JP2001180919A - Silicon carbide-carbon composite powder and its composite material - Google Patents

Silicon carbide-carbon composite powder and its composite material

Info

Publication number
JP2001180919A
JP2001180919A JP36580599A JP36580599A JP2001180919A JP 2001180919 A JP2001180919 A JP 2001180919A JP 36580599 A JP36580599 A JP 36580599A JP 36580599 A JP36580599 A JP 36580599A JP 2001180919 A JP2001180919 A JP 2001180919A
Authority
JP
Japan
Prior art keywords
powder
carbon
silicon carbide
composite material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36580599A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP36580599A priority Critical patent/JP2001180919A/en
Publication of JP2001180919A publication Critical patent/JP2001180919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a silicon carbide composite powder with good compactibility in order to make a metal-silicon carbide composite material superior in both heat conductivity and machineability. SOLUTION: A silicon carbide-carbon composite powder, composed of α-type silicon carbide and carbon particles of which surface is coated with a film of α-type silicon carbide over 1 μm thickness, can be obtained by blending Si powder with C powder whose average particle diameter is larger that 10 μm in the ratio that satisfies the formula, 224.79x-0.78<y (x is the average diameter of C particle and y is the Si powder volume) and giving heat treatment at a high temperature. An excellent composite material comparable to the conventional Al-Si C composite material in heat conductivity and superior to that in machineability can be made of this powder by blending it with aluminum or other metal powders so that the ratio of the silicon carbide-carbon composite powder becomes 25 to 90% in the composition, and then by compacting and sintering the blended powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種装置・機器に
用いられる放熱基板、特に半導体装置等の電子機器に有
用な高い熱伝導性を有する炭化珪素−炭素系複合材料と
その原料となる炭化珪素−炭素系複合粉末および複合材
料を用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide-carbon composite material having a high thermal conductivity useful for electronic equipment such as semiconductor devices and the like, and a carbon material used as a raw material thereof. The present invention relates to a semiconductor device using a silicon-carbon based composite powder and a composite material.

【0002】[0002]

【従来の技術】近年半導体装置の高速演算・高集積化に
対する市場の要求は急速に高まりつつある。それととも
に、同装置の半導体素子搭載用放熱基板には、同素子か
ら発生する熱をより一層効率良く逃がすため、その熱伝
導率のより一層の向上が求められてきた。さらに同素子
ならびに同基板に隣接配置された同装置内の他の部材
(周辺部材)との間の熱歪みをより一層小さくするため
に、より一層それらに近い熱膨張係数を有するものであ
ることも求められてきた。 具体的には、半導体素子と
して通常用いられるSi、GaAsの熱膨張係数がそれ
ぞれ4.2×10-6/℃、6.5×10-6/℃であり、
半導体装置の外囲器材として通常用いられるアルミナセ
ラミックスのそれが6.5×10-6/℃程度であること
から、同基板の熱膨張係数はこれらの値に近いことが望
まれる。
2. Description of the Related Art In recent years, market demands for high-speed operation and high integration of semiconductor devices have been rapidly increasing. At the same time, the heat radiation board for mounting the semiconductor element of the device has been required to further improve the thermal conductivity in order to more efficiently release the heat generated from the element. In addition, other members in the same device and the same device arranged adjacent to the same substrate
In order to further reduce the thermal strain between them and the (peripheral member), it is also required to have a thermal expansion coefficient closer to them. Specifically, Si usually used as the semiconductor element, the thermal expansion coefficient of GaAs are each 4.2 × 10 -6 /℃,6.5×10 -6 / ℃ ,
Since that of alumina ceramics usually used as an envelope of a semiconductor device is about 6.5 × 10 −6 / ° C., it is desired that the thermal expansion coefficient of the substrate be close to these values.

【0003】また近年のエレクトロニクス機器の応用範
囲の著しい拡張にともない、半導体装置の使用範囲はよ
り一層多様化しつつある。このためこれらの機器に使わ
れる放熱基板は、その熱伝導率を向上させるとともに、
その熱膨張係数の周辺部材のそれとの整合性を高めるこ
とが重要である。
[0003] With the remarkable expansion of the application range of electronic equipment in recent years, the range of use of semiconductor devices has been further diversified. For this reason, the heat dissipation board used in these devices improves its thermal conductivity,
It is important to enhance the matching of the coefficient of thermal expansion with that of the peripheral members.

【0004】このような基板には、従来より例えばCu
−W系やCu−Mo系の複合合金からなるものが用いら
れてきた。これらの基板は、原料が高価なためにコスト
高になるとともに重量が大きくなるという問題があっ
た。そこで、最近は安価で軽量かつ高い熱伝導性の材料
として、金属とセラミックスとからなる各種の複合材料
が、研究開発されてきた。例えばアルミニウム(以下単
にAlとも言う)と炭化珪素(以下単にSiCとも言
う)を主成分とする複合合金を例に採ると、それらは、
原料が比較的安価であり、軽量かつ高熱伝導性である点
で工業的に有利である。なお通常市販されている純粋な
Al、SiC単体の密度は、それぞれ2.7g/cm3
程度、3.2g/cm3程度、熱伝導率は、それぞれ2
40W/m・K程度、300W/m・K程度であるが、
さらにその純度や欠陥濃度を調整すれば、その熱伝導率
のレベルはさらに向上するものと思われる。また純粋な
SiC単体、Al単体の熱膨張係数はそれぞれ4.2×
10-6/℃程度、24×10-6/℃程度であり、それら
を複合化することによって、その熱膨張係数が広い範囲
で制御可能となる。以上の点から特にこの材料は注目さ
れている。
[0004] Conventionally, such a substrate is made of, for example, Cu.
-W-based and Cu-Mo-based composite alloys have been used. These substrates have a problem that the cost is high and the weight is large because the raw material is expensive. Therefore, recently, various types of composite materials composed of metal and ceramics have been researched and developed as inexpensive, lightweight, and highly thermally conductive materials. For example, taking a composite alloy containing aluminum (hereinafter simply referred to as Al) and silicon carbide (hereinafter simply referred to as SiC) as main components, for example,
It is industrially advantageous in that the raw materials are relatively inexpensive, lightweight and have high thermal conductivity. The density of pure commercially available pure Al and SiC alone is 2.7 g / cm 3 , respectively.
About 3.2 g / cm 3 , and the thermal conductivity was 2
It is about 40 W / m · K and about 300 W / m · K,
If the purity and defect concentration are further adjusted, the level of the thermal conductivity is expected to be further improved. The thermal expansion coefficients of pure SiC alone and Al alone are 4.2 ×
It is about 10 −6 / ° C. and about 24 × 10 −6 / ° C. By compounding them, the thermal expansion coefficient can be controlled in a wide range. In view of the above, this material has received particular attention.

【0005】かかるAl−SiC系複合合金およびその
製造方法については、(1)特開平1−501489号公
報、(2)特開平2−243729号公報、(3)特開昭6
1−222668号公報および(4)特開平9−1577
73号公報に開示されている。(1)は、SiCとAlの
混合物中のAlを溶融させて鋳造法によって固化する方
法に関するものである。 (2)、(3)は、いずれもSi
C多孔体の空隙にAlを溶浸する方法に関するものであ
る。この内(3)は、加圧下でAlを溶浸する、いわゆる
加圧溶浸法に関するものである。また(4)は、SiCと
Alの混合粉末の成形体かまたはそれをホットプレスし
たものを型内に配置し、これを真空中、Alの融点以上
の温度で液相焼結する方法に関するものである。
[0005] Such an Al-SiC-based composite alloy and its manufacturing method are described in (1) JP-A-1-501489, (2) JP-A-2-243729, and (3) JP-A-6
1-222668 and (4) JP-A-9-1577.
No. 73 is disclosed. (1) relates to a method in which Al in a mixture of SiC and Al is melted and solidified by a casting method. (2) and (3) are both Si
The present invention relates to a method of infiltrating Al into voids of a C porous body. (3) relates to a so-called pressure infiltration method in which Al is infiltrated under pressure. Also, (4) relates to a method of sintering a compact of a mixed powder of SiC and Al or a hot-pressed compact in a mold and subjecting the compact to a liquid phase sintering at a temperature equal to or higher than the melting point of Al in a vacuum. It is.

【0006】また特開平10−335538号公報に
は、(5)液相焼結法によって得られ、その熱伝導率が1
80W/m・K以上のアルミニウム−炭化珪素系複合材
料を提示している。この複合材料は、例えば10〜70
重量%の粒子状SiC粉末とAl粉末との混合粉末を成
形した後、99%以上の窒素を含み、酸素濃度が200
ppm以下、露点が−20℃以下の非酸化性雰囲気中、
600〜750℃で焼結する工程によって得られる。
また特開平10−280082号公報には、(6)その熱
膨張係数が18×10-6/℃以下、その熱伝導率が23
0W/m・K以上であり、焼結後の寸法が実用寸法に近
い、いわゆるネットシェイプなアルミニウム−炭化珪素
系複合材料も提示している。さらに本発明者等は、特願
平10−41447号にて、(7)常圧焼結法とHIP法
とを組み合わせた同複合材料の製造方法を提案してい
る。それによれば、例えば粒子状SiCを10〜70重
量%混合したAl−SiC系混合粉末の成形体を、窒素
ガスを99%以上含む非酸化性雰囲気中、600℃以
上、Alの溶融温度以下の温度範囲で常圧焼結し、熱間
鍛造するかまたはその焼結体を金属容器に封入してHI
Pすることによって、均質でその熱伝導率が200W/
m・K以上のアルミニウム−炭化珪素系複合材料の得ら
れることを紹介した。
Japanese Patent Application Laid-Open No. 10-335538 discloses that (5) a liquid phase sintering method having a thermal conductivity of 1
An aluminum-silicon carbide composite material of 80 W / m · K or more is presented. This composite material is, for example, 10-70
After forming a mixed powder of the particulate SiC powder and the Al powder in the amount of 100% by weight, it contains 99% or more of nitrogen and has an oxygen concentration of 200%.
ppm or less, in a non-oxidizing atmosphere with a dew point of -20 ° C or less,
Obtained by a process of sintering at 600 to 750 ° C.
JP-A-10-280082 discloses that (6) its thermal expansion coefficient is 18 × 10 −6 / ° C. or less and its thermal conductivity is 23.
A so-called net-shaped aluminum-silicon carbide based composite material having a size of 0 W / m · K or more and a size after sintering is close to a practical size is also proposed. Further, the present inventors have proposed in Japanese Patent Application No. 10-41447 a method (7) for producing the same composite material by combining the normal pressure sintering method and the HIP method. According to this, for example, a compact of Al-SiC-based mixed powder in which 10 to 70% by weight of particulate SiC is mixed is placed in a non-oxidizing atmosphere containing 99% or more of nitrogen gas at 600 ° C or more and a melting temperature of Al or less. Pressureless sintering in the temperature range and hot forging or sealing the sintered body in a metal container
By performing P, it is homogeneous and its thermal conductivity is 200 W /
It was introduced that an aluminum-silicon carbide composite material having a mK or more can be obtained.

【0007】さらに(8)特開平9−157773号公報
には、(8)Al粉末とSiC粉末との混合物をホット
プレスし、成形と焼結とを同時に行う方法が開示されて
いる。その方法は、Al10〜80体積%、残部SiC
の混合粉末を成形し、Alの溶融点以上の温度下500
kg/cm2以上の圧力でホットプレスするものであ
る。この方法によって150〜280W/m・Kの熱伝
導率のアルミニウム−炭化珪素系複合材料が得られてい
る。また本発明者等は、既に特願平10−260003
号において成形体を急速予備加熱した後、高速熱間鍛造
することによって炭化アルミニウムの生成を抑えつつ、
緻密で高い熱伝導性のAl−SiC系複合材料が得られ
ることを紹介している。
Further, (8) Japanese Patent Application Laid-Open No. 9-157773 discloses a method of hot-pressing a mixture of (8) an Al powder and a SiC powder to simultaneously perform molding and sintering. The method is as follows: Al 10 to 80% by volume, balance SiC
And mixed powder at a temperature not lower than the melting point of Al 500
The hot pressing is performed at a pressure of kg / cm 2 or more. According to this method, an aluminum-silicon carbide composite material having a thermal conductivity of 150 to 280 W / m · K is obtained. The present inventors have already filed Japanese Patent Application No. 10-260003.
After pre-heating the compact rapidly in No., while suppressing the production of aluminum carbide by high-speed hot forging,
It introduces that a dense and high thermal conductive Al-SiC-based composite material can be obtained.

【0008】[0008]

【発明が解決しようとする課題】以上Al−SiC系を
例に採って、金属と炭化珪素を主成分とする複合材料の
製造法について述べてきたが、これらの内比較的安価に
安定した品質の得られる焼結法および溶浸法が特に注目
されてきた。焼結法に分類される方法の中には、上記し
た熱間鍛造法がある。この方法は、以上述べてきた方法
の中でも緻密で高い熱伝導性のものを得る最も適した方
法である。しかしながらこの方法も含め、以上述べたい
ずれの方法においても、通常高硬度の炭化珪素が含まれ
ているため、原料粉末を成形する際の圧縮性が悪い。そ
れ故高い圧力をかけねばならず、成形型の摩耗が激しく
なる。これは熱間鍛造の型でも同様である。また複合化
後の材料の仕上げ加工が必要となる場合が多いが、その
場合難加工の問題は避けられない。このような問題は、
特に製品の形状が複雑な場合や炭化珪素の含有量が多い
場合には顕著となる。
The method of manufacturing a composite material containing a metal and silicon carbide as main components has been described above by taking the Al-SiC system as an example. The sintering and infiltration methods resulting in have been of particular interest. Among the methods classified as the sintering method, there is the hot forging method described above. This method is the most suitable method for obtaining a dense and high thermal conductive material among the methods described above. However, in any of the above-mentioned methods including this method, since high hardness silicon carbide is usually contained, the compressibility at the time of molding the raw material powder is poor. Therefore, high pressure must be applied, and the abrasion of the mold becomes severe. This is the same for the hot forging die. In many cases, finishing processing of the material after compounding is necessary, but in this case, the problem of difficult processing is inevitable. Such a problem,
In particular, when the shape of the product is complicated or when the content of silicon carbide is large, it becomes remarkable.

【0009】粉末の成形も含め、これら難加工の課題を
解決するために、炭素とアルミニウムとからなる複合材
料が開発されている。ダイヤモンドほど高硬度でない炭
素粉末を選べば、そのアルミニウム粉末との混合物は、
成形時の圧縮性が良く、また最終の仕上げ加工性にも優
れているからである。またダイヤモンドでもその含有量
が少ない場合には、この問題は比較的軽度になる。した
がってこのような材料は、上記した成形時や鍛造時の型
の摩耗や仕上げ加工時の難加工の問題を解消しうる材料
である。しかしながらその一方でアルミニウムと炭素は
本来反応し易いため、加熱によって熱伝導率の低いAl
43(炭化アルミニウム)が生成し易い。さらにAl4
3は、水分によって腐食され易いので、複合材料を湿
った雰囲気下で用いると、Al43が溶出して材料の形
が維持できないことがある。そこで炭素表面にアルミニ
ウムとの反応を抑える薄い層を形成する試みもなされて
きた。例えばダイヤモンド粒子の表面にSiCの被覆層
を形成することも行われてきた。
In order to solve these difficult-to-process problems including powder compaction, composite materials comprising carbon and aluminum have been developed. If you choose carbon powder that is not as hard as diamond, its mixture with aluminum powder,
This is because the compressibility during molding is good and the final finish workability is also excellent. In addition, if the content of diamond is small, this problem becomes relatively mild. Therefore, such a material is a material that can solve the above-described problems of mold abrasion during molding and forging and difficult processing during finishing. However, on the other hand, aluminum and carbon are naturally easy to react with each other.
4 C 3 (aluminum carbide) is easily generated. Furthermore, Al 4
C 3 Since liable to be corroded by water, when used in an atmosphere moist composite material, sometimes Al 4 C 3 can not be maintained the shape of the eluted material. Attempts have been made to form a thin layer on the carbon surface to suppress the reaction with aluminum. For example, a coating layer of SiC has been formed on the surface of diamond particles.

【0010】炭素粒子の表面に均一に炭化珪素(Si
C)を被覆する手段は、いくつか考えられる。例えば四
塩化珪素(SiCl4)ガスとメタン(CH4)ガスを流
しながら、炭素粒子表面にSiCを析出させる気相法の
ような方法もある。しかしながらこのように炭素粒子の
表面にSiCを均一に被覆するためには、炭素粒子間の
隙間に斑無くこれらのガスを侵入させることが必要とな
る。これは極めて困難であり、可能になったとしても極
めて高コストになる。またその他にも物理的な蒸着によ
る被覆もあるが、この場合にも例えば平板のような単純
な面の上にしか均一には被覆できない。
[0010] Silicon carbide (Si) is uniformly formed on the surface of carbon particles.
There are several possible means for coating C). For example, there is a method such as a gas phase method of depositing SiC on the surface of carbon particles while flowing silicon tetrachloride (SiCl 4 ) gas and methane (CH 4 ) gas. However, in order to uniformly coat the surface of the carbon particles with SiC, it is necessary to allow these gases to enter the gaps between the carbon particles without unevenness. This is extremely difficult and, if possible, very costly. In addition, there is a coating by physical vapor deposition, but in this case, the coating can be uniformly applied only on a simple surface such as a flat plate.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、以上の
課題を解決することである。すなわち本発明は、特にA
l−SiC系複合材料に匹敵する高い熱伝導性と、同材
料に比べ顕著に優れた機械加工性とを兼ね備えた金属−
炭化珪素−炭素系の複合材料を提供するものである。ま
た本発明は、このような複合材料を高い生産性で製造で
きる炭化珪素−炭素系の複合粉末を提供するものであ
る。本発明の提供する炭化珪素−炭素系複合粉末は、出
発原料の炭化珪素粉末の一部を、炭素粉末に置き換え、
その表面を炭化珪素の薄い膜で被覆する。すなわち本発
明の複合粉末は、α型炭化珪素粒子と、表面にα型炭化
珪素からなる厚み1μm以上、好ましくは厚み1〜3μ
mの被膜が形成された炭素粒子とを含む複合粉末であ
る。また同複合粉末中の炭素粒子の量は、25〜90体
積%である。
An object of the present invention is to solve the above-mentioned problems. That is, the present invention
Metals that combine high thermal conductivity comparable to l-SiC-based composite materials and remarkably superior machinability compared to the same materials.
It is intended to provide a silicon carbide-carbon based composite material. The present invention also provides a silicon carbide-carbon based composite powder capable of producing such a composite material with high productivity. Silicon carbide-carbon-based composite powder provided by the present invention, a part of the silicon carbide powder of the starting material is replaced with carbon powder,
The surface is covered with a thin film of silicon carbide. That is, the composite powder of the present invention is composed of α-type silicon carbide particles and α-type silicon carbide on the surface and has a thickness of 1 μm or more, and preferably a thickness of 1 to 3 μm.
m is a composite powder containing carbon particles on which a film m is formed. The amount of carbon particles in the composite powder is 25 to 90% by volume.

【0012】また本発明の炭化珪素−炭素系複合材料
は、この複合粉末の各粒子が金属マトリックス中に分散
されたものであり、金属マトリックス中に、分散相とし
て、α型炭化珪素粒子と、表面がα型炭化珪素によって
被覆された炭素粒子とが、それらの合計量で30〜80
体積%分散されており、相対密度が少なくとも80%の
材料である。本発明の好ましい形態としては、分散相が
60〜80体積%分散され、その相対密度が少なくとも
90%以上のものがある。なお本発明で言う「相対密
度」とは、理論密度に対する実測密度の比率(%)であ
る。特に好ましいマトリックス金属としては、アルミニ
ウムまたはアルミニウム合金がある。これらの材料は、
通常150W/m・K以上、特に300W/m・K以上
の高い熱伝導率を有する。なお本発明にはこれらの材料
を用いた半導体装置も含まれる。
The silicon carbide-carbon composite material of the present invention is obtained by dispersing each particle of the composite powder in a metal matrix, wherein α-type silicon carbide particles are dispersed as a dispersed phase in the metal matrix; Carbon particles whose surfaces are coated with α-type silicon carbide have a total content of 30 to 80
It is a material that is dispersed by volume% and has a relative density of at least 80%. In a preferred embodiment of the present invention, the dispersed phase is 60 to 80% by volume dispersed and has a relative density of at least 90% or more. The “relative density” as used in the present invention is a ratio (%) of the measured density to the theoretical density. Particularly preferred matrix metals include aluminum or aluminum alloys. These materials are
It has a high thermal conductivity of usually 150 W / m · K or more, especially 300 W / m · K or more. Note that the present invention also includes a semiconductor device using these materials.

【0013】本発明の複合粉末の製造方法は、珪素粉末
と、炭素粉末とを、炭素粉末の平均粒径をx(μm)、
珪素量をy(重量%)とした時、244.79x-0.78
<yを満たすように、好ましくはさらにy<(282.
97x-0.61+1)をも満たす調製・準備する工程と、
これらの粉末を混合し混合物とする工程と、同混合物を
不活性ガス中、2000〜2400℃の温度範囲で熱処
理して複合粉末とする工程とを含む。この場合原料の炭
素粉末として、メソフェーズ系ピッチ粉末を3000℃
以上の温度で黒鉛化された炭素粉末、熱分解黒鉛または
天然黒鉛の粉末を用いる方法がある。
In the method for producing a composite powder according to the present invention, the silicon powder and the carbon powder are mixed with each other so that the carbon powder has an average particle diameter of x (μm);
When the amount of silicon is y (% by weight), 244.79x -0.78
<Y, preferably y <(282.
97x -0.61 +1)
A step of mixing these powders to form a mixture; and a step of heat-treating the mixture in an inert gas at a temperature in the range of 2000 to 2400 ° C. to form a composite powder. In this case, as a raw material carbon powder, a mesophase pitch powder at 3000 ° C.
There is a method using carbon powder, pyrolytic graphite or natural graphite powder graphitized at the above temperature.

【0014】本発明の複合材料の製造方法は、以上の工
程によって得られた複合粉末30〜80体積%と、金属
粉末20〜70体積%とを混合し混合粉末とする工程
と、同混合粉末を成形し成形体とする工程と、同成形体
を同成形体中の金属成分の融点以上の温度で焼結し焼結
体とする工程とを含む。さらに焼結体とする工程が、成
形体または一旦焼結された焼結体を、それらの金属成分
の融点以上の温度で加熱した後、熱間鍛造する方法も含
まれる。なお本発明では、好ましいマトリックス金属と
して、アルミニウムまたはアルミニウム合金を用いる。
The method for producing a composite material according to the present invention comprises the steps of mixing 30 to 80% by volume of the composite powder obtained by the above steps and 20 to 70% by volume of the metal powder to form a mixed powder; To form a compact, and sintering the compact at a temperature equal to or higher than the melting point of the metal component in the compact to form a sintered body. Further, the step of forming a sintered body includes a method of heating a formed body or a sintered body once sintered at a temperature equal to or higher than the melting point of the metal component, and then performing hot forging. In the present invention, aluminum or an aluminum alloy is used as a preferable matrix metal.

【0015】[0015]

【発明の実施の形態】本発明の複合粉末では、炭化珪素
粉末の一部を炭素粉末に置き換えたものである。またそ
の表面には1μm以上、好ましくは1〜3μmの薄いα
型SiCの被覆層が形成されている。またこの複合粉末
中の炭素粒子の量は、25〜90体積%である。このよ
うな形態の炭素粉末を用いることによって、この粉末を
用いて金属との複合化を図る場合、金属と炭素との間の
反応を抑えることができる。被膜の厚みが1μm未満で
は、金属との複合化時に炭素粒子と金属との間に生じる
反応を抑えることができない。なおこの厚みが増加する
と、炭素粒子の高い熱伝導性が十分活かせなくなるた
め、1〜3μmの範囲に制御するのが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the composite powder of the present invention, a part of silicon carbide powder is replaced by carbon powder. In addition, a thin α of 1 μm or more, preferably 1 to 3 μm
A coating layer of type SiC is formed. The amount of carbon particles in the composite powder is 25 to 90% by volume. By using a carbon powder of such a form, when a composite with a metal is intended by using this powder, a reaction between the metal and the carbon can be suppressed. When the thickness of the coating is less than 1 μm, a reaction between the carbon particles and the metal at the time of compounding with the metal cannot be suppressed. When the thickness is increased, the high thermal conductivity of the carbon particles cannot be sufficiently utilized, so that the thickness is desirably controlled in the range of 1 to 3 μm.

【0016】本発明の複合粉末は、上記の炭素粒子と、
α型炭化珪素粒子とから構成される。本発明の手順で炭
素粉末上に炭化珪素を析出させると、炭素粒子表面に形
成された炭化珪素は、α型結晶系の粒子となる。なおα
型の内でも特に6H型のものが好ましい。
The composite powder of the present invention comprises the carbon particles described above,
α-type silicon carbide particles. When silicon carbide is deposited on carbon powder by the procedure of the present invention, silicon carbide formed on the surface of carbon particles becomes α-type crystal-based particles. Note that α
Of the molds, those of the 6H type are particularly preferred.

【0017】また本発明の炭化珪素−炭素系複合材料
は、この複合粉末の粒子が、分散相として、金属マトリ
ックス中に30〜80体積%分散されたものである。材
料の相対密度は、少なくとも80%以上である。分散量
が30体積%未満では金属の量が多くなり、焼結時に形
状を維持でき難くなる。一方90体積%を越えると、金
属と複合粉末粒子との濡れ性が低下して、複合化後の熱
伝導率が低下する。また相対密度が80%未満では熱伝
導率が顕著に低下する。より高い熱伝導性で比較的低い
熱膨張係数の材料を得るためには、α型炭化珪素粒子の
分散量を60〜80体積%とし、相対密度が少なくとも
90%以上のものとするのが望ましい。
In the silicon carbide-carbon composite material of the present invention, particles of the composite powder are dispersed as a dispersed phase in a metal matrix in an amount of 30 to 80% by volume. The relative density of the material is at least 80% or more. If the amount of dispersion is less than 30% by volume, the amount of metal increases and it becomes difficult to maintain the shape during sintering. On the other hand, if it exceeds 90% by volume, the wettability between the metal and the composite powder particles decreases, and the thermal conductivity after the composite decreases. If the relative density is less than 80%, the thermal conductivity is significantly reduced. In order to obtain a material having higher thermal conductivity and a relatively low coefficient of thermal expansion, it is desirable that the dispersion amount of the α-type silicon carbide particles is 60 to 80% by volume and the relative density is at least 90% or more. .

【0018】マトリックス金属は、熱伝導性に優れた金
属とする。例えばアルミニウム(Al)、銅(Cu)、
銀(Ag)、金(Au)、珪素(Si)のような金属を
主成分とするものが選ばれる。特にアルミニウム(A
l)を主成分とするもの、すなわちアルミニウム(A
l)またはその合金が望ましい。アルミニウムを主成分
とすることによって、軽量かつ安価な複合材料が得られ
るからである。
The matrix metal is a metal having excellent heat conductivity. For example, aluminum (Al), copper (Cu),
A material mainly containing a metal such as silver (Ag), gold (Au), or silicon (Si) is selected. In particular, aluminum (A
l) as a main component, that is, aluminum (A
l) or an alloy thereof is preferred. This is because by using aluminum as a main component, a lightweight and inexpensive composite material can be obtained.

【0019】本発明の複合材料は、通常150W/m・
K以上の高い熱伝導率を有する。また分散粒子の量およ
びその調製方法によっては、250W/m・K以上、さ
らには300W/m・K以上の高い熱伝導率を有する材
料を得ることもできる。それ故本発明の材料を半導体装
置のヒートシンクまたはその周辺部材として、有利に用
いることができる。例えば自動車等の車両や工作機械等
の駆動部のパワー制御に用いられるパワーモジュールを
初めとし、さらに比較的放熱容量の大きな半導体装置の
提供が可能となる。
The composite material of the present invention is usually 150 W / m ·
It has a high thermal conductivity of K or more. Further, depending on the amount of the dispersed particles and the method for preparing the same, a material having a high thermal conductivity of 250 W / m · K or more, or even 300 W / m · K or more can be obtained. Therefore, the material of the present invention can be advantageously used as a heat sink of a semiconductor device or a peripheral member thereof. For example, it is possible to provide a semiconductor device having a relatively large heat dissipation capacity, such as a power module used for power control of a drive unit of a vehicle such as an automobile or a machine tool.

【0020】次ぎに本発明の炭化珪素−炭素系複合粉末
の製造方法について述べる。本発明の複合粉末中の上記
形態の炭素粉末は、炭素粉末の粒子表面をSiCに転化
させることによって得られる。まず珪素(Si)粉末と
炭素粉末の混合物を調製する。なお炭素粉末は、黒鉛化
の進んだものをものを用いるのが望ましい。例えば天然
または人造の黒鉛粉末がよい。特にメソフェーズ系ピッ
チを3000℃以上の温度で球状に黒鉛化したもの、熱
分解黒鉛または天然黒鉛が好適である。この場合炭素粉
末の平均粒径をx(μm)、珪素量をy(重量%)とし
た時、 244,79x-0.78<yの関係を満たすよう
に、好ましくはこれにさらにy<(282.97x
-0.61+1)の関係を満たすように、両粉末を準備す
る。原料の珪素(Si)粉末は、可能な限り純度の高い
ものを用いるに越したことはないが、AlやFe等の金
属不純物元素を含んだものでもよい。またその平均粒径
も最終的な複合材料の熱伝導性には影響しない。これは
炭素粉末と混合後、十分高い温度で加熱され溶融昇華す
るためである。
Next, a method for producing the silicon carbide-carbon composite powder of the present invention will be described. The carbon powder of the above form in the composite powder of the present invention is obtained by converting the particle surface of the carbon powder into SiC. First, a mixture of silicon (Si) powder and carbon powder is prepared. It is desirable to use a carbon powder which has been graphitized. For example, natural or artificial graphite powder is good. In particular, those obtained by mesophase-based pitch graphitization at a temperature of 3000 ° C. or higher, pyrolytic graphite or natural graphite are preferable. In this case, assuming that the average particle size of the carbon powder is x (μm) and the silicon content is y (% by weight), the relationship of 244, 79x −0.78 <y is satisfied, and preferably y <(282. 97x
Prepare both powders so as to satisfy the relationship of -0.61 +1). As the raw material silicon (Si) powder, it is not necessary to use a material having the highest possible purity, but a material containing a metal impurity element such as Al or Fe may be used. Also, the average particle size does not affect the thermal conductivity of the final composite. This is because after mixing with the carbon powder, the mixture is heated at a sufficiently high temperature to melt and sublime.

【0021】次いでこの混合物を黒鉛または炭化珪素の
容器に装填後、アルゴン等の不活性ガス雰囲気中、珪素
(Si)の融点である1450℃以上の温度にて第一段
の加熱を行う。この加熱によって溶融した珪素(Si)
が、炭素粒子表面と反応してβ型SiCに転化する。さ
らに昇温し2000℃以上の温度で二段目の加熱を行
う。この段階になると、β型SiCが結晶系が6H型の
α型SiCに変態する。なおこの変態の進展速度は、温
度が高い程大きくなるが、2400℃を越えるとSiC
が熱分解し、一部炭素が再析出するので、この第二段の
加熱は2000〜2400℃の範囲とする。
Next, this mixture is charged into a container of graphite or silicon carbide, and then heated in a first stage at a temperature of 1450 ° C. or more, which is the melting point of silicon (Si), in an atmosphere of an inert gas such as argon. Silicon (Si) melted by this heating
Reacts with the carbon particle surface to be converted to β-type SiC. The temperature is further raised and the second stage heating is performed at a temperature of 2000 ° C. or more. At this stage, the β-type SiC is transformed into α-type SiC whose crystal system is 6H. The rate of progress of this transformation increases as the temperature increases, but when it exceeds 2400 ° C., SiC
Is thermally decomposed and part of carbon is reprecipitated, so that the heating in the second stage is in the range of 2000 to 2400 ° C.

【0022】炭素粉末の平均粒径xと珪素量yとの間で
前述の関係を満たす原料粉末を用いることによって、α
型SiCの被膜の厚みを1μm以上、好ましくは1〜3
μmの範囲内に制御する。すなわち原料である炭素粒子
の比表面積に比例して、珪素の使用量を調整する。例え
ば平均粒径が60μmの球状炭素粒子表面に、平均厚み
が1.1μmのSiC層を形成するためには、珪素を1
0重量%、炭素を90重量%の割合とする。また例えば
平均粒径が20μmの球状炭素粒子表面に、同じ平均厚
みのSiC被覆層を形成するためには、珪素を26重量
%、炭素を74重量%の割合とする。
By using a raw material powder satisfying the above-mentioned relationship between the average particle diameter x of the carbon powder and the silicon amount y, α
The thickness of the type SiC coating is 1 μm or more, preferably 1 to 3 μm.
Control within the range of μm. That is, the amount of silicon used is adjusted in proportion to the specific surface area of the carbon particles as the raw material. For example, in order to form a SiC layer having an average thickness of 1.1 μm on the surface of spherical carbon particles having an average particle size of
0% by weight and 90% by weight of carbon. Further, for example, in order to form a SiC coating layer having the same average thickness on the surface of spherical carbon particles having an average particle diameter of 20 μm, the ratio of silicon is set to 26% by weight and carbon is set to 74% by weight.

【0023】なお本発明の複合材料の熱伝導率は、材料
中に分散させる炭素粉末の平均粒径によって左右され
る。これはその表面のSiC被覆層の厚みとも絡む。そ
の平均粒径が小さくなればなるほど、同粒子とマトリッ
クス金属との境界面積が増え、その結果複合材料の熱伝
導率が低下する傾向にある。一方大きくなり過ぎると、
成形性が低下し、成形体を作成するのに高い圧力が必要
となる傾向にあり、その結果やはり複合材料の熱伝導率
が低下する。したがって本発明では、優れた熱伝導性の
複合材料を得るため、複合粉末の調製に用いる炭素粉末
原料の平均粒径xとSiC被覆層の原料となるSiの量
yとの相関、すなわち上記の関係を満たすように制御す
る。
The thermal conductivity of the composite material of the present invention depends on the average particle size of the carbon powder dispersed in the material. This also involves the thickness of the SiC coating layer on the surface. As the average particle size becomes smaller, the boundary area between the particles and the matrix metal increases, and as a result, the thermal conductivity of the composite material tends to decrease. On the other hand, if it gets too big,
Moldability tends to decrease, and high pressures tend to be required to make molded bodies, which also reduces the thermal conductivity of the composite material. Therefore, in the present invention, in order to obtain a composite material having excellent thermal conductivity, the correlation between the average particle diameter x of the carbon powder raw material used for preparing the composite powder and the amount y of Si used as the raw material of the SiC coating layer, Control to satisfy the relationship.

【0024】以上の手順で得られた複合粉末を用い、以
下の手順で本発明の複合材料を製造する。まずこの複合
粉末30〜80体積%と、マトリックスとなる金属粉末
20〜70体積%とを混合し混合粉末とする。なおより
高い熱伝導率と比較的低い熱膨張係数のものを得るため
には、複合粉末の量を60〜80体積%、残部が金属粉
末となるように調整するのが望ましい。混合方法は、公
知の方法であれば、いかなる方法でも構わない。なお混
合粉末は、その成形性を向上させるため、混合時または
混合後に少量の有機バインダーを加え造粒するのが望ま
しい。
Using the composite powder obtained by the above procedure, the composite material of the present invention is produced by the following procedure. First, 30 to 80% by volume of the composite powder and 20 to 70% by volume of the metal powder to be a matrix are mixed to obtain a mixed powder. In order to obtain a higher thermal conductivity and a relatively lower coefficient of thermal expansion, it is desirable to adjust the amount of the composite powder to be 60 to 80% by volume and the balance to be a metal powder. The mixing method may be any known method. The mixed powder is desirably granulated by adding a small amount of an organic binder during or after mixing in order to improve the moldability.

【0025】次いでこの混合粉末を成形する。成形方法
は、成形体の形状によって適宜既知の方法を用いる。乾
式の粉末成形法が最も作業効率がよい。
Next, the mixed powder is formed. As a molding method, a known method is appropriately used depending on the shape of the molded body. Dry powder molding is the most efficient.

【0026】その後成形体は、有機バインダーを含んで
おれば、予め非酸化性雰囲気中で加熱してそれを除去し
た後、非酸化性雰囲気中で含有する金属の融点以上の温
度まで昇温して焼結する。またこの焼結工程は、好まし
くは熱間鍛造によって行う。その場合非酸化性雰囲気中
で、含有する金属の融点以上の温度にて成形体を予備加
熱した後、型内に装填して熱間鍛造する。予備加熱は、
例えば高周波誘導加熱方式のような、急速な昇温と均熱
化ができる加熱手段を用いるのが望ましい。これによっ
て加熱時間が短縮され(通常は数分以内)、その結果例
え炭素粒子と金属粒子とが直接接触する界面があったと
しても、そこでの低熱伝導性の反応物の生成量が抑えら
れる。その結果通常の焼結法(通常均熱化のためには3
0分以上の加熱時間が必要)に比べ、高い熱伝導率の材
料が得られる。また鍛造法は、短時間での緻密化ができ
るため大気中で行うこともできる。
After that, if the molded body contains an organic binder, it is heated in a non-oxidizing atmosphere in advance to remove it, and then heated to a temperature not lower than the melting point of the contained metal in the non-oxidizing atmosphere. And sinter. This sintering step is preferably performed by hot forging. In this case, the preform is pre-heated in a non-oxidizing atmosphere at a temperature equal to or higher than the melting point of the contained metal, and then is charged into a mold and hot forged. Preheating is
For example, it is desirable to use a heating means such as a high-frequency induction heating method that can rapidly raise the temperature and equalize the temperature. This shortens the heating time (usually within a few minutes), so that even if there is an interface where the carbon particles and metal particles are in direct contact, the amount of low thermal conductive reactants generated there is suppressed. As a result, the usual sintering method (usually 3
As a result, a material having a high thermal conductivity can be obtained. In addition, the forging method can be performed in the air because the densification can be performed in a short time.

【0027】[0027]

【実施例】実施例1 表1に記載の炭素(C)粉末と、平均粒径が30μmの
市販の珪素(Si)粉末とを準備した。なお表1の「原
料粉末」欄に記載された炭素粉末の種類表示の内「M
G」は、メソフェーズ系ピッチを3500℃のアルゴン
ガス中で2時間熱処理して、球状の黒鉛粒子からなる粉
末としたものであり、また表示「TG」および「NG」
は、それぞれ市販の熱分解黒鉛および天然黒鉛の粉末で
ある。これらの各粉末を同表の「配合組成」欄に記載の
重量割合で秤取し、炭化珪素質の内張りポット・ボール
のボールミルを用い、C粉末粒子の平均粒径が表1の
「混合粉末中のCの平均粒径」欄に記載された大きさに
なるまで各々乾式粉砕混合した。乾燥後の混合粉末中の
各成分粉末の重量比率は、化学分析の結果ほぼ当初の配
合比率であった。平均粒径は、レーザー干渉を利用した
粒度分布測定装置によって確認した。これらの結果は、
同表の「混合粉末」欄に記載の通りである。これらの各
粉末を大気圧のアルゴンガス中、まず1500℃で30
分間保持した後、引き続き昇温して、表1の「熱処理」
欄に記載された温度にて2時間保持し、自然冷却した。
得られた複合粉末の炭素粒子表面のSiC皮膜の平均厚
みは、断面を透過電子顕微鏡によって観察することによ
って確認した。また同粉末中の成分の体積比率は、粉末
中のSiCとCの重量比を分析し、それぞれの理論密
度、すなわち前者が3.2g/cm3、後者が2.2g
/cm3を用いて計算した。その結果も同表に示す。
Example 1 A carbon (C) powder shown in Table 1 and a commercially available silicon (Si) powder having an average particle diameter of 30 μm were prepared. In addition, "M" of the type indication of the carbon powder described in the "raw powder" column of Table 1
“G” is obtained by heat-treating a mesophase pitch in an argon gas at 3500 ° C. for 2 hours to obtain a powder composed of spherical graphite particles, and also indicates “TG” and “NG”.
Are commercially available pyrolytic graphite and natural graphite powders, respectively. Each of these powders was weighed out at the weight ratio described in the “Blending composition” column of the same table, and the average particle size of the C powder particles was determined using a ball mill of silicon carbide lining pot / ball. Each of them was dry-pulverized and mixed until the size was as described in the column of "Average Particle Size of C in". The weight ratio of each component powder in the mixed powder after drying was almost the initial mixing ratio as a result of the chemical analysis. The average particle size was confirmed by a particle size distribution measuring device using laser interference. These results
It is as described in the “mixed powder” column of the same table. Each of these powders was first placed in argon gas at atmospheric pressure at 1500 ° C. for 30 minutes.
After holding for 1 minute, the temperature was raised continuously, and
It was kept at the temperature described in the column for 2 hours and cooled naturally.
The average thickness of the SiC film on the surface of the carbon particles of the obtained composite powder was confirmed by observing the cross section with a transmission electron microscope. The volume ratio of the components in the powder was determined by analyzing the weight ratio of SiC to C in the powder, and the respective theoretical densities, that is, 3.2 g / cm 3 for the former and 2.2 g for the latter.
/ Cm 3 . The results are also shown in the table.

【0028】[0028]

【表1】 [Table 1]

【0029】以上の結果から、混合粉末中の炭素粉末の
平均粒径xが10μmを越え、これとSi粉末の重量比
率yとが、特に前述の式244.79x-0.78<y<
(282.79x-0.61+1)の関係を満たす範囲内に
あって、なおかつ熱処理条件が、不活性ガス中、200
0〜2400℃の範囲内であれば、1〜3μmの範囲の
SiC膜厚の炭素粒子が得られることが分かる。
[0029] From the above results, the average particle size x of the carbon powder in the mixed powder exceed 10 [mu] m, and a weight ratio y of this and Si powder, in particular of the aforementioned formula 244.79x -0.78 <y <
(282.79x -0.61 +1), and the heat treatment conditions are 200
It can be seen that carbon particles having a SiC film thickness in the range of 1 to 3 µm can be obtained within the range of 0 to 2400 ° C.

【0030】実施例2 表1の各複合粉末試料と、表2に記載されたアルミニウ
ムを主成分とする粉末とを表3に記載の体積比率で、ロ
ッキングミキサーを用いて混合した。なお表2には不可
避的に微量に含まれる成分は、記載しない。これらの粉
末を表3の成形圧力にて、外径30mm、厚み3mmの
形状に乾式プレス成形した。その後同表に記載された各
条件にて、これらの成形体を窒素雰囲気中660℃で予
備加熱し、直ちに450℃に予熱されたダイス鋼製の型
内に移して、900MPaの圧力で鍛造した。また別途
窒素中660℃℃で2時間加熱して焼結した資料も作製
した。得られた複合材料の相対密度(実測密度を理論密
度で割った値)、25℃での熱伝導率(材料から外径2
0mnm、厚み2mmの試料を切り出してレーザーフラ
シュ法にて確認)および25〜200℃での平均熱膨張
係数(差動トランス法にて確認)を確認した。また材料
中の炭化アルミニウム(Al43)の生成の有無をX線
回折によって確認し、その結果も表3に示した。表3に
記載のように、炭化アルミニウム(Al43)の生成の
有無については、試料12、14、17および37で
は、そのX線回折のパターンにて確実に検出されたが、
それ以外の試料では、同パターン上では検出できなかっ
た。
Example 2 Each of the composite powder samples shown in Table 1 and the powder mainly containing aluminum shown in Table 2 were mixed in a volume ratio shown in Table 3 using a rocking mixer. In Table 2, components inevitably contained in trace amounts are not described. These powders were dry-press-molded at a molding pressure shown in Table 3 into a shape having an outer diameter of 30 mm and a thickness of 3 mm. Thereafter, under each condition described in the same table, these compacts were preheated at 660 ° C. in a nitrogen atmosphere, immediately transferred into a die steel mold preheated to 450 ° C., and forged at a pressure of 900 MPa. . Further, a material which was separately heated and sintered at 660 ° C. for 2 hours in nitrogen was also prepared. The relative density of the obtained composite material (the value obtained by dividing the measured density by the theoretical density) and the thermal conductivity at 25 ° C.
A sample having a thickness of 0 nm and a thickness of 2 mm was cut out and confirmed by a laser flash method), and an average thermal expansion coefficient at 25 to 200 ° C (confirmed by a differential transformer method) was confirmed. The presence or absence of aluminum carbide (Al 4 C 3 ) in the material was confirmed by X-ray diffraction, and the results are also shown in Table 3. As described in Table 3, the presence or absence of the formation of aluminum carbide (Al 4 C 3 ) was reliably detected in the X-ray diffraction patterns of Samples 12, 14, 17 and 37,
Other samples could not be detected on the same pattern.

【0031】[0031]

【表2】 [Table 2]

【0032】また超硬材料製工具を用いて研削をし、各
試料の加工性について評価した。その結果は、表3に記
載の通りである。その評価方法は、熱伝導率を確認した
試片を用いて、超硬合金製の工具によって、外径20m
mの一方の面を厚みが1mmになるまで研削仕上げし、
その後同工具の逃げ面の摩耗量を確認する方法である。
この場合同摩耗量が、0.2mm未満となったものを加
工性良(表3には○で表示)とし、同摩耗量が0.2m
m以上となったものを加工性が悪いもの(表3には×で
表示)とした。試料1、5、22および34で加工性が
悪いという判断結果となったが、その他の試料では良と
の判断結果が得られた。なお比較のため、同じ試験条件
にて、SiC量70体積%、残部AlのAl−SiC系
複合材料も評価した。
Grinding was carried out using a cemented carbide tool, and the workability of each sample was evaluated. The results are as shown in Table 3. The evaluation method was as follows: using a specimen of which the thermal conductivity was confirmed, an outer diameter of 20 m using a cemented carbide tool.
grinding one side of m until the thickness becomes 1 mm,
Thereafter, the wear amount of the flank of the tool is checked.
In this case, when the wear amount was less than 0.2 mm, the workability was evaluated as good (shown by ○ in Table 3), and the wear amount was 0.2 m.
Those having m or more were evaluated as having poor workability (indicated by X in Table 3). Samples 1, 5, 22, and 34 were judged to have poor workability, but the other samples were judged to be good. For comparison, an Al-SiC-based composite material having an SiC content of 70% by volume and a balance of Al under the same test conditions was also evaluated.

【0033】[0033]

【表3】 [Table 3]

【0034】以上の結果から、本発明の範囲内のSiC
−C系複合粉末を用い、これとAlを主成分とした金属
とを、複合粉末の体積比30〜80%で混合した粉末の
成形体を、成形体中の金属成分の融点以上の温度で焼結
または鍛造することによって、熱伝導率が150W/m
・K以上であり、同程度のSiC量のAl−SiC系複
合材料に対し、顕著に機械加工性に優れた複合材料が得
られることが分かる。
From the above results, it can be seen that SiC within the scope of the present invention
Using a C-based composite powder, a powder compact obtained by mixing the same with a metal mainly composed of Al at a volume ratio of 30 to 80% of the composite powder is formed at a temperature not lower than the melting point of the metal component in the compact. By sintering or forging, the thermal conductivity is 150 W / m
It can be seen that a composite material having a remarkably excellent machinability can be obtained with respect to an Al—SiC-based composite material having a K of not less than the same and having the same SiC amount.

【0035】実施例3 実施例1の試料2と同じ複合粉末と、表4に記載の各種
金属粉末とを実施例2と同じ手順で混合し、金属粉末が
30体積%、残部複合粉末の組成の混合粉末を調製し
た。これらの粉末を実施例2と同様にして乾式成形し、
各成形体を表5に記載のそれぞれの条件にて熱間鍛造し
た。なお試料27は金属粉末にDを、試料28は金属粉
末にEをそれぞれ用いた試料である。得られた複合材料
を実施例2と同様に評価した結果も表5に示す。
Example 3 The same composite powder as Sample 2 of Example 1 and various metal powders shown in Table 4 were mixed in the same procedure as in Example 2, and the composition of the metal powder was 30% by volume and the balance of the composite powder was Was prepared. These powders were dry-molded in the same manner as in Example 2,
Each compact was hot forged under the respective conditions shown in Table 5. Note that Sample 27 is a sample using D for metal powder, and Sample 28 is a sample using E for metal powder. Table 5 also shows the results of evaluating the obtained composite material in the same manner as in Example 2.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】以上の結果からアルミニウム以外の主成分
金属粉末と本発明の複合粉末とを混合して、同金属の融
点以上の温度にて複合化することによって、熱伝導性に
優れた金属−炭化珪素−炭素系の複合材料が得られるこ
とが分かる。
From the above results, by mixing the metal powder of the main component other than aluminum with the composite powder of the present invention and forming a composite at a temperature equal to or higher than the melting point of the metal, a metal-carbonized material having excellent heat conductivity can be obtained. It can be seen that a silicon-carbon based composite material can be obtained.

【0039】実施例4 以上の実施例試料の中から試料2〜4、23〜32と同
じ手順で作製した放熱基板を用いた図1に示すようなパ
ワーモジュール半導体装置を作製した。同図において1
は、本発明の材料からなる放熱基板、2は、同基板上に
ロウ付けされた電気絶縁性の窒化アルミニウムセラミッ
クス(熱伝導率170W/m・K)製の小基板、3は、
シリコン半導体素子、4は、放熱基板に機械的に固定さ
れたアルミニウム合金からなる冷却構造体である。なお
基板1の上下面と基板2の下面にはニッケルメッキが、
基板2の上面にはWメタライズ層およびニッケルメッキ
層を介して銅の導体回路層が形成されている。また基板
1と冷却構造体4との界面には予めシリコーンオイルの
薄い層が形成されている。半導体素子はAg−Sn系の
半田で接続されている。なお各部材間、特に基板1の周
辺の接続状態は、良好で問題は無かった。
Example 4 A power module semiconductor device as shown in FIG. 1 was manufactured from the above-described example samples using a heat-radiating substrate manufactured by the same procedure as samples 2 to 4 and 23 to 32. In FIG.
Is a heat dissipation substrate made of the material of the present invention, 2 is a small substrate made of electrically insulating aluminum nitride ceramics (thermal conductivity 170 W / m · K) brazed on the substrate, 3 is
The silicon semiconductor element 4 is a cooling structure made of an aluminum alloy that is mechanically fixed to a heat dissipation substrate. The upper and lower surfaces of the substrate 1 and the lower surface of the substrate 2 are plated with nickel.
On the upper surface of the substrate 2, a copper conductor circuit layer is formed via a W metallization layer and a nickel plating layer. At the interface between the substrate 1 and the cooling structure 4, a thin layer of silicone oil is formed in advance. The semiconductor elements are connected by Ag-Sn based solder. The connection between the members, especially around the periphery of the substrate 1, was good and there was no problem.

【0040】このような構成の各アッセンブリーを用い
て、−60℃で30分間保持後、150℃で30分間保
持する昇降温の冷熱サイクルを1000サイクル行った
ところ、接続部周辺の損傷およびモジュール特性の劣化
は観測されなかった。以上の結果から本発明の方法で製
造された複合材料を、過酷な実用条件下で使われる半導
体装置の部材に用いても、何ら支障無く使用可能なこと
が判明した。
Using each assembly having such a configuration, 1000 cycles of a heating / cooling cycle of holding at -60 ° C. for 30 minutes and then holding at 150 ° C. for 30 minutes were performed. No deterioration was observed. From the above results, it has been found that the composite material manufactured by the method of the present invention can be used without any problem even when used for a member of a semiconductor device used under severe practical conditions.

【0041】なお本発明の材料をこの種のモジュールに
比べ低出力・低熱負荷のパーソナルコンピュータ等の半
導体装置に実装する評価も行ったが、その実用信頼性に
は何ら問題の無いことが確認された。
It was also evaluated that the material of the present invention was mounted on a semiconductor device such as a personal computer having a lower output and a lower heat load than this type of module, but it was confirmed that there was no problem in its practical reliability. Was.

【0042】[0042]

【発明の効果】以上述べてきたように本発明によれば、
Si粉末と平均粒径が10μmを越えるC粉末とを、後
者の平均粒径xと前者の配合量yとの間で、式244.
79x -0.78<yの関係、好ましくはさらにy<(28
2.79x-0.61+1)の関係を満たすように混合し、
これを高温で熱処理することによって、SiC−C系の
熱伝導性と成形性に優れた複合粉末を得ることができ
る。この粉末30〜80体積%と残部アルミニウム他の
金属粉末との組成にて混合し、成形・焼結して得られる
複合材料は、従来からのAl−SiC系複合材料に比
べ、それに匹敵する高い熱伝導性を示すとともに、同材
料に比べ機械加工性において顕著に優れているため、工
業的に極めて有用な材料である。
As described above, according to the present invention,
After the Si powder and the C powder having an average particle size of more than 10 μm,
244. between the average particle size x of the former and the amount y of the former.
79x -0.78<Y, preferably y <(28
2.79x-0.61+1)
By heat-treating this at a high temperature, SiC-C based
A composite powder with excellent heat conductivity and moldability can be obtained
You. 30-80% by volume of this powder and the balance of aluminum and other
Obtained by mixing with the composition with metal powder, molding and sintering
The composite material is compared with the conventional Al-SiC-based composite material.
In addition to showing high thermal conductivity comparable to that,
Remarkably superior in machinability compared to
It is a very useful material in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に記載された、本発明の複合材
料を用いた半導体装置を模式的に示した図である。
FIG. 1 is a diagram schematically showing a semiconductor device using a composite material of the present invention described in an example of the present invention.

【符号の説明】[Explanation of symbols]

1、本発明の複合材料からなる放熱基板 2、セラミックス基板 3、シリコン半導体素子 4、冷却構造体 1, heat dissipation substrate 2 made of composite material of the present invention 2, ceramics substrate 3, silicon semiconductor element 4, cooling structure

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 α型炭化珪素粒子と、表面にα型炭化珪
素からなる厚み1μm以上の被膜が形成された炭素粒子
とを含み、該炭素粒子の量が25〜90体積%である炭
化珪素−炭素系複合粉末。
1. Silicon carbide comprising α-type silicon carbide particles and carbon particles having a surface of α-type silicon carbide having a thickness of 1 μm or more formed thereon, wherein the amount of the carbon particles is 25 to 90% by volume. -Carbon-based composite powder.
【請求項2】 前記被膜の厚みが、1〜3μmである請
求項1に記載の炭化珪素−炭素系複合粉末。
2. The silicon carbide-carbon based composite powder according to claim 1, wherein said coating has a thickness of 1 to 3 μm.
【請求項3】 金属マトリックス中に、分散相として、
α型炭化珪素粒子と、表面がα型炭化珪素粒子によって
被覆された炭素粒子とが、30〜80体積%分散されて
おり、相対密度が80%以上である炭化珪素−炭素系複
合材料。
3. In a metal matrix, as a dispersed phase,
A silicon carbide-carbon composite material in which α-type silicon carbide particles and carbon particles whose surfaces are covered with α-type silicon carbide particles are dispersed in an amount of 30 to 80% by volume and have a relative density of 80% or more.
【請求項4】 前記分散相が、60〜80体積%分散さ
れており、相対密度が90%以上である請求項3に記載
の炭化珪素−炭素系複合材料。
4. The silicon carbide-carbon based composite material according to claim 3, wherein the dispersed phase is dispersed at 60 to 80% by volume and has a relative density of 90% or more.
【請求項5】 前記金属がアルミニウムまたはアルミニ
ウム合金である請求項3または4に記載の炭化珪素−炭
素系複合材料。
5. The silicon carbide-carbon composite material according to claim 3, wherein the metal is aluminum or an aluminum alloy.
【請求項6】 熱伝導率が150W/m・K以上である
請求項5に記載の炭化珪素−炭素系複合材料。
6. The silicon carbide-carbon composite material according to claim 5, which has a thermal conductivity of 150 W / m · K or more.
【請求項7】 熱伝導率が250W/m・K以上である
請求項5に記載の炭化珪素−炭素系複合材料。
7. The silicon carbide-carbon composite material according to claim 5, which has a thermal conductivity of 250 W / m · K or more.
【請求項8】 熱伝導率が300W/m・K以上である
請求項5に記載の炭化珪素−炭素系複合材料。
8. The silicon carbide-carbon composite material according to claim 5, which has a thermal conductivity of 300 W / m · K or more.
【請求項9】 請求項3ないし8のいずれかに記載の炭
化珪素−炭素系複合材料を用いた半導体装置。
9. A semiconductor device using the silicon carbide-carbon composite material according to claim 3.
【請求項10】 珪素粉末と、平均粒径が10μmを越
える炭素粉末とを混合して、炭素粉末の平均粒径をx
(μm)、珪素量をy(重量%)とした時、44.7
9x-0.78<yを満たすように、それらの混合物を調製
する工程と、該混合物を不活性ガス中、2000〜24
00℃の温度範囲で熱処理し複合粉末とする工程とを含
む炭化珪素−炭素系複合粉末の製造方法。
10. A silicon powder and a carbon powder having an average particle diameter of more than 10 μm are mixed, and the average particle diameter of the carbon powder is x.
([Mu] m), when the silicon content was y (wt%), 2 44.7
Preparing a mixture thereof such that 9x −0.78 <y is satisfied;
A heat treatment in a temperature range of 00 ° C. to form a composite powder.
【請求項11】 前記混合物を調整する工程において、
前記xとyとの間で、さらにy<(282.97x
-0.61+1)を満たすように、混合物を調整する請求項
10に記載の炭化珪素−炭素系複合粉末の製造方法。
11. The step of preparing the mixture,
Between the x and y, y <(282.97x
The method for producing a silicon carbide-carbon based composite powder according to claim 10, wherein the mixture is adjusted so as to satisfy -0.61 +1).
【請求項12】 前記原料を準備する工程の炭素粉末
は、メソフェーズ系ピッチ粉末を3000℃以上の温度
で黒鉛化された炭素粉末、熱分解黒鉛または天然黒鉛で
ある請求項10または11に記載の炭化珪素−炭素系複
合粉末の製造方法。
12. The carbon powder according to claim 10, wherein the carbon powder in the step of preparing the raw material is a carbon powder obtained by graphitizing a mesophase pitch powder at a temperature of 3000 ° C. or more, pyrolytic graphite, or natural graphite. A method for producing a silicon carbide-carbon composite powder.
【請求項13】 珪素粉末と、平均粒径が10μmを越
える炭素粉末とを混合して、炭素粉末の平均粒径をx
(μm)、珪素量をy(重量%)とした時、244.7
9x-0.78<y<(282.97x-0.61+1)を満たす
ように、それらの混合物を調製する工程と、該混合物を
不活性ガス中、2000〜2400℃の温度範囲で熱処
理し複合粉末とする工程と、該複合粉末30〜80体積
%、金属粉末20〜70体積%を混合し混合粉末とする
工程と、該混合粉末を成形し成形体とする工程と、該成
形体を該成形体中の前記金属成分の融点以上の温度で焼
結し焼結体とする工程とを含む炭化珪素−炭素系複合材
料の製造方法。
13. Mixing a silicon powder with a carbon powder having an average particle size of more than 10 μm, and setting the average particle size of the carbon powder to x
(Μm), when the amount of silicon is y (% by weight), 244.7
Preparing a mixture thereof so as to satisfy 9x -0.78 <y <(282.97x -0.61 +1), and subjecting the mixture to a heat treatment in an inert gas at a temperature in the range of 2000 to 2400 ° C to obtain a composite powder A step of mixing 30 to 80% by volume of the composite powder and 20 to 70% by volume of the metal powder to form a mixed powder; a step of forming the mixed powder to form a molded body; Sintering at a temperature equal to or higher than the melting point of the metal component to form a sintered body.
【請求項14】 前記混合物を調整する工程において、
前記xとyとの間で、さらにy<(282.97x
-0.61+1)を満たすように、混合物を調整する請求項
13に記載の炭化珪素−炭素系複合材料の製造方法。
14. In the step of preparing the mixture,
Between the x and y, y <(282.97x
The method for producing a silicon carbide-carbon composite material according to claim 13, wherein the mixture is adjusted so as to satisfy -0.61 +1).
【請求項15】 前記焼結体とする工程は、前記成形体
を該成形体中の前記金属成分の融点以上の温度で予備加
熱した後、熱間鍛造する請求項13または14に記載の
炭化珪素−炭素系複合材料の製造方法。
15. The carbonization according to claim 13, wherein, in the step of forming the sintered body, the compact is pre-heated at a temperature equal to or higher than the melting point of the metal component in the compact and then hot forged. A method for producing a silicon-carbon composite material.
【請求項16】 前記金属がアルミニウムまたはアルミ
ニウム合金である請求項13ないし15のいずれかに記
載の炭化珪素−炭素系複合材料の製造方法。
16. The method for producing a silicon carbide-carbon composite material according to claim 13, wherein the metal is aluminum or an aluminum alloy.
JP36580599A 1999-12-24 1999-12-24 Silicon carbide-carbon composite powder and its composite material Pending JP2001180919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36580599A JP2001180919A (en) 1999-12-24 1999-12-24 Silicon carbide-carbon composite powder and its composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36580599A JP2001180919A (en) 1999-12-24 1999-12-24 Silicon carbide-carbon composite powder and its composite material

Publications (1)

Publication Number Publication Date
JP2001180919A true JP2001180919A (en) 2001-07-03

Family

ID=18485164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36580599A Pending JP2001180919A (en) 1999-12-24 1999-12-24 Silicon carbide-carbon composite powder and its composite material

Country Status (1)

Country Link
JP (1) JP2001180919A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172406A (en) * 2002-11-20 2004-06-17 Kobe Steel Ltd Semiconductor substrate with ceramics, semiconductor wafer with ceramics, and its manufacturing method
WO2011027756A1 (en) * 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
CN102482164A (en) * 2009-09-04 2012-05-30 东洋炭素株式会社 Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
JP2012171861A (en) * 2011-02-22 2012-09-10 Research & Business Foundation Of Sungkyunkwan Univ Method for strengthening interface of carbon material using nano silicon carbide coating
WO2012157293A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Silicon carbide powder and method for producing silicon carbide powder
WO2013190662A1 (en) * 2012-06-20 2013-12-27 東洋炭素株式会社 Carbon/silicon carbide composite material
CN116987924A (en) * 2023-08-07 2023-11-03 湖南大学 Preparation method of SiC/Al composite material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172406A (en) * 2002-11-20 2004-06-17 Kobe Steel Ltd Semiconductor substrate with ceramics, semiconductor wafer with ceramics, and its manufacturing method
US9085493B2 (en) 2009-09-04 2015-07-21 Toyo Tanso Co., Ltd. Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
TWI481581B (en) * 2009-09-04 2015-04-21 Toyo Tanso Co Ceramic carbon composite and method for producing the same, and ceramic -coated ceramic carbon composite and method for producing the same
CN102482165A (en) * 2009-09-04 2012-05-30 东洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
CN102482164A (en) * 2009-09-04 2012-05-30 东洋炭素株式会社 Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
US9296660B2 (en) 2009-09-04 2016-03-29 Toyo Tanso Co., Ltd. Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
WO2011027756A1 (en) * 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
JP2012171861A (en) * 2011-02-22 2012-09-10 Research & Business Foundation Of Sungkyunkwan Univ Method for strengthening interface of carbon material using nano silicon carbide coating
JP2012240869A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Ind Ltd Silicon carbide powder and method for producing silicon carbide
DE112012002094B4 (en) * 2011-05-18 2014-12-24 Sumitomo Electric Industries, Ltd. Silicon carbide powder and process for the production of silicon carbide powder
WO2012157293A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Silicon carbide powder and method for producing silicon carbide powder
CN102958834A (en) * 2011-05-18 2013-03-06 住友电气工业株式会社 Silicon carbide powder and method for producing silicon carbide powder
WO2013190662A1 (en) * 2012-06-20 2013-12-27 東洋炭素株式会社 Carbon/silicon carbide composite material
CN116987924A (en) * 2023-08-07 2023-11-03 湖南大学 Preparation method of SiC/Al composite material
CN116987924B (en) * 2023-08-07 2024-04-23 湖南大学 Preparation method of SiC/Al composite material

Similar Documents

Publication Publication Date Title
EP0987231B1 (en) Silicon carbide based composite material and manufacturing method thereof
US20060157884A1 (en) Method for producing a composite material
KR100758178B1 (en) A heat conductive material
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
KR20060090824A (en) High thermal conductivity metal matrix composites
JP2002080280A (en) High temperature conductive composite material and method of manufacturing the same
CN1771343B (en) Composition for making metal matrix composites
JP2001180919A (en) Silicon carbide-carbon composite powder and its composite material
US20020192453A1 (en) Composite material having a high thermal conductivity and method for manufacturing the composite material
JP4305986B2 (en) Method for producing silicon carbide composite material
CN113264775B (en) Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
JP4253932B2 (en) Method for producing silicon carbide composite material
JP3948797B2 (en) Method for producing silicon carbide composite
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JP2001073048A (en) Aluminum-silicon carbide system composite material and its production
JP2005082815A (en) Highly thermal conductive wear resistant material, and its production method
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2001158933A (en) Al-SiC COMPOSITE MATERIAL, PRODUCING METHOD THEREFOR AND SEMICONDUCTOR SYSTEM USING SAME
JP2001002476A (en) Aluminum-silicon carbide composite and its production