JP6595740B1 - Metal-silicon carbide composite and method for producing the same - Google Patents

Metal-silicon carbide composite and method for producing the same Download PDF

Info

Publication number
JP6595740B1
JP6595740B1 JP2019109200A JP2019109200A JP6595740B1 JP 6595740 B1 JP6595740 B1 JP 6595740B1 JP 2019109200 A JP2019109200 A JP 2019109200A JP 2019109200 A JP2019109200 A JP 2019109200A JP 6595740 B1 JP6595740 B1 JP 6595740B1
Authority
JP
Japan
Prior art keywords
silicon carbide
metal
composite
carbide composite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019109200A
Other languages
Japanese (ja)
Other versions
JP2020012194A (en
Inventor
大助 後藤
寛朗 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019109200A priority Critical patent/JP6595740B1/en
Application granted granted Critical
Publication of JP6595740B1 publication Critical patent/JP6595740B1/en
Publication of JP2020012194A publication Critical patent/JP2020012194A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】高熱伝導率と半導体素子に近い熱膨張係数とを兼ね備え、更には、半導体素子のヒートシンク等として使用するのに好適なように、主面に存在する表面層の表側と裏側の厚みの差が50μm以内である金属−炭化珪素質複合体を提供する。【解決手段】炭化珪素質多孔体へ金属を含浸してなる金属−炭化珪素質複合体であって、複合体内部に含まれる炭化珪素粒子について、粒径300μm以上の粒子が5体積%以下であることを特徴とする金属−炭化珪素質複合体を提供する。【選択図】図1The present invention has a high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element, and furthermore, it is suitable for use as a heat sink or the like of a semiconductor element. Provided is a metal-silicon carbide composite having a difference within 50 μm. A metal-silicon carbide composite formed by impregnating a silicon carbide porous body with a metal, wherein silicon carbide particles contained in the composite contain 5 volume% or less of particles having a particle size of 300 μm or more. There is provided a metal-silicon carbide composite characterized in that there is provided. [Selection] Figure 1

Description

本発明は、熱伝導特性に優れ、かつ軽量であり、セラミックス基板やICパッケージ等の半導体部品のヒートシンク等の放熱体として好適な高熱伝導性の金属−炭化珪素質複合体及びその製造方法に関する。   The present invention relates to a metal-silicon carbide composite with high thermal conductivity that is excellent in thermal conductivity and lightweight, and is suitable as a heat radiator such as a heat sink for semiconductor parts such as ceramic substrates and IC packages, and a method for producing the same.

パワーモジュール用のヒートシンクとしては、一般的に銅、アルミニウム、Cu−MoやCu−Wといった金属、AlN、Si、Al等のセラミックス、Al−SiC等の金属とセラミックスとの複合体料等が用いられている。パワーモジュールのヒートシンクとして用いられる金属−炭化珪素質複合体としては、例として特許文献1に開示されるアルミニウム合金‐炭化珪素質複合体や、特許文献2に示されるマグネシウムまたはマグネシウム合金と炭化珪素との複合体料が挙げられる。これらの文献に示される複合体料は軽量、高熱伝導率、かつ半導体素子等のモジュールの構成部品と近い熱膨張係数を有し、パワーモジュール用ヒートシンクとして好適である。 As heat sinks for power modules, copper, aluminum, metals such as Cu—Mo and Cu—W, ceramics such as AlN, Si 3 N 4 and Al 2 O 3 , metals such as Al—SiC and ceramics are generally used. Composite materials and the like are used. Examples of the metal-silicon carbide composite used as the heat sink of the power module include an aluminum alloy-silicon carbide composite disclosed in Patent Document 1 and magnesium or a magnesium alloy and silicon carbide disclosed in Patent Document 2. The composite fee of The composite materials shown in these documents are lightweight, have high thermal conductivity, and have a thermal expansion coefficient close to that of module components such as semiconductor elements, and are suitable as heat sinks for power modules.

特開2017−39997号公報JP 2017-39997 A 特開2013−245374号公報JP 2013-245374 A

パワーモジュール用ヒートシンクには、セラミックス回路基板が表面にはんだ付けされるのが一般的であるが、Al−SiC等の金属−炭化珪素質複合体をヒートシンクとして用いた場合、アルミニウムといった一部の金属や炭化珪素にははんだが濡れないことからNiめっきが表面に施されることが多い。このとき、炭化珪素上にNiめっきを析出させることも可能ではあるが、触媒等を用いた特殊な前処理が必要であり、コストが高いことから、金属−炭化珪素質複合体表面は含浸する金属層で覆われていることが一般的である。   Generally, a ceramic circuit board is soldered to the surface of a heat sink for a power module. However, when a metal-silicon carbide composite such as Al-SiC is used as a heat sink, some metals such as aluminum are used. Since silicon solder does not get wet with silicon carbide, Ni plating is often applied to the surface. At this time, although it is possible to deposit Ni plating on silicon carbide, a special pretreatment using a catalyst or the like is necessary and the cost is high, so the surface of the metal-silicon carbide composite is impregnated. It is common to be covered with a metal layer.

この金属−炭化珪素質複合体の表裏を覆う金属層により、複合体は図1のようなバイメタルを模した構造となるが、それぞれの層の熱膨張係数差により熱サイクルにより熱応力が発生する。このとき、表裏の金属層の厚みの差が大きければ大きいほど、熱応力に差が生じ、熱サイクルによって反りの変化が生じる。反りの変化が生じることにより、ヒートシンクと冷却フィンとの間にギャップが生じ、放熱特性が大きく低下するため、表裏の金属層の厚みは均一かつ差がないことが好ましい。   The metal layer covering the front and back surfaces of this metal-silicon carbide composite has a structure simulating a bimetal as shown in FIG. 1, but thermal stress is generated by a thermal cycle due to the difference in thermal expansion coefficient of each layer. . At this time, the greater the difference in thickness between the front and back metal layers, the greater the difference in thermal stress, and the change in warp due to thermal cycling. Since the change in the warp causes a gap between the heat sink and the cooling fin, and the heat dissipation characteristics are greatly deteriorated, it is preferable that the thicknesses of the metal layers on the front and back sides are uniform and have no difference.

金属−炭化珪素質複合体の表裏に形成される金属層(以下、表面層という)の厚みは、金属を含浸させる前の炭化珪素質多孔体の表面状態に大きく左右される。炭化珪素質多孔体の面精度は複合化した際の厚みや表面粗さに影響することから面出し加工がなされることが多いが、炭化珪素は硬く、炭化珪素質多孔体から粒子が除外されるようにして加工される。   The thickness of the metal layer (hereinafter referred to as the surface layer) formed on the front and back of the metal-silicon carbide composite is greatly affected by the surface state of the silicon carbide porous body before impregnation with the metal. The surface accuracy of the silicon carbide based porous material affects the thickness and surface roughness when it is compounded, so surface machining is often performed, but silicon carbide is hard and particles are excluded from the silicon carbide based porous material. It is processed like this.

面出し加工を行うに際し、炭化珪素多孔体が粗大粒子を多く含む場合、加工後の表面は凹凸が大きくなる。先行文献の複合体では構成する炭化珪素粒子の粒径の規定が平均粒度のみであり、粗大粒子には言及しておらず、表裏層の表裏厚み差が生じやすくなるという課題があった。   When performing the chamfering process, if the silicon carbide porous body contains a large amount of coarse particles, the processed surface becomes uneven. In the composites of the prior art, the definition of the particle size of the silicon carbide particles constituting the material is only the average particle size, the coarse particles are not mentioned, and there is a problem that the thickness difference between the front and back layers tends to occur.

本発明は、上記の事情を鑑みてなされたものであり、その目的は、従来並みの熱伝導率、熱膨張係数を有しながら、表面層の表裏厚み差が小さく、熱サイクルを経ても反りの変化量が小さい金属−炭化珪素質複合体及びそのような金属−炭化珪素質複合体を低コストで製造可能な方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to have the same thermal conductivity and thermal expansion coefficient as the conventional one, but the surface layer has a small difference in thickness between the front and back surfaces, and warps even after a thermal cycle. It is to provide a metal-silicon carbide composite having a small change amount and a method capable of producing such a metal-silicon carbide composite at a low cost.

即ち、本発明は、炭化珪素質多孔体へ金属を含浸してなる金属−炭化珪素質複合体であって、複合体内部に含まれる炭化珪素粒子について、粒径300μm以上の粒子が5体積%以下であることを特徴とする金属−炭化珪素質複合体に関する。   That is, the present invention is a metal-silicon carbide composite formed by impregnating a silicon carbide porous material with a metal, and the silicon carbide particles contained in the composite contain 5% by volume of particles having a particle size of 300 μm or more. The present invention relates to a metal-silicon carbide composite characterized by the following.

本発明により、金属−炭化珪素質複合体中の粗大粒子が少なくなることにより、炭化珪素質多孔体の表面の凹凸が小さくなり、表面層の表裏厚み差が低減し、熱サイクル時の反り安定性が向上した金属−炭化珪素質複合体及びそのような金属−炭化珪素質複合体を低コストで製造可能な製造方法が提供される。   According to the present invention, since the coarse particles in the metal-silicon carbide composite are reduced, the surface roughness of the silicon carbide porous body is reduced, the difference in thickness between the front and back surfaces of the surface layer is reduced, and the warp is stable during thermal cycling. A metal-silicon carbide composite having improved properties and a production method capable of producing such a metal-silicon carbide composite at low cost are provided.

本発明に係る金属−炭化珪素質複合体の断面図である。1 is a cross-sectional view of a metal-silicon carbide composite according to the present invention. 本発明の効果を説明した図である。It is a figure explaining the effect of the present invention. 本発明に係る金属−炭化珪素質複合体内の表面層の厚みの測定方法を説明した図である。It is a figure explaining the measuring method of the thickness of the surface layer in the metal-silicon carbide composite body which concerns on this invention. 本発明に係る金属−炭化珪素質複合体の反り量の測定方法を説明した図である。It is a figure explaining the measuring method of the curvature amount of the metal-silicon carbide composite based on this invention.

以下、図を用いて、本発明に係る金属−炭化珪素質複合体及びその製造方法の一実施形態を説明する。   Hereinafter, an embodiment of a metal-silicon carbide composite and a method for producing the same according to the present invention will be described with reference to the drawings.

[定義]
以下の説明において、「〜」という記号は「以上」及び「以下」を意味する。例えば「A〜B」とは、A以上でありB以下であるという意味である。また、「主面」とは平板上に形成された金属−炭化珪素質複合体の上下いずれかの面を意味する。
[Definition]
In the following description, the symbol “to” means “above” and “below”. For example, “A to B” means not less than A and not more than B. The “main surface” means either the upper or lower surface of the metal-silicon carbide composite formed on the flat plate.

[金属−炭化珪素質複合体]
図1に示したように、本実施形態に係る金属−炭化珪素質複合体1は、炭化珪素粒子へアルミニウム又はマグネシウムのいずれか1つ以上を主成分とする金属を含浸してなる平板状の金属−炭化珪素質複合体1であって、金属−炭化珪素質複合体1は複合化部2及び複合化部2の主面に設けられた表面層3a、3bからなり、表面層3a、3bはアルミニウム又はマグネシウムのいずれか1つ以上を主成分とする金属を含む材料からなり、複合化部2に含まれる炭化珪素粒子について、粒径300μm以上の粒子が5体積%以下であることを特徴とする。
[Metal-silicon carbide composite]
As shown in FIG. 1, the metal-silicon carbide composite 1 according to this embodiment is a flat plate formed by impregnating silicon carbide particles with a metal whose main component is at least one of aluminum and magnesium. The metal-silicon carbide composite 1 is composed of a composite portion 2 and surface layers 3a and 3b provided on the main surface of the composite portion 2, and the surface layers 3a and 3b. Is made of a material containing a metal whose main component is at least one of aluminum and magnesium, and the silicon carbide particles contained in the composite part 2 have a particle size of 300 μm or more and 5% by volume or less. And

更に本発明では、両主面を被覆する表面層について、表側と裏側の厚みの差が50μm以内であることを特徴とする。   Furthermore, the present invention is characterized in that the difference in thickness between the front side and the back side of the surface layer covering both main surfaces is within 50 μm.

また、本発明に係る金属−炭化珪素質複合体は、ヒートサイクル試験を行った際の反り変化量が±50%以内であることを特徴とする。   In addition, the metal-silicon carbide composite according to the present invention is characterized in that the amount of change in warpage when the heat cycle test is performed is within ± 50%.

上記構成からなる金属−炭化珪素質複合体1は、高熱伝導かつ半導体素子に近い熱膨張係数を有し、更には、両主面の表面層間の厚み差が低減し、熱サイクル時の反り安定性が向上している。   The metal-silicon carbide composite body 1 having the above-described configuration has high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element. Further, the difference in thickness between the surface layers of both main surfaces is reduced, and warpage is stable during thermal cycling. Improved.

[炭化珪素粉末]
金属−炭化珪素質複合体の原料である炭化珪素粉末は、それを構成する粒子が高熱伝導性であることが望まれ、炭化珪素成分が99質量%以上の高純度の、一般的に「緑色」を呈する炭化珪素粉末を用いることが好ましい。また、本発明の目的を達成するためには、前記原料の炭化珪素粉末から充填率が50〜80体積%、好ましくは60〜75体積%の炭化珪素質多孔体が得られれば良い。多孔体の炭化珪素の充填率、すなわち金属−炭化珪素質複合体中の炭化珪素含有量を高めるためには、炭化珪素粉末は適当な粒度分布を有するものが良く、この目的から2種類以上の粉末を適宜配合しても良い。
[Silicon carbide powder]
The silicon carbide powder that is a raw material of the metal-silicon carbide composite is desired to have high thermal conductivity in the particles that constitute it, and is generally “green” with a high purity of 99% by mass or more of the silicon carbide component. It is preferable to use silicon carbide powder exhibiting “ In order to achieve the object of the present invention, it is only necessary to obtain a silicon carbide based porous material having a filling rate of 50 to 80% by volume, preferably 60 to 75% by volume, from the raw material silicon carbide powder. In order to increase the filling rate of the silicon carbide in the porous body, that is, the silicon carbide content in the metal-silicon carbide composite, the silicon carbide powder preferably has an appropriate particle size distribution. You may mix | blend powder suitably.

炭化珪素粉末の粒度に関しては、熱伝導率の観点から、1〜50μmの粒径を有する炭化珪素粒子と100〜300μm以下の粒径を有する炭化珪素粒子を含むことが好ましい。   Regarding the particle size of the silicon carbide powder, it is preferable to include silicon carbide particles having a particle size of 1 to 50 μm and silicon carbide particles having a particle size of 100 to 300 μm or less from the viewpoint of thermal conductivity.

一方で、本発明の金属−炭化珪素質複合体では、金属−炭化珪素質複合体内部に含まれる炭化珪素粒子について、粒径300μm以上の粒子が5体積%以下であることを特徴とする。これは原料として使用する炭化珪素粉末について、分級などの操作によって粒径300μm以上の粒子が5体積%以下とすることで達成することができる。
粒径300μm以上の粒子が5体積%以上である場合、炭化珪素質多孔体表面の凹凸が大きくなる。これは炭化珪素自体の硬度が高いため、図2に示す様に炭化珪素質多孔体の面出し加工を行う際に、粗大粒子が残留した箇所は凸、炭化珪素質多孔体から粒子が除外されるように加工された箇所は凹となるためである。一方、粒径300μm以上の粒子が5体積%以下の場合、炭化珪素質多孔体表面の凹凸を小さくすることができる。炭化珪素質多孔体表面の凹凸は、金属を含浸した後の金属−炭化珪素質複合体の表裏に形成される表面層の厚みに大きく影響し、凹凸が少ない程表裏の表面層の厚みの差が小さくなる。前記の通り、表裏の表面層の厚みの差が大きければ大きいほど、それぞれの層の熱膨張係数差により熱サイクルにより熱応力が生じ、反りの変化が生じる。反りの変化が生じることにより、反り形状が変化する。このような金属−炭化珪素質複合体をパワーモジュール用のヒートシンクとして用いた場合、冷却フィンとの間にギャップが生じ、放熱特性が大きく低下するため、金属−炭化珪素質複合体の表面層の厚みは均一かつ表裏で差がないことが好ましい。
On the other hand, in the metal-silicon carbide composite of the present invention, the silicon carbide particles contained in the metal-silicon carbide composite are characterized in that particles having a particle size of 300 μm or more are 5% by volume or less. This can be achieved by setting the silicon carbide powder used as a raw material to 5 vol% or less of particles having a particle size of 300 μm or more by an operation such as classification.
When the number of particles having a particle size of 300 μm or more is 5% by volume or more, unevenness on the surface of the silicon carbide based porous material becomes large. This is because the hardness of silicon carbide itself is high, and as shown in FIG. 2, when performing the chamfering process of the silicon carbide based porous material, the portions where coarse particles remain are convex and the particles are excluded from the silicon carbide based porous material. This is because the processed part becomes concave. On the other hand, when the number of particles having a particle size of 300 μm or more is 5% by volume or less, the unevenness on the surface of the silicon carbide based porous material can be reduced. The unevenness on the surface of the silicon carbide based porous material greatly affects the thickness of the surface layer formed on the front and back surfaces of the metal-silicon carbide composite after impregnating the metal. Becomes smaller. As described above, the greater the difference between the thicknesses of the front and back surface layers, the more thermal stress is generated by the thermal cycle due to the difference in thermal expansion coefficient between the layers, and the warp changes. The warp shape changes due to the change of the warp. When such a metal-silicon carbide composite is used as a heat sink for a power module, a gap is formed between the cooling fins and the heat dissipation characteristics are greatly deteriorated. Therefore, the surface layer of the metal-silicon carbide composite The thickness is preferably uniform and has no difference between the front and back.

金属−炭化珪素質複合体中の炭化珪素粒子の含有量は、好ましくは50体積%以上80体積%以下であり、より好ましくは60体積%以上70体積%以下である。炭化珪素粒子の含有量が60体積%以上であれば、得られる金属−炭化珪素質複合体の熱伝導率を十分に確保できる。また、充填性の面より、炭化珪素粒子の含有量が70体積%以下であることが好ましい。70体積%以下であれば、炭化珪素粒子の形状を球形等に加工する必要がなく、安定したコストで金属−炭化珪素質複合体を得ることができる。   The content of silicon carbide particles in the metal-silicon carbide composite is preferably 50% by volume to 80% by volume, more preferably 60% by volume to 70% by volume. When the content of the silicon carbide particles is 60% by volume or more, the thermal conductivity of the obtained metal-silicon carbide composite can be sufficiently ensured. Moreover, it is preferable that content of a silicon carbide particle is 70 volume% or less from the surface of a filling property. If it is 70 volume% or less, it is not necessary to process the shape of silicon carbide particles into a spherical shape or the like, and a metal-silicon carbide composite can be obtained at a stable cost.

また、金属−炭化珪素質複合体内に含まれる粗大粒子の量が低減することにより、表面粗さが低減する。これにより金属−炭化珪素質複合体上へのはんだ濡れ性の向上、曲げ強度のばらつき低減などが期待できる。   Further, the surface roughness is reduced by reducing the amount of coarse particles contained in the metal-silicon carbide composite. This can be expected to improve solder wettability on the metal-silicon carbide composite, reduce variation in bending strength, and the like.

[原料炭化珪素粉末の粒子径測定]
原料炭化珪素粉末の粒子径はJIS ZZ8825:2013に従ってレーザー回折・散乱法による粒度分布測定装置によって測定することができる。
[Measurement of particle size of raw material silicon carbide powder]
The particle diameter of the raw material silicon carbide powder can be measured by a particle size distribution measuring apparatus by a laser diffraction / scattering method according to JIS ZZ8825: 2013.

[複合体内の炭化珪素の粒子径測定]
金属−炭化珪素質複合体内の炭化珪素粒子径は、次のようにして求められる。まず、得られた金属−炭化珪素質複合体について、金属部のみを溶解する薬品に浸すことで金属部を完全に溶解し、ろ過によって炭化珪素粒子を回収する。得られた粒子について、JIS ZZ8825:2013に従ってレーザー回折・散乱法による粒度分布測定装置によって測定することができる。
[Measurement of particle size of silicon carbide in composite]
The silicon carbide particle diameter in the metal-silicon carbide composite is determined as follows. First, the obtained metal-silicon carbide based composite is immersed in a chemical that dissolves only the metal part, thereby completely dissolving the metal part and collecting silicon carbide particles by filtration. About the obtained particle | grains, it can measure with the particle size distribution measuring apparatus by a laser diffraction and a scattering method according to JISZZ8825: 2013.

[金属成分]
本発明の一実施形態に係る金属−炭化珪素質複合体中の金属はアルミニウム又はマグネシウムのいずれか1つ以上を主成分とする金属である。例えば、99.8質量%以上のAl及び不可避的不純物からなる純アルミニウム、添加元素と残部がAl及び不可避的不純物からなるアルミニウム合金、99.8質量%以上のMg及び不可避的不純物からなる純マグネシウム、添加元素と残部がMg及び不可避的不純物からなるマグネシウム合金等を用いることができる。アルミニウム合金及びマグネシウム合金においては、含浸時に金属溶湯の管理を行いやすくするため、なるべく融点が低いことが好ましい。このような合金として、例えば、Siを5〜25質量%含有したアルミニウム合金が挙げられる。Siを5〜25質量%含有したアルミニウム合金を用いることにより、金属−炭化珪素質複合体の緻密化が促進されるという効果を得ることができる。
[Metal component]
The metal in the metal-silicon carbide composite according to one embodiment of the present invention is a metal containing one or more of aluminum and magnesium as a main component. For example, pure aluminum composed of 99.8% by mass or more of Al and unavoidable impurities, aluminum alloy consisting of additive elements and the balance of Al and unavoidable impurities, pure magnesium composed of 99.8% by mass or more of Mg and unavoidable impurities Further, a magnesium alloy or the like in which the additive element and the balance are made of Mg and inevitable impurities can be used. In the aluminum alloy and the magnesium alloy, it is preferable that the melting point is as low as possible in order to facilitate the management of the molten metal during the impregnation. Examples of such an alloy include an aluminum alloy containing 5 to 25% by mass of Si. By using an aluminum alloy containing 5 to 25% by mass of Si, an effect that the densification of the metal-silicon carbide composite is promoted can be obtained.

更に、上記アルミニウム合金を使用する場合、合金中にMgを含有させることにより、炭化珪素粒子と金属部分との結合がより強固になるので好ましい。アルミニウム合金又はマグネシウム合金中のその他の成分に関しては、合金の特性が極端に変化しない範囲であれば特に制限はなく、例えば、FeやCu等が含まれていても良い。   Furthermore, when using the said aluminum alloy, since the coupling | bonding of a silicon carbide particle and a metal part becomes stronger by making Mg contain in an alloy, it is preferable. Other components in the aluminum alloy or magnesium alloy are not particularly limited as long as the characteristics of the alloy do not change extremely, and may include, for example, Fe, Cu, and the like.

[シリカゾル]
本発明の一実施形態では、湿式成形法にて高充填率を有する炭化珪素質多孔体を得るため、原料炭化珪素粉末にシリカゾルを添加することを特徴とする。シリカゾルとしては、市販されている固形分濃度20質量%程度のものを用いることができる。シリカゾルの配合量としては、炭化珪素100質量部に対して、固形分濃度で0.5〜10質量部程度で十分であるが、好ましくは1〜5質量部である。0.5質量部以上であると、得られる成形体の強度が焼成後も十分となる。一方、添加する量が10質量部以下の場合、得られる成形体における炭化珪素の充填率が高く、所望の特性を発揮できる。
[Silica sol]
In one embodiment of the present invention, a silica sol is added to a raw material silicon carbide powder in order to obtain a silicon carbide based porous material having a high filling rate by a wet molding method. As the silica sol, a commercially available solid content concentration of about 20% by mass can be used. As a compounding quantity of a silica sol, about 0.5-10 mass parts is sufficient in solid content concentration with respect to 100 mass parts of silicon carbide, Preferably it is 1-5 mass parts. If the amount is 0.5 parts by mass or more, the strength of the resulting molded body is sufficient even after firing. On the other hand, when the amount to be added is 10 parts by mass or less, the filling rate of silicon carbide in the obtained molded body is high, and desired characteristics can be exhibited.

[表面層]
本発明の金属−炭化珪素質複合体を半導体素子のヒートシンクとして用いる場合、複合体両面にアルミニウム又はマグネシウムを含有する金属を含む材料からなる表面層3が存在することが望ましい。これにより複合体両面にめっき処理を施す場合の密着性向上の効果が望める。更に、複合体両面の表面粗さが改善するという効果も得られる。
[Surface layer]
When the metal-silicon carbide composite of the present invention is used as a heat sink of a semiconductor element, it is desirable that a surface layer 3 made of a material containing a metal containing aluminum or magnesium is present on both sides of the composite. As a result, it is possible to expect the effect of improving the adhesion when plating on both sides of the composite. Furthermore, the effect that the surface roughness of both surfaces of the composite is improved is also obtained.

ここで、上記表面層3は、前記金属成分と同様にアルミニウム又はマグネシウムを含有する金属を含む材料からなるが、それ以外の不純物等が含まれていてもよい。   Here, although the said surface layer 3 consists of a material containing the metal containing aluminum or magnesium similarly to the said metal component, the impurity other than that etc. may be contained.

上記表面層の厚みについては、平均厚みで10μm以上150μm以下であることが好ましい。平均厚みで10μm以上であれば、その後の処理において炭化珪素粒子が複合体表面へ露出してしまうことが無く、目標とする面精度及びめっき層の密着性が確保できる。また、両面の表面層3の平均厚みの合計が、金属−炭化珪素質複合体1の厚みの20%以下であることが好ましい。表面層の平均厚みが150μm以下、かつ厚みの合計が複合体の厚みの20%以下であれば面精度及びめっき層の密着性に加え、十分な熱伝導率を備えた金属−炭化珪素質複合体を得ることができる。   About the thickness of the said surface layer, it is preferable that they are 10 micrometers or more and 150 micrometers or less by average thickness. If the average thickness is 10 μm or more, the silicon carbide particles are not exposed to the composite surface in the subsequent treatment, and the target surface accuracy and adhesion of the plating layer can be ensured. Further, the total average thickness of the surface layers 3 on both sides is preferably 20% or less of the thickness of the metal-silicon carbide composite 1. If the average thickness of the surface layer is 150 μm or less and the total thickness is 20% or less of the thickness of the composite, the metal-silicon carbide composite having sufficient thermal conductivity in addition to surface accuracy and adhesion of the plating layer You can get a body.

また、金属−炭化珪素質複合体の両主面を被覆する上記表面層の表側と裏側の厚み差については、50μm以下であることが好ましい。表面層の表側と裏側の厚み差が50μm以下であれば、金属−炭化珪素質複合体が温度変化の激しい環境下に曝された場合においても、表面層と複合化部間の熱膨張係数差から生じる熱応力の差が小さく、熱サイクルによって生じる反りの変化量が小さくなる。これにより、ヒートシンクと冷却フィンとの間にギャップが生じ、放熱特性が大きく低下することを防止できる。   The thickness difference between the front side and the back side of the surface layer covering both main surfaces of the metal-silicon carbide composite is preferably 50 μm or less. If the difference in thickness between the front side and the back side of the surface layer is 50 μm or less, the difference in thermal expansion coefficient between the surface layer and the composite part even when the metal-silicon carbide composite is exposed to an environment where the temperature changes rapidly. The difference in thermal stress caused by the thermal cycle is small, and the amount of change in warpage caused by the thermal cycle is small. Thereby, it is possible to prevent a gap from being generated between the heat sink and the cooling fin and greatly reducing the heat dissipation characteristics.

上記表面層3の導入に関しては、例えば、炭化珪素質多孔体へ金属成分を含浸する際に、炭化珪素質多孔体と含浸に用いる金型との間にアルミニウム箔、マグネシウム箔やアルミナ繊維等のセラミックス繊維を配置して金属成分と複合化することにより行うことができる。また、複合体を得た後、表面へ溶射、コールドスプレーやホットプレスによる金属箔の貼り付け等によって導入することも可能である。   Regarding the introduction of the surface layer 3, for example, when impregnating a silicon carbide porous body with a metal component, an aluminum foil, a magnesium foil, an alumina fiber, or the like is provided between the silicon carbide porous body and a mold used for impregnation. It can be carried out by arranging ceramic fibers and combining them with metal components. In addition, after obtaining the composite, it can be introduced by spraying the surface, applying a metal foil by cold spraying or hot pressing, or the like.

[両主面を覆う表面層の厚み]
金属−炭化珪素質複合体内の両主面を覆う表面層の厚みは、次のようにして求められる。図3内の点線にて示す、端部から複合体全長の20%内側を通る直線、及び複合体の中線に沿って、金属−炭化珪素質複合体をダイヤモンド加工治具で切断する。その後、図3内○の箇所について、表面部分を走査型電子顕微鏡で100倍にて観察した。最表面から炭化珪素粒子までの距離を200μm間隔で5箇所測定し、5点の平均を計算することで表面層の厚みとした。ここで表面層とは、両主面の最表面に位置する金属AまたはBからなる領域である。また、表面層の厚み差は前記の方法で得た両主面表面層の厚みの差の絶対値、すなわち|(表主面の表面層の厚み)−(裏主面の表面層の厚み)|(μm)で求められる。
[Thickness of surface layer covering both main surfaces]
The thickness of the surface layer covering both main surfaces in the metal-silicon carbide composite is determined as follows. The metal-silicon carbide composite is cut with a diamond processing jig along a straight line passing through 20% of the total length of the composite from the end portion shown by a dotted line in FIG. 3 and a middle line of the composite. Thereafter, the surface portion of the circled portion in FIG. 3 was observed with a scanning electron microscope at 100 times. The distance from the outermost surface to the silicon carbide particles was measured at five locations at intervals of 200 μm, and the average of the five points was calculated to obtain the thickness of the surface layer. Here, the surface layer is a region made of metal A or B located on the outermost surfaces of both main surfaces. The difference in thickness of the surface layer is the absolute value of the difference in thickness between the two main surface surface layers obtained by the above method, that is, | (surface layer thickness of the front main surface) − (thickness of the surface layer of the back main surface). | (Μm).

[金属−炭化珪素質複合体の反り]
金属−炭化珪素質複合体の反りは、次のようにして求められる。接触式3次元測定機で複合体の主面中線上の任意の10cm長を測定し、開始点をA、終了点をBとする。図4における線分ABに対する極大点までの距離(矢印部)を金属−炭化珪素質複合体の反りとする。
[Warpage of metal-silicon carbide composite]
The warp of the metal-silicon carbide composite is determined as follows. An arbitrary 10 cm length on the main surface midline of the composite is measured with a contact type three-dimensional measuring machine, and the start point is A and the end point is B. The distance (arrow part) to the maximum point with respect to the line segment AB in FIG. 4 is taken as the warp of the metal-silicon carbide composite.

[製造方法]
以下、本発明の一実施形態に係る金属−炭化珪素質複合体について、溶湯鍛造法による製造方法を説明する。しかしながら、本発明に係る金属−炭化珪素質複合体は、溶湯鍛造法によって製造されるもののみに限定されるわけではない。
[Production method]
Hereinafter, the manufacturing method by the molten metal forging method is demonstrated about the metal-silicon carbide based composite which concerns on one Embodiment of this invention. However, the metal-silicon carbide composite according to the present invention is not limited to the one manufactured by the molten metal forging method.

ここで、金属−炭化珪素質複合体の製法は、大別すると含浸法と粉末冶金法の2種がある。このうち、熱伝導率等の特性面から、実際に商品化されているのは、含浸法によるものが多い。含浸法にも種々の製法が有り、常圧で行う方法と、高圧下で行う高圧鍛造法がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。   Here, the manufacturing method of the metal-silicon carbide composite can be broadly divided into two types: an impregnation method and a powder metallurgy method. Of these, many are actually commercialized by impregnation methods from the viewpoint of characteristics such as thermal conductivity. There are various impregnation methods, and there are a method performed at normal pressure and a high-pressure forging method performed under high pressure. High pressure forging methods include a molten metal forging method and a die casting method.

本発明の一実施形態に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法とは、一般的に、高圧容器内に、セラミックス等の粉末又は多孔体を装填し、これに金属溶湯を高温、高圧下で含浸させて複合体を得る方法である。   A method suitable for one embodiment of the present invention is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable for obtaining a dense composite having excellent characteristics such as thermal conductivity. The molten metal forging method is generally a method in which a powder or porous material such as ceramics is charged in a high-pressure vessel, and a molten metal is impregnated at high temperature and high pressure to obtain a composite.

発明の一実施形態に係る複合体の製造方法は、原料分級工程、成形工程、仮焼工程、面出し加工工程及び含浸工程からなる。この方法により、本発明に係る金属−炭化珪素複合体を安価で大量に製造することができる。   The manufacturing method of the composite_body | complex which concerns on one Embodiment of an invention consists of a raw material classification process, a shaping | molding process, a calcination process, a surface processing process, and an impregnation process. By this method, the metal-silicon carbide composite according to the present invention can be produced in a large amount at a low cost.

[原料分級工程]
炭化珪素粉末を分級し、粒子径300μm以上の炭化珪素を5体積%以下とすることで分級粉末を得る。分級の方法としては、ふるい網、重力場分級、慣性力場分級、遠心力場分級等の公知の方法を用いることができる。この工程により、本発明の一実施形態に係る金属−炭化珪素質複合体に適した炭化珪素粒子を得ることができる。
[Raw material classification process]
The silicon carbide powder is classified, and the classified powder is obtained by adjusting the silicon carbide having a particle diameter of 300 μm or more to 5% by volume or less. As a classification method, a known method such as sieve mesh, gravity field classification, inertial force field classification, centrifugal force field classification, or the like can be used. Through this step, silicon carbide particles suitable for the metal-silicon carbide composite according to one embodiment of the present invention can be obtained.

[成形工程]
前記炭化珪素粉末に対し、所定量のシリカゾルを添加混合し、所望の形状に成形する。成形の方法としては、乾式プレス成形、湿式プレス成形、押し出し成形、鋳込み成形等を用いることができる。
[Molding process]
A predetermined amount of silica sol is added to and mixed with the silicon carbide powder to form a desired shape. As a molding method, dry press molding, wet press molding, extrusion molding, cast molding, or the like can be used.

[仮焼工程]
前記成形工程で得られた成形体を、大気中又は窒素等の不活性ガス雰囲気中、温度800〜1100℃で加熱し、炭化珪素質多孔体を得る。成形工程、仮焼工程を経ることで面出し加工を行うことができる。
[Calcination process]
The molded body obtained in the molding step is heated in the atmosphere or in an inert gas atmosphere such as nitrogen at a temperature of 800 to 1100 ° C. to obtain a silicon carbide based porous body. Chamfering can be performed through the molding process and the calcining process.

[面出し加工工程]
面出し加工の方法としては、公知の方法を用いることができ、例えば、フライス加工等が挙げられる。また、面出し加工工程において、炭化珪素質多孔体に対しダイヤモンド加工治具を用いて面出し加工を施すことにより、炭化珪素質多孔体の厚み調整を行うことができる。この工程により、複合化した際の金属−炭化珪素質複合体について、所望する厚みや表面粗さを有するものが得られる。
[Chamfering process]
A known method can be used as the chamfering method, and examples thereof include milling. Further, in the chamfering process, the thickness of the silicon carbide based porous body can be adjusted by performing a chamfering process on the silicon carbide based porous body using a diamond processing jig. By this step, the metal-silicon carbide composite when composited has a desired thickness and surface roughness.

[含浸工程]
面出し加工を行った炭化珪素質多孔体は、熱衝撃による割れ等を防止するため、予め加熱し、融点以上の温度に加熱した金属成分からなる溶湯を高圧で含浸させ、その後冷却することで金属−炭化珪素質複合体を得る。この工程により、本発明に係る金属−炭化珪素質複合体について、所望する熱伝導率を有するものが得られる。
[Impregnation process]
In order to prevent cracking and the like due to thermal shock, the silicon carbide porous body that has been subjected to chamfering processing is preliminarily heated, impregnated with a molten metal composed of a metal component heated to a temperature higher than the melting point, and then cooled. A metal-silicon carbide composite is obtained. By this step, a metal-silicon carbide composite according to the present invention having a desired thermal conductivity is obtained.

本発明の一実施形態の金属−炭化珪素質複合体において、前記複合体の熱伝導率が180W m−1−1以上、室温から150℃に加熱した際の熱膨張係数が9×10−6−1以下である形態を挙げることができる。 In the metal-silicon carbide based composite according to an embodiment of the present invention, the composite has a thermal conductivity of 180 W m −1 K −1 or more and a thermal expansion coefficient of 9 × 10 when heated from room temperature to 150 ° C. The form which is 6K- 1 or less can be mentioned.

[金属−炭化珪素質複合体の反りの変化]
本発明の一実施形態の金属−炭化珪素質複合体に対して、ヒートサイクル試験を行った際の反りの変化量が±50%以内である形態を挙げることができる。ここで、反りの変化量は[(ヒートサイクル試験後の反り量)−(ヒートサイクル試験前の反り量)]/(ヒートサイクル試験前の反り量)×100(%)である。
なお、ヒートサイクル試験を行った際の反り変化量は、好ましくは±30%以内であること、より好ましくは±20%以内であることが望ましい。また、ヒートサイクル試験の条件は、例えば、−40℃に保持した気相に30分間さらし、その後125℃に保持した気相に30分間さらすことを1回とするサイクルを100回繰り返すことが挙げられる。
ヒートサイクル試験を行った際の反りの変化量が±50%以内であれば、金属−炭化珪素質複合体をヒートシンクとして用いる場合において、熱サイクルを経た後も、ヒートシンクと冷却フィンとの間のギャップが生じにくく、放熱特性の低下を防止できる。
[Change in warpage of metal-silicon carbide composite]
A form in which the amount of change in warpage when a heat cycle test is performed on the metal-silicon carbide composite of one embodiment of the present invention is within ± 50% can be mentioned. Here, the amount of change in warpage is [(warpage amount after heat cycle test) − (warpage amount before heat cycle test)] / (warpage amount before heat cycle test) × 100 (%).
Note that the amount of change in warpage when the heat cycle test is performed is preferably within ± 30%, and more preferably within ± 20%. In addition, the heat cycle test conditions include, for example, 100 cycles of a cycle in which exposure to a gas phase maintained at −40 ° C. for 30 minutes and subsequent exposure to a gas phase maintained at 125 ° C. for 30 minutes is performed 100 times. It is done.
If the amount of change in the warp when the heat cycle test is performed is within ± 50%, when the metal-silicon carbide composite is used as a heat sink, it is between the heat sink and the cooling fin even after the thermal cycle. It is difficult for gaps to occur, and deterioration of heat dissipation characteristics can be prevented.

本発明の一実施形態の金属−炭化珪素質複合体の表面にNiめっき処理を行い、窒化アルミニウム基板、窒化珪素基板等のセラミックス基板を、はんだ付けなどで搭載することで、パワーモジュール用ヒートシンク等の放熱部品とすることができる。この放熱部品では、熱サイクルを経ても複合体の反りの変化量が小さいため、セラミックス基板の回路間のクラックや回路の剥離は見られにくく、温度変化の激しい環境においても放熱部品として好適に使用することができる。   Ni plating treatment is performed on the surface of the metal-silicon carbide composite of one embodiment of the present invention, and a ceramic substrate such as an aluminum nitride substrate or a silicon nitride substrate is mounted by soldering, etc. It can be used as a heat dissipation component. In this heat dissipation component, the amount of change in the warpage of the composite is small even after a thermal cycle, so cracks between circuits on the ceramic substrate and circuit peeling are difficult to see, and it is suitable for use as a heat dissipation component even in environments where temperature changes are severe can do.

以上、本発明に係る金属−炭化珪素質複合体及びこれを用いた放熱部品、並びにこれらの製造方法について、発明の一実施形態を挙げて説明したが、本発明はこれらに制限されるものではない。   In the above, the metal-silicon carbide composite according to the present invention, the heat dissipation component using the same, and the production method thereof have been described with reference to one embodiment of the present invention, but the present invention is not limited thereto. Absent.

以下に、実施例、比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1〜8、比較例1〜2]
市販されている高純度の炭化珪素粉末を分級し、炭化珪素粉末A(粒子径300μm以上)、炭化珪素粉末B(粒子径100μm以上300μm未満)、炭化珪素粉末C(粒子径50μm以上100μm未満)、炭化珪素粉末D(粒子径1μm以上50μm未満)、炭化珪素粉末E(粒子径1μm未満)を得た。これらの炭化珪素粉末を表1に示すような組成で配合し(実施例1〜8及び比較例1〜2)、シリカゾルを3wt%添加した後、撹拌混合機で30分混合した。各炭化珪素粉末の粒径は、JIS ZZ8825:2013に従い、レーザー回折・散乱法による粒度分布測定装置(ベックマン・コールター社製、製品名「LS230」、以下同様)によって測定した。混合物を100mm×100mm×6mmの形状に10MPaの圧力で成形した。
[Examples 1-8, Comparative Examples 1-2]
Commercially available high-purity silicon carbide powder is classified, silicon carbide powder A (particle diameter 300 μm or more), silicon carbide powder B (particle diameter 100 μm or more and less than 300 μm), silicon carbide powder C (particle diameter 50 μm or more and less than 100 μm) Silicon carbide powder D (particle diameter of 1 μm or more and less than 50 μm) and silicon carbide powder E (particle diameter of less than 1 μm) were obtained. These silicon carbide powders were blended in compositions as shown in Table 1 (Examples 1 to 8 and Comparative Examples 1 and 2), 3 wt% of silica sol was added, and then mixed for 30 minutes with a stirring mixer. The particle size of each silicon carbide powder was measured in accordance with JIS ZZ8825: 2013 with a particle size distribution measuring apparatus (product name “LS230”, manufactured by Beckman Coulter, Inc.) using a laser diffraction / scattering method. The mixture was molded into a shape of 100 mm × 100 mm × 6 mm at a pressure of 10 MPa.

得られた成形体を大気中において温度900℃で2時間加熱し、炭化珪素質多孔体を得た。次に、得られた炭化珪素質多孔体をダイヤモンド加工治具にて面出し加工を行うことで、厚みを4.8mmとした。なお、加工後の炭化珪素質多孔体の厚みは主面中央部をマイクロメーターにて確認した。離型剤を塗布したステンレス製(SUS304)の板によって各試料10枚の間を区切り、両端に厚み12mmの鉄板を配した後、10mmφのボルト、ナットで固定し、一つのブロックを形成した。   The obtained molded body was heated in the atmosphere at a temperature of 900 ° C. for 2 hours to obtain a silicon carbide based porous body. Next, the obtained silicon carbide porous body was subjected to chamfering with a diamond processing jig, so that the thickness was 4.8 mm. In addition, the thickness of the silicon carbide based porous material after processing was confirmed with a micrometer at the center of the main surface. Each of the 10 samples was separated by a stainless steel (SUS304) plate coated with a release agent, and an iron plate having a thickness of 12 mm was arranged on both ends, and then fixed with 10 mmφ bolts and nuts to form one block.

次に前記ブロックを、電気炉で温度600℃に予備加熱した後、あらかじめ加熱しておいた内寸250mmφ×300mmの空隙を有するプレス型内に収め、珪素を12%、マグネシウムを1%含有し、残部がアルミニウム及び不可避的不純物からなる組成を有する温度800℃のアルミニウム合金の溶湯を注ぎ、60MPaの圧力で10分加圧して炭化珪素質多孔体にアルミニウム合金を含浸させた。得られた複合体を含む金属塊は、室温まで冷却後、湿式バンドソーにて離型板の側面形状に沿って切断し、挟んだステンレス板を剥がし、100mm×100mm×5mmの金属−炭化珪素質複合体を得た。   Next, the block was preheated to a temperature of 600 ° C. in an electric furnace, and then placed in a pre-heated press mold having an internal dimension of 250 mmφ × 300 mm, containing 12% silicon and 1% magnesium. Then, a molten aluminum alloy having a composition composed of aluminum and inevitable impurities in the balance and having a temperature of 800 ° C. was poured and pressurized at a pressure of 60 MPa for 10 minutes to impregnate the silicon carbide based porous material with the aluminum alloy. The obtained metal lump containing the composite is cooled to room temperature, then cut along the side shape of the release plate with a wet band saw, and the sandwiched stainless steel plate is peeled off, and the metal-silicon carbide of 100 mm × 100 mm × 5 mm A complex was obtained.

得られた金属−炭化珪素質複合体はダイヤモンド加工治具を用いて、熱膨張係数測定用試験体(3×4×20mm)と、室温の熱伝導率測定用試験体(25×25×2mmt)に研削加工した。また、図3の点線にて示す、端部から複合体全長の20%内側を通る直線、及び複合体主面の中線に沿って、金属−炭化珪素質複合体をダイヤモンド加工治具で切断した。その後、図3内○の箇所について、複合体断面を得た後、表面部分を走査型電子顕微鏡で100倍にて観察した。最表面から炭化珪素粒子までの距離を200μm間隔で5箇所測定し、5点の平均を計算することで表面層の厚みとした。得られた結果を表2に示す。表2に示されるように、実施例1〜8に係る金属−炭化珪素質複合体は、比較例1〜2に係る金属−炭化珪素質複合体に比べ、表面及び裏面の厚み差が小さかった。また、当該領域はエネルギー分散型X線分析装置により、アルミニウムを主成分とする金属で構成されていることを確認した。   The obtained metal-silicon carbide composite was prepared using a diamond processing jig, a thermal expansion coefficient measurement specimen (3 × 4 × 20 mm), and a room temperature thermal conductivity measurement specimen (25 × 25 × 2 mmt). ). Further, the metal-silicon carbide composite is cut with a diamond processing jig along the straight line passing through 20% of the total length of the composite from the end portion and the center line of the composite main surface, as indicated by the dotted line in FIG. did. Then, after obtaining the cross section of the composite for the portion indicated by ○ in FIG. 3, the surface portion was observed with a scanning electron microscope at 100 times. The distance from the outermost surface to the silicon carbide particles was measured at five locations at intervals of 200 μm, and the average of the five points was calculated to obtain the thickness of the surface layer. The obtained results are shown in Table 2. As shown in Table 2, the metal-silicon carbide composites according to Examples 1 to 8 had a smaller thickness difference between the front and back surfaces than the metal-silicon carbide composites according to Comparative Examples 1 and 2. . Further, it was confirmed by an energy dispersive X-ray analyzer that the region was composed of a metal mainly composed of aluminum.

得られた金属−炭化珪素質複合体に含まれる炭化珪素の粒径を、実施例1を例に以下のようにして求めた。まず、室温の熱伝導率測定用試験体と同様の形状に研削加工した複合体について、20%水酸化ナトリウム水溶液に浸漬し、金属部のみを完全に溶解した。その後、ろ過によって炭化珪素粒子を回収し、炭化珪素の粒径を、JIS ZZ8825:2013に従い、レーザー回折・散乱法による粒度分布測定装置によって測定した。得られた結果について、5μm刻みのヒストグラムを作製したところ、間隔が50μm以上離れた二つのピークを確認した。このとき、粒径が小さい方のピークは粒径が1μm以上50μm未満の範囲に収まり、粒径が大きい方のピークは粒径が100μm以上300μm未満の範囲に収まることを確認した。また、両ピークの面積比はおよそ25:75であった。   The particle size of silicon carbide contained in the obtained metal-silicon carbide composite was determined in the following manner using Example 1 as an example. First, the composite ground to the same shape as the test sample for measuring thermal conductivity at room temperature was immersed in a 20% aqueous sodium hydroxide solution to completely dissolve only the metal part. Thereafter, the silicon carbide particles were collected by filtration, and the particle size of the silicon carbide was measured by a particle size distribution measuring apparatus by a laser diffraction / scattering method in accordance with JIS ZZ8825: 2013. Regarding the obtained results, when a histogram having a pitch of 5 μm was prepared, two peaks separated by 50 μm or more were confirmed. At this time, it was confirmed that the peak with the smaller particle size was within the range of 1 μm or more and less than 50 μm, and the peak with the larger particle size was within the range of 100 μm or more and less than 300 μm. The area ratio of both peaks was approximately 25:75.

次に、それぞれの試験体を用いて、熱膨張計により室温から150℃の熱膨張係数、レーザーフラッシュ法による室温の熱伝導率を測定した。また、接触式3次元測定機(ACCRETECH社製、製品名「CONTOURECORD 1600D」、以降同じ)で複合体の主面中線上の任意の10cm長を測定し、開始点をA、終了点をBとした。この線分ABに対する極大点までの距離(図4矢印部)を金属−炭化珪素質複合体の反り量とした。更に、熱伝導率測定用試験体を用いて、アルキメデス法により複合体の密度を測定し、密度の値から炭化珪素粒子の体積分率を算出した。得られた結果を表3に示す。   Next, the thermal expansion coefficient from room temperature to 150 ° C. and the thermal conductivity at room temperature by the laser flash method were measured by a thermal dilatometer using each test specimen. In addition, an arbitrary 10 cm length on the midline of the main surface of the composite is measured with a contact type three-dimensional measuring machine (manufactured by ACCRETECH, product name “CONTOURCODE 1600D”, and so on), and the start point is A and the end point is B did. The distance to the maximum point with respect to this line segment AB (arrow part in FIG. 4) was taken as the amount of warpage of the metal-silicon carbide composite. Furthermore, the density of the composite was measured by the Archimedes method using a test sample for measuring thermal conductivity, and the volume fraction of silicon carbide particles was calculated from the density value. The obtained results are shown in Table 3.

更に、これらの金属−炭化珪素質複合体を用いて、−40℃〜125℃の温度幅で100回のヒートサイクル試験を行った。その後、接触式3次元測定機により、複合体の主面の長さ10cmに対する反り量を測定し、初期の値に対する反り変化量を算出した。このとき反り変化量は[(ヒートサイクル試験後の反り量)−(ヒートサイクル試験前の反り量)]/(ヒートサイクル試験前の反り量)×100(%)とした。得られた結果を表3に示す。   Furthermore, using these metal-silicon carbide composites, a heat cycle test was performed 100 times at a temperature range of −40 ° C. to 125 ° C. Thereafter, the amount of warpage with respect to a length of 10 cm of the main surface of the composite was measured by a contact type three-dimensional measuring machine, and the amount of change in warpage with respect to the initial value was calculated. At this time, the warpage change amount was [(warpage amount after heat cycle test) − (warpage amount before heat cycle test)] / (warpage amount before heat cycle test) × 100 (%). The obtained results are shown in Table 3.

表3に示されるように、実施例1〜8に係る金属−炭化珪素質複合体は、比較例1〜2に係る金属−炭化珪素質複合体に比べ、ヒートサイクル試験を行った後も反り変化量が小さく、かつ低い熱膨張係数、高い熱伝導率を有していた。   As shown in Table 3, the metal-silicon carbide composites according to Examples 1 to 8 are warped after performing a heat cycle test, as compared with the metal-silicon carbide composites according to Comparative Examples 1 and 2. The amount of change was small, and it had a low thermal expansion coefficient and high thermal conductivity.

これに対し、比較例1ないし2の金属−炭化珪素質複合体では、ヒートサイクル試験を行った後も反り変化量の絶対値が50%を超えた。これは粒子径300μm以上の炭化珪素粉末を5体積%以上含んでいたためであると考えられる。   In contrast, in the metal-silicon carbide composites of Comparative Examples 1 and 2, the absolute value of the warpage change amount exceeded 50% even after the heat cycle test. This is considered to be because 5 vol% or more of silicon carbide powder having a particle diameter of 300 μm or more was contained.

※1 サンプル長10cmに対する反り量
※2 ヒートサイクル −40℃⇔125℃(各30分)×100サイクル後の反り変化量
* 1 Warp amount for sample length 10cm * 2 Heat cycle −40 ° C to 125 ° C (30 minutes each) × Warp change after 100 cycles

[実施例9]
実施例9では、実施例2の含浸する金属を、99.8質量%以上がマグネシウム、残部が不可避的不純物からなる市販の純マグネシウムとし、その他は実施例3と同じ操作にて複合体を作製した。複合体の密度は2.69g cm−3であり、表裏の表面層の平均厚みは表面が90μm、裏面が98μmであった。また、熱伝導率は197W m−1−1、熱膨張係数は7.5ppm K−1、複合体の主面長さ10cmに対する反り量は46μmであった。更に、実施例1〜6と同様にヒートサイクル試験を行った。その結果、反り変化量は8%であった。即ち、含浸する金属として、マグネシウムを主成分とする金属を用いても、アルミニウムを成分とする金属を用いた場合と同様の結果が得られた。
[Example 9]
In Example 9, the metal to be impregnated in Example 2 is made of commercially pure magnesium in which 99.8% by mass or more is magnesium and the balance is inevitable impurities, and the other components are manufactured in the same manner as in Example 3. did. The density of the composite was 2.69 g cm −3 , and the average thickness of the front and back surface layers was 90 μm on the front surface and 98 μm on the back surface. Further, the thermal conductivity was 197 W m −1 K −1 , the thermal expansion coefficient was 7.5 ppm K −1 , and the amount of warpage with respect to the main surface length of 10 cm was 46 μm. Furthermore, the heat cycle test was done like Examples 1-6. As a result, the warpage change amount was 8%. That is, even when a metal containing magnesium as a main component was used as the metal to be impregnated, the same results as when using a metal containing aluminum as a component were obtained.

[実施例10、11]
実施例3で作製した炭化珪素質多孔体について、離型剤を塗布したステンレス製(SUS304)の板によって各試料10枚の間を区切る際に、炭化珪素質多孔体とステンレス製板の間に金属板を配置した。また、金属板のサイズは長さ100mm、幅100mm、厚み50μmとした。配置した金属板、及び含浸した金属溶湯の材質は表4に示す。その他は実施例3と同様の手順にて複合体を作製した。表裏の表面層の平均厚みを表5に、各複合体の密度、室温の熱伝導率、室温から150℃の熱膨張係数、複合体の主面長さ10cmに対する反り量及び、実施例1〜8と同様にヒートサイクル試験を行った後の反り変化量を表6にそれぞれ示す。含浸する金属と、含浸する金属とは異なる金属の金属板とを用いて金属−炭化珪素質複合体を作製した場合でも、実施例1〜8と同様に、表面及び裏面の厚み差が小さい金属−炭化珪素質複合体が得られ、また、ヒートサイクル試験を行った後も反り変化量が小さく、かつ低い熱膨張係数、高い熱伝導率を有する金属−炭化珪素質複合体が得られた。
[Examples 10 and 11]
For the silicon carbide based porous material produced in Example 3, when the 10 samples were separated by a stainless steel (SUS304) plate coated with a release agent, a metal plate was interposed between the silicon carbide porous material and the stainless steel plate. Arranged. The size of the metal plate was 100 mm in length, 100 mm in width, and 50 μm in thickness. Table 4 shows the materials of the disposed metal plates and the impregnated molten metal. Otherwise, a composite was prepared in the same procedure as in Example 3. Table 5 shows the average thicknesses of the front and back surface layers. The density of each composite, the thermal conductivity at room temperature, the thermal expansion coefficient from room temperature to 150 ° C., the amount of warpage with respect to the main surface length of 10 cm, and Examples 1 to Table 6 shows the amount of change in warpage after performing the heat cycle test in the same manner as in Table 8. Even when a metal-silicon carbide composite is produced using a metal to be impregnated and a metal plate of a metal different from the metal to be impregnated, a metal having a small thickness difference between the front surface and the back surface, as in Examples 1 to 8. -A silicon carbide composite was obtained, and a metal-silicon carbide composite having a small amount of change in warpage and having a low thermal expansion coefficient and high thermal conductivity even after a heat cycle test was obtained.

[実施例12、13、比較例3]
実施例2で作製した金属−炭化珪素質複合体に無電解Niめっき処理を行い、複合体表面に5μm厚のめっき層を形成した。めっき処理した複合体表面に100μm厚のはんだペーストをスクリーン印刷し、実施例12では市販の窒化アルミニウム基板を、実施例13では市販の窒化珪素基板をそれぞれ搭載し、温度300℃のリフロー炉で5分間加熱処理してセラミックス基板を接合した。また、比較例3では、銅板に対し実施例12及び13と同様の手順にて、めっき処理後、窒化アルミニウム基板を接合した。これらのセラミックス基板を接合した複合体を用いて、−40℃〜125℃の温度幅で1000回のヒートサイクル試験を行った。実施例12及び13では、ヒートサイクル試験後もセラミックス基板の回路間のクラックや回路の剥離は見られず、放熱部品として好適な信頼性を示した。一方、比較例3に関しては、ヒートサイクル30回でセラミックス基板の回路間にクラックが発生した。
[Examples 12 and 13, Comparative Example 3]
The metal-silicon carbide composite produced in Example 2 was subjected to electroless Ni plating treatment to form a 5 μm thick plating layer on the composite surface. A solder paste having a thickness of 100 μm is screen-printed on the plated composite surface, and a commercially available aluminum nitride substrate is mounted in Example 12 and a commercially available silicon nitride substrate is mounted in Example 13, and 5% in a reflow furnace at a temperature of 300 ° C. The ceramic substrate was joined by heat treatment for a minute. In Comparative Example 3, the aluminum nitride substrate was bonded to the copper plate after plating in the same procedure as in Examples 12 and 13. Using the composites obtained by bonding these ceramic substrates, 1000 heat cycle tests were performed at a temperature range of −40 ° C. to 125 ° C. In Examples 12 and 13, there was no crack between the circuits of the ceramic substrate or peeling of the circuit even after the heat cycle test, and the reliability suitable as a heat dissipation component was shown. On the other hand, in Comparative Example 3, cracks occurred between the circuits of the ceramic substrate after 30 heat cycles.

1 金属−炭化珪素質複合体
2 複合化部
3a、3b 表面層
DESCRIPTION OF SYMBOLS 1 Metal-silicon carbide composite 2 Composite part 3a, 3b Surface layer

Claims (5)

炭化珪素質多孔体へアルミニウム又はマグネシウムのいずれか1つ以上を主成分とする金属を含浸してなる金属−炭化珪素質複合体であって、金属−炭化珪素質複合体の両主面がアルミニウム又はマグネシウムのいずれか1つ以上を主成分とする金属を含む表面層で被覆されており、金属−炭化珪素質複合体内部に含まれる炭化珪素粒子について、粒径300μm以上の粒子が5体積%以下であることを特徴とする、金属−炭化珪素質複合体。   A metal-silicon carbide composite obtained by impregnating a silicon carbide based porous material with a metal containing at least one of aluminum and magnesium as a main component, wherein both main surfaces of the metal-silicon carbide composite are aluminum Or 5% by volume of particles having a particle size of 300 μm or more with respect to the silicon carbide particles that are coated with a surface layer containing a metal whose main component is at least one of magnesium and contained in the metal-silicon carbide composite. A metal-silicon carbide composite, characterized in that: 金属−炭化珪素質複合体の両主面を被覆する表面層について、表側と裏側の厚みの差が50μm以内である、請求項1に記載の金属−炭化珪素質複合体。   2. The metal-silicon carbide composite according to claim 1, wherein the thickness difference between the front side and the back side of the surface layer covering both main surfaces of the metal-silicon carbide composite is within 50 μm. ヒートサイクル試験を行った際の反り変化量が±50%以内であることを特徴とする、請求項1又は2に記載の金属−炭化珪素質複合体。   3. The metal-silicon carbide composite according to claim 1, wherein the amount of change in warpage when the heat cycle test is performed is within ± 50%. 下記1)〜5)の工程を含む、請求項1から3のいずれか一項に記載の金属−炭化珪素質複合体の製造方法:
1)炭化珪素粉末を分級し、粒子径300μm以上の炭化珪素を5体積%以下とすることで分級粉末を得る原料分級工程と、
2)前記分級粉末へシリカゾルを添加し混合後、混合物を加圧成形することで成形体を得る成形工程と、
3)得られた成形体を大気中又は窒素等の不活性ガス雰囲気中で800〜1100℃に加熱し、炭化珪素質多孔体を得る仮焼工程と、
4)得られた炭化珪素質多孔体をダイヤモンド加工治具にて面出し加工を行う面出し加工工程と、
5)得られた炭化珪素質多孔体に対し金属溶湯を含浸し、その後冷却することで金属−炭化珪素質複合体を得る含浸工程。
The method for producing a metal-silicon carbide composite according to any one of claims 1 to 3, comprising the following steps 1) to 5):
1) A raw material classification step of classifying silicon carbide powder to obtain a classified powder by setting silicon carbide having a particle diameter of 300 μm or more to 5% by volume or less;
2) A molding step in which a silica sol is added to the classified powder and mixed, and then the mixture is pressure-molded to obtain a molded body;
3) A calcining step of heating the obtained molded body to 800 to 1100 ° C. in the atmosphere or an inert gas atmosphere such as nitrogen to obtain a silicon carbide based porous body;
4) A chamfering step of chamfering the obtained silicon carbide based porous material with a diamond processing jig;
5) An impregnation step of obtaining a metal-silicon carbide composite by impregnating the obtained silicon carbide porous body with a molten metal and then cooling.
請求項1から3のいずれか一項に記載の金属−炭化珪素質複合体を用いてなることを特徴とする放熱部品。
A heat-radiating component comprising the metal-silicon carbide composite according to any one of claims 1 to 3.
JP2019109200A 2019-06-12 2019-06-12 Metal-silicon carbide composite and method for producing the same Active JP6595740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019109200A JP6595740B1 (en) 2019-06-12 2019-06-12 Metal-silicon carbide composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109200A JP6595740B1 (en) 2019-06-12 2019-06-12 Metal-silicon carbide composite and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018132807 Division 2018-07-13 2018-07-13

Publications (2)

Publication Number Publication Date
JP6595740B1 true JP6595740B1 (en) 2019-10-23
JP2020012194A JP2020012194A (en) 2020-01-23

Family

ID=68314163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109200A Active JP6595740B1 (en) 2019-06-12 2019-06-12 Metal-silicon carbide composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP6595740B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181416A1 (en) 2021-02-26 2022-09-01 デンカ株式会社 Molded article and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118056273A (en) * 2021-10-06 2024-05-17 电化株式会社 Heat radiation member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125878A1 (en) * 2006-04-26 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum/silicon carbide composite and radiating part comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181416A1 (en) 2021-02-26 2022-09-01 デンカ株式会社 Molded article and method for producing same
CN115867400A (en) * 2021-02-26 2023-03-28 电化株式会社 Molded article and method for producing same

Also Published As

Publication number Publication date
JP2020012194A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP6636924B2 (en) Aluminum-silicon carbide composite and method for producing the same
EP3104406B1 (en) Power module
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP6083634B2 (en) Heat dissipation substrate and method for manufacturing the heat dissipation substrate
WO2022181416A1 (en) Molded article and method for producing same
JP5208616B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP5368766B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2016180185A (en) Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP4305986B2 (en) Method for producing silicon carbide composite material
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP3737072B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP5284706B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2010024488A (en) Aluminum-silicon carbide composite body and method for producing the same
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP4127379B2 (en) Method for producing aluminum-silicon carbide composite
JP2000192168A (en) Silicon carbide composite material and its production
JP2001217364A (en) Al-SiC COMPOSITE
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2016111328A (en) Heat-dissipating substrate, and semiconductor package and semiconductor module using the same
JP2003268482A (en) Al-SiC COMPOSITE MATERIAL
JP2003268478A (en) Al-SiC COMPOSITE
JP2017098574A (en) Heat dissipating substrate and method of manufacturing the same
JP2001284508A (en) Al-SiC COMPOSITE BODY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250