composite material can be provided. This material has a thermal conductivity in the first direction of Kx and a thermal conductivity in a direction orthogonal to the same direction as Ky.
Some have a Ky / Kx ratio in the range of 0.7 to 0.9.
In particular, by setting the amount of SiC particles to 50 to 80% by weight and the aspect ratio of the particles to 1.25 or more, the particles having this ratio can be obtained stably. As a result, by aligning the heat dissipation main surface with the first direction having particularly high thermal conductivity, a heat dissipation board having high heat dissipation efficiency in the main surface direction can be provided. In addition, by preliminarily immersing in an acid or performing a preliminary treatment of heating, using a purified silicon carbide powder material to reduce the amount of impurities including components including transition metals, and performing forging or final solidification by forging, An unprecedented composite material having extremely high thermal conductivity can be obtained. In addition, the step of purifying silicon carbide by the preliminary treatment and / or the step of heating at a temperature lower than the melting point of the Al-based component or Cu-based component after solidification are applied to a conventional sintering method, hot pressing method, or the like. Thereby, the thermal conductivity can be further increased. Therefore, the silicon carbide composite material of the present invention is useful as a heat radiation substrate on which a semiconductor element is mounted, particularly as a highly reliable heat radiation substrate for a high-output power module.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の材料を基板に用いた半導体装置(パワ
ーモジュール)を模式的に示す図である。
FIG. 1 is a diagram schematically showing a semiconductor device (power module) using a material of the present invention for a substrate.

【符号の説明】[Explanation of symbols]

1.炭化珪素系複合材料からなる第一基板 2.第二基板 3.半導体素子 4.放熱構造体 1. 1. First substrate made of silicon carbide composite material Second substrate 3. Semiconductor element 4. Heat dissipation structure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 9/00 C22C 29/06 Z 29/06 32/00 F 32/00 U C22F 1/04 Z C22F 1/04 1/00 603 // C22F 1/00 603 627 627 628 628 650F 650 661Z 661 687 687 691B 691 1/08 F 1/08 B22F 3/02 101C H01L 23/373 H01L 23/36 M Fターム(参考) 4K018 AA04 AA15 AB02 AC01 BB01 BC01 BC09 DA18 EA44 FA11 KA32 KA62 4K020 AA22 AC01 AC04 BB26 BB29 BC02 5F036 AA01 BA23 BB01 BD01 BD03 BD14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 9/00 C22C 29/06 Z 29/06 32/00 F 32/00 U C22F 1/04 Z C22F 1 / 04 1/00 603 // C22F 1/00 603 627 627 628 628 650F 650 661Z 661 687 687 691B 691 1/08 F 1/08 B22F 3/02 101C H01L 23/373 H01L 23/36 MF term (reference 4K018 AA04 AA15 AB02 AC01 BB01 BC01 BC09 DA18 EA44 FA11 KA32 KA62 4K020 AA22 AC01 AC04 BB26 BB29 BC02 5F036 AA01 BA23 BB01 BD01 BD03 BD14

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムまたは銅を主成分とする金
属を第一成分とし、炭化珪素を主成分とする粒子を第二
成分とする炭化珪素系複合材料であって、該炭化珪素を
主成分とする粒子は、そのアスペクト比が1を越え、該
複合材料の第一の方向の熱伝導率をKx、該方向に直交
する第二の方向の熱伝導率をKyとした時、0.7Kx
≦Ky≦0.9Kxの関係を満たす炭化珪素系複合材
料。
1. A silicon carbide-based composite material containing a metal containing aluminum or copper as a main component as a first component and particles containing silicon carbide as a main component as a second component. The particles having an aspect ratio exceeding 1 and having a thermal conductivity in the first direction of the composite material of Kx and a thermal conductivity in the second direction orthogonal to the direction of Ky are 0.7 Kx.
A silicon carbide-based composite material that satisfies the relationship of ≤ Ky ≤ 0.9 Kx.
【請求項2】 前記炭化珪素を主成分とする粒子の量
が、50〜80重量%である請求項1に記載の炭化珪素
系複合材料。
2. The silicon carbide composite material according to claim 1, wherein the amount of the particles containing silicon carbide as a main component is 50 to 80% by weight.
【請求項3】 前記炭化珪素粒子が、六角板状でその厚
みがC軸方向である請求項1または2に記載の炭化珪素
系複合材料。
3. The silicon carbide-based composite material according to claim 1, wherein the silicon carbide particles have a hexagonal plate shape and a thickness in a C-axis direction.
【請求項4】 前記炭化珪素粒子のアスペクト比が、
1.25以上である請求項1ないし3のいずれかに記載
の炭化珪素系複合材料。
4. The silicon carbide particles have an aspect ratio of:
The silicon carbide-based composite material according to any one of claims 1 to 3, which is 1.25 or more.
【請求項5】 前記炭化珪素粒子が、酸素含有量が1重
量%以下、鉄を含む成分の含有量が鉄元素に換算して
0.01重量%以下、アルミニウムを含む成分の含有量
がアルミニウム元素に換算して0.01重量%以下の高
純度であり、かつ低欠陥である請求項1ないし4のいず
れかに記載の炭化珪素系複合材料。
5. The silicon carbide particles have an oxygen content of 1% by weight or less, an iron-containing component content of 0.01% by weight or less in terms of iron element, and an aluminum-containing component content of aluminum. The silicon carbide composite material according to any one of claims 1 to 4, which has a high purity of 0.01% by weight or less and a low defect in terms of an element.
【請求項6】 前記第一成分がアルミニウムを主成分と
する金属であり、前記第一の方向の熱伝導率Kxが、3
00W/m・K以上である請求項1ないし5のいずれか
に記載の炭化珪素系複合材料。
6. The first component is a metal containing aluminum as a main component, and the thermal conductivity Kx in the first direction is 3%.
The silicon carbide-based composite material according to any one of claims 1 to 5, which is at least 00 W / mK.
【請求項7】 前記第一成分が銅を主成分とする金属で
あり、前記第一の方向の熱伝導率Kxが、330W/m
・K以上である請求項1ないし5のいずれかに記載の炭
化珪素系複合材料。
7. The first component is a metal containing copper as a main component, and the thermal conductivity Kx in the first direction is 330 W / m.
The silicon carbide composite material according to any one of claims 1 to 5, which has a K of not less than K.
【請求項8】 請求項1ないし7のいずれかに記載の炭
化珪素系複合材料を用いた半導体装置。
8. A semiconductor device using the silicon carbide based composite material according to claim 1.
【請求項9】 アルミニウムまたは銅を主成分とする金
属を第一成分とし、炭化珪素を主成分とする粒子を第二
成分とする炭化珪素系複合材料の製造方法であって、ア
ルミニウムまたは銅を主成分とする金属からなる第一成
分と、板状でそのアスペクト比が1を越える結晶粒子か
らなる炭化珪素粉末を主成分とする第二成分とを含んだ
原料を準備する工程と、該原料を混合して混合物とする
工程と、該混合物を成形し成形体とする工程と、該成形
体をアルミニウムまたは銅を主成分とする金属の融点以
上の温度で加熱し焼結体とする工程とを含む炭化珪素系
複合材料の製造方法。
9. A method for producing a silicon carbide composite material comprising a metal mainly composed of aluminum or copper as a first component and particles mainly composed of silicon carbide as a second component. A step of preparing a raw material including a first component composed of a metal as a main component and a second component composed mainly of a silicon carbide powder composed of plate-like crystal grains having an aspect ratio of more than 1; Mixing the mixture to form a mixture, forming the mixture to form a molded body, and heating the molded body at a temperature equal to or higher than the melting point of a metal containing aluminum or copper as a main component to form a sintered body. A method for producing a silicon carbide-based composite material containing:
【請求項10】 前記混合物とする工程の炭化珪素粉末
の混合量が、50〜80重量%である請求項9に記載の
炭化珪素系複合材料の製造方法。
10. The method for producing a silicon carbide-based composite material according to claim 9, wherein a mixing amount of the silicon carbide powder in the step of forming the mixture is 50 to 80% by weight.
【請求項11】 前記炭化珪素の結晶粒子が、六角板状
でその厚みがC軸方向である炭化珪素粉末を用いる請求
項9または10に記載の炭化珪素系複合材料の製造方
法。
11. The method for producing a silicon carbide-based composite material according to claim 9, wherein said silicon carbide crystal particles are silicon carbide powder having a hexagonal plate shape and a thickness in a C-axis direction.
【請求項12】 前記炭化珪素粉末の結晶粒子は、その
アスペクト比が1.25以上である請求項9ないし11
のいずれかに記載の炭化珪素系複合材料の製造方法。
12. The crystal particles of the silicon carbide powder have an aspect ratio of 1.25 or more.
The method for producing a silicon carbide-based composite material according to any one of the above.
【請求項13】 前記焼結体とする工程は、前記成形体
をアルミニウムまたは銅を主成分とする金属の融点以上
の温度で加熱した後、さらに加圧下で鍛造する工程を含
む請求項9ないし12のいずれかに記載の炭化珪素系複
合材料の製造方法。
13. The step of forming the sintered body includes a step of heating the formed body at a temperature equal to or higher than the melting point of a metal containing aluminum or copper as a main component and then forging it under pressure. 13. The method for producing a silicon carbide-based composite material according to any one of 12.
【請求項14】 前記焼結体とする工程を経た後、さら
に該焼結体をアルミニウムまたは銅を主成分とする金属
の融点Tm未満の温度Thで加熱する熱処理工程を含む
請求項9ないし13のいずれかに記載の炭化珪素系複合
材料の製造方法。
14. A heat treatment step of heating the sintered body at a temperature Th lower than the melting point Tm of a metal containing aluminum or copper as a main component after the step of forming the sintered body. The method for producing a silicon carbide-based composite material according to any one of the above.
【請求項15】 前記原料を準備する工程において、前
記炭化珪素粉末は、酸素量が1重量%以下、鉄を含む成
分の量が鉄元素に換算して0.01重量%以下、アルミ
ニウムを含む成分の量がアルミニウム元素に換算して
0.01重量%以下である請求項9ないし14のいずれ
かに記載の炭化珪素系複合材料の製造方法。
15. In the step of preparing the raw material, the silicon carbide powder has an oxygen content of 1% by weight or less, an iron-containing component in an amount of 0.01% by weight or less in terms of iron element, and aluminum. The method for producing a silicon carbide-based composite material according to any one of claims 9 to 14, wherein the amount of the component is 0.01% by weight or less in terms of aluminum element.
【請求項16】 前記原料を準備する工程において、前
記炭化珪素粉末は、炭化珪素粉末を不活性ガス雰囲気中
1600〜2400℃の温度範囲で加熱される予備加熱
処理の工程を経た粉末である請求項15に記載の炭化珪
素系複合材料の製造方法。
16. In the step of preparing the raw material, the silicon carbide powder is a powder that has been subjected to a preheating step of heating the silicon carbide powder in an inert gas atmosphere in a temperature range of 1600 to 2400 ° C. Item 16. The method for producing a silicon carbide composite material according to Item 15.
【請求項17】 前記原料を準備する工程において、前
記炭化珪素粉末は、炭化珪素粉末をフッ酸、硝酸または
塩酸の内の少なくとも1種の酸を含む水溶液中に浸漬さ
れる予備酸処理の工程を経た粉末である請求項15に記
載の炭化珪素系複合材料の製造方法。
17. A pre-acid treatment step in which the silicon carbide powder is immersed in an aqueous solution containing at least one of hydrofluoric acid, nitric acid and hydrochloric acid in the step of preparing the raw material. The method for producing a silicon carbide-based composite material according to claim 15, which is a powder that has passed through.
JP36929998A 1998-12-25 1998-12-25 Silicon carbide based composite material and method for producing the same Expired - Fee Related JP4228444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36929998A JP4228444B2 (en) 1998-12-25 1998-12-25 Silicon carbide based composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36929998A JP4228444B2 (en) 1998-12-25 1998-12-25 Silicon carbide based composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000192168A true JP2000192168A (en) 2000-07-11
JP4228444B2 JP4228444B2 (en) 2009-02-25

Family

ID=18494083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36929998A Expired - Fee Related JP4228444B2 (en) 1998-12-25 1998-12-25 Silicon carbide based composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4228444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2006041544A (en) * 2003-03-10 2006-02-09 Kwansei Gakuin Heat treatment method and heat treatment device
WO2013011668A1 (en) * 2011-07-15 2013-01-24 日本軽金属株式会社 Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
EP2910324A3 (en) * 2014-02-25 2016-03-09 General Electric Company Method for manufacturing a three-dimensional object using powders
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2006041544A (en) * 2003-03-10 2006-02-09 Kwansei Gakuin Heat treatment method and heat treatment device
WO2013011668A1 (en) * 2011-07-15 2013-01-24 日本軽金属株式会社 Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
CN103501939A (en) * 2011-07-15 2014-01-08 日本轻金属株式会社 Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
JP5464301B2 (en) * 2011-07-15 2014-04-09 日本軽金属株式会社 Method for manufacturing composite material for heat dissipation substrate
US8945466B2 (en) 2011-07-15 2015-02-03 Nippon Light Metal Company, Ltd. Composite material for heat dissipating plate and method of production of same
CN103501939B (en) * 2011-07-15 2016-04-06 日本轻金属株式会社 Heat-radiating substrate composite and manufacture method thereof
EP2910324A3 (en) * 2014-02-25 2016-03-09 General Electric Company Method for manufacturing a three-dimensional object using powders
US10780501B2 (en) 2014-02-25 2020-09-22 General Electric Company Method for manufacturing objects using powder products
US11426792B2 (en) 2014-02-25 2022-08-30 General Electric Company Method for manufacturing objects using powder products
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus
CN113264775B (en) * 2020-01-29 2023-07-04 日本碍子株式会社 Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device

Also Published As

Publication number Publication date
JP4228444B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
EP0987231B1 (en) Silicon carbide based composite material and manufacturing method thereof
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
US20060157884A1 (en) Method for producing a composite material
EP1873272B1 (en) Alloy material for dissipating heat from semiconductor device and method for production thereof
US6123895A (en) Aluminum base member for semiconductor device containing a nitrogen rich surface and method for producing the same
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
CN103501939A (en) Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
JP4187739B2 (en) Aluminum alloy-silicon carbide silicon nitride composite
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP4305986B2 (en) Method for producing silicon carbide composite material
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP4253932B2 (en) Method for producing silicon carbide composite material
JP4275892B2 (en) Manufacturing method of semiconductor element mounting substrate material
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP2001180919A (en) Silicon carbide-carbon composite powder and its composite material
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Ref document number: 4228444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees