JP4244210B2 - Aluminum-ceramic composite and method for producing the same - Google Patents

Aluminum-ceramic composite and method for producing the same Download PDF

Info

Publication number
JP4244210B2
JP4244210B2 JP2004260650A JP2004260650A JP4244210B2 JP 4244210 B2 JP4244210 B2 JP 4244210B2 JP 2004260650 A JP2004260650 A JP 2004260650A JP 2004260650 A JP2004260650 A JP 2004260650A JP 4244210 B2 JP4244210 B2 JP 4244210B2
Authority
JP
Japan
Prior art keywords
aluminum
ceramic
composite
porous body
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004260650A
Other languages
Japanese (ja)
Other versions
JP2006076812A (en
Inventor
秀樹 廣津留
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004260650A priority Critical patent/JP4244210B2/en
Publication of JP2006076812A publication Critical patent/JP2006076812A/en
Application granted granted Critical
Publication of JP4244210B2 publication Critical patent/JP4244210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、アルミニウム−セラミックス複合体及びその製造方法に関するものである。   The present invention relates to an aluminum-ceramic composite and a method for producing the same.

近年、半導体素子の高速化や集積度の増加に伴い、半導体素子からの発熱量が増大する傾向にあり、この半導体素子から発生する熱を如何に効率的に除去するかが重要となってきている。この為、放熱部品に対しても、高い熱伝導率が要求されるようになってきており、熱伝導率が390W/mKの銅(Cu)が一般に用いられている。   In recent years, with the increase in the speed and integration of semiconductor elements, the amount of heat generated from the semiconductor elements tends to increase, and how to efficiently remove the heat generated from the semiconductor elements has become important. Yes. For this reason, high thermal conductivity is also required for heat dissipation components, and copper (Cu) having a thermal conductivity of 390 W / mK is generally used.

半導体素子搭載用基板と半導体素子との間の界面には熱応力により歪みが発生するため、この歪みを小さくすることが併せて要求されている。この為、半導体素子搭載用基板の熱膨張率は、半導体素子の熱膨張率に近いことが要求されるようになってきている。例えば、半導体素子を構成する珪素(Si)の熱膨張係数は4.2×10-6/K、ガリウム砒素(GaAs)の熱膨張係数は6.5×10-6/Kであり、これらの熱膨張係数に近い値を有する材料の使用が望まれている。この様な比較的熱膨張係数の小さい放熱材料として、従来、タングステン(W)、モリブデン(Mo)やこれらの材料と銅(Cu)の複合材が用いられてきた(特許文献1)。
特開平6−13494号公報
Since distortion occurs due to thermal stress at the interface between the semiconductor element mounting substrate and the semiconductor element, it is also required to reduce this distortion. For this reason, the thermal expansion coefficient of the semiconductor element mounting substrate is required to be close to the thermal expansion coefficient of the semiconductor element. For example, the thermal expansion coefficient of silicon (Si) constituting the semiconductor element is 4.2 × 10 −6 / K, and the thermal expansion coefficient of gallium arsenide (GaAs) is 6.5 × 10 −6 / K. The use of materials with close values is desired. Conventionally, tungsten (W), molybdenum (Mo), and a composite material of these materials and copper (Cu) have been used as such a heat dissipation material having a relatively small thermal expansion coefficient (Patent Document 1).
JP-A-6-13494

半導体素子とパッケージとの電気的接合に、ワイヤーの代わりに半田ボールを用いる方法(フリップチップ方式)や、マザー基板への接合にピンの代わりに半田ボールを用いる方法(ボールグリッドアレイ方式)が採用されるようになってきている。これらの方式では、基板材が重いと、半田ボールが必要以上に潰れるという課題があり、前記の重金属系の材料を用いることが困難な場合がある。さらに、タングステンやモリブデンは比較的高価な材料であり、コスト面からも好ましくない。 A method using solder balls instead of wires (flip chip method) for electrical bonding between semiconductor elements and packages, or a method using solder balls instead of pins (ball grid array method) for bonding to mother boards is adopted. It has come to be. In these systems, when the substrate material is heavy, there is a problem that the solder balls are crushed more than necessary, and it may be difficult to use the heavy metal material. Furthermore, tungsten and molybdenum are relatively expensive materials and are not preferable from the viewpoint of cost.

この為、半導体素子搭載用基板材料としては、軽量で熱膨張係数が半導体素子に近く、且つ熱伝導率の高い材料が望まれている。さらに、半導体パッケージの構造も、半導体素子の集積度の増大に伴い、多様化、複雑化が進み、基板材料には、より薄い形状やより複雑な形状が求められている。   For this reason, as a substrate material for mounting a semiconductor element, a material that is lightweight, has a thermal expansion coefficient close to that of a semiconductor element, and has high thermal conductivity is desired. Furthermore, the structure of the semiconductor package is also diversified and complicated as the degree of integration of semiconductor elements increases, and thinner and more complicated shapes are required for the substrate material.

軽量で、熱膨張係数が小さく、且つ高熱伝導な材料として、近年、アルミニウム−セラミックス複合材料がその候補として研究されている。この様な複合材料の中で、特にアルミニウム−炭化珪素(Al−SiC)複合材料は、特性面、コスト面に優れ、半導体素子搭載用基板材料として、一部で使用され始めている。   In recent years, aluminum-ceramic composite materials have been studied as candidates for being lightweight, having a low coefficient of thermal expansion, and having high thermal conductivity. Among such composite materials, an aluminum-silicon carbide (Al-SiC) composite material is particularly excellent in characteristics and cost, and has begun to be used in part as a substrate material for mounting semiconductor elements.

アルミニウム−炭化珪素複合材料からなる半導体素子搭載用基板材料に関しては、例えば特許文献2に粉末冶金法による小型異形品及びその製造方法の記載がある。しかしながら、この製造方法で得られたアルミニウム−炭化珪素複合材料を半導体素子搭載用基板材料に用いる場合、薄肉の材料を均一に且つ精度良く形成することが難しく、製造コストの点においても課題があった。
特開平10−335538号公報
Regarding the substrate material for mounting a semiconductor element made of an aluminum-silicon carbide composite material, for example, Patent Document 2 describes a small variant by a powder metallurgy method and a manufacturing method thereof. However, when the aluminum-silicon carbide composite material obtained by this manufacturing method is used as a substrate material for mounting a semiconductor element, it is difficult to form a thin material uniformly and accurately, and there is a problem in terms of manufacturing cost. It was.
JP-A-10-335538

アルミニウム−炭化珪素複合材料の製造方法に関しては、特許文献3等に記載がある。本発明に係る半導体素子搭載用基板材料にこの材料を用いる場合、ダイヤモンド等の特殊工具を用いて機械加工を行う必要があり、製造コストが高くなるという課題がある。
米国特許第6250127号
The method for producing the aluminum-silicon carbide composite material is described in Patent Document 3 and the like. When this material is used for the substrate material for mounting a semiconductor element according to the present invention, it is necessary to perform machining using a special tool such as diamond, and there is a problem that the manufacturing cost increases.
US Pat. No. 6,250,127

本発明の目的は、軽量で、半導体素子と熱膨張係数の差が小さく、高い熱伝導性を有し、半導体素子搭載用基板材料として好適な薄肉の部材を安価に提供することである。   An object of the present invention is to provide a low-cost thin member that is lightweight, has a small difference in thermal expansion coefficient from that of a semiconductor element, has high thermal conductivity, and is suitable as a substrate material for mounting a semiconductor element.

本発明者は、上記の目的を達する為に鋭意検討した結果、アルミニウム−セラミックス複合材料に関して、セラミックスの種類及び含有量を適正化し、その成形方法並びに成形後の強度発現の為の処理方法を開発し、薄肉のセラミックス多孔体を作製し得るとの知見を得た。次に、このセラミックス多孔体とアルミニウムを主成分とする金属(以下、アルミニウム合金という)を高圧下で複合化することにより、薄肉の複合体を安価に製造出来る技術を開発した。   As a result of diligent study to achieve the above object, the present inventor has optimized the type and content of ceramics for an aluminum-ceramic composite material, and developed a molding method and a processing method for developing strength after molding. And the knowledge that a thin ceramic porous body can be produced was acquired. Next, a technology has been developed that can produce a thin composite at low cost by combining the ceramic porous body and a metal containing aluminum as a main component (hereinafter referred to as an aluminum alloy) under high pressure.

すなわち、本発明は、気孔率20〜60%のセラミックス多孔体に、アルミニウム合金を含浸してなる平板状のアルミニウム−セラミックス複合体であって、板厚が1.5mm以下であり、両主面が0.01〜0.15mmのアルミニウム合金からなるアルミニウム層で被覆されてなることを特徴とする板状のアルミニウム−セラミックス複合体である。   That is, the present invention is a flat aluminum-ceramic composite formed by impregnating a ceramic porous body having a porosity of 20 to 60% with an aluminum alloy, and has a plate thickness of 1.5 mm or less, both main surfaces. Is a plate-like aluminum-ceramic composite, which is coated with an aluminum layer made of an aluminum alloy of 0.01 to 0.15 mm.

また、本発明は、セラミックスが、炭化珪素、窒化珪素、窒化アルミニウムの群から選ばれる1種以上であることを特徴とする該アルミニウム−セラミックス複合体であり、セラミックス多孔体が、気孔率30〜50%の窒化珪素多孔体であることを特徴とする該アルミニウム−セラミックス複合体である。 The present invention is the aluminum-ceramic composite, wherein the ceramic is one or more selected from the group consisting of silicon carbide, silicon nitride, and aluminum nitride, and the ceramic porous body has a porosity of 30 to 30. The aluminum-ceramic composite is a 50% silicon nitride porous body.

更に、本発明は、25℃から125℃の線膨張係数が10×10−6/K以下であり、25℃における熱伝導率が70W/mK以上であることを特徴とする該アルミニウム−セラミックス複合体である。 Furthermore, the present invention provides the aluminum-ceramic composite, wherein the linear expansion coefficient from 25 ° C. to 125 ° C. is 10 × 10 −6 / K or less, and the thermal conductivity at 25 ° C. is 70 W / mK or more. Is the body.

本願発明に係る製造方法は、炭化珪素、窒化珪素、窒化アルミニウムの群から選ばれる1種以上のセラミックス粉末に有機バインダー及び/又は無機バインダーを混合し、押し出し成形又はドクターブレード成形にて厚さ1.5mm以下のシート状の成形物を作製した後、800〜1200℃で10分〜2時間加熱処理して気孔率20〜60%のセラミックス多孔体とし、更に、前記セラミックス多孔体を550℃以上の温度で予熱した後、前記セラミックス多孔体の空隙部分に、溶融したアルミニウム合金を20MPa以上の圧力を加えて含浸させることを特徴とするものである。   In the manufacturing method according to the present invention, an organic binder and / or an inorganic binder is mixed with one or more ceramic powders selected from the group of silicon carbide, silicon nitride, and aluminum nitride, and the thickness is 1 by extrusion molding or doctor blade molding. After producing a sheet-like molded product having a thickness of 5 mm or less, heat treatment is performed at 800 to 1200 ° C. for 10 minutes to 2 hours to obtain a ceramic porous body having a porosity of 20 to 60%, and the ceramic porous body is further 550 ° C. or higher. After preheating at this temperature, the void portion of the ceramic porous body is impregnated with a molten aluminum alloy by applying a pressure of 20 MPa or more.

本発明によれば、軽量で、半導体素子と熱膨張係数の差が小さく、且つ高い熱伝導性を有し、半導体素子搭載用基板材料として好適な薄肉の部材を安価に提供することが出来る。   According to the present invention, a thin member that is lightweight, has a small difference in thermal expansion coefficient from that of a semiconductor element, has high thermal conductivity, and is suitable as a substrate material for mounting a semiconductor element can be provided at low cost.

本発明に用いるセラミックス多孔体の気孔率は、20〜60%が好ましく、30〜50%がより好ましい。アルミニウム−セラミックス複合体の特性、特に線膨張係数は、用いるセラミックスの線膨張係数とその含有量により決まる。半導体素子搭載用基板材料として用いる場合、半導体素子との線膨張係数の差が大きくなると、半導体素子作動時の発熱により接合部に応力が発生し、部品が反る場合がある。この為、アルミニウム−セラミックス複合体の線膨張係数を小さくする為、気孔率の上限は60%が好ましく、50%がより好ましい。一方、気孔率が20%未満では、アルミニウム合金との複合化が難しく、複合化時に気孔が残留する等の弊害が生じ、その結果、熱伝導率が低下する場合がある。   The porosity of the ceramic porous body used in the present invention is preferably 20 to 60%, more preferably 30 to 50%. The characteristics of the aluminum-ceramic composite, particularly the linear expansion coefficient, are determined by the linear expansion coefficient of the ceramic used and its content. When used as a substrate material for mounting a semiconductor element, if the difference in coefficient of linear expansion from the semiconductor element becomes large, stress may be generated at the joint due to heat generated when the semiconductor element is operated, and the part may be warped. For this reason, in order to reduce the linear expansion coefficient of the aluminum-ceramic composite, the upper limit of the porosity is preferably 60%, more preferably 50%. On the other hand, if the porosity is less than 20%, it is difficult to form a composite with an aluminum alloy, and there are problems such as pores remaining during the composite, resulting in a decrease in thermal conductivity.

本発明の複合材の金属成分は、アルミニウム合金である。アルミニウム合金は、密度が2.65g/cm程度と小さく、得られる複合体が軽量となり、半導体素子搭載用基板材料等として好適である。また、アルミニウム合金は、150〜240W/mKと熱伝導率が高く、得られる複合体の熱伝導率が高くなり好ましい。更に、アルミニウム合金は、融点が660℃以下と低温であり、セラミックと複合化する際のプロセスコストを低減できる点からも好ましい。 The metal component of the composite material of the present invention is an aluminum alloy. The aluminum alloy has a density as small as about 2.65 g / cm 3, and the resulting composite is lightweight, and is suitable as a substrate material for mounting a semiconductor element. An aluminum alloy is preferable because it has a high thermal conductivity of 150 to 240 W / mK, and the resulting composite has a high thermal conductivity. Further, the aluminum alloy has a low melting point of 660 ° C. or lower, and is preferable from the viewpoint of reducing the process cost when it is combined with the ceramic.

アルミニウム合金は、Siを0〜20質量%、Mgを0.5〜3質量%含むことが好ましい。その他の金属不純物に関しては、熱伝導率等の特性を極端に損なわなければ、1質量%未満含まれていてもよい。   The aluminum alloy preferably contains 0 to 20% by mass of Si and 0.5 to 3% by mass of Mg. Other metal impurities may be contained in an amount of less than 1% by mass unless the properties such as thermal conductivity are extremely impaired.

本発明のアルミニウム−セラミックス複合体は、板厚が1.5mm以下であり、両主面が0.01〜0.15mmのアルミニウム合金からなるアルミニウム層で被覆されている。
本発明の複合体を半導体素子搭載用基板材料等として用いる場合、表面をめっき処理し、半導体素子と半田付けする場合がある。この場合、表面にセラミックスが露出していると、均一なめっき膜を形成することが出来ず、半田付け時にボイドとなって接合不良の原因となる場合がある。半導体素子と本発明に係る複合体を接着剤等で接合する場合にも、表面にセラミックスが露出していると、アルミニウム合金部分とセラミックス部分の密着性が異なり、接合が不均一になる場合がある。この為、少なくとも、0.01mm以上の表面アルミニウム層が必要となる。一方、アルミニウム合金層が0.15mmを超えて厚くなると、複合体の線膨張係数が大きくなり、半導体素子との線膨張係数の差が大きくなるという課題がある。本発明に係る表面アルミニウム層は、研磨して容易に鏡面を形成することも可能である。
The aluminum-ceramic composite of the present invention is coated with an aluminum layer made of an aluminum alloy having a plate thickness of 1.5 mm or less and both main surfaces of 0.01 to 0.15 mm.
When the composite of the present invention is used as a semiconductor element mounting substrate material or the like, the surface may be plated and soldered to the semiconductor element. In this case, if ceramics are exposed on the surface, a uniform plating film cannot be formed, which may cause voids during soldering and cause poor bonding. Even when the semiconductor element and the composite according to the present invention are bonded with an adhesive or the like, if the ceramics are exposed on the surface, the adhesion between the aluminum alloy part and the ceramic part may be different and bonding may be uneven. is there. For this reason, at least a surface aluminum layer of 0.01 mm or more is required. On the other hand, when the aluminum alloy layer is thicker than 0.15 mm, there is a problem that the linear expansion coefficient of the composite increases and the difference in the linear expansion coefficient from the semiconductor element increases. The surface aluminum layer according to the present invention can be easily polished to form a mirror surface.

本発明の複合体に用いられるセラミックスは、炭化珪素、窒化珪素、窒化アルミニウムの群から選ばれることが好ましい。本発明のアルミニウム−セラミックス複合体は、その用途から高熱伝導性が要求される。アルミニウム−セラミックス複合体の熱伝導率は、セラミックス材料自体の熱伝導率と、アルミニウム合金との界面状態により決まる。この為、セラミックス材料としては、熱伝導率、アルミニウム合金との濡れ性、並びに密着性の点から、炭化珪素、窒化珪素、窒化アルミニウムの群から選ばれることが好ましい。   The ceramic used in the composite of the present invention is preferably selected from the group of silicon carbide, silicon nitride, and aluminum nitride. The aluminum-ceramic composite of the present invention is required to have high thermal conductivity from its application. The thermal conductivity of the aluminum-ceramic composite is determined by the thermal conductivity of the ceramic material itself and the interface state with the aluminum alloy. For this reason, the ceramic material is preferably selected from the group of silicon carbide, silicon nitride, and aluminum nitride from the viewpoints of thermal conductivity, wettability with an aluminum alloy, and adhesion.

炭化珪素及び窒化珪素は、粒子表面に非常に薄い酸化膜を形成し、アルミニウム合金との置換反応により、強固な結合を形成する為、好ましい。中でも、窒化珪素は、大気中で比較的低温で焼成しても表面の酸化層が融着を起こし、容易に多孔体が得られるという特徴があり、製造コストの面からも好ましい。更に、窒化珪素は、炭化珪素及び窒化アルミニウムより、材料自体の線膨張係数が小さい為、気孔率が大きくても得られる複合体の線膨張係数を小さくできるという特徴がある。 Silicon carbide and silicon nitride are preferable because they form a very thin oxide film on the particle surface and form a strong bond by a substitution reaction with an aluminum alloy. Among them, silicon nitride is characterized in that the surface oxide layer is fused even when fired at a relatively low temperature in the atmosphere, and a porous body can be easily obtained, and is preferable from the viewpoint of manufacturing cost. Further, silicon nitride has a feature that the linear expansion coefficient of the composite itself obtained can be reduced even if the porosity is high because the linear expansion coefficient of the material itself is smaller than that of silicon carbide and aluminum nitride.

本発明のアルミニウム−セラミックス複合体は、25℃から125℃の線膨張係数が10×10−5/K以下が好ましい。線膨張係数が10×10−5/Kを超えると、Si等の半導体素子と接合して用いる場合、半導体素子との熱膨張の差が大きくなり、半導体素子の作動時に発生する熱により反りが発生し、放熱特性の低下や半田ボールとの接触不良を起こす場合がある。 The aluminum-ceramic composite of the present invention preferably has a linear expansion coefficient of 10 × 10 −5 / K or less from 25 ° C. to 125 ° C. When the linear expansion coefficient exceeds 10 × 10 −5 / K, when used in connection with a semiconductor element such as Si, the difference in thermal expansion from the semiconductor element becomes large, and warpage is caused by heat generated during operation of the semiconductor element. May occur, causing deterioration of heat dissipation characteristics and poor contact with solder balls.

本発明のアルミニウム−セラミックス複合体の熱伝導率は、25℃で70W/mK以上が好ましい。25℃での熱伝導率が70W/mK未満では、半導体素子搭載用基板材料として用いる場合、半導体素子作動時に発生する熱を十分に放熱することが出来ず、その結果、半導体素子の温度が上がって、半導体素子の誤作動の原因となったり、素子が破壊する場合がある。熱伝導率の上限は特に制約は無く、より高いことが好ましい。しかし、熱伝導率を向上させるには、セラミックス原料の高純度化や、高熱伝性導物質を使用する必要があり、目標値を高くし過ぎると、材料自体が高価になってしまうという課題がある。 The thermal conductivity of the aluminum-ceramic composite of the present invention is preferably 70 W / mK or more at 25 ° C. When the thermal conductivity at 25 ° C. is less than 70 W / mK, when used as a substrate material for mounting a semiconductor element, the heat generated during the operation of the semiconductor element cannot be sufficiently dissipated, resulting in an increase in the temperature of the semiconductor element. As a result, the semiconductor element may malfunction or the element may be destroyed. The upper limit of the thermal conductivity is not particularly limited and is preferably higher. However, in order to improve the thermal conductivity, it is necessary to increase the purity of the ceramic raw material or to use a highly heat conductive conductive material. If the target value is too high, the material itself becomes expensive. is there.

本発明のアルミニウム−セラミックス複合体の製造方法は、炭化珪素、窒化珪素、窒化アルミニウムの群から選ばれる1種以上のセラミックス粉末に有機バインダー及び/又は無機バインダーを添加し、押し出し成形又はドクターブレード成形にて厚さ1.5mm以下のシート状の成形物を作製した後、温度800〜1200℃で10分〜2時間加熱処理して気孔率20〜60%のセラミックス多孔体とし、更に、前記セラミックス多孔体を、550℃以上の温度にて予熱した後、セラミックス多孔体の空隙部分に、溶融したアルミニウム合金を20MPa以上の圧力を加えて含浸させることを特徴とする。 In the method for producing an aluminum-ceramic composite of the present invention, an organic binder and / or an inorganic binder is added to one or more ceramic powders selected from the group consisting of silicon carbide, silicon nitride, and aluminum nitride, and extrusion molding or doctor blade molding is performed. A sheet-like molded product having a thickness of 1.5 mm or less is prepared by heating at a temperature of 800 to 1200 ° C. for 10 minutes to 2 hours to obtain a ceramic porous body having a porosity of 20 to 60%. The porous body is preheated at a temperature of 550 ° C. or higher, and then the molten aluminum alloy is impregnated by applying a pressure of 20 MPa or higher to the void portion of the ceramic porous body.

本発明に係るシート状の成形物は、薄肉であるため、メチルセルロース等の有機バインダー及び/又はシリカゾル等の無機バインダーを用いるのが一般的である。バインダーを用いないと、十分な成形体強度が得られず、その後の加熱処理又は複合化処理でセラミックス多孔体が割れる等の問題が発生する場合がある。無機バインダーは、加熱処理後にセラミックス多孔体中に酸化物の形態で残留し、熱伝導率等の特性に悪影響を及ぼす場合があり、添加量は、固形物量として0.2〜5.0質量%であることが好ましい。有機バインダーの使用量は、セラミックス多孔体の気孔率が20〜60%になる様、成形物の均一性が損なわれない範囲で適宜決められる。 Since the sheet-like molded product according to the present invention is thin, it is common to use an organic binder such as methylcellulose and / or an inorganic binder such as silica sol. If a binder is not used, sufficient molded body strength cannot be obtained, and problems such as cracking of the ceramic porous body may occur in subsequent heat treatment or composite treatment. The inorganic binder may remain in the form of an oxide in the ceramic porous body after the heat treatment, and may adversely affect characteristics such as thermal conductivity, and the addition amount is 0.2 to 5.0 mass% as a solid amount. It is preferable that The amount of the organic binder used is appropriately determined within a range where the uniformity of the molded product is not impaired so that the porosity of the ceramic porous body is 20 to 60%.

原料であるセラミック粉末の粒度は、平均粒子径0.5〜200μmであることが好ましい。セラミックス粉末の平均粒子径が0.5粒μm未満であると、アルミニウム合金とセラミックス多孔体の界面が増加し、熱伝導率が低下する場合がある。一方、セラミックス粉末の平均粒子径が200μmを超えると、シート状成形物の強度低下や、アルミニウム−セラミックス複合体の強度低下が起きる場合がある。 The particle size of the ceramic powder as a raw material is preferably an average particle size of 0.5 to 200 μm. If the average particle size of the ceramic powder is less than 0.5 μm, the interface between the aluminum alloy and the ceramic porous body may increase and the thermal conductivity may decrease. On the other hand, when the average particle diameter of the ceramic powder exceeds 200 μm, the strength of the sheet-like molded product may be reduced or the strength of the aluminum-ceramic composite may be reduced.

本発明に係る成形方法は、均一な厚みの薄板を成形するため、押し出し成形法又はドクターブレード法が好ましい。成形物は乾燥後に、有機バインダーを除去し、又は無機バインダーを結晶化してセラミックス多孔体とする為、温度800〜1200℃で10分〜2時間の加熱処理を行う。加熱処理温度が800℃未満では、有機バインダーの除去が不十分であったり、又は無機バインダーの結晶化が不十分な場合がある。一方、加熱処理温度が1200℃を超えると、セラミックス粒子の酸化が過度に進み、その結果、得られる複合体の熱伝導率が低下する場合があり、好ましくない。加熱処理時間は、10分未満では、有機バインダーの除去が不十分であったり、無機バインダーの結晶化が不十分な場合がある。一方、加熱処理時間が2時間を超えると、セラミックス粒子の酸化が過度に進み、その結果、得られる複合体の熱伝導率が低下する場合があり、好ましくない。 The molding method according to the present invention is preferably an extrusion molding method or a doctor blade method in order to form a thin plate having a uniform thickness. In order to remove the organic binder or crystallize the inorganic binder to form a ceramic porous body after drying, the molded product is subjected to a heat treatment at a temperature of 800 to 1200 ° C. for 10 minutes to 2 hours. When the heat treatment temperature is less than 800 ° C., removal of the organic binder may be insufficient, or crystallization of the inorganic binder may be insufficient. On the other hand, when the heat treatment temperature exceeds 1200 ° C., the oxidation of the ceramic particles proceeds excessively, and as a result, the thermal conductivity of the resulting composite may decrease, which is not preferable. When the heat treatment time is less than 10 minutes, removal of the organic binder may be insufficient or crystallization of the inorganic binder may be insufficient. On the other hand, when the heat treatment time exceeds 2 hours, the oxidation of the ceramic particles proceeds excessively, and as a result, the thermal conductivity of the resulting composite may be lowered, which is not preferable.

本発明では、セラミックス多孔体を離型剤を塗布した金属板に挟み、アルミニウム合金との複合化処理を行うのが一般的である。離型剤は、アルミニウム合金の溶湯と反応し難いものが適しており、アルミナコーティングやカーボン系の離型剤の使用が好ましい。また、アルミナコーティングとカーボン系離型剤の多層構造は更に好ましい。金属板としては、予熱段階での酸化が少なく、アルミニウム溶湯と反応しないものが適しており、ステンレス板等の使用が好ましい。 In the present invention, the ceramic porous body is generally sandwiched between metal plates coated with a release agent, and composite treatment with an aluminum alloy is performed. A release agent that does not easily react with the molten aluminum alloy is suitable, and it is preferable to use an alumina coating or a carbon release agent. A multilayer structure of alumina coating and carbon release agent is more preferable. As the metal plate, one that has little oxidation in the preheating stage and does not react with the molten aluminum is suitable, and a stainless plate or the like is preferably used.

本発明では、セラミックス多孔体とアルミニウム合金を、高温・高圧下で複合化する溶湯鍛造法が好ましい。溶湯鍛造法は、複合化に際しセラミックス多孔体を予め予熱する必要があり、550℃以上の温度で予熱処理を行うことが好ましい。予熱温度が、550℃未満では、セラミックス多孔体の温度が低いため、アルミニウム合金との複合化が十分に行われず、その結果、気孔が残留して、熱伝導率等の特性が低下する場合がある。 In the present invention, a molten metal forging method in which a ceramic porous body and an aluminum alloy are combined at high temperature and high pressure is preferable. In the molten metal forging method, it is necessary to preheat the ceramic porous body in advance at the time of compounding, and preheating is preferably performed at a temperature of 550 ° C. or higher. When the preheating temperature is less than 550 ° C., the temperature of the ceramic porous body is low, so that the composite with the aluminum alloy is not sufficiently performed, and as a result, pores remain and characteristics such as thermal conductivity may be deteriorated. is there.

アルミニウム合金とセラミックス多孔体の複合化に際しては、アルミニウム合金を融点以上の温度で溶融して用いるが、溶融温度はアルミニウム合金の融点より100〜300℃高い温度が好ましい。溶融温度が低いと、未含浸部分が発生する場合がある。一方、溶融温度が極端に高いと、アルミニウム合金中の成分が一部揮発し、組成が変化したり、アルミニウム合金自体が酸化して熱伝導率等の特性が低下する場合がある。 When the aluminum alloy and the porous ceramic body are combined, the aluminum alloy is melted and used at a temperature equal to or higher than the melting point, and the melting temperature is preferably 100 to 300 ° C. higher than the melting point of the aluminum alloy. When the melting temperature is low, an unimpregnated portion may occur. On the other hand, if the melting temperature is extremely high, components in the aluminum alloy may partially volatilize, the composition may change, or the aluminum alloy itself may be oxidized to deteriorate characteristics such as thermal conductivity.

セラミックス多孔体とアルミニウム合金の複合化に際しては、20MPa以上の圧力で複合化処理を行うことが好ましい。複合化時の圧力が20MPa未満では、セラミックス粒子とアルミニウム合金との接合が不十分となり、熱伝導率、強度等の特性の低下が発生する場合がある。圧力の上限に関しては特に制約は無いが、製造時の装置が大型となり、且つ使用する金型強度等の制約もあり、製造コストが極端に高くならない範囲であることが好ましい。 When the ceramic porous body and the aluminum alloy are composited, it is preferable to perform the composite treatment at a pressure of 20 MPa or more. If the pressure at the time of compounding is less than 20 MPa, the bonding between the ceramic particles and the aluminum alloy becomes insufficient, and characteristics such as thermal conductivity and strength may be deteriorated. There is no particular limitation on the upper limit of the pressure, but it is preferable that the manufacturing apparatus is large in size, and there is also a limitation on the strength of the mold to be used, so that the manufacturing cost is not extremely high.

表1に示すセラミックス粉末100質量部に対し、有機バインダーとしてセルロース系バインダー(信越化学工業社製商品名「メトローズ60SH−4000」)5質量部、シリカゾル(日産化学社製商品名「スノーテックス0」、固形分20質量%)5質量部及び水5質量部を配合しミキサーにより混合した。次いで、スクリュー式成形機によりシート(幅80mm厚さ0.8mm)を成形し、100℃で1時間乾燥した後、50×50mm形状に切断して成形物を得た。実験No.5は、セラミックス粉末として、平均粒子径が300μm、150μm、50μm、10μm、1μmの5種類の炭化珪素粉末をそれぞれ25質量部、25質量部、20質量部、20質量部、10質量部ずつ配合して用いた。実験No.12は、セルロース系バインダーのみ30質量部添加した。 For 100 parts by mass of the ceramic powder shown in Table 1, 5 parts by mass of a cellulose binder (trade name “Metroze 60SH-4000” manufactured by Shin-Etsu Chemical Co., Ltd.) as an organic binder, silica sol (trade name “Snowtex 0” manufactured by Nissan Chemical Co., Ltd.) The solid content was 20% by mass) and 5 parts by mass of water and 5 parts by mass of water were mixed and mixed by a mixer. Next, a sheet (width 80 mm, thickness 0.8 mm) was formed with a screw-type molding machine, dried at 100 ° C. for 1 hour, and then cut into a 50 × 50 mm shape to obtain a molded product. Experiment No. 5 is a ceramic powder containing 5 parts, 25 parts by weight, 20 parts by weight, 20 parts by weight, 10 parts by weight, and 10 parts by weight of five types of silicon carbide powders having an average particle size of 300 μm, 150 μm, 50 μm, 10 μm, and 1 μm, respectively. Used. Experiment No. In No. 12, only 30 parts by mass of a cellulose binder was added.

得られた成形物を、アルミナのセッターで挟んで積層し、大気雰囲気中で表1に示す条件にて加熱処理を行った。尚、実験No.11については、加熱処理後のハンドリングで割れが生じ、その後の試験に供することが出来なかった。得られた多孔体の気孔率をアルキメデス法で測定した結果を表1に示す。 The obtained molded product was sandwiched between alumina setters and heat-treated in the air atmosphere under the conditions shown in Table 1. Experiment No. For No. 11, cracking occurred in the handling after the heat treatment, and it could not be used in the subsequent test. Table 1 shows the results of measuring the porosity of the obtained porous body by the Archimedes method.

次に、得られたセラミックス多孔体30枚の各試料間を離型剤(日立粉末冶金社製商品名「ヒタゾルGA−242B」)を塗布した0.8mm厚のステンレス板及び0.9mm厚の鉄製のスペーサーで区切り、両端に12mm厚の鉄板を配した後、10mmφのボルトナットで固定して、一つのブロックを形成した。実験No.10は、1.3mm厚の鉄製スペーサーを用いた。得られたブロックを電気炉にて650℃に予備加熱し、予め加熱しておいた内寸250mmφ×300mmの空隙を有するプレス型内に載置した後、温度850℃に加熱溶融したアルミニウム合金(Si量:12質量%、Mg量:0.5質量%)の溶湯を流し込み、100MPaの圧力で10分間プレスして、セラミックス多孔体にアルミニウム合金を含浸させた。得られた複合体を含む金属塊を、室温まで冷却した後、湿式バンドソーにて切断して、アルミニウム−セラミックス複合体を離型した。   Next, a 0.8 mm thick stainless steel plate coated with a release agent (trade name “Hitasol GA-242B” manufactured by Hitachi Powder Metallurgy Co., Ltd.) between each of the 30 ceramic porous bodies obtained and 0.9 mm thick After partitioning with iron spacers and arranging 12 mm thick iron plates on both ends, they were fixed with 10 mmφ bolts and nuts to form one block. Experiment No. No. 10 used a 1.3 mm thick iron spacer. The resulting block was preheated to 650 ° C. in an electric furnace, placed in a pre-heated press mold having an internal dimension of 250 mmφ × 300 mm, and then heated and melted to a temperature of 850 ° C. ( A molten metal having a Si content of 12% by mass and a Mg content of 0.5% by mass was poured and pressed at a pressure of 100 MPa for 10 minutes to impregnate the ceramic porous body with an aluminum alloy. After cooling the metal lump containing the obtained composite to room temperature, it was cut with a wet band saw to release the aluminum-ceramic composite.

アルミニウム−セラミックス複合体を、ダイヤモンド加工工具を用いて所定形状に加工し、密度、25℃での熱伝導率、25℃から125℃での線膨張係数、スパン30mmでの3点曲げ強度を測定した。また、各複合体をダイヤモンドカッターで切断し、倍率50倍の光学顕微鏡にて、板厚及び表面のアルミニウム層厚の測定を行った。結果を表2に示す。   An aluminum-ceramic composite is processed into a predetermined shape using a diamond processing tool, and the density, thermal conductivity at 25 ° C., linear expansion coefficient from 25 ° C. to 125 ° C., and three-point bending strength at a span of 30 mm are measured. did. Each composite was cut with a diamond cutter, and the plate thickness and surface aluminum layer thickness were measured with an optical microscope having a magnification of 50 times. The results are shown in Table 2.

(実験No.15)
平均粒子径3μmの窒化珪素粉末100質量部に対し、有機バインダーとしてセルロース系バインダー(信越化学工業社製商品名「メトローズ60SH−4000」)5質量部及び水10質量部を配合しミキサーにより混合した。次いで、スクリュー式成形機によりシート(幅80mm厚さ0.8mm)を成形し、100℃で1時間乾燥した後、50×50mm形状に切断して成形物を得た。得られた成形物を、アルミナのセッターで挟んで積層し、大気雰囲気中、温度1000℃で1時間の加熱処理を行った。得られた多孔体の気孔率をアルキメデス法で測定した結果は40%であった。
(Experiment No. 15)
100 parts by mass of silicon nitride powder having an average particle size of 3 μm was mixed with 5 parts by mass of a cellulose binder (trade name “Metroze 60SH-4000” manufactured by Shin-Etsu Chemical Co., Ltd.) as an organic binder and 10 parts by mass of water and mixed with a mixer. . Next, a sheet (width 80 mm, thickness 0.8 mm) was formed with a screw-type molding machine, dried at 100 ° C. for 1 hour, and then cut into a 50 × 50 mm shape to obtain a molded product. The resulting molded product was sandwiched between alumina setters, and was heat-treated in an air atmosphere at a temperature of 1000 ° C. for 1 hour. The porosity of the obtained porous body was measured by Archimedes method, and the result was 40%.

次に、実験例1と同様の手法にてアルミニウム−セラミックス複合体を作製した。得られた複合体の評価結果を表3に示す。 Next, an aluminum-ceramic composite was produced in the same manner as in Experimental Example 1. The evaluation results of the obtained composite are shown in Table 3.

(実験No.16,17)
実験No.16は、平均粒子径10μmの炭化珪素粉末、実験No.17は、平均粒子径3μmの窒化珪素粉末100質量部に対し、有機バインダーとしてポリビニルブチラール6質量部、可塑剤としてブチルフタレート3質量部、分散剤としてグリセリントリオレート1質量部及び溶剤としてキシレン60質量部を配合し、ボールミルにて1時間混合した後、得られたスラリーを脱泡糟にかけ、粘度を15000CPSとした後、ドクターブレード装置によりシートを成形した。
(Experiment No. 16, 17)
Experiment No. 16 is silicon carbide powder having an average particle diameter of 10 μm, Experiment No. 17 is 100 parts by mass of silicon nitride powder having an average particle diameter of 3 μm, 6 parts by mass of polyvinyl butyral as an organic binder, 3 parts by mass of butyl phthalate as a plasticizer, 1 part by mass of glycerin trioleate as a dispersant, and 60 parts by mass of xylene as a solvent. After mixing the parts and mixing in a ball mill for 1 hour, the resulting slurry was subjected to defoaming so as to have a viscosity of 15000 CPS, and then a sheet was formed by a doctor blade device.

このシートを50×50mm形状に切断して厚さ0.7mmの成形物を得た。得られた成形物を、アルミナ板に挟んで温度500℃で1時間の脱脂処理を行い脱脂体を作製し、次にこの脱脂体を、3倍に希釈したシリカゾルに浸漬して、温度100℃で1時間乾燥後、大気中、温度1000℃で1時間の加熱処理を行った。得られた多孔体の気孔率は、実験No.16が34%、実験No.17が37%であった。 This sheet was cut into a 50 × 50 mm shape to obtain a molded product having a thickness of 0.7 mm. The resulting molded product is sandwiched between alumina plates and degreased at a temperature of 500 ° C. for 1 hour to prepare a degreased body. Next, the degreased body is immersed in a silica sol diluted three times to a temperature of 100 ° C. After drying for 1 hour, heat treatment was performed in air at a temperature of 1000 ° C. for 1 hour. The porosity of the obtained porous body was measured according to Experiment No. 16 is 34%, Experiment No. 17 was 37%.

次に、実施例1と同様の方法にてアルミニウム−セラミックス複合体を作製した。評価結果を表3に示す。   Next, an aluminum-ceramic composite was produced in the same manner as in Example 1. The evaluation results are shown in Table 3.

(実験No.18,19)
シート厚みを変更し、実験No.18は1.3mmのスペーサーを、実験No.19は1.5mmのスペーサーを用いたこと以外は、実験No.1と同様の方法で行った。なお、得られた多孔体の気孔率は、実験No.18及び実験No.19とも35%であった。評価結果を表3に示す。
(Experiment No. 18, 19)
The sheet thickness was changed. 18 is a 1.3 mm spacer. No. 19 was the same as Experiment No. 1 except that a 1.5 mm spacer was used. 1 was performed in the same manner. In addition, the porosity of the obtained porous body was measured according to Experiment No. 18 and experiment no. 19 was 35%. The evaluation results are shown in Table 3.

Figure 0004244210
Figure 0004244210

Figure 0004244210
Figure 0004244210

Figure 0004244210
Figure 0004244210

Claims (1)

平均粒子径が0.5〜200μmの炭化珪素粉末又は窒化珪素粉末と有機バインダーとを含むスラリーを、ドクターブレードでシートを成形してから有機バインダーを除去して脱脂体とし、さらに前記脱脂体をシリカゾルに浸漬後乾燥する、ドクターブレード成形により厚さ1.5mm以下のシート状成形物を作製した後、800〜1200℃で10分〜2時間加熱処理して気孔率20〜60%のセラミックス多孔体とし、更に、前記セラミックス多孔体を550℃以上の温度で予熱した後、前記セラミックス多孔体の空隙部分に、溶融したアルミニウムを主成分とする金属を20MPa以上の圧力を加えて含浸させることを特徴とする、板厚が1.5mm以下で、両主面が0.01〜0.15mmのアルミニウム層で被覆されてなる平板状のアルミニウム−セラミックス複合体の製造方法。 A slurry containing silicon carbide powder or silicon nitride powder having an average particle size of 0.5 to 200 μm and an organic binder is molded with a doctor blade, and then the organic binder is removed to obtain a degreased body. A sheet-like molded product having a thickness of 1.5 mm or less is prepared by doctor blade molding after being immersed in silica sol, and then heat-treated at 800 to 1200 ° C. for 10 minutes to 2 hours to provide a ceramic porous material having a porosity of 20 to 60%. Further, after preheating the ceramic porous body at a temperature of 550 ° C. or higher, the void portion of the ceramic porous body is impregnated with a metal mainly composed of molten aluminum by applying a pressure of 20 MPa or higher. A flat plate shape having a thickness of 1.5 mm or less and both main surfaces covered with an aluminum layer of 0.01 to 0.15 mm Aluminum - method of manufacturing a ceramic composite.
JP2004260650A 2004-09-08 2004-09-08 Aluminum-ceramic composite and method for producing the same Expired - Lifetime JP4244210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260650A JP4244210B2 (en) 2004-09-08 2004-09-08 Aluminum-ceramic composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260650A JP4244210B2 (en) 2004-09-08 2004-09-08 Aluminum-ceramic composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006076812A JP2006076812A (en) 2006-03-23
JP4244210B2 true JP4244210B2 (en) 2009-03-25

Family

ID=36156584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260650A Expired - Lifetime JP4244210B2 (en) 2004-09-08 2004-09-08 Aluminum-ceramic composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4244210B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438401B (en) * 2006-05-09 2013-08-28 电气化学工业株式会社 Aluminum-silicon carbide composite body and method for processing the same
EP2398081B1 (en) 2009-02-13 2018-05-09 Denka Company Limited Composite substrate for led light emitting element, method of production of same, and led light emitting element
JP2010278171A (en) * 2009-05-28 2010-12-09 Denki Kagaku Kogyo Kk Power semiconductor and manufacturing method of the same
JP5526632B2 (en) * 2009-07-14 2014-06-18 三菱マテリアル株式会社 Insulating substrate, insulating circuit substrate, semiconductor device, manufacturing method of insulating substrate, and manufacturing method of insulating circuit substrate
JP5296638B2 (en) * 2009-08-28 2013-09-25 電気化学工業株式会社 LED mounting structure, manufacturing method thereof, and LED mounting substrate

Also Published As

Publication number Publication date
JP2006076812A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4761157B2 (en) Aluminum-silicon carbide composite
JP5021636B2 (en) Aluminum-silicon carbide composite and processing method thereof
JP4996600B2 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
JP6755879B2 (en) Aluminum-diamond composite and its manufacturing method
JP6636924B2 (en) Aluminum-silicon carbide composite and method for producing the same
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
JP2011139000A (en) Power module structure and method of manufacturing the same
JP3907620B2 (en) Ceramic circuit board integrated aluminum-silicon carbide composite and manufacturing method thereof
JP2008042011A (en) Aluminum-silicon carbide complex, and method of manufacturing same
JP2007107070A (en) Composite of aluminum alloy, silicon carbide and silicon nitride
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JP5388464B2 (en) Aluminum-ceramic composite and method for producing the same
JP4764357B2 (en) Aluminum-ceramic composite and method for producing the same
JP2016180185A (en) Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP4191124B2 (en) Aluminum alloy-ceramic composite and method for producing the same
WO2021200011A1 (en) Element-mounted board and method for manufacturingelement-mounted board
JP4732430B2 (en) Aluminum-ceramic composite and method for producing the same
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP5457992B2 (en) Method for producing aluminum-ceramic composite structural part
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JPWO2017056202A1 (en) Method for producing aluminum alloy-silicon carbide composite
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP4319939B2 (en) Method for producing aluminum alloy-ceramic composite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

R150 Certificate of patent or registration of utility model

Ref document number: 4244210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250