JP2011139000A - Power module structure and method of manufacturing the same - Google Patents

Power module structure and method of manufacturing the same Download PDF

Info

Publication number
JP2011139000A
JP2011139000A JP2010000079A JP2010000079A JP2011139000A JP 2011139000 A JP2011139000 A JP 2011139000A JP 2010000079 A JP2010000079 A JP 2010000079A JP 2010000079 A JP2010000079 A JP 2010000079A JP 2011139000 A JP2011139000 A JP 2011139000A
Authority
JP
Japan
Prior art keywords
plate
metal
aluminum
stress relaxation
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000079A
Other languages
Japanese (ja)
Inventor
Tomoshi Hikuma
智志 日隈
Hideki Hirotsuru
秀樹 広津留
Masao Tsukijihara
雅夫 築地原
Shinya Narita
真也 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010000079A priority Critical patent/JP2011139000A/en
Publication of JP2011139000A publication Critical patent/JP2011139000A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive power module structure that is superior in heat dissipation of a ceramics circuit board and a metal base plate, and to provide a method of manufacturing the same. <P>SOLUTION: The power module structure has such a thermal expansion coefficient that satisfies an inequality of (α+γ)/2-4<β<(α+γ)/2+4 when the thermal expansion coefficient of a ceramics circuit board 1 is α(×10<SP>-6</SP>/K), the thermal expansion coefficient of a stress relaxation plate 2 is β(×10<SP>-6</SP>/K), and the thermal expansion of a metal base plate 3 is γ(×10<SP>-6</SP>/K), and a metal layer is formed on the surface of the stress relaxation plate 2 wherein the thermal conductivity is 100 W/(m K) or more at 25°C with a plate thickness of 0.5-3.0 mm and a 3-point flexural strength of 50 MPa or more, and then it is soldered and brazed between the ceramics circuit board 1 and the metal base plate 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、放熱材及びその製造方法に係わり、詳しくはパワーモジュール用の放熱用基板として好適な放熱材に関するものである。 The present invention relates to a heat dissipation material and a manufacturing method thereof, and more particularly to a heat dissipation material suitable as a heat dissipation substrate for a power module.

今日、半導体素子の高集積化、小型化に伴い、発熱量は増加の一途をたどっており、いかに効率よく放熱させるかが課題となっている。そして、高絶縁性・高熱伝導性を有する例えば窒化アルミニウム基板、窒化珪素基板等のセラミックス回路基板の表面に、銅製又はアルミニウム製の金属回路を、また裏面に銅製又はアルミニウム製の金属放熱板が形成されてなるセラミックス回路基板が、パワーモジュール用回路基板として使用されている。 Today, as the integration and size of semiconductor elements increase, the amount of generated heat continues to increase, and the issue is how to efficiently dissipate heat. A copper or aluminum metal circuit is formed on the surface of a ceramic circuit board such as an aluminum nitride substrate or a silicon nitride substrate having high insulation and high thermal conductivity, and a copper or aluminum metal heat sink is formed on the back surface. The ceramic circuit board thus formed is used as a power module circuit board.

従来の回路基板の典型的な放熱構造は、回路基板の裏面(放熱面)の金属板、例えば銅板を介してベース板がはんだ付けされてなるものであり、ベース板としては銅が一般的であった。しかしながら、この構造においては、半導体装置に熱負荷がかかった場合、ベース板と回路基板の熱膨張係数差に起因するクラックがはんだ層に発生し、その結果放熱が不十分となって半導体素子を誤作動させたり、破損させたりするという課題があった。 A typical heat dissipation structure of a conventional circuit board is formed by soldering a base plate via a metal plate, for example, a copper plate, on the back surface (heat dissipation surface) of the circuit board, and copper is generally used as the base plate. there were. However, in this structure, when a thermal load is applied to the semiconductor device, a crack due to the difference in thermal expansion coefficient between the base plate and the circuit board occurs in the solder layer, resulting in insufficient heat dissipation and the semiconductor element. There was a problem of malfunction or damage.

そこで、熱膨張係数を回路基板のそれに近づけたベース板として、アルミニウム−炭化珪素質複合体が提案されている。このベース板用のアルミニウム−炭化珪素質複合体の製法としては、炭化珪素の多孔体にアルミニウム合金の溶湯を加圧含浸する溶湯鍛造法(特許文献1)、炭化珪素の多孔体にアルミニウム合金の溶湯を非加圧で浸透させる非加圧含浸法(特許文献2)が実用化されている。一方、コスト面からは、アルミニウム粉末と炭化珪素粉末を混合して、加熱成形する粉末冶金法が有利であり、同製法によるアルミニウム−炭化珪素質複合体の検討も行われている(特許文献3,4)。しかし、いずれの製法のアルミニウム−炭化珪素質複合体でもコスト面に問題があることから、低コスト化が要求される分野では安価な銅ベース板が使用される場合が多くなり、セラミックス回路基板と銅ベース板間の信頼性に課題があった。
特許第3468358号 特表平5−507030号公報。 特開平9−157773号公報 特開平10−335538号公報
Therefore, an aluminum-silicon carbide composite has been proposed as a base plate having a thermal expansion coefficient close to that of a circuit board. As a method for producing the aluminum-silicon carbide composite for the base plate, a molten forging method (Patent Document 1) in which a silicon carbide porous body is impregnated with a molten aluminum alloy (Patent Document 1), an aluminum alloy porous silicon body is made of aluminum alloy. A non-pressure impregnation method (Patent Document 2) in which molten metal permeates without pressure has been put into practical use. On the other hand, in terms of cost, a powder metallurgy method in which aluminum powder and silicon carbide powder are mixed and heat-molded is advantageous, and an aluminum-silicon carbide composite by the same production method is also being studied (Patent Document 3). 4). However, since aluminum-silicon carbide composites of any manufacturing method have a problem in cost, inexpensive copper base plates are often used in fields where cost reduction is required. There was a problem in reliability between copper base plates.
Japanese Patent No. 3468358 JP-T-5-507030. JP-A-9-157773 JP-A-10-335538

ベース板に用いられる銅やアルミニウムなどの金属は熱膨張係数が17〜23×10−6/K程度と大きく、熱膨張係数が5×10−6/K程度のセラミックス回路基板との熱膨張係数差が大きいため、接合層のはんだ層にはんだクラックが発生する。 Metals such as copper and aluminum used for the base plate have a large thermal expansion coefficient of about 17 to 23 × 10 −6 / K and a thermal expansion coefficient with a ceramic circuit board having a thermal expansion coefficient of about 5 × 10 −6 / K. Since the difference is large, solder cracks occur in the solder layer of the bonding layer.

本発明は、上記の状況に鑑みてなされたものであり、その目的は、パワーモジュール構造体として、セラミックス回路基板と銅ベース板との間の熱膨張係数を有する応力緩和板を搭載することによって、熱膨張係数差によって発生する応力を緩和し信頼性の向上が達成できる応力緩和板及びその製造方法を提供することである。 This invention is made | formed in view of said situation, The objective is by mounting the stress relaxation board which has a thermal expansion coefficient between a ceramic circuit board and a copper base board as a power module structure. An object of the present invention is to provide a stress relieving plate that can relieve stress generated by a difference in thermal expansion coefficient and achieve improved reliability, and a method of manufacturing the same.

本発明は、セラミックス回路基板の熱膨張係数をα(×10−6/K)、応力緩和板の熱膨
張係数をβ(×10−6/K)、金属ベース板の熱膨張係数をγ(×10−6/K)とした時、(α+γ)/2−4<β<(α+γ)/2+4を満たす熱膨張係数を有し、板厚が0.5〜3.0mmで温度25℃の熱伝導率が100W/(m・K)以上、3点曲げ強度が50MPa以上の応力緩和板の表面に金属層を形成した後、セラミックス回路基板と金属ベース板との間にはんだ付け又はロウ付けしてなるパワーモジュール構造体を提案したものである。
In the present invention, the thermal expansion coefficient of the ceramic circuit board is α (× 10 −6 / K), the thermal expansion coefficient of the stress relaxation plate is β (× 10 −6 / K), and the thermal expansion coefficient of the metal base plate is γ ( × 10 −6 / K), it has a thermal expansion coefficient satisfying (α + γ) / 2-4 <β <(α + γ) / 2 + 4, a plate thickness of 0.5 to 3.0 mm, and a temperature of 25 ° C. After forming a metal layer on the surface of a stress relaxation plate with a thermal conductivity of 100 W / (m · K) or more and a three-point bending strength of 50 MPa or more, soldering or brazing between the ceramic circuit board and the metal base plate A power module structure is proposed.

また、本発明においては、応力緩和板が、炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる多孔体、又は粉末成形体とアルミニウム又はアルミニウム合金を複合化した板状の金属含浸セラミックス基板、又はCu,Ni,Mo,W、Co及びFeから選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板であるパワーモジュール構造体であることが好ましい。 In the present invention, the stress relaxation plate is a porous body composed of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite, or a powder compact and aluminum or aluminum alloy. A plate-shaped metal-impregnated ceramic substrate obtained by compounding, or a metal plate selected from Cu, Ni, Mo, W, Co and Fe, an alloy plate containing at least one of the metal components, or the metal plate and the alloy It is preferable that the power module structure is a laminated plate composed of two or more selected from the plates.

更に、本発明は、応力緩和板が下記の(1)〜(4)のいずれかの工程を経て得られる板状の金属含浸セラミックス基板の表面に、0.5〜20μmの厚みのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる少なくとも1種以上の金属をめっきにより形成してなるパワーモジュール構造体に用いる応力緩和板の製造方法である。
(1)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる気孔率が10〜60体積%のブロック状の多孔体、又は粉末成形体とアルミニウム又はアルミニウム合金を溶湯鍛造法にて30MPa以上の圧力で複合化し、ブロック状の金属含浸セラミックス体を切断加工及び又は形状加工して板状の金属含浸セラミックス基板を作製する工程。
(2)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる気孔率が10〜60体積%の板状の多孔体、又は粉末成形体を離型板を介して積層し、アルミニウム又はアルミニウム合金を溶湯鍛造法にて30MPa以上の圧力で含浸し板状の金属含浸セラミックス体を作製した後、形状加工して金属含浸セラミックス基板を作製する工程。
(3)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれる1種類以上のセラミックス粉末を40〜90体積%とアルミニウム又はアルミニウム合金を10〜60体積%混合した粉末を離型処理を施した金型に充填し、アルミニウム又はアルミニウム合金の融点以上の温度に加熱して、30MPa以上の圧力で加熱プレスしてブロック状に複合化し、切断加工及び又は外周加工により板状の金属含浸セラミックス基板を得る工程。
(4)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれる1種類以上のセラミックス粉末を40〜90体積%とアルミニウム又はアルミニウム合金を10〜60体積%混合した粉末を離型処理を施した金型に充填し、アルミニウム又はアルミニウム合金の融点以上の温度に加熱して、30MPa以上の圧力で加熱プレスして板状の金属含浸セラミックス基板に複合化する工程。
Furthermore, the present invention provides Ni, Co having a thickness of 0.5 to 20 μm on the surface of a plate-like metal-impregnated ceramic substrate obtained by any of the following steps (1) to (4). , Pd, Cu, Ag, Au, Pt, and Sn. A method for producing a stress relaxation plate used in a power module structure formed by plating at least one metal selected from plating.
(1) A block-like porous body having a porosity of 10 to 60% by volume, or a powder molded body and aluminum made of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite Alternatively, a step of producing a plate-shaped metal-impregnated ceramic substrate by compounding an aluminum alloy by a molten forging method at a pressure of 30 MPa or more and cutting and / or shaping a block-shaped metal-impregnated ceramic body.
(2) A plate-shaped porous body having a porosity of 10 to 60% by volume or a powder molded body made of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite is separated. A step of laminating through a mold plate and impregnating aluminum or aluminum alloy with a molten metal forging method at a pressure of 30 MPa or more to produce a plate-like metal-impregnated ceramic body, and then processing the shape to produce a metal-impregnated ceramic substrate.
(3) Separate a powder obtained by mixing 40 to 90% by volume of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite and 10 to 60% by volume of aluminum or an aluminum alloy. Filled with a mold that has been subjected to mold treatment, heated to a temperature higher than the melting point of aluminum or aluminum alloy, heated and pressed at a pressure of 30 MPa or more to be combined into a block shape, and plate-like by cutting and / or peripheral processing A step of obtaining a metal-impregnated ceramic substrate.
(4) Separate from 40 to 90% by volume of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite and 10 to 60% by volume of aluminum or aluminum alloy. A step of filling a mold subjected to mold treatment, heating to a temperature equal to or higher than the melting point of aluminum or an aluminum alloy, and heating and pressing at a pressure of 30 MPa or more to form a composite in a plate-like metal-impregnated ceramic substrate.

本発明によれば、応力緩和板に用いるセラミックス粉末の粒度、種類、含有量を適正化することにより、また、金属成分の適正化により、得られる応力緩和板をセラミックス回路基板と銅ベース板の間の熱膨張係数に制御することができるため、セラミックス回路基板側及び銅ベース板側の両方に対して良好なマッチングがとれ、信頼性を著しく向上したパワーモジュール構造体を提供できる。 According to the present invention, by optimizing the particle size, type, and content of the ceramic powder used for the stress relaxation plate, and by optimizing the metal component, the obtained stress relaxation plate is placed between the ceramic circuit board and the copper base plate. Since the thermal expansion coefficient can be controlled, it is possible to provide a power module structure in which good matching is obtained for both the ceramic circuit board side and the copper base plate side, and the reliability is remarkably improved.

更に、熱伝導率が100W/(m・K)以上なのでセラミックス回路基板からの熱を銅ベース板に良好に伝えることができ、パワーモジュール構造体として好適に使用できる。 Furthermore, since the thermal conductivity is 100 W / (m · K) or more, the heat from the ceramic circuit board can be transferred well to the copper base plate, and it can be suitably used as a power module structure.

図1は本発明のパワーモジュール構造体の一例を示した説明図である。FIG. 1 is an explanatory view showing an example of a power module structure according to the present invention. 図2は本発明の金属含浸セラミックス体の模式断面図である。FIG. 2 is a schematic cross-sectional view of the metal-impregnated ceramic body of the present invention.

本発明の、パワーモジュール構造体に用いる応力緩和板は、板厚が0.5〜3.0mmt、好ましくは0.5〜2.0mmで、3点曲げ強度が50MPa以上である。該応力緩和板の表面に金属層を形成した後、セラミックス回路基板と金属ベース板との間にはんだ付け又はロウ付けしたパワーモジュール構造体であるので、セラミックス回路基板からの熱をベース板に良好に伝えることができ、かつ高信頼性を有するパワーモジュール構造体が実現できる。   The stress relaxation plate used for the power module structure of the present invention has a plate thickness of 0.5 to 3.0 mmt, preferably 0.5 to 2.0 mm, and a three-point bending strength of 50 MPa or more. A power module structure that is soldered or brazed between the ceramic circuit board and the metal base board after the metal layer is formed on the surface of the stress relaxation board, so heat from the ceramic circuit board is good for the base board And a highly reliable power module structure can be realized.

応力緩和板の板厚が0.5mm未満であると、応力緩和層が薄すぎて応力を緩和できずに信頼性が低下してしまう。一方、3.0mmを越えると応力緩和板の熱抵抗が大きくなる。 If the thickness of the stress relaxation plate is less than 0.5 mm, the stress relaxation layer is too thin to relieve stress and reliability is lowered. On the other hand, if it exceeds 3.0 mm, the thermal resistance of the stress relaxation plate increases.

応力緩和板の温度25℃の熱伝導率は100W/(m・K)以上、好ましくは200W/(m・K)以上であり、100W/(m・K)より小さいと、セラミックス回路基板からの熱を金属ベース板に十分に伝えられずに、半導体が誤作動を起こしたり損傷したりする場合がある。 The thermal conductivity of the stress relaxation plate at a temperature of 25 ° C. is 100 W / (m · K) or more, preferably 200 W / (m · K) or more. The semiconductor may malfunction or be damaged without sufficiently transferring heat to the metal base plate.

また、セラミックス回路基板の熱膨張係数をα(×10−6/K)、応力緩和板の熱膨張係数をβ(×10−6/K)、金属ベース板の熱膨張係数をγ(×10−6/K)とした時、(α+γ)/2−4<β<(α+γ)/2+4を満たす熱膨張係数を有することが好ましく、熱膨張係数がセラミックス回路基板と金属ベース板の間の応力緩和板を用いることで、高信頼性が実現できる。
応力緩和板の熱膨張係数が上記の範囲外の場合、半導体素子作動時の熱負荷により、接合層(はんだ層等)やセラミックス回路基板の破壊が起こり、放熱特性が低下する場合がある。また、応力緩和板が金属含浸セラミックス体からなる場合、熱伝導率と熱膨張係数は、複合化する金属の含浸率、セラミックスの材質によって増減させることができる。
Further, the thermal expansion coefficient of the ceramic circuit board is α (× 10 −6 / K), the thermal expansion coefficient of the stress relaxation plate is β (× 10 −6 / K), and the thermal expansion coefficient of the metal base plate is γ (× 10 −6 / K), it preferably has a thermal expansion coefficient satisfying (α + γ) / 2-4 <β <(α + γ) / 2 + 4, and the thermal expansion coefficient is a stress relaxation plate between the ceramic circuit board and the metal base plate. By using, high reliability can be realized.
When the thermal expansion coefficient of the stress relaxation plate is out of the above range, the thermal stress during the operation of the semiconductor element may cause destruction of the bonding layer (solder layer, etc.) and the ceramic circuit board, resulting in deterioration of heat dissipation characteristics. When the stress relaxation plate is made of a metal-impregnated ceramic body, the thermal conductivity and the thermal expansion coefficient can be increased or decreased depending on the impregnation rate of the metal to be combined and the ceramic material.

応力緩和板の3点曲げ強度は50MPa以上が好ましい。パワーモジュール用の放熱部品として用いる場合、3点曲げ強度が50MPa未満では使用時の振動等の影響による欠けの問題があり好ましくない。3点曲げ強度の上限に関しては、特性状の制約はないが、3点曲げ強度を極端に向上させるためには、炭化珪素の添加量の増加及び微粉化が必要となり、その結果、得られる金属含浸セラミックス体の熱伝導率が低下するため、350MPa以下であることが好ましい。 The three-point bending strength of the stress relaxation plate is preferably 50 MPa or more. When used as a heat dissipation component for a power module, if the three-point bending strength is less than 50 MPa, there is a problem of chipping due to the influence of vibration or the like during use, which is not preferable. The upper limit of the three-point bending strength is not limited by characteristics, but in order to extremely improve the three-point bending strength, it is necessary to increase the amount of silicon carbide added and to make the powder fine. As a result, the resulting metal Since the thermal conductivity of the impregnated ceramic body is lowered, it is preferably 350 MPa or less.

金属含浸セラミックス体からなる応力緩和板は、セラミックス粉末1種類以上を40〜90体積%含有し、残部(10〜60体積%)がアルミニウム又はアルミニウム合金、好ましくはアルミニウム含有率が80〜100質量%のアルミニウム−シリコン合金を複合化したものであることが好ましい。
セラミックスとアルミニウム又はアルミニウム合金の複合化の方法としては、例えば特許3468358号の実施例等の方法によって含浸される、溶湯鍛造法により製造されたものであることが好ましい。
The stress relaxation plate made of a metal-impregnated ceramic body contains 40 to 90% by volume of one or more ceramic powders, and the balance (10 to 60% by volume) is aluminum or an aluminum alloy, preferably the aluminum content is 80 to 100% by mass. It is preferable that the aluminum-silicon alloy is compounded.
As a method for compounding ceramics and aluminum or an aluminum alloy, it is preferable that the ceramic is produced by a molten forging method impregnated by a method such as the example of Japanese Patent No. 3468358.

また、上記溶湯鍛造法の代わりに、セラミックス粉末とアルミニウム又はアルミニウム合金粉末の混合粉末を離型処理した金型に充填し、アルミニウム又はアルミニウム合金の融点以上の温度に加熱後にプレスして複合化する方法によって製造されたものでも使用できる。 Also, instead of the molten metal forging method, a mixed powder of ceramic powder and aluminum or aluminum alloy powder is filled into a mold that has been subjected to a release treatment, and heated to a temperature equal to or higher than the melting point of aluminum or aluminum alloy, and then pressed to be combined. Even those produced by the method can be used.

セラミックス粉末とアルミニウム又はアルミニウム合金の複合化に必要な圧力は、30MPa以上が好ましい。加熱プレス成形時の圧力が、30MPa未満では、セラミックス粉末とアルミニウム又はアルミニウム合金の密着性が不足して、熱伝導率、強度等の特性が低下するため好ましくない。また、プレス圧の上限については、特性面からの制約はないが、金型の強度、装置の力量より、200MPa以下が適当である。金属含浸セラミックス体は、融点以下の温度で減圧した後、室温まで冷却する。なお、複合化時の歪み除去の目的で、金属含浸セラミックス体のアニール処理を行うこともある。 The pressure required for combining ceramic powder and aluminum or aluminum alloy is preferably 30 MPa or more. If the pressure at the time of hot press molding is less than 30 MPa, the adhesiveness between the ceramic powder and aluminum or aluminum alloy is insufficient, and characteristics such as thermal conductivity and strength are deteriorated. Further, the upper limit of the press pressure is not limited in terms of characteristics, but 200 MPa or less is appropriate from the strength of the mold and the strength of the apparatus. The metal-impregnated ceramic body is depressurized at a temperature below the melting point and then cooled to room temperature. For the purpose of removing the strain at the time of compounding, the metal-impregnated ceramic body may be annealed.

セラミックス粉末の材質は、炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれた無機成分の少なくとも1種であることが好ましい。セラミックスの充填量は40〜90体積%、特に50〜80体積%であることが好ましい。セラミックスの充填量が40体積%未満であると、金属含浸セラミックス体の熱膨張係数が大きくなりすぎる。一方、90体積%を越えると、金属を十分に含浸させることができずに、熱伝導率が小さくなりすぎる恐れがある。また、セラミックスの充填状態は特に制限はなく、セラミックス多孔体、又はセラミックス粉末成形体を用いることができる。セラミックスの充填量の調整はセラミックス成分の粒度調整、整形圧力、焼結条件などによって行うことができる。 The material of the ceramic powder is preferably at least one inorganic component selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite. The filling amount of the ceramic is preferably 40 to 90% by volume, particularly 50 to 80% by volume. When the filling amount of the ceramic is less than 40% by volume, the coefficient of thermal expansion of the metal-impregnated ceramic body becomes too large. On the other hand, if it exceeds 90% by volume, the metal cannot be sufficiently impregnated and the thermal conductivity may be too small. Further, the ceramic filling state is not particularly limited, and a ceramic porous body or a ceramic powder molded body can be used. The amount of ceramics to be filled can be adjusted by adjusting the particle size of ceramic components, shaping pressure, sintering conditions, and the like.

また、セラミックスと複合化する金属成分は、アルミニウム80〜100質量%、珪素0〜20質量%を含有するアルミニウム又はアルミニウム合金が好ましい。珪素成分が20質量%を超えると合金の融点が高くなり、未含浸部分が発生する場合がある。一方、珪素成分が20質量%を超えると、得られる合金の熱伝導率が低下し、その結果、得られる金属含浸セラミックス基板の熱伝導率が低下し好ましくない。珪素成分以外の成分としては特性に影響を与えない範囲であれば、特に制限はないが、マグネシウムは、得られる合金とセラミックスの濡れ性を向上させる効果があり、3質量%以内であれば、強度や熱伝導特性に悪影響を与える炭化アルミニウム(Al)の生成を抑制できるため含有してもよい。 Moreover, the metal component compounded with ceramics is preferably aluminum or aluminum alloy containing 80 to 100% by mass of aluminum and 0 to 20% by mass of silicon. If the silicon component exceeds 20% by mass, the melting point of the alloy increases, and an unimpregnated portion may occur. On the other hand, when the silicon component exceeds 20% by mass, the thermal conductivity of the obtained alloy is lowered, and as a result, the thermal conductivity of the obtained metal-impregnated ceramic substrate is lowered, which is not preferable. The component other than the silicon component is not particularly limited as long as it does not affect the characteristics, but magnesium has an effect of improving the wettability of the obtained alloy and ceramic, and within 3% by mass, the production of aluminum carbide adversely affecting the strength and thermal conductivity (Al 4 C 3) may contain can be suppressed.

セラミックス粉末成形体は、セラミックス成分の粉末のみを成形して製造することもできるし、例えば、シリカゾル、アルミナゾル等の無機バインダーと共に用いて製造することもできる。成形には、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法が採用される。また、セラミックス多孔体は、例えば、上記セラミックス粉末成形体を焼結処理することによって製造することができる。セラミックス多孔体とセラミックス粉末成形体の形状には制約はなく、平板状、円柱状などで用いられる。 The ceramic powder compact can be produced by molding only a ceramic component powder, or can be produced using an inorganic binder such as silica sol or alumina sol. For forming, a general ceramic powder forming method such as press forming or cast forming is employed. The ceramic porous body can be produced, for example, by subjecting the ceramic powder compact to a sintering treatment. There is no restriction | limiting in the shape of a ceramic porous body and a ceramic powder molded object, It uses by flat form, a column shape, etc.

金属を含浸したセラミックス多孔体又はセラミックス粉末成形体から金属含浸セラミックス基板にするには、通常、切断加工と面加工が施される。金属を含浸したセラミックス多孔体又はセラミックス粉末成形体の形状が直方体形状である場合、平面研削板によりダイヤモンド砥石を用いて所定寸法に外形加工した後、マルチワイヤソー、内周刃切断機等で最終形状より0.1〜0.5mm程度厚い板厚に切断加工するのがよい。切断方法には限定はないが、切断代が少なく量産性に適したマルチワイヤソーが好適である。マルチワイヤソーの切断では、遊離砥粒タイプ及びダイヤモンド等の研削材を付着したワイヤーが用いられる。面加工では、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機を用い、板厚が0.5〜3mmに加工される。 In order to form a metal-impregnated ceramic substrate from a ceramic porous body or a ceramic powder molded body impregnated with metal, cutting and surface processing are usually performed. When the shape of the ceramic porous body or ceramic powder molded body impregnated with metal is a rectangular parallelepiped shape, the final shape is processed with a multi-wire saw, inner peripheral edge cutter, etc. It is preferable to cut to a thickness of about 0.1 to 0.5 mm thicker. There is no limitation on the cutting method, but a multi-wire saw having a small cutting margin and suitable for mass production is preferable. In the cutting of a multi-wire saw, a wire to which an abrasive such as a loose abrasive type and diamond is attached is used. In the surface processing, a plate thickness is processed to 0.5 to 3 mm using a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine.

金属を含浸したセラミックス多孔体又はセラミックス粉末成形体の形状が板状である場合は、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機を用い、板厚が0.5〜3mm、表面粗さ(Ra)が1.0μm以下に面加工をし、次いでウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行う。この場合、外周加工を先に行ってから面加工をしてもよい。 When the shape of the ceramic porous body or ceramic powder molded body impregnated with metal is plate-like, using a processing machine such as a double-sided grinder, rotary grinder, surface grinder, lapping machine, Surface processing is performed to 3 mm and the surface roughness (Ra) is 1.0 μm or less, and then outer periphery processing is performed into a predetermined shape by a water jet processing machine, an electric discharge processing machine, a laser processing machine, a dicing machine, a cylindrical grinding machine or the like. In this case, surface processing may be performed after the outer periphery processing is performed first.

一方、金属からなる応力緩和板は、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、コバルト(Co)及び鉄(Fe)から選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板から構成されていることが好ましい。その形状は、平板状、円柱状などが用いられる。 On the other hand, the stress relaxation plate made of metal is a metal plate selected from copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co) and iron (Fe), It is preferable that it is comprised from the laminated plate comprised by the alloy plate containing at least 1 type, or 2 or more types chosen from the said metal plate and the said alloy plate. As the shape, a flat plate shape, a cylindrical shape, or the like is used.

金属含浸セラミックス基板又は金属基板のいずれの応力緩和板にあっても、その表面に、Ni、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による、特に好ましくはNi又はAuによる、厚みが0.5〜20μmの金属層を有していることが好ましい。特に好ましい金属層の厚みは2〜10μmである。これによって、セラミックス回路基板、応力緩和板及び金属ベース板の接着状態が良好になる。金属層の厚みが0.5μm未満であると、接着状態が悪くなり、20μmをこえると、金属層と応力緩和板との熱膨張差による剥離が生じる恐れがある。金属層は、応力緩和板を洗浄後、上記金属種による無電解めっき又は電解めっきを施すことによって形成させることができる。また、金属蒸着法や金属被覆法によっても形成させることができる。 It is particularly preferable that at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn is formed on the surface of any of the stress relaxation plates of the metal-impregnated ceramic substrate or the metal substrate. Preferably has a metal layer with a thickness of 0.5 to 20 μm made of Ni or Au. A particularly preferable thickness of the metal layer is 2 to 10 μm. Thereby, the adhesion state of the ceramic circuit board, the stress relaxation plate and the metal base plate is improved. When the thickness of the metal layer is less than 0.5 μm, the adhesion state is deteriorated, and when it exceeds 20 μm, there is a possibility that peeling due to a difference in thermal expansion between the metal layer and the stress relaxation plate may occur. The metal layer can be formed by performing electroless plating or electrolytic plating with the above metal species after washing the stress relaxation plate. It can also be formed by metal vapor deposition or metal coating.

セラミックス回路基板、応力緩和板及び金属ベース板との接合は、はんだ付けまたはロウ付けを用いて行われる。はんだとしてはクリームはんだ、共晶はんだ、鉛フリーはんだなどを用いてもよい。好ましくはロウ付け法による接合が好ましく、接合層が薄く均一にできるため熱抵抗を小さくできる。
The ceramic circuit board, the stress relaxation plate, and the metal base plate are joined using soldering or brazing. As the solder, cream solder, eutectic solder, lead-free solder or the like may be used. Bonding by a brazing method is preferable, and since the bonding layer can be made thin and uniform, thermal resistance can be reduced.

[実施例1]
炭化珪素粉末A(市販品:平均粒子径150μm)3250g、炭化珪素粉末B(市販品:
平均粒子径10μm)1750g、シリカゾル(日産化学社製:スノーテックス)750gを秤取し、攪拌混合機で30分間混合した後、70mm×70mm×100mmの寸法の形状に面圧10MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1000℃で2時間焼成して、気孔率が35%の焼結体を製造し、平面研削盤を用いて、外形寸法が、56mm×47mm×100mm
の形状に加工してSiC多孔体を製造した。得られたSiC多孔体に窒化硼素の離型剤を塗布してから、筒状黒鉛治具(外寸法:80mm×80mm×100mm、内寸法:56.5mm×47.5×100mm)に挿入して構造体とした。
[Example 1]
Silicon carbide powder A (commercial product: average particle size 150 μm) 3250 g, silicon carbide powder B (commercial product:
An average particle size of 10 μm (1750 g) and silica sol (Nissan Chemical Co., Ltd .: Snowtex) 750 g were weighed and mixed for 30 minutes with a stirrer and then pressed into a shape of 70 mm × 70 mm × 100 mm in a surface pressure of 10 MPa. Thus, a molded body was produced. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then fired in a nitrogen atmosphere at a temperature of 1000 ° C. for 2 hours to produce a sintered body having a porosity of 35%. Using a surface grinder, External dimensions are 56mm x 47mm x 100mm
The SiC porous body was manufactured by processing into the shape. After applying a boron nitride release agent to the obtained SiC porous body, it is inserted into a cylindrical graphite jig (outer dimensions: 80 mm × 80 mm × 100 mm, inner dimensions: 56.5 mm × 47.5 × 100 mm). Structure.

黒鉛離型剤の塗布されたステンレス板からなる離型板(80mm×100mm×0.8mm)を挟んで上記構造体の4個を組み立て(160.8mm×160.8mm×100mm)、両側に鉄板(厚み12mm)を配置し、ボルト8本で連結して一つの積層体とした。
この積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいたプレス金型(内径400mm×高さ300mm)内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度800℃)を注ぎ、100MPaの圧力で25分間加圧してアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断して離型板を剥がし、旋盤で黒鉛治具部分を除去して4個の複合体(56×47×100mm)を製造した。これを530℃の温度で3時間アニール処理して含浸時の歪みを除去した。
4 pieces of the above structure are assembled (160.8 mm x 160.8 mm x 100 mm) with a release plate (80 mm x 100 mm x 0.8 mm) made of a stainless steel plate coated with graphite mold release agent, and iron plates on both sides (Thickness 12 mm) was placed and connected with 8 bolts to form a single laminate.
This laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a preheated press mold (inner diameter: 400 mm × height: 300 mm), and contains 12% by mass of silicon and 1% by mass of magnesium. A molten aluminum alloy (temperature: 800 ° C.) was poured, and the aluminum alloy was impregnated by applying pressure of 100 MPa for 25 minutes. After cooling to room temperature, it is cut along the shape of the release plate with a wet band saw, and the release plate is peeled off. Then, the graphite jig portion is removed with a lathe, and four composites (56 × 47 × 100 mm) are obtained. Manufactured. This was annealed at a temperature of 530 ° C. for 3 hours to remove distortion during impregnation.

得られた複合体から、研削加工により熱膨張係数測定用試験体(直径4mm長さ20mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、強度測定用試験体(40mm×4mm×3mm)を切り出し、温度25℃〜150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機(今田製作所製;SV301)で測定した。その結果、熱膨張係数は7.5×10−6/K、熱伝導率は200W/(m・K)、3点曲げ強度400MPaであった。 From the obtained composite, a thermal expansion coefficient measurement specimen (diameter 4 mm, length 20 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), strength measurement specimen (40 mm × 4 mm ×) by grinding. 3 mm), the coefficient of thermal expansion at a temperature of 25 ° C. to 150 ° C. is measured with a thermal dilatometer (manufactured by Seiko Denshi Kogyo; TMA300), and the thermal conductivity at a temperature of 25 ° C. is measured with a laser flash method (manufactured by ULVAC; TC3000). The three-point bending strength was measured with a bending strength tester (manufactured by Imada Seisakusho; SV301). As a result, the thermal expansion coefficient was 7.5 × 10 −6 / K, the thermal conductivity was 200 W / (m · K), and the three-point bending strength was 400 MPa.

ついで、複合体を54mm×45mm×100mmの形状に外周加工を行ってから、マルチワイヤソーでダイヤモンド砥粒を用い、切り込み速度0.2mm/minで、板厚1.5mmの板状に切断加工し、更に両面研削盤で#600のダイヤモンド砥石を用いて板厚1.2mmに研削加工した。その後、ラップ盤でダイヤモンドの砥粒を用いて、板厚1.0mmまで研磨加工をしてから、無電解Ni−Pめっきを行い、金属層(6μm厚)を形成し応力緩和板Aを製造した。
<パワーモジュール構造体>
以下の構成材料を用い、図1に示されるパワーモジュール構造体を作製した。すなわち、セラミックス回路基板1と金属ベース板3との間に接合層4を介して応力緩和板2を積層してパワーモジュール構造体を作製した。
Next, the outer periphery of the composite was processed into a shape of 54 mm × 45 mm × 100 mm and then cut into a plate having a thickness of 1.5 mm at a cutting speed of 0.2 mm / min using diamond abrasive grains with a multi-wire saw. Further, it was ground to a thickness of 1.2 mm using a # 600 diamond grindstone with a double-side grinder. Then, after polishing to a plate thickness of 1.0 mm using diamond abrasive grains on a lapping machine, electroless Ni-P plating is performed to form a metal layer (6 μm thickness) to produce a stress relaxation plate A did.
<Power module structure>
The power module structure shown in FIG. 1 was produced using the following constituent materials. That is, a power module structure was produced by laminating the stress relaxation plate 2 between the ceramic circuit board 1 and the metal base plate 3 via the bonding layer 4.

<構成材料>
セラミックス回路基板1:窒化珪素基板:58mm×49mm×0.635mm
(銅回路:54mm×45mm×0.2mm)
応力緩和板2:上記で製造された応力緩和板A:54mm×45mm×1.0mm
ベース板3:銅板:100mm×80mm×4mm
接合層4:クリームはんだ(0.2mm厚み)
<Constituent materials>
Ceramic circuit board 1: Silicon nitride substrate: 58 mm x 49 mm x 0.635 mm
(Copper circuit: 54mm x 45mm x 0.2mm)
Stress relaxation plate 2: Stress relaxation plate A manufactured above: 54 mm × 45 mm × 1.0 mm
Base plate 3: Copper plate: 100 mm x 80 mm x 4 mm
Bonding layer 4: Cream solder (0.2 mm thickness)

<パワーモジュール構造体の信頼性の評価>
パワーモジュール構造体を−40℃と125℃の恒温槽に30分間保持しヒートサイクル処理(1000回)を行った後に、外観及び接合状態を超音波探傷により確認したところ、接合層の剥離等の問題箇所は確認されなかった。
<Evaluation of reliability of power module structure>
After holding the power module structure in a thermostatic bath at −40 ° C. and 125 ° C. for 30 minutes and performing a heat cycle treatment (1000 times), the appearance and the joining state were confirmed by ultrasonic flaw detection. The problem was not confirmed.

[実施例2]
炭化珪素粉末A(市販品:平均粒子径150μm)3250g、炭化珪素粉末B(市販品:平均粒子径10μm)1750g、シリカゾル(日産化学社製:スノーテックス)750gを秤取し、攪拌混合機で30分間混合した後、70mm×70mm×100mmの寸法の板状に面圧10MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1000℃で2時間焼成して、気孔率が35%の焼結体を製造し、平面研削盤を用いて、外形寸法が、56mm×47mm×100mmの形状に加工してSiC多孔体を製造した。得られたSiC多孔体をスライサーとラップ研削盤により、外形寸法が56mm×47×2mmの形状に加工した。
[Example 2]
Silicon carbide powder A (commercial product: average particle size 150 μm) 3250 g, silicon carbide powder B (commercial product: average particle size 10 μm) 1750 g, silica sol (Nissan Chemical Co., Ltd .: Snowtex) 750 g were weighed and stirred and mixed. After mixing for 30 minutes, it was press-molded into a plate having dimensions of 70 mm × 70 mm × 100 mm at a surface pressure of 10 MPa to produce a molded body. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then fired in a nitrogen atmosphere at a temperature of 1000 ° C. for 2 hours to produce a sintered body having a porosity of 35%. Using a surface grinder, A SiC porous body was manufactured by processing into an external dimension of 56 mm × 47 mm × 100 mm. The obtained SiC porous body was processed into a shape having an outer dimension of 56 mm × 47 × 2 mm by a slicer and a lapping grinder.

外形寸法が56mm×47×2mmのセラミックス多孔体の32枚を4枚毎に黒鉛離型剤が塗布された離型板(160mm×160mm×0.8mm)を挟んで積層し、特性評価用として56×47×5mmの4枚も一緒に挟んで構造体となし(170mm×170mm×30mm)、両側に鉄板(板厚12mm)を配置して、ボルト8本で連結して一つの積層体とした。以下、実施例1の応力緩和板Aと同様にして複合体(56mm×47mm×2mm)を製造し、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、それぞれ、7.5×10−6/K、200W/(m・K)、400MPaであった。 32 pieces of porous ceramics with outer dimensions of 56 mm x 47 x 2 mm are laminated with a release plate (160 mm x 160 mm x 0.8 mm) coated with a graphite release agent applied to every 4 sheets for characteristic evaluation There is no structure body (170 mm x 170 mm x 30 mm) sandwiched by 4 pieces of 56 x 47 x 5 mm together, and an iron plate (plate thickness 12 mm) is arranged on both sides and connected with 8 bolts to form a single laminate. did. Hereinafter, a composite (56 mm × 47 mm × 2 mm) was produced in the same manner as the stress relaxation plate A of Example 1, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and three-point bending. When the strength was measured, they were 7.5 × 10 −6 / K, 200 W / (m · K), and 400 MPa, respectively.

得られた複合体を、平面研削盤でダイヤモンドの砥石を用いて、板厚1.0mmの板状に面加工した後、続いて、ウォータージェット加工機(スギノマシン製アブレッシブ・ジェットカッタNC)により、圧力250MPa、加工速度100mm/minの条件で、研磨砥粒として粒度100μmのガーネットを使用して、54mm×45mm×1.0mmの形状に切断加工した。その後、上記応力緩和板Aと同様な金属層を施して応力緩和板Bとし、その後、得られた応力緩和板Bを実施例1のセラミックス回路基板、金属ベース板と同様の手法を用いて接合し、パワーモジュール構造体を製造し実施例1と同様の信頼性評価を行った。その結果、接合層の剥離等の問題は確認されなかった。 The obtained composite was surface-processed into a plate having a thickness of 1.0 mm using a diamond grindstone with a surface grinder, and subsequently, with a water jet processing machine (Abrasive Jet Cutter NC manufactured by Sugino Machine). Using a garnet having a particle size of 100 μm as abrasive grains under the conditions of a pressure of 250 MPa and a processing speed of 100 mm / min, it was cut into a shape of 54 mm × 45 mm × 1.0 mm. Thereafter, a metal layer similar to that of the stress relaxation plate A is applied to form a stress relaxation plate B, and then the obtained stress relaxation plate B is bonded using the same technique as the ceramic circuit board and metal base plate of Example 1. Then, a power module structure was manufactured, and the same reliability evaluation as in Example 1 was performed. As a result, problems such as peeling of the bonding layer were not confirmed.

[実施例3、4]
炭化珪素粉末C(市販品:平均粒子径10μm)818gの粉末(実施例3)、又は黒鉛粉末A(市販品:平均粒子径300μm)245gと炭化珪素粉末D(市販品:平均粒子径20μm)358gの混合粉末(実施例4)を、筒状黒鉛治具(内寸法:70mm×70mm×100mm)に充填し、プレス成形して気孔率が48%(実施例3)又は気孔率が35%(実施例4)の粉末成形体を製造した。この粉末成形体を治具に充填した状態で実施例1と同様の手法を用いて積層体とし、複合体を製造した。それらを用い、セラミックス回路基板として窒化アルミニウム基板:61mm×54mm×0.635mm(Cu回路:59mm×52mm×0.2mm)を使用したこと以外は、実施例1の応力緩和板Aの場合と同様にして応力緩和板C:59mm×52mm×1.0mm(実施例3)、応力緩和板D:59mm×52mm×2.0mm(実施例4)の製造、パワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合層の剥離等は確認されなかった。
また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Cの熱膨張係数11.5×10-6/K、熱伝導率は120W/(m・K)、3点曲げ強度は510MPa、応力緩和板Dの熱膨張係数は8.5×10-6/K、熱伝導率は250W/(m・K)、3点曲げ強度は110MPaであった。
[Examples 3 and 4]
Silicon carbide powder C (commercial product: average particle size 10 μm) 818 g of powder (Example 3), or graphite powder A (commercial product: average particle size 300 μm) 245 g and silicon carbide powder D (commercial product: average particle size 20 μm) 358 g of the mixed powder (Example 4) was filled into a cylindrical graphite jig (inside dimensions: 70 mm × 70 mm × 100 mm) and press-molded to have a porosity of 48% (Example 3) or a porosity of 35%. A powder molded body of (Example 4) was produced. The powder compact was filled in a jig to form a laminate using the same method as in Example 1 to produce a composite. Except for using them and using an aluminum nitride substrate: 61 mm × 54 mm × 0.635 mm (Cu circuit: 59 mm × 52 mm × 0.2 mm) as the ceramic circuit substrate, the same as in the case of the stress relaxation plate A of Example 1 Stress relief plate C: 59 mm × 52 mm × 1.0 mm (Example 3), stress relief plate D: 59 mm × 52 mm × 2.0 mm (Example 4), power module structure manufactured, Evaluation was performed. As a result, no peeling of the bonding layer was confirmed.
Moreover, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured in the same manner as in Example 1, the thermal expansion coefficient of the stress relaxation plate C was 11.5. × 10 -6 / K, thermal conductivity is 120 W / (m · K), three-point bending strength is 510 MPa, thermal expansion coefficient of stress relaxation plate D is 8.5 × 10 -6 / K, thermal conductivity is 250 W / (M · K), the three-point bending strength was 110 MPa.

[実施例5〜11、比較例1]
(Ni−P:6μm)のめっき層のかわりに、表2に示す金属種と金属層厚みを有する金属層を形成、及び板厚を変えたこと、接合方法を変えたこと以外は、実施例1の応力緩和板Aを用いたのと同様にして応力緩和板及びパワーモジュール構造体を製造し、信頼性評価を行った。その結果、実施例5〜11では接合層の剥離等の問題は確認されなかったが、比較例1では応力緩和板の割れが確認された。
[Examples 5 to 11, Comparative Example 1]
Example except that instead of the plating layer of (Ni-P: 6 μm), a metal layer having the metal species and metal layer thickness shown in Table 2 was formed, the plate thickness was changed, and the joining method was changed. The stress relaxation plate and the power module structure were manufactured in the same manner as in the case of using the stress relaxation plate A of 1, and the reliability was evaluated. As a result, in Examples 5 to 11, problems such as peeling of the bonding layer were not confirmed, but in Comparative Example 1, cracks in the stress relaxation plate were confirmed.

[実施例12〜14、比較例2、3]
セラミックス多孔体として等方性黒鉛成形体A(市販品、気孔率:22体積%、寸法:70mm×70mm×100mm)を(実施例12)、等方性黒鉛成形体B(市販品、気孔率:21体積%、寸法:70mm×70mm×100mm)を(実施例13)、等方性黒鉛成形体C(市販品、気孔率:40体積%、寸法:70mm×70mm×100mm)を(実施例14)、押出黒鉛成形体A(市販品、気孔率:20体積%、寸法:70mm×70mm×100mm)を(比較例2)、等方性黒鉛成形体D(市販品、気孔率:18体積%、寸法:70mm×70mm×100mm)を(比較例3)、アルミニウム合金の代わりに純Alを用いたこと以外は実施例1と同様の手法で複合体を製造し、形状加工を59mm×52mm×2.0mm施した。その後、セラミックス回路基板として実施例3で用いた窒化アルミニウム基板を使用したこと、ベース板にアルミニウム板(100mm×80mm×4mm)を用いた(実施例14)こと以外は、応力緩和板Aの製造に準じて応力緩和板L、M、N、Z、AA及びパワーモジュール構造体を製造し、信頼性評価を行った。その結果、実施例12〜14では接合層の剥離等の問題は確認されなかったが、比較例2では応力緩和板の割れが確認され、比較例3では、はんだ接合層の剥離(はんだクラック)が確認された。
[Examples 12 to 14, Comparative Examples 2 and 3]
Isotropic graphite compact A (commercial product, porosity: 22% by volume, dimensions: 70 mm × 70 mm × 100 mm) (Example 12) and isotropic graphite compact B (commercial product, porosity) : 21 volume%, dimensions: 70 mm x 70 mm x 100 mm) (Example 13), isotropic graphite compact C (commercial product, porosity: 40 volume%, dimensions: 70 mm x 70 mm x 100 mm) (Example) 14) Extruded graphite molded body A (commercial product, porosity: 20% by volume, dimensions: 70 mm × 70 mm × 100 mm) (Comparative Example 2), isotropic graphite molded body D (commercial product, porosity: 18 volume) %, Dimensions: 70 mm × 70 mm × 100 mm) (Comparative Example 3), except that pure Al was used instead of the aluminum alloy, a composite was produced in the same manner as in Example 1, and the shape processing was 59 mm × 52 mm. X 2.0 mm. Thereafter, the production of the stress relaxation plate A, except that the aluminum nitride substrate used in Example 3 was used as the ceramic circuit substrate and that the aluminum plate (100 mm × 80 mm × 4 mm) was used as the base plate (Example 14). In accordance with the above, stress relaxation plates L, M, N, Z, AA and a power module structure were manufactured and evaluated for reliability. As a result, although problems such as peeling of the bonding layer were not confirmed in Examples 12 to 14, cracks of the stress relaxation plate were confirmed in Comparative Example 2, and peeling of the solder bonding layer (solder crack) was observed in Comparative Example 3. Was confirmed.

また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Lの熱膨張係数は9.2×10-6/K、熱伝導率は170W/(m・K)、強度は105MPa、応力緩和板Mの熱膨張係数は8.2×10-6/K、熱伝導率は250W/(m・K)、3点曲げ強度は65MPa、応力緩和板Nの熱膨張係数は13.2×10-6/K、熱伝導率は210W/(m・K)、3点曲げ強度は75MPa、応力緩和板Zの熱膨張係数は7.5×10-6/K、熱伝導率は350W/(m・K)、3点曲げ強度は25MPaで、応力緩和板AAの熱膨張係数は5.0×10-6/K、熱伝導率は200W/(m・K)、3点曲げ強度は80MPaあった。 Further, in the same manner as in Example 1, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the thermal expansion coefficient of the stress relaxation plate L was 9. 2 × 10 −6 / K, thermal conductivity is 170 W / (m · K), the strength is 105 MPa, the thermal expansion coefficient of the stress relaxation plate M is 8.2 × 10 −6 / K, and the thermal conductivity is 250 W / ( m · K), the three-point bending strength is 65 MPa, the thermal expansion coefficient of the stress relaxation plate N is 13.2 × 10 −6 / K, the thermal conductivity is 210 W / (m · K), the three-point bending strength is 75 MPa, The thermal expansion coefficient of the stress relaxation plate Z is 7.5 × 10 −6 / K, the thermal conductivity is 350 W / (m · K), the three-point bending strength is 25 MPa, and the thermal expansion coefficient of the stress relaxation plate AA is 5. 0 × 10 -6 / K, the thermal conductivity of 200W / (m · K), 3 -point bending strength was 80 MPa.

[実施例15]
窒化アルミニウム粉末(市販品:平均粒子径2μm)2300g、イットリア粉末(市販品:平均粒子径1μm)96g、成形バインダー(メチルセルロース)120g、及び純水120gの混合粉末を、面圧10MPaでプレス成形した後、更に成形圧力50MPaでCIP成形して円柱体(直径110mm×110mm)を製造した。これを、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が30%の無機多孔体(70mm×70mm×100mm)を製造した。
[Example 15]
A mixed powder of aluminum nitride powder (commercial product: average particle size 2 μm) 2300 g, yttria powder (commercial product: average particle size 1 μm) 96 g, molding binder (methylcellulose) 120 g, and pure water 120 g was press-molded at a surface pressure of 10 MPa. Thereafter, CIP molding was further performed at a molding pressure of 50 MPa to produce a cylindrical body (diameter 110 mm × 110 mm). This was degreased for 2 hours at a temperature of 600 ° C. in an air atmosphere, and then fired at a temperature of 1780 ° C. for 4 hours in a nitrogen atmosphere to produce a sintered body. Then, the porosity was 30 using a diamond grindstone at a machining center. % Inorganic porous material (70 mm × 70 mm × 100 mm) was produced.

実施例12と同様の手法にてこの無機多孔体を複合化したこと以外は、実施例12の応力緩和板Lと同様にして応力緩和板O(59mm×52mm×1.0mm)及びパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Oの熱膨張係数は7.6×10-6/K、熱伝導率は170W/(m・K)、3点曲げ強度は360MPaであった。 Stress relaxation plate O (59 mm × 52 mm × 1.0 mm) and power module structure in the same manner as the stress relaxation plate L of Example 12, except that this inorganic porous material was combined in the same manner as in Example 12. The body was manufactured and the reliability was evaluated. As a result, problems such as peeling of the joint portion were not confirmed. Further, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured in the same manner as in Example 1, the thermal expansion coefficient of the stress relaxation plate O was 7. 6 × 10 −6 / K, thermal conductivity was 170 W / (m · K), and three-point bending strength was 360 MPa.

[実施例16]
窒化珪素粉末(市販品:平均粒子径1μm)2760g、イットリア粉末(市販品:平均粒子径1μm)150g、及び酸化マグネシウム粉末(市販品:平均粒子径1μm)90gの混合物を用いたこと以外は、実施例15と同様にして円柱体(直径110mm×110mm)を製造した。これを、0.01MPaの窒素加圧雰囲気下、温度1600℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が22%の無機多孔体(70mm×70mm×100mm)を製造した。
[Example 16]
Except for using a mixture of 2760 g of silicon nitride powder (commercial product: average particle size 1 μm), 150 g of yttria powder (commercial product: average particle size 1 μm), and 90 g of magnesium oxide powder (commercial product: average particle size 1 μm), A cylindrical body (diameter: 110 mm × 110 mm) was produced in the same manner as in Example 15. This was fired at a temperature of 1600 ° C. for 4 hours under a nitrogen pressure atmosphere of 0.01 MPa to produce a sintered body, and then an inorganic porous body having a porosity of 22% (70 mm × 70 mm) using a diamond grindstone at a machining center. 70 mm × 100 mm).

実施例12と同様の手法にてこのセラミックス多孔体を複合化したこと以外は、実施例12の応力緩和板Lと同様にして応力緩和板P(59mm×52mm×1.0mm)及びパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合層の剥離等の問題は確認されなかった。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Pの熱膨張係数は7.3×10-6/K、熱伝導率は100W/(m・K)、3点曲げ強度は520MPaであった。 The stress relaxation plate P (59 mm × 52 mm × 1.0 mm) and the power module structure are the same as the stress relaxation plate L of Example 12, except that the ceramic porous body is combined by the same method as in Example 12. The body was manufactured and the reliability was evaluated. As a result, problems such as peeling of the bonding layer were not confirmed. Further, in the same manner as in Example 1, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the thermal expansion coefficient of the stress relaxation plate P was 7. 3 × 10 −6 / K, the thermal conductivity was 100 W / (m · K), and the three-point bending strength was 520 MPa.

[実施例17]
黒鉛粉末A(市販品:平均粒子径300μm)377g、炭化珪素粉末D(市販品:平均粒子径20μm)550gのセラミックス粉末、及びのアルミニウム粉末(市販品:平均粒子径20μm)343g、珪素粉末(市販品:平均粒子径7μm)47gの金属粉末をボールミルで15分混合し、筒状鉄製金型(内寸法:70mm×70mm×150mm)に混合粉末26gと黒鉛の離型処理を施した0.8mmtの離型板(SUS板)を交互に充填し、アルミニウム合金の融点以上の温度(600℃)に加熱後に圧力50MPaで加圧した状態で、一方向から凝固させてセラミックス粉末を70体積%含む複合体(70mm×70mm×2mm)を製造した。この複合体を実施例2の複合体と同様の手法で形状加工を行い、応力緩和板Q(57mm×50mm×1.0mm)を製造した。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Qの熱膨張係数は10.0×10-6/K、熱伝導率は200W/(m・K)、3点曲げ強度は100MPaであった。
[Example 17]
Graphite powder A (commercial product: average particle size 300 μm) 377 g, silicon carbide powder D (commercial product: average particle size 20 μm) 550 g ceramic powder, and aluminum powder (commercial product: average particle size 20 μm) 343 g, silicon powder ( Commercially available product: 47 g of metal powder with an average particle size of 7 μm) was mixed for 15 minutes with a ball mill, and a cylindrical iron mold (inner dimensions: 70 mm × 70 mm × 150 mm) was subjected to mold release treatment of 26 g of mixed powder and graphite. 8mmt release plates (SUS plates) are alternately filled, heated to a temperature equal to or higher than the melting point of the aluminum alloy (600 ° C), and then solidified from one direction in a state of being pressurized at 50MPa, and 70% by volume of ceramic powder. A composite (70 mm × 70 mm × 2 mm) was prepared. The composite was processed by the same method as the composite of Example 2 to produce a stress relaxation plate Q (57 mm × 50 mm × 1.0 mm). Similarly to Example 1, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured. 0 × 10 −6 / K, thermal conductivity was 200 W / (m · K), and three-point bending strength was 100 MPa.

この応力緩和板Qを使用したことと、セラミックス回路基板として窒化アルミニウム基板:61×54×0.635mmt(Al回路:57×50×0.2mmt)を使用したこと以外は、実施例1と同様にしてパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。 Example 1 except that this stress relaxation plate Q was used and an aluminum nitride substrate: 61 × 54 × 0.635 mmt (Al circuit: 57 × 50 × 0.2 mmt) was used as the ceramic circuit substrate. Thus, a power module structure was manufactured and evaluated for reliability. As a result, problems such as peeling of the joint portion were not confirmed.

[実施例18]
黒鉛粉末A(市販品:平均粒子径300μm)296g、炭化珪素粉末D(市販品:平均粒子径20μm)433gのセラミックス粉末、及びのアルミニウム粉末(市販品:平均粒子径20μm)515g、珪素粉末(市販品:平均粒子径7μm)70gの金属粉末をボールミルで15分混合し筒状鉄製金型(内寸法:70mm×70mm×150mm)に充填し、アルミニウム合金の融点以上の温度(600℃)に加熱後に圧力50MPaで加圧した状態で、一方向から凝固させてセラミックス粉末を55体積%含む複合体(70mm×70mm×100mm)を製造した。実施例1と同様の手法を用いて、この複合体から応力緩和板R(57mm×50mm×1.0mm)を製造し、実施例17と同様の手法にてパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Rの熱膨張係数は11.9×10-6/K、熱伝導率は190W/(m・K)、3点曲げ強度は130MPaであった。
[Example 18]
Graphite powder A (commercial product: average particle size 300 μm) 296 g, silicon carbide powder D (commercial product: average particle size 20 μm) 433 g ceramic powder, and aluminum powder (commercial product: average particle size 20 μm) 515 g, silicon powder ( Commercially available product: 70 g of metal powder with an average particle size of 7 μm) is mixed for 15 minutes with a ball mill and filled into a cylindrical iron mold (inner dimensions: 70 mm × 70 mm × 150 mm), at a temperature (600 ° C.) above the melting point of the aluminum alloy. A composite (70 mm × 70 mm × 100 mm) containing 55% by volume of ceramic powder was produced by solidifying from one direction in a state of being pressurized at 50 MPa after heating. Using the same method as in Example 1, a stress relaxation plate R (57 mm × 50 mm × 1.0 mm) is manufactured from this composite, and a power module structure is manufactured in the same method as in Example 17, and the reliability is improved. Sex evaluation was performed. As a result, problems such as peeling of the joint portion were not confirmed. Further, in the same manner as in Example 1, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the thermal expansion coefficient of the stress relaxation plate R was 11. 9 × 10 −6 / K, the thermal conductivity was 190 W / (m · K), and the three-point bending strength was 130 MPa.

[実施例19]
黒鉛粉末A(市販品:平均粒子径300μm)216g、炭化珪素粉末D(市販品:平均粒子径20μm)315gのセラミックス粉末、及びのアルミニウム粉末(市販品:平均粒子径20μm)687g、珪素粉末(市販品:平均粒子径7μm)94gの金属粉末をボールミルで15分混合し筒状鉄製金型(内寸法:70mm×70mm×150mm)に充填し、アルミニウム合金の融点以上の温度(600℃)に加熱後に圧力50MPaで加圧した状態で、一方向から凝固させてセラミックス粉末を40体積%含む複合体(70mm×70mm×100mm)を製造した。実施例1と同様の手法を用いて、この複合体から応力緩和板S(57mm×50mm×1.0mm)を製造し、実施例17と同様のセラミックス回路基板、実施例14と同様のベース板を使用してパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Sの線膨張係数は14.5×10-6/K、熱伝導率は180W/(m・K)、3点曲げ強度は140MPaであった。
[Example 19]
Graphite powder A (commercial product: average particle size 300 μm) 216 g, silicon carbide powder D (commercial product: average particle size 20 μm) 315 g ceramic powder, and aluminum powder (commercial product: average particle size 20 μm) 687 g, silicon powder ( Commercial product: average particle size 7 μm) 94 g of metal powder is mixed for 15 minutes with a ball mill and filled into a cylindrical iron mold (inner dimensions: 70 mm × 70 mm × 150 mm), and the temperature is higher than the melting point of the aluminum alloy (600 ° C.). A composite (70 mm × 70 mm × 100 mm) containing 40% by volume of ceramic powder was produced by solidifying from one direction in a state of being pressurized at 50 MPa after heating. A stress relaxation plate S (57 mm × 50 mm × 1.0 mm) is manufactured from this composite using the same method as in Example 1, a ceramic circuit board similar to Example 17, and a base plate similar to Example 14 Was used to manufacture a power module structure, and the reliability was evaluated. As a result, problems such as peeling of the joint portion were not confirmed. Further, in the same manner as in Example 1, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the linear expansion coefficient of the stress relaxation plate S was 14. 5 × 10 −6 / K, the thermal conductivity was 180 W / (m · K), and the three-point bending strength was 140 MPa.

[比較例4]
黒鉛粉末A(市販品:平均粒子径300μm)162g、炭化珪素粉末D(市販品:平均粒子径20μm)236gのセラミックス粉末、及びのアルミニウム粉末(市販品:平均粒子径20μm)802g、珪素粉末(市販品:平均粒子径7μm)109gの金属粉末をボールミルで15分混合し筒状鉄製金型(内寸法:70mm×70mm×150mm)に充填し、アルミニウム合金の融点以上の温度(600℃)に加熱後に圧力50MPaで加圧した状態で、一方向から凝固させてセラミックス粉末を30体積%含む複合体(70mm×70mm×100mm)を製造した。実施例18と同様の手法を用いて、この複合体から応力緩和板AB(57mm×50mm×1.0mm)及びパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分にはんだ接合部分の剥離(はんだクラック)が確認された。また、実施例1と同様にして、温度25℃〜150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、応力緩和板Qの熱膨張係数は17.0×10-6/K、熱伝導率は150W/(m・K)、3点曲げ強度は135MPaであった。
[Comparative Example 4]
162 g of graphite powder A (commercial product: average particle size 300 μm), 236 g of ceramic powder of silicon carbide powder D (commercial product: average particle size 20 μm), and 802 g of aluminum powder (commercial product: average particle size 20 μm), silicon powder ( Commercially available product: 109 g of metal powder with an average particle size of 7 μm) is mixed for 15 minutes by a ball mill and filled into a cylindrical iron mold (inner dimensions: 70 mm × 70 mm × 150 mm), at a temperature (600 ° C.) above the melting point of the aluminum alloy. A composite (70 mm × 70 mm × 100 mm) containing 30% by volume of ceramic powder was produced by solidifying from one direction in a state where the pressure was increased to 50 MPa after heating. Using a method similar to that of Example 18, a stress relaxation plate AB (57 mm × 50 mm × 1.0 mm) and a power module structure were manufactured from this composite, and reliability evaluation was performed. As a result, peeling (solder crack) of the solder joint portion was confirmed at the joint portion. Further, in the same manner as in Example 1, when the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the thermal expansion coefficient of the stress relaxation plate Q was 17. 0 × 10 −6 / K, thermal conductivity was 150 W / (m · K), and three-point bending strength was 135 MPa.

[実施例20〜22]
温度25℃〜150℃の熱膨張係数が8.5×10−6/Kで、温度25℃での熱伝導率が230W/(m・K)である、銅−タングステン(組成(質量%):Cu/W=20/80)からなる金属板の板厚を表2のように変更した金属基板からなる応力緩和板を種々用意した。これらの応力緩和板を用いたこと以外は、実施例17の応力緩和板Qと同様にしてパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。
[Examples 20 to 22]
Copper-tungsten (composition (mass%)) having a thermal expansion coefficient of 8.5 × 10 −6 / K at a temperature of 25 ° C. to 150 ° C. and a thermal conductivity of 230 W / (m · K) at a temperature of 25 ° C. : Cu / W = 20/80) Various stress relaxation plates made of a metal substrate having a thickness changed as shown in Table 2 were prepared. A power module structure was manufactured in the same manner as the stress relaxation plate Q of Example 17 except that these stress relaxation plates were used, and reliability evaluation was performed. As a result, problems such as peeling of the joint portion were not confirmed.

[実施例23、24]
Cu/Wからなる金属板の代わりに、温度25℃の熱伝導率が240W/(m・K)である銅−モリブデン(組成(質量%):Cu/Mo=50/50)の金属基板(実施例23)を、熱伝導率が200W/(m・K)である、銅−モリブデン−銅(Cu/Mo/Cu)の3層積層板(各層の厚みは0.2mmの金属基板(実施例24)を応力緩和板として用いたこと以外は、実施例17と同様にしてパワーモジュール構造体を製造し、信頼性評価を行った。その結果、接合部分の剥離等の問題は確認されなかった。
[Examples 23 and 24]
Instead of a metal plate made of Cu / W, a metal substrate of copper-molybdenum (composition (mass%): Cu / Mo = 50/50) having a thermal conductivity of 240 W / (m · K) at a temperature of 25 ° C. Example 23) is a copper-molybdenum-copper (Cu / Mo / Cu) three-layer laminate having a thermal conductivity of 200 W / (m · K) (a metal substrate having a thickness of 0.2 mm for each layer) Except that Example 24) was used as a stress relaxation plate, a power module structure was produced and evaluated for reliability in the same manner as in Example 17. As a result, problems such as peeling of the joint portion were not confirmed. It was.

実施例・比較例の主要条件と結果を表1〜3に示す。 The main conditions and results of Examples and Comparative Examples are shown in Tables 1 to 3.




1.セラミックス回路基板
2.応力緩和板
3.金属ベース板
4.金属回路
5.接合層
6.金属
7.セラミックス粉末
1. Ceramic circuit board2. 2. Stress relaxation plate Metal base plate4. Metal circuit
5. Bonding layer 6. Metal 7. Ceramic powder

Claims (6)

セラミックス回路基板の熱膨張係数をα(×10−6/K)、応力緩和板の熱膨張係数をβ(×10−6/K)、金属ベース板の熱膨張係数をγ(×10−6/K)とした時、(α+γ)/2−4<β<(α+γ)/2+4を満たす熱膨張係数を有し、板厚が0.5〜3.0mmで温度25℃の熱伝導率が100W/(m・K)以上、3点曲げ強度が50MPa以上の応力緩和板の表面に金属層を形成した後、セラミックス回路基板と金属ベース板との間にはんだ付け又はロウ付けしてなるパワーモジュール構造体。 The thermal expansion coefficient of the ceramic circuit board is α (× 10 −6 / K), the thermal expansion coefficient of the stress relaxation plate is β (× 10 −6 / K), and the thermal expansion coefficient of the metal base plate is γ (× 10 −6). / K), it has a thermal expansion coefficient satisfying (α + γ) / 2-4 <β <(α + γ) / 2 + 4, and has a plate thickness of 0.5 to 3.0 mm and a thermal conductivity of 25 ° C. Power formed by soldering or brazing between a ceramic circuit board and a metal base plate after forming a metal layer on the surface of a stress relaxation plate with a three-point bending strength of 50 MPa or more at 100 W / (m · K) or more Module structure. 応力緩和板が、炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる多孔体、又は粉末成形体とアルミニウム又はアルミニウム合金を複合化した板状の金属含浸セラミックス基板であることを特徴とする請求項1記載のパワーモジュール構造体。 The stress relaxation plate is a porous body composed of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite, or a plate-shaped composite of a powder compact and aluminum or an aluminum alloy. The power module structure according to claim 1, wherein the power module structure is a metal-impregnated ceramic substrate. 応力緩和板が、Cu,Ni,Mo,W、Co及びFeから選ばれた金属板、上記金属成分の少なくとも1種を含む合金板、又は上記金属板及び上記合金板から選ばれた2種以上で構成された積層板であることを特徴とする請求項1記載のパワーモジュール構造体。 The stress relaxation plate is a metal plate selected from Cu, Ni, Mo, W, Co and Fe, an alloy plate containing at least one of the metal components, or two or more selected from the metal plate and the alloy plate. The power module structure according to claim 1, wherein the power module structure is formed of 下記の(1)又は(2)の工程を経て得られる板状の金属含浸セラミックス基板の表面に金属層を形成してなることを特徴とする請求項1又は2記載のパワーモジュール構造体に用いる応力緩和板の製造方法。
(1)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる気孔率が10〜60体積%のブロック状の多孔体、又は粉末成形体とアルミニウム又はアルミニウム合金を溶湯鍛造法にて30MPa以上の圧力で複合化し、ブロック状の金属含浸セラミックス体を切断加工及び又は形状加工して板状の金属含浸セラミックス基板を作製する工程。
(2)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれるセラミックス粉末1種類以上からなる気孔率が10〜60体積%の板状の多孔体、又は粉末成形体を離型板を介して積層し、アルミニウム又はアルミニウム合金を溶湯鍛造法にて30MPa以上の圧力で含浸し板状の金属含浸セラミックス体を作製した後、形状加工して金属含浸セラミックス基板を作製する工程。
3. The power module structure according to claim 1, wherein a metal layer is formed on a surface of a plate-like metal-impregnated ceramic substrate obtained through the following step (1) or (2). A method of manufacturing a stress relaxation plate.
(1) A block-like porous body having a porosity of 10 to 60% by volume, or a powder molded body and aluminum made of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite Alternatively, a step of producing a plate-shaped metal-impregnated ceramic substrate by compounding an aluminum alloy by a molten forging method at a pressure of 30 MPa or more and cutting and / or shaping a block-shaped metal-impregnated ceramic body.
(2) A plate-shaped porous body having a porosity of 10 to 60% by volume or a powder molded body made of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite is separated. A step of laminating through a mold plate and impregnating aluminum or aluminum alloy with a molten metal forging method at a pressure of 30 MPa or more to produce a plate-like metal-impregnated ceramic body, and then processing the shape to produce a metal-impregnated ceramic substrate.
下記の(3)又は(4)の工程を経て得られる板状の金属含浸セラミックス基板の表面に金属層を形成してなることを特徴とする請求項1又は2記載のパワーモジュール構造体に用いる応力緩和板の製造方法。
(3)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれる1種類以上のセラミックス粉末を40〜90体積%とアルミニウム又はアルミニウム合金を10〜60体積%混合した粉末を離型処理を施した金型に充填し、アルミニウム又はアルミニウム合金の融点以上の温度に加熱して、30MPa以上の圧力で加熱プレスしてブロック状に複合化し、切断加工及び又は外周加工により板状の金属含浸セラミックス基板を得る工程。
(4)炭化珪素、窒化アルミニウム、窒化珪素、窒化硼素、及び黒鉛の中から選ばれる1種類以上のセラミックス粉末を40〜90体積%とアルミニウム又はアルミニウム合金を10〜60体積%混合した粉末を離型処理を施した金型に充填し、アルミニウム又はアルミニウム合金の融点以上の温度に加熱して、30MPa以上の圧力で加熱プレスして板状の金属含浸セラミックス基板に複合化する工程。
3. The power module structure according to claim 1, wherein a metal layer is formed on a surface of a plate-like metal-impregnated ceramic substrate obtained through the following step (3) or (4). A method of manufacturing a stress relaxation plate.
(3) Separate a powder obtained by mixing 40 to 90% by volume of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite and 10 to 60% by volume of aluminum or an aluminum alloy. Filled with a mold that has been subjected to mold treatment, heated to a temperature higher than the melting point of aluminum or aluminum alloy, heated and pressed at a pressure of 30 MPa or more to be combined into a block shape, and plate-like by cutting and / or peripheral processing A step of obtaining a metal-impregnated ceramic substrate.
(4) Separate from 40 to 90% by volume of one or more ceramic powders selected from silicon carbide, aluminum nitride, silicon nitride, boron nitride, and graphite and 10 to 60% by volume of aluminum or aluminum alloy. A step of filling a mold subjected to mold treatment, heating to a temperature equal to or higher than the melting point of aluminum or an aluminum alloy, and heating and pressing at a pressure of 30 MPa or more to form a composite in a plate-like metal-impregnated ceramic substrate.
応力緩和板の表面の金属層が0.5〜20μmの厚みのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる少なくとも1種以上の金属をめっきにより形成してなることを特徴とする請求項1〜5いずれかに記載のパワーモジュール構造体に用いる応力緩和板の製造方法。
The metal layer on the surface of the stress relaxation plate is formed by plating at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn having a thickness of 0.5 to 20 μm. The manufacturing method of the stress relaxation board used for the power module structure in any one of Claims 1-5 characterized by the above-mentioned.
JP2010000079A 2010-01-04 2010-01-04 Power module structure and method of manufacturing the same Pending JP2011139000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000079A JP2011139000A (en) 2010-01-04 2010-01-04 Power module structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000079A JP2011139000A (en) 2010-01-04 2010-01-04 Power module structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011139000A true JP2011139000A (en) 2011-07-14

Family

ID=44350115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000079A Pending JP2011139000A (en) 2010-01-04 2010-01-04 Power module structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011139000A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034729A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Composite material, slide member made by using the same, and manufacturing methods of both
KR20160130760A (en) * 2014-03-07 2016-11-14 엔지케이 인슐레이터 엘티디 Joined body manufacturing method and joined body
JP2019508250A (en) * 2016-02-19 2019-03-28 ヘラエウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Manufacturing method of thermal diffusion plate, thermal diffusion plate, manufacturing method of semiconductor module, and semiconductor module
CN112164687A (en) * 2020-09-07 2021-01-01 江苏富乐德半导体科技有限公司 Copper-clad ceramic substrate and preparation method thereof
JP2021143829A (en) * 2017-01-18 2021-09-24 大日本印刷株式会社 Vapor chamber, metal sheet assembly for vapor chamber, and manufacturing method of vapor chamber
CN113957283A (en) * 2021-10-20 2022-01-21 河南瀚银光电科技股份有限公司 High-thermal-conductivity composite material with embedded structure and preparation method thereof
CN116283326A (en) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148451A (en) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp Power module board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148451A (en) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp Power module board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034729A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Composite material, slide member made by using the same, and manufacturing methods of both
KR20160130760A (en) * 2014-03-07 2016-11-14 엔지케이 인슐레이터 엘티디 Joined body manufacturing method and joined body
KR102399753B1 (en) * 2014-03-07 2022-05-20 엔지케이 인슐레이터 엘티디 Joined body manufacturing method and joined body
JP2019508250A (en) * 2016-02-19 2019-03-28 ヘラエウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Manufacturing method of thermal diffusion plate, thermal diffusion plate, manufacturing method of semiconductor module, and semiconductor module
JP2021143829A (en) * 2017-01-18 2021-09-24 大日本印刷株式会社 Vapor chamber, metal sheet assembly for vapor chamber, and manufacturing method of vapor chamber
CN112164687A (en) * 2020-09-07 2021-01-01 江苏富乐德半导体科技有限公司 Copper-clad ceramic substrate and preparation method thereof
CN113957283A (en) * 2021-10-20 2022-01-21 河南瀚银光电科技股份有限公司 High-thermal-conductivity composite material with embedded structure and preparation method thereof
CN116283326A (en) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof
CN116283326B (en) * 2023-02-22 2024-04-16 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101986860B1 (en) Heat dissipating component for semiconductor element
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
JP5496888B2 (en) Method for producing aluminum-diamond composite
JP5940244B2 (en) Aluminum-diamond composite and method for producing the same
EP2012354B1 (en) Method of producing a base plate for a power module
JP5021636B2 (en) Aluminum-silicon carbide composite and processing method thereof
US8025962B2 (en) Aluminum-silicon carbide composite and heat dissipation device employing the same
JP6755879B2 (en) Aluminum-diamond composite and its manufacturing method
JP2011139000A (en) Power module structure and method of manufacturing the same
JP5755895B2 (en) Aluminum-diamond composite and method for producing the same
WO2015163395A1 (en) Aluminum-diamond composite, and heat dissipating component using same
JP3907620B2 (en) Ceramic circuit board integrated aluminum-silicon carbide composite and manufacturing method thereof
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JP5284704B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP5457992B2 (en) Method for producing aluminum-ceramic composite structural part
JP5284706B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP4319939B2 (en) Method for producing aluminum alloy-ceramic composite
JP3732193B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2012171838A (en) Method for producing aluminum-silicon carbide composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723