JP2001335859A - Aluminum-silicon carbide composite material and its production method - Google Patents

Aluminum-silicon carbide composite material and its production method

Info

Publication number
JP2001335859A
JP2001335859A JP2000152313A JP2000152313A JP2001335859A JP 2001335859 A JP2001335859 A JP 2001335859A JP 2000152313 A JP2000152313 A JP 2000152313A JP 2000152313 A JP2000152313 A JP 2000152313A JP 2001335859 A JP2001335859 A JP 2001335859A
Authority
JP
Japan
Prior art keywords
silicon carbide
aluminum
composite material
sic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000152313A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000152313A priority Critical patent/JP2001335859A/en
Publication of JP2001335859A publication Critical patent/JP2001335859A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Al-SiC composite material capable of preventing deformation and damage by relaxing the strain of thermal stress caused by the diference in thermal expansion coefficients, easily joinable with the other parts at excellent strength, moreover having high thermal conductivity and suitable as a heat radiating substrate or the like. SOLUTION: This composite material is composed of metal consisting essentially of Al and particles consisting essentially of SiC, one end of which is provided with a metallic layer consisting essentially of Al, and in contact with the Al metallic layer, the other end of which is arranged with a compounded in which SiC is dispersed into an Al metal matrix. In the compounded layer, the amount of SiC is stepwise or continuously changed between one end and the other end, and preferably, the amount of SiC is stepwise or continuously increased from the metallic layer side of one end toward the other end.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、半導体素子搭載用
の放熱基板等として好適なアルミニウム−炭化珪素系複
合材料、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-silicon carbide composite material suitable as a heat-radiating substrate for mounting a semiconductor element, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、半導体装置の高速演算化・高集積
化に対する市場の要求は急速に高まりつつある。それと
共に、同装置の半導体素子搭載用の放熱基板には、半導
体素子から発生する熱をより一層効率良く逃がすため、
その熱伝導率をより一層向上させることが求められてき
た。
2. Description of the Related Art In recent years, market demands for high-speed operation and high integration of semiconductor devices are rapidly increasing. At the same time, the heat generated from the semiconductor element is more efficiently released to the heat dissipation board for mounting the semiconductor element of the device,
It has been required to further improve the thermal conductivity.

【0003】また、放熱基板の熱膨張係数についても、
素子並びに放熱基板に隣接配置された半導体装置内の他
の周辺部材との間で熱歪みを一層小さくするために、そ
れらの部材により一層近い熱膨張係数であることが求め
られてきた。具体的には、半導体素子として通常用いら
れるSi及びGaAsの熱膨張係数がそれぞれ4.2×
10−6/℃及び6.5×10−6/℃であり、半導体
装置の外囲器材として通常用いられるアルミナセラミッ
クスのそれが6.5×10−6/℃程度であることか
ら、放熱基板の熱膨張係数はこれらの値に近いことが望
まれている。
[0003] Also, regarding the thermal expansion coefficient of the heat dissipation board,
In order to further reduce the thermal strain between the element and other peripheral members in the semiconductor device disposed adjacent to the heat dissipation substrate, it is required that the members have a thermal expansion coefficient closer to those members. Specifically, the thermal expansion coefficients of Si and GaAs, which are usually used as semiconductor elements, are each 4.2 ×.
10 −6 / ° C. and 6.5 × 10 −6 / ° C., which is about 6.5 × 10 −6 / ° C. of alumina ceramics usually used as an envelope of a semiconductor device. Is desired to be close to these values.

【0004】更に、近年におけるエレクトロニクス機器
の応用範囲の著しい拡張に伴い、半導体装置の使用範囲
もより一層多様化しつつある。その中で、高出力の交流
変換機器、周波数変換機器等のいわゆる半導体パワーデ
バイス機器への利用が増えつつある。これらのパワーデ
バイスでは、半導体素子からの発熱が通常の半導体メモ
リーやマイクロプロセッサーに比べ数倍から数十倍(通
常例えば数十W)にも及ぶため、これらの機器に使われ
る放熱基板は熱伝導率を格段に向上させると共に、その
熱膨張係数についても周辺部材との整合性を高めること
が一層重要である。
Further, with the remarkable expansion of the application range of electronic equipment in recent years, the range of use of semiconductor devices has been further diversified. Among them, applications to so-called semiconductor power device devices such as high-output AC converters and frequency converters are increasing. In these power devices, the heat generated by the semiconductor elements is several to several tens of times (typically, for example, several tens of watts) compared to ordinary semiconductor memories and microprocessors. It is even more important that the rate of thermal expansion be significantly improved, and that the coefficient of thermal expansion be consistent with the surrounding members.

【0005】このような半導体装置用の放熱基板として
は、従来から、例えばCu−W系やCu−Mo系の複合
合金からなるものが一般に用いられてきた。しかし、こ
れらの複合合金からなる放熱基板は、原料が高価なため
にコスト高になるうえ、重量が大きいという問題があっ
た。
Conventionally, as such a heat dissipation substrate for a semiconductor device, for example, a substrate made of a Cu-W or Cu-Mo composite alloy has been generally used. However, the heat-dissipating substrates made of these composite alloys have problems that the cost is high because the raw materials are expensive, and that they are heavy.

【0006】そこで最近では、安価で軽量な材料とし
て、各種のアルミニウム(以下、単にAlとも言う)複
合材料が注目されるようになってきた。なかでもAlと
炭化珪素(以下、単にSiCとも言う)を主成分とする
Al−SiC系複合材料は、それらの原料が比較的安価
であり、軽量且つ高熱伝導性であるため、有望な材料と
して注目されている。
Therefore, recently, various aluminum (hereinafter, also simply referred to as Al) composite materials have been attracting attention as inexpensive and lightweight materials. Above all, Al-SiC-based composite materials containing Al and silicon carbide (hereinafter, also simply referred to as SiC) as main components are relatively inexpensive, light-weight, and have high thermal conductivity. Attention has been paid.

【0007】尚、通常市販されている純粋なAl及びS
iC単体では、密度はそれぞれ2.7g/cm程度及
び3.2g/cm程度であり、熱伝導率は共に240
W/m・K程度までであるが、その純度や欠陥濃度を調
整すれば熱伝導率のレベルは更に向上するものと思われ
る。また、純粋なSiC単体及びAl単体の熱膨張係数
はそれぞれ4.2×10−6/℃程度及び24×10
−6/℃程度であり、それらを複合化することによって
熱膨張係数を広い範囲で制御することが可能である。
Incidentally, pure Al and S which are usually commercially available
In the case of iC alone, the densities are about 2.7 g / cm 3 and about 3.2 g / cm 3, respectively, and the thermal conductivity is 240 g / cm 3.
Although it is up to about W / m · K, it is considered that the level of the thermal conductivity is further improved by adjusting the purity and the defect concentration. The thermal expansion coefficients of pure SiC alone and Al alone are about 4.2 × 10 −6 / ° C. and 24 × 10
It is about −6 / ° C., and by combining them, the thermal expansion coefficient can be controlled in a wide range.

【0008】かかるAl−SiC系複合材料及びその製
造方法については、(1)特開平1−501489号公
報、(2)特開平2−343729号公報、(3)特開
昭61−222668号公報、及び(4)特開平9―1
57773号公報に開示されている。上記(1)はSi
CとAlの混合物中のAlを溶融させて、鋳造法によっ
て固化する方法に関するものである。また、上記(2)
と(3)は、いずれもSiC多孔体の空隙にAlを溶浸
する方法に関するものであって、特に(3)は加圧下で
Alを溶浸する、いわゆる加圧溶浸法に関するものであ
る。
[0008] Such an Al-SiC-based composite material and a method for producing the same are described in (1) JP-A-1-501489, (2) JP-A-2-343729, and (3) JP-A-61-222668. And (4) Japanese Patent Laid-Open No. 9-1
No. 57773. The above (1) uses Si
The present invention relates to a method in which Al in a mixture of C and Al is melted and solidified by a casting method. The above (2)
And (3) all relate to a method of infiltrating Al into the voids of a porous SiC body, and particularly (3) relates to a so-called pressure infiltration method of infiltrating Al under pressure. .

【0009】上記(4)は、SiCとAlの混合粉末の
成形体か又はそれをホットプレスしたものを型内に配置
し、これを真空中においてAlの融点以上の温度で液相
燒結する方法に関するものである。また、上記(4)に
は、Al粉末とSiC粉末との混合物をホットプレス
し、成形と焼結とを同時に行う方法が開示されている。
その方法は、10〜80体積%のAlと、残部SiCの
混合粉末を成形し、Alの溶融点以上の温度下に500
kg/cm以上の圧力でホットプレスするものであ
り、150〜280W/m・Kの熱伝導率のアルミニウ
ム−炭化珪素系複合材料が得られている。
The above (4) is a method of placing a compact of a mixed powder of SiC and Al or a hot-pressed compact in a mold and subjecting the compact to liquid phase sintering at a temperature equal to or higher than the melting point of Al in a vacuum. It is about. Also, the above (4) discloses a method in which a mixture of an Al powder and a SiC powder is hot-pressed to simultaneously perform molding and sintering.
The method is to form a mixed powder of 10 to 80% by volume of Al and the balance of SiC, and to form a mixed powder at a temperature equal to or higher than the melting point of Al.
Hot pressing is performed at a pressure of kg / cm 2 or more, and an aluminum-silicon carbide composite material having a thermal conductivity of 150 to 280 W / m · K is obtained.

【0010】一方、本発明者等は、(5)特開平10−
335538号公報、(6)特開平10−280082
号公報、(7)特願平11−28940号及び(8)特
願平11−176807号において、Al−SiC系複
合材料を提案している。即ち、上記(5)では、液相焼
結法によって得られ、その熱伝導率が180W/m・K
以上のアルミニウム−炭化珪素系複合材料を提示してい
る。この複合材料は、例えば10〜70重量%の粒子状
SiC粉末とAl粉末との混合粉末を成形した後、99
%以上の窒素を含み、酸素濃度が200ppm以下、露
点が−20℃以下の非酸化性雰囲気中において、600
〜750℃で焼結する工程によって得られる。
On the other hand, the present inventors have proposed (5)
335538, (6) JP-A-10-280082
Japanese Patent Application Publication, (7) Japanese Patent Application No. 11-28940 and (8) Japanese Patent Application No. 11-176807 propose Al-SiC-based composite materials. That is, in the above (5), the thermal conductivity obtained by the liquid phase sintering method is 180 W / m · K
The above-mentioned aluminum-silicon carbide composite material is presented. This composite material is formed, for example, by molding a mixed powder of 10 to 70% by weight of particulate SiC powder and Al powder, and then molding the mixed powder.
% Or more of nitrogen, an oxygen concentration of 200 ppm or less, and a dew point of −20 ° C. or less in a non-oxidizing atmosphere.
Obtained by sintering at ~ 750 ° C.

【0011】上記(6)においては、その熱膨張係数が
18×10−6/℃以下、その熱伝導率が230W/m
・K以上であり、焼結後の寸法が実用寸法に近い、いわ
ゆるネットシェイプなアルミニウム−炭化珪素系複合材
料を提示している。更に上記(7)では、常圧焼結法と
HIP法とを組み合わせた方法、及び(8)では高純度
のSiC粉末を使い熱間鍛造法によって固化する方法
を、それぞれ提案している。
In the above (6), the thermal expansion coefficient is 18 × 10 −6 / ° C. or less, and the thermal conductivity is 230 W / m 2.
A so-called net-shape aluminum-silicon carbide composite material having a size of K or more and a size after sintering is close to a practical size is presented. Further, (7) proposes a method combining the normal pressure sintering method and the HIP method, and (8) proposes a method of solidifying by high-temperature forging using high-purity SiC powder.

【0012】上記(7)によれば、例えば粒子状SiC
を10〜70重量%混合したAl−SiC系混合粉末の
成形体を、窒素ガス99%以上を含む非酸化性雰囲気中
において、600℃以上且つAlの溶融温度以下の温度
範囲内で常圧焼結し、その後金属容器に封入して700
℃以上の温度でHIPすることによって、均質で熱伝導
率が200W/m・K以上のアルミニウム−炭化珪素系
複合材料を得ることができる。また、上記(8)によれ
ば、例えば急速に昇温・加熱の可能な手段で予備加熱を
行い、型内にて熱間鍛造することによって、250W/
m・K以上のアルミニウム−炭化珪素系複合材料を得る
ことができる。
According to the above (7), for example, particulate SiC
Of Al-SiC-based mixed powder containing 10% to 70% by weight of Al in a non-oxidizing atmosphere containing 99% or more of nitrogen gas at atmospheric pressure within a temperature range of 600 ° C. or more and the melting temperature of Al or less. And then sealed in a metal container for 700
By performing the HIP at a temperature of not less than ° C., an aluminum-silicon carbide composite material having a uniform thermal conductivity of not less than 200 W / m · K can be obtained. Further, according to the above (8), for example, preheating is performed by means capable of rapidly increasing and heating, and hot forging is performed in a mold, so that 250 W /
It is possible to obtain an aluminum-silicon carbide composite material having a m · K or more.

【0013】[0013]

【発明が解決しようとする課題】上記したように、種々
の方法によってAl−SiC系複合材料が得られるが、
これらの材料を放熱基板等として半導体装置に実装する
場合には、例えばその一方の面には熱膨張係数の大きな
アルミニウム系の金属材料を、他方の面には熱膨張係数
の小さなセラミックス材料を配置することが多々ある。
このような場合、金属材料とセラミックス材料の間に配
置されるAl−SiC系複合材料としては、両者の中間
の熱膨張係数を有するものが通常用いられる。
As described above, Al-SiC-based composite materials can be obtained by various methods.
When these materials are mounted on a semiconductor device as a heat dissipation board or the like, for example, an aluminum-based metal material having a large thermal expansion coefficient is arranged on one surface, and a ceramic material having a small thermal expansion coefficient is arranged on the other surface. There are many things to do.
In such a case, as the Al-SiC-based composite material disposed between the metal material and the ceramic material, a material having a thermal expansion coefficient intermediate between the two is usually used.

【0014】しかしながら、Al−SiC系複合材料と
金属材料及びセラミックス材料との接続界面には、実装
する際及びその後の実用時において、熱膨張係数差によ
り発生した熱応力の歪みが十分緩和されずに残り易くな
る。その結果、実装後に基板が変形したり、実用時の冷
熱サイクルによって基板が損傷し易いという欠点があっ
た。
However, at the connection interface between the Al-SiC-based composite material and the metal material or the ceramic material, the distortion of the thermal stress generated due to the difference in the thermal expansion coefficient is not sufficiently relaxed at the time of mounting and thereafter during practical use. It is easy to remain. As a result, there has been a defect that the substrate is deformed after mounting or the substrate is easily damaged by a cooling / heating cycle in practical use.

【0015】また、Al−SiC系複合材料を放熱基板
等として実装する際には、半田やロウ材によって他の部
品を接続することが多い。その場合には、複合材料の表
面を研削加工仕上げするが、SiC粒子が加工途中で脱
落して表面の凹凸が大きくなり易いため、表面へのメッ
キが載り難くなったり、その表面に接合した部品との接
続強度が低下し易くなったりするという問題もあった。
Further, when mounting the Al-SiC-based composite material as a heat dissipation board or the like, other components are often connected by solder or brazing material. In this case, the surface of the composite material is finished by grinding, but since the SiC particles fall off during the processing and the surface irregularities are likely to become large, plating on the surface becomes difficult to place, or a component bonded to the surface There is also a problem that the connection strength with the cable is likely to decrease.

【0016】本発明は、このような従来の事情に鑑み、
半導体装置への実装時及びその実用時に熱膨張係数差に
よる熱応力の歪を緩和して変形や損傷を防止でき、他の
部品と簡単に且つ優れた強度で接合できると共に、高熱
伝導率であって、放熱基板等として好適なAl−SiC
系複合材料、及びその製造方法を提供することを目的と
する。
The present invention has been made in view of such a conventional situation,
During mounting on a semiconductor device and its practical use, the strain of thermal stress due to the difference in thermal expansion coefficient can be relaxed to prevent deformation and damage, and it can be easily joined with other parts with excellent strength and has high thermal conductivity. Al-SiC suitable as a heat dissipation substrate
It is an object to provide a system composite material and a method for producing the same.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するアルミニウム−炭化珪素系複合材
料は、アルミニウムを主成分とする金属と、炭化珪素を
主成分とする粒子とからなるアルミニウム−炭化珪素系
複合材料であって、該複合材料の一端にアルミニウムを
主成分とする金属層を有し、該金属層に接して他端側に
アルミニウムを主成分とする金属マトリックス中に炭化
珪素を主成分とする粒子が分散した複合化層が配置され
ていて、当該複合化層は該金属層側と他端との間で炭化
珪素の量が段階的又は連続的に変化していることを特徴
とする。
In order to achieve the above object, an aluminum-silicon carbide based composite material provided by the present invention comprises a metal mainly composed of aluminum and particles mainly composed of silicon carbide. An aluminum-silicon carbide composite material having a metal layer mainly composed of aluminum at one end of the composite material, and carbonized in a metal matrix mainly composed of aluminum at the other end in contact with the metal layer. A composite layer in which particles containing silicon as a main component are dispersed is arranged, and in the composite layer, the amount of silicon carbide is changed stepwise or continuously between the metal layer side and the other end. It is characterized by the following.

【0018】特に、上記本発明のアルミニウム−炭化珪
素系複合材料において、前記複合化層は前記金属層側か
ら他端に向かって炭化珪素の量が段階的又は連続的に増
加していることを特徴とする。更に、この場合には、前
記複合化層中の炭化珪素量が、該複合化層が前記金属層
に接する一端で50体積%以下、及び該複合化層の他端
で75体積%以下であることが好ましい。
[0018] In particular, in the aluminum-silicon carbide based composite material of the present invention, the composite layer is characterized in that the amount of silicon carbide increases stepwise or continuously from the metal layer side to the other end. Features. Further, in this case, the amount of silicon carbide in the composite layer is 50% by volume or less at one end where the composite layer is in contact with the metal layer, and 75% by volume or less at the other end of the composite layer. Is preferred.

【0019】また、本発明におけるアルミニウム−炭化
珪素系複合材料の製造方法は、アルミニウムを主成分と
する金属と、炭化珪素を主成分とする粒子からなるアル
ミニウム−炭化珪素系複合材料の製造方法であって、原
料粉末としてアルミニウムを主成分とする金属粉末と炭
化珪素粉末とを準備する工程と、これらの原料粉末を混
合して炭化珪素量の異なる複数種のアルミニウム−炭化
珪素系混合粉末を調製する工程と、一端にアルミニウム
を主成分とする金属粉末の層を配置すると共に、該金属
粉末層の他端側に複数種のアルミニウム−炭化珪素系混
合粉末の層を該金属粉末層側からみて炭化珪素含有量の
少ない順に配置し、加圧成形して成形体とする工程と、
該成形体を不活性ガス中にて該成形体中に含まれるアル
ミニウムを主成分とする金属の融点以上の温度で燒結し
て、燒結体とする工程とを含むことを特徴とする。
The method for producing an aluminum-silicon carbide composite material according to the present invention is a method for producing an aluminum-silicon carbide composite material comprising a metal mainly composed of aluminum and particles mainly composed of silicon carbide. A step of preparing a metal powder containing aluminum as a main component and a silicon carbide powder as raw material powders; and preparing a plurality of types of aluminum-silicon carbide mixed powders having different amounts of silicon carbide by mixing these raw material powders. And placing a layer of a metal powder containing aluminum as a main component at one end, and viewing a layer of a plurality of types of aluminum-silicon carbide-based mixed powder on the other end of the metal powder layer from the metal powder layer side. A step of arranging the silicon carbide content in ascending order, and pressing to form a molded body;
Sintering the molded body in an inert gas at a temperature equal to or higher than the melting point of the metal containing aluminum as a main component contained in the molded body to form a sintered body.

【0020】[0020]

【発明の実施の形態】本発明のアルミニウム−炭化珪素
系複合材料は、その一端にアルミニウムを主成分とする
金属層を有し、他端側にはこの金属層に接してアルミニ
ウムを主成分とする金属マトリックス中に炭化珪素を主
成分とする粒子が分散した複合化層が配置されている。
しかも、この複合化層の組成は炭化珪素量が段階的又は
連続的に変化する傾斜組成となっており、特に好ましく
は金属マトリックス中の炭化珪素量が金属層に接する一
端から他端に向かって段階的又は連続的に増加してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum-silicon carbide composite material of the present invention has a metal layer containing aluminum as a main component at one end, and contacts the metal layer with aluminum as a main component at the other end. A composite layer in which particles containing silicon carbide as a main component are dispersed in a metal matrix to be formed is disposed.
Moreover, the composition of the composite layer has a gradient composition in which the amount of silicon carbide changes stepwise or continuously. Particularly preferably, the amount of silicon carbide in the metal matrix is changed from one end in contact with the metal layer to the other end. It is increasing stepwise or continuously.

【0021】ここで、アルミニウムを主成分とする金属
(以下、単にAl系金属ともいう)とは、アルミニウム
単体のほか、アルミニウムを主成分とする他の金属との
合金を含む意味で用いる。また、炭化珪素を主成分とす
る粒子(以下、単にSiC系粒子ともいう)は、SiC
粒子以外に、他のセラミックス成分を含むSiC粒子を
含む意味である。
Here, the metal containing aluminum as a main component (hereinafter, also simply referred to as an Al-based metal) is used in a sense that it includes not only aluminum alone but also an alloy with another metal containing aluminum as a main component. Particles containing silicon carbide as a main component (hereinafter also simply referred to as SiC-based particles) are made of SiC.
In addition to the particles, the meaning includes SiC particles containing other ceramic components.

【0022】本発明において、傾斜組成をなす複合化層
中のSiC量は、Al系金属層に接する一端では50体
積%以下であることが好ましい。このAl系金属層に接
する一端のSiC量が50体積%を越えると、焼結後に
Al系金属層と複合化層との接合部分が破壊され易くな
るからである。また、複合化層中のSiC量が75体積
%を越えると、Al量が少なすぎてAlとSiCの濡れ
が著しく低下し、熱伝導率が急激に低下するため、Si
C量は最大で75体積%以下、特に炭化珪素量が金属層
に接する一端から他端に向かって段階的又は連続的に増
加している好ましい態様においては、Al系金属層と反
対側のSiC量が最も多い他端でSiC量を75体積%
以下とすることが好ましい。
In the present invention, the amount of SiC in the composite layer having the gradient composition is preferably 50% by volume or less at one end in contact with the Al-based metal layer. If the amount of SiC at one end in contact with the Al-based metal layer exceeds 50% by volume, the joint between the Al-based metal layer and the composite layer is easily broken after sintering. On the other hand, if the SiC content in the composite layer exceeds 75% by volume, the Al content is too small, so that the wetting of Al and SiC is significantly reduced, and the thermal conductivity is rapidly reduced.
In a preferred embodiment in which the C content is at most 75% by volume or less, particularly in a preferred embodiment in which the silicon carbide content increases stepwise or continuously from one end in contact with the metal layer to the other end, SiC on the opposite side of the Al-based metal layer 75% by volume of SiC at the other end with the largest amount
It is preferable to set the following.

【0023】かかる構造を有する本発明のAl−SiC
系複合材料は、20℃での熱伝導率が150W/m・K
以上、好ましくは180W/m・K以上であり、優れた
熱伝導率を有している。また、一端にAl系金属層を備
え且つ他端側にSiC量を変化させた傾斜組成の複合化
層を備えているため、半導体装置への実装時及びその実
用時に熱膨張係数差による熱応力の歪が緩和され、基板
の変形や損傷を防止することができる。更に、一端にA
l系金属層が設けてあるので、このAl系金属層に半田
やロウ材を用いて他の部品を簡単に且つ優れた強度で接
合することができる。
The Al-SiC of the present invention having such a structure
Based composite material has a thermal conductivity of 150 W / m · K at 20 ° C.
As described above, it is preferably 180 W / m · K or more, and has excellent thermal conductivity. In addition, since an Al-based metal layer is provided at one end and a composite layer having a graded composition in which the amount of SiC is changed is provided at the other end, thermal stress due to a difference in thermal expansion coefficient during mounting on a semiconductor device and its practical use. Can be alleviated, and deformation and damage of the substrate can be prevented. In addition, A
Since the l-based metal layer is provided, other components can be easily and easily bonded to the Al-based metal layer using solder or brazing material with excellent strength.

【0024】次に、本発明のアルミニウム−炭化珪素系
複合材料の製造方法について説明する。まず、Al系金
属の粉末とSiC系粒子(粉末)とを準備し、これらを
所定の割合で乾式混合することによって、それぞれ異な
るSiC含有量を持つ複数のAl−SiC系混合粉末を
作製する。
Next, a method for producing the aluminum-silicon carbide composite material of the present invention will be described. First, an Al-based metal powder and SiC-based particles (powder) are prepared and dry-mixed at a predetermined ratio to produce a plurality of Al-SiC-based mixed powders having different SiC contents.

【0025】その後、SiC粒子を含まないAl系金属
粉末を金型へ装填し、これを乾式プレス成形する。金型
から成形体を取り出さないで、次にSiC粒子を含むA
l−SiC系混合粉末を装填し、同様に成形する。これ
を繰り返すことにより、一端がAl系金属粉末層からな
り、このAl系金属粉末層に接して他端側に組成の異な
る幾つかのAl−SiC系混合粉末の層が連続した成形
体が得られる。尚、成形方法としては、金型内に上記の
ような複数の粉末を順番に装填した後、全体を一気に成
形する方法でもよい。また、各粉末の金型への装填順序
については、上記具体例に限定されず、いずれか片側か
ら順に装填すればよい。
Thereafter, an Al-based metal powder containing no SiC particles is charged into a mold, and is subjected to dry press molding. Without removing the molded body from the mold, A
The l-SiC-based mixed powder is charged and molded in the same manner. By repeating this, a molded body having one end composed of the Al-based metal powder layer and having several layers of Al-SiC-based mixed powder having different compositions continuous with the Al-based metal powder layer on the other end side is obtained. Can be In addition, as a molding method, a method may be used in which a plurality of powders as described above are sequentially loaded into a mold, and then the whole is molded at once. The order of loading the powders into the mold is not limited to the specific example described above, and the powders may be loaded in order from any one side.

【0026】Al−SiC系混合粉末の成形では、成形
時に硬質粒子であるSiC系粒子とAl系金属粒子表面
に存在する酸化アルミニウム(Al)が接触し、
このAl膜が破壊されることにより、Alの新生
面が生成される。このAlの新生面がSiCと直接接触
し、後の焼結時にAl新生面の部分から溶融AlとSi
Cの濡れが生じる。しかし、成形圧力が400MPa未
満ではAlの新生面が出現しにくいため、焼結時に濡れ
が起こりにくく、熱伝導率が若干低くなる傾向があるた
め、上記成形工程における成形圧力は400MPa以上
とすることが好ましい。尚、成形圧力は400MPaを
超えて高い分にはかまわないが、1000MPa程度で
効果は飽和する。
In molding the Al—SiC mixed powder, SiC particles which are hard particles and aluminum oxide (Al 2 O 3 ) present on the surface of the Al metal particles come into contact with each other during molding,
When the Al 2 O 3 film is destroyed, a new surface of Al is generated. The Al nascent surface comes into direct contact with SiC, and the molten Al and Si
C wetting occurs. However, when the molding pressure is less than 400 MPa, a new surface of Al is unlikely to appear, so that wetting does not easily occur during sintering, and the thermal conductivity tends to be slightly lower. Therefore, the molding pressure in the above molding step should be 400 MPa or more. preferable. The molding pressure may be as high as over 400 MPa, but the effect is saturated at about 1000 MPa.

【0027】得られた成形体は、窒素やアルゴン等の不
活性ガス中において、用いたAl系金属の融点以上の温
度に加熱して焼結させることにより、Al−SiC系複
合材料とすることができる。焼結温度T(℃)は、Al
系金属の融点をTm(℃)としたとき、Tm<T<(T
m+15)の範囲内であることが好ましい。焼結温度T
が(Tm+15)以上になると、焼結時にAl系金属部
分やSiC含有量の少ない部分が変形を起こしやすく、
成形体の形状を維持しにくくなるからである。
The obtained compact is heated to a temperature higher than the melting point of the Al-based metal used in an inert gas such as nitrogen or argon and sintered to form an Al-SiC-based composite material. Can be. The sintering temperature T (° C.)
When the melting point of the base metal is Tm (° C.), Tm <T <(T
(m + 15). Sintering temperature T
When (Tm + 15) or more, the Al-based metal portion and the portion having a low SiC content are easily deformed during sintering,
This is because it becomes difficult to maintain the shape of the molded body.

【0028】尚、焼結時の雰囲気は常圧であっても差し
支えない。Al系金属粉末が100体積%の組成では、
常圧焼結でもほぼ100%の相対密度が得られる。しか
し、SiC量が増えるに従って気孔を含むようになり、
一般的に気孔量の増加に伴って熱膨張係数が低下する。
特に、前記したようにSiC量が75体積%を超える
と、熱伝導率が急激に低下する。尚、このような場合で
も、熱伝導率の高い高純度SiC粉末を用いることによ
り、熱伝導率低下を抑制することができる。
The atmosphere during sintering may be normal pressure. With a composition of 100 vol% Al-based metal powder,
Nearly 100% relative density can be obtained even under normal pressure sintering. However, as the amount of SiC increases, it comes to contain pores,
In general, the coefficient of thermal expansion decreases as the amount of porosity increases.
In particular, as described above, when the amount of SiC exceeds 75% by volume, the thermal conductivity sharply decreases. Note that even in such a case, by using a high-purity SiC powder having a high thermal conductivity, a decrease in the thermal conductivity can be suppressed.

【0029】また、常圧焼結の代わりに加圧焼結を行え
ば、相対密度が向上するので、Al−SiC系複合材料
の熱伝導率も向上する。例えば、成形体を不活性ガス中
にてAl系金属の融点以上の温度で予備加熱した後、熱
間鍛造することによって、SiC含有量に関わらず緻密
化が進行し、高い熱伝導率が得られる。このように加圧
焼結する場合の焼結温度も、前記したごとくTm<T<
(Tm+15)の範囲とすることが好ましい。
If pressure sintering is performed instead of normal pressure sintering, the relative density is improved, and the thermal conductivity of the Al—SiC composite material is also improved. For example, after pre-heating the molded body in an inert gas at a temperature equal to or higher than the melting point of the Al-based metal, by hot forging, the densification proceeds regardless of the SiC content, and a high thermal conductivity is obtained. Can be As described above, the sintering temperature at the time of pressure sintering is also Tm <T <
It is preferable to be in the range of (Tm + 15).

【0030】本発明方法においては、Al系金属粉末層
の他端側に、SiC量を変えた複数のAl−SiC系混
合粉末層が配置されることにより、焼結によって得られ
るAl―SiC系複合材料の熱膨張係数が段階的又は連
続的に変化するため、焼結時や焼結後の冷却過程及び実
用時に発生する熱応力を緩和することができ、Al−S
iC系複合材料の変形や破損を防ぐことができる。尚、
本発明のAl−SiC系複合材料においては、SiCの
量を一方向に傾斜させるのみならず、段階的又は連続的
であれば複数方向に傾斜させてもよい。例えば、用いる
場所によっては、中央部にSiC含有量の多い部分があ
り、両端に向かってSiC含有量を傾斜的に少なくする
構造にしてもよい。また、逆に中央部にSiC含有量の
少ない部分があり、両端に向かってSiC含有量を傾斜
的に多くする構造としてもよい。更には、これらを組み
合わせた構造であってもよい。
In the method of the present invention, a plurality of Al-SiC-based mixed powder layers having different amounts of SiC are arranged on the other end side of the Al-based metal powder layer to thereby obtain an Al-SiC-based mixed powder layer obtained by sintering. Since the thermal expansion coefficient of the composite material changes stepwise or continuously, the thermal stress generated during sintering, the cooling process after sintering, and during practical use can be reduced, and Al-S
Deformation and breakage of the iC-based composite material can be prevented. still,
In the Al-SiC-based composite material of the present invention, the amount of SiC may be inclined not only in one direction but also in a plurality of directions if it is stepwise or continuous. For example, depending on the place of use, a structure may be adopted in which a central portion has a high SiC content, and the SiC content decreases gradually toward both ends. Conversely, there may be a structure in which a portion having a small SiC content is provided at the center portion, and the SiC content is gradually increased toward both ends. Furthermore, a structure combining these may be used.

【0031】[0031]

【実施例】実施例1 平均直径80μmの市販SiC粉末と、融点が659℃
の純Al(99.9%)粉末を用意した。このSiC粉
末とAl粉末とを混合して、SiC量がそれぞれ体積%
で0(Al粉末)、30、50、70の各混合
粉末を作製した。
【Example】Example 1  Commercially available SiC powder having an average diameter of 80 μm and melting point of 659 ° C.
Of pure Al (99.9%) powder was prepared. This SiC powder
Powder and Al powder are mixed so that the amount of SiC is
0 (Al powder), 30, 50, 70 each mixture
A powder was made.

【0032】次に、内径35mmの金型に上記のAl
粉末を装填し、圧力400MPaでプレス成形した。得
られた成形体をそのまま残した金型内の成形体の上に、
上記の混合粉末を装填して同様にプレス成形した。こ
のように上記〜の各粉末の装填とプレス成形を繰り
返し、最終的に傾斜組成を持つ成形体を作製した。
Next, the above-mentioned Al is placed in a mold having an inner diameter of 35 mm.
The powder was charged and pressed at a pressure of 400 MPa. On the molded body in the mold leaving the obtained molded body as it is,
The above mixed powder was charged and press-molded similarly. As described above, the charging and press molding of each of the above-mentioned powders were repeated, and finally a molded body having a gradient composition was produced.

【0033】このようにして作製した成形体について、
窒素ガス雰囲気中にて、660℃、674℃、681
℃、700℃の各温度で2時間加熱して焼結させ、それ
ぞれ傾斜組成を持つAl−SiC系複合材料を作製し
た。その結果、660℃及び674℃で燒結したものは
変形や破損がなかったが、681℃及び700℃で焼結
したものはAl層部分が径方向に広がり、その部分の直
径が38mmに変形していた。尚、674℃で焼結した
試料の各層の断面組織を模式的に図1に示す。この試料
の各層は図1の左側から上記SiC量が0体積%、
30体積%、50体積%、70体積%の各層の順で
あり、断面組織を示す図の微細な点を付した部分がSi
Cである。
With respect to the molded body thus produced,
660 ° C., 674 ° C., 681 in a nitrogen gas atmosphere
Heating was performed at each temperature of 700C and 700C for 2 hours, and sintering was performed to produce Al-SiC-based composite materials each having a gradient composition. As a result, those sintered at 660 ° C. and 674 ° C. did not deform or break, but those sintered at 681 ° C. and 700 ° C. expanded the Al layer portion in the radial direction, and the diameter of the portion was changed to 38 mm. I was FIG. 1 schematically shows the sectional structure of each layer of the sample sintered at 674 ° C. In each layer of this sample, the SiC amount was 0% by volume from the left side of FIG.
The order of each layer of 30% by volume, 50% by volume, and 70% by volume is in that order.
C.

【0034】また、比較例として、上記のAl粉末と
の混合粉末(SiC70体積%)のみを金型に装填
し、上記と同様にてプレス成形及び焼結して、2層のみ
からなる複合材料を作製した。しかし、この比較例の複
合材料は、そのとの界面にて焼結時に破壊が生じ
た。
As a comparative example, only a mixed powder (70% by volume of SiC) mixed with the Al powder was charged into a mold, pressed and sintered in the same manner as described above, and a composite material consisting of only two layers was prepared. Was prepared. However, the composite material of this comparative example was broken at the interface with the composite material during sintering.

【0035】上記した実施例の各Al−SiC系複合材
料の上記〜の組成を持つ各部分から、直径10mm
×厚さ2mmと、直径5mm×厚さ10mmの形状の試
料を切り出し、それぞれ20℃における熱伝導率と熱膨
張係数を測定した。下記表1に674℃で焼結したAl
−SiC系複合材試料について、各〜の組成部分の
相対密度、20℃での熱伝導率、及び熱膨張係数を示
す。
From each part having the above composition of each of the Al-SiC-based composite materials of the above embodiments, a diameter of 10 mm
A sample having a shape of × 2 mm in thickness and 5 mm in diameter × 10 mm in thickness was cut out, and the thermal conductivity and the coefficient of thermal expansion at 20 ° C. were measured. Table 1 shows the Al sintered at 674 ° C.
-For a SiC-based composite material sample, the relative density, the thermal conductivity at 20 ° C, and the thermal expansion coefficient of each of the composition parts are shown.

【0036】[0036]

【表1】 組 成 相対密度 熱伝導率 熱膨張係数部 分 (%) (W/m・K) (ppm/K) 100 238 23 98 225 17.5 94 203 12 89 156 7.5TABLE 1 sets formed relative density heat conductivity thermal expansion coefficient unit content (%) (W / m · K) (ppm / K) 100 238 23 98 225 17.5 94 203 12 89 156 7.5

【0037】比較の目的で、上記図1の各層のうちの
層を省略して、Al系金属層に接する層をSiC55
体積%のの層とし、その次にSiC70体積%のの
層を複合化させた試料Aと、上記図1の各層のうちSi
C量が最も多いの層に代えて、SiC78体積%の層
とした試料Bを、上記と同様に674℃で焼結して作製
した。その結果、試料Aでは、Al系金属層とSiC
55体積%の層との界面の外径の一部に微小な隙が確
認された。また、試料Bでは、SiC78体積%の層の
相対密度が79%となり、その部分の熱伝導率が102
W/m・Kに低下した。尚、同じ市販のSiC粉末を予
め弗硝酸に浸漬してFe等の陽イオン不純物を100p
pm以下に低減させたより高純度のSiC粉末を用い
て、上記試料Bと同じ構成にて674℃で焼結した試料
Cでは、相対密度は88%であったが、SiC78体積
%の層の熱伝導率は120W/m・Kと高くなり、他の
層の熱伝導率も170W/m・K以上と向上した。
For the purpose of comparison, the layers in contact with the Al-based metal layer are omitted from the layers of FIG.
A sample A in which a layer of 70% by volume was formed as a layer of
A sample B having a layer of 78% by volume of SiC instead of the layer having the largest C content was sintered at 674 ° C. in the same manner as described above. As a result, in sample A, the Al-based metal layer and the SiC
A minute gap was confirmed at a part of the outer diameter of the interface with the 55% by volume layer. In sample B, the relative density of the 78% by volume SiC layer was 79%, and the thermal conductivity of that portion was 102%.
W / m · K. The same commercially available SiC powder was previously immersed in hydrofluoric nitric acid to remove 100 ppm of cation impurities such as Fe.
In Sample C sintered at 674 ° C. in the same configuration as Sample B using a higher purity SiC powder reduced to below pm, the relative density was 88%, but the heat of the layer of 78% by volume of SiC was The conductivity increased to 120 W / m · K, and the thermal conductivity of the other layers also improved to 170 W / m · K or more.

【0038】実施例2 平均直径80μmの市販SiC粉末と、融点が635℃
の6061Al合金粉末を用意した。このAl合金粉末
とSiC粉末とを混合して、それぞれSiC量が体積%
で0(Al合金粉末)、20、40、60の各
混合粉末を作製した。次に、内径35mmの金型に上記
のAl合金粉末を装填し、圧力800MPaでプレス
成形した。得られた成形体をそのまま残した金型内の成
形体の上に、上記の混合粉末を装填して同様にプレス
成形した。このように上記〜の各粉末の装填とプレ
ス成形を繰り返して、最終的に傾斜組成を持つ成形体を
作製した。
[0038]Example 2  Commercially available SiC powder having an average diameter of 80 μm and a melting point of 635 ° C.
No. 6061 Al alloy powder was prepared. This Al alloy powder
And SiC powder are mixed so that the amount of SiC is
Each of 0 (Al alloy powder), 20, 40, 60
A mixed powder was prepared. Next, the above mold was placed in a mold with an inner diameter of 35 mm.
And press at 800MPa
Molded. The mold in the mold leaving the obtained compact as it is
Load the above mixed powder on the form and press similarly
Molded. Thus, the loading and pressing of
Molding, and finally a molded body with a gradient composition
Produced.

【0039】得られた成形体について、窒素ガス雰囲気
中にて、636℃、649℃、655℃の各温度で2時
間加熱して焼結し、それぞれ傾斜組成を持つAl−Si
C系複合材料を作製した。これらの複合材料を再度窒素
ガス雰囲気中、高周波誘導加熱炉にて655℃に昇温
し、別途450℃に保持した内径36mmの鋼製の型に
充填し、圧力900MPaで熱間鍛造した。その結果、
636℃及び649℃で燒結したものは鍛造前に変形や
破損がなかったが、655℃で焼結したものは鍛造前に
Al合金層部分の直径が37mmに変形していた。
The obtained compact was heated and sintered at 636 ° C., 649 ° C., and 655 ° C. for 2 hours in a nitrogen gas atmosphere.
A C-based composite material was produced. These composite materials were again heated to 655 ° C. in a high-frequency induction heating furnace in a nitrogen gas atmosphere, filled in a steel mold having an inner diameter of 36 mm kept at 450 ° C., and hot forged at a pressure of 900 MPa. as a result,
Those sintered at 636 ° C. and 649 ° C. had no deformation or breakage before forging, whereas those sintered at 655 ° C. had the Al alloy layer portion deformed to 37 mm in diameter before forging.

【0040】また、比較例として、上記のAl合金粉
末との混合粉末(SiC60体積%)のみを金型に装
填し、上記と同様にてプレス成形及び焼結して、2層の
みからなる複合材料を作製した。しかし、この比較例の
複合材料は、及びの層の界面にて焼結時に破壊が生
じた。
As a comparative example, only a mixed powder (60% by volume of SiC) with the above-mentioned Al alloy powder was charged into a mold, pressed and sintered in the same manner as described above, and a composite consisting of only two layers was formed. Materials were made. However, the composite material of this comparative example broke during sintering at the interface between the and layers.

【0041】上記した実施例の各Al−SiC系複合材
料(鍛造体)の上記〜の組成を持つ各部分から、直
径10mm×厚さ2mmと、直径5mm×厚さ10mm
の形状の試料を切り出し、それぞれ20℃における熱伝
導率と熱膨張係数を測定した。下記表2に636℃で焼
結したAl−SiC系複合材試料について、各〜の
組成部分の相対密度、20℃での熱伝導率、及び熱膨張
係数を示す。
From each part having the above composition of each of the Al-SiC-based composite materials (forged bodies) of the above embodiment, a diameter of 10 mm × a thickness of 2 mm and a diameter of 5 mm × a thickness of 10 mm
Was cut out, and the thermal conductivity and the coefficient of thermal expansion at 20 ° C. were measured. Table 2 below shows the relative densities, the thermal conductivities at 20 ° C., and the coefficients of thermal expansion at 20 ° C. for the Al—SiC-based composite material samples sintered at 636 ° C.

【0042】[0042]

【表2】 組 成 相対密度 熱伝導率 熱膨張係数部 分 (%) (W/m・K) (ppm/K) 100 180 23 100 192 19.5 100 220 15 100 244 10Table 2 sets formed relative density heat conductivity thermal expansion coefficient unit content (%) (W / m · K) (ppm / K) 100 180 23 100 192 19.5 100 220 15 100 244 10

【0043】尚、同じ市販のSiC粉末を予め弗硝酸に
浸漬してFe等の陽イオン不純物を100ppm以下に
低減させたより高純度のSiC粉末を用い、上記と同じ
傾斜組成の構成にて、同じ焼結と鍛造による複合固化法
にて調整した試料Dでは、各層の熱伝導率が上記から
の順に、180、205、236、259W/m・K
と向上した。
The same commercially available SiC powder was previously immersed in hydrofluoric acid to reduce the amount of cation impurities such as Fe to 100 ppm or less, and a higher purity SiC powder was used. In sample D prepared by the composite solidification method by sintering and forging, the thermal conductivity of each layer was 180, 205, 236, 259 W / m · K in the order from above.
And improved.

【0044】実施例3 上記実施例1及び実施例2の試料と同じ製法で得た傾斜
組成のAl−SiC系複合材料各50個ずつを、長さ2
00mm×幅200mm×厚さ6mmの基材に仕上げ加
工した。同様に、SiC50体積%を含む単一組成のA
l−SiC複合材料(傾斜組成ではない)を、実施例2
と同じ焼結と鍛造による複合固化法で作製した後、上記
と同形状に仕上げ加工した基材も用意した。
[0044]Example 3  Inclination obtained by the same manufacturing method as the samples of Examples 1 and 2 described above.
50 pieces of each of the Al-SiC-based composite materials having a composition of length 2
Finished on a base material of 00mm x 200mm x 6mm
Worked. Similarly, a single composition A containing 50% by volume of SiC
The l-SiC composite material (not the graded composition) was prepared in Example 2
After the same solidification method by sintering and forging as above,
A base material finished to the same shape as that described above was also prepared.

【0045】これらの基材を、図2に模式的に示すよう
なパワーモジュールに放熱基板として実装し、実装段階
も含めて温度サイクル試験を行った。図2において、1
は上記各複合材料の基材からなる放熱基板、2は放熱基
板1上に配置され、その上面にAlの回路(図示せず)
が形成された電気絶縁性のセラミックス基板、3はSi
半導体素子、4は放熱基板1の下に配置された放熱構造
体である。尚、この放熱構造体4はアルミニウム合金製
の水冷ジャケットであるが、他に空冷のフィンもある。
また、図2ではSi半導体素子3の周辺の配線などにつ
いては省略してある。この実施例では、Si半導体素子
3をセラミックス基板2を介して6個搭載したモジュー
ルとした。
These substrates were mounted on a power module as schematically shown in FIG. 2 as a heat dissipation substrate, and a temperature cycle test was conducted including the mounting stage. In FIG. 2, 1
Is a radiating substrate made of a base material of each of the above composite materials, 2 is disposed on the radiating substrate 1, and an Al circuit (not shown) is provided on the upper surface thereof.
Electrically insulating ceramic substrate on which is formed, 3 is Si
The semiconductor element 4 is a heat dissipation structure disposed below the heat dissipation board 1. Although the heat radiation structure 4 is a water-cooled jacket made of an aluminum alloy, there are other air-cooled fins.
In FIG. 2, wirings around the Si semiconductor element 3 and the like are omitted. In this embodiment, a module in which six Si semiconductor elements 3 are mounted via the ceramic substrate 2 is used.

【0046】実装に先立ち、放熱基板1のSiC量が多
い側の主面にセラミックス基板2を直接半田付けできな
いため、その主面に予め平均厚み5μmの無電解ニッケ
ルメッキ層と、平均厚み3μmの電解ニッケルメッキ層
を形成した。各試料のうち各4個の試片は、ニッケルメ
ッキ層上に直径5mmの半球状のAg−Sn系半田によ
って、直径1mmの銅線をメッキ面に垂直な方向に取り
付けた。この試片の放熱基板1を治具に固定し、銅線を
掴んでメッキ面に垂直な方向に引っ張り、放熱基板1へ
のメッキ層の密着強度を確認した。その結果、いずれの
放熱基板1のメッキ層においても、メッキ層は1kg/
mm以上の引っ張り力でも剥がれなかった。
Prior to mounting, the ceramic substrate 2 cannot be directly soldered to the main surface of the heat radiating substrate 1 on the side where the amount of SiC is large, so that an electroless nickel plating layer having an average thickness of 5 μm and an electroless nickel plating layer having an average thickness of 3 μm An electrolytic nickel plating layer was formed. For each of the four specimens of each sample, a copper wire having a diameter of 1 mm was attached on a nickel plating layer by a hemispherical Ag-Sn-based solder having a diameter of 5 mm in a direction perpendicular to the plating surface. The heat radiating substrate 1 of this sample was fixed to a jig, the copper wire was grasped and pulled in a direction perpendicular to the plating surface, and the adhesion strength of the plating layer to the heat radiating substrate 1 was confirmed. As a result, the plating layer of any heat radiation substrate 1 was 1 kg /
It did not peel off even with a pulling force of 2 mm or more.

【0047】次に、放熱基板1の上に搭載するセラミッ
クス基板2として、熱伝導率が150W/m・K、熱膨
張係数が4.5×10−6/℃、3点曲げ強度が450
MPaの窒化アルミニウム製の基板Aと、熱伝導率が1
20W/m・K、熱膨張係数が3.7×10−6/℃、3
点曲げ強度が1300MPaの窒化珪素製の基板Bで、
それぞれ主面にAlの回路を形成した2種類の基板を各
8個準備した。これらのセラミックス基板2の形状は、
いずれも長さ90mm×幅60mm×厚さ1mmとし
た。これらのセラミックス基板2を、上記各放熱基板1
の200mm角の主面(SiC量の多い側)上に、2行
3列で等間隔で配置し、そのニッケルメッキ層を形成し
た面上にAg−Sn系半田によって固定した。尚、Si
C50体積%を含む単一組成のAl−SiC複合材料
(傾斜組成ではない)の基材からなる放熱基板も、同様
にアッセンブリーした。
Next, as the ceramic substrate 2 mounted on the heat radiating substrate 1, the thermal conductivity is 150 W / m · K, the thermal expansion coefficient is 4.5 × 10 −6 / ° C., and the three-point bending strength is 450.
A substrate A made of aluminum nitride of MPa and a thermal conductivity of 1
20 W / m · K, coefficient of thermal expansion 3.7 × 10 −6 / ° C, 3
A substrate B made of silicon nitride having a point bending strength of 1300 MPa,
Eight each of two types of substrates each having an Al circuit formed on the main surface were prepared. The shape of these ceramic substrates 2 is
In each case, the length was 90 mm × the width 60 mm × the thickness 1 mm. These ceramic substrates 2 are used as the heat radiation substrates 1
Were arranged at equal intervals in two rows and three columns on a 200 mm square main surface (side with a large amount of SiC), and fixed on the surface on which the nickel plating layer was formed by Ag-Sn solder. In addition, Si
A heat dissipation substrate composed of a base material of a single composition Al-SiC composite material (not a gradient composition) containing 50% by volume of C was similarly assembled.

【0048】その後、これらのアッセンブリーにおける
放熱基板1のセラミックス基板2と反対側のAlからな
る主面に、放熱構造体4である水冷ジャケットを対向さ
せ、両者の接触面にシリコンオイルコンパウンドを塗布
介在させてボルト締め固定した。尚、ボルトの取り付け
穴は、予め素材段階で放熱基板の四隅に開けておいた下
穴部に炭酸ガスレーザーを照射して、それを直径3mm
まで広げる方法により形成した。この加工方法は、他の
セラミックス材及びCu−WやCu−Moを対象とした
場合に比べ、高精度且つ高速で行うことができた。この
傾向は、特に加工素材である放熱基板の熱伝導率が高く
なればなるほど顕著であった。
Thereafter, a water-cooling jacket, which is a heat radiation structure 4, is opposed to the main surface made of Al on the opposite side of the ceramic substrate 2 of the heat radiation substrate 1 in these assemblies, and a silicone oil compound is applied to the contact surface between the two. Then, it was bolted and fixed. The mounting holes for the bolts were radiated with carbon dioxide laser to the prepared holes previously drilled at the four corners of the heat dissipation board at the material stage, and the holes were sized to 3 mm in diameter.
It was formed by a method of spreading out. This processing method could be performed with high accuracy and at high speed as compared with the case of using other ceramic materials and Cu-W or Cu-Mo. This tendency was particularly remarkable as the thermal conductivity of the heat-dissipating substrate as a processing material became higher.

【0049】得られた各試片の中からセラミックス基板
2が基板Aと基板Bのものを各15個ずつ選び、−60
℃で30分間保持後150℃で30分間保持する単サイ
クル条件で、実用上問題がないとされる1000サイク
ルを越えて3000サイクルまでのヒートサイクル試験
を行い、100サイクル毎のモジュールの出力変化を確
認した。その結果、本発明の2種の傾斜複合材料からな
る放熱基板を用いた試片では、最後まで出力の低下は観
測されなかった。一方、SiC50体積%を含む単一組
成の複合材料(傾斜組成ではない)からなる放熱基板を
用いた試片においては、2500サイクル目で若干出力
の低下が確認され、水冷ジャケット側の界面の断面に微
小な亀裂が認められた。以上の結果から、本発明の傾斜
組成を有するAl−SiC系複合材料からなる放熱基板
を用いたパワーモジュールは、実用上問題のないレベル
に比べ相当高い信頼度で実用に供することが可能なこと
が分る。
From each of the obtained test pieces, 15 ceramic substrates 2 each having a substrate A and a substrate B were selected.
Under a single cycle condition of holding for 30 minutes at 150 ° C. and then for 30 minutes at 150 ° C., a heat cycle test was performed from 1000 cycles to 3000 cycles, which is considered to be practically no problem, and the output change of the module every 100 cycles was measured. confirmed. As a result, in the test piece using the heat dissipation substrate made of the two kinds of gradient composite materials of the present invention, no decrease in output was observed to the end. On the other hand, in the test piece using the heat-dissipating substrate made of a single-composite composite material (not a gradient composition) containing 50% by volume of SiC, a slight decrease in output was confirmed at the 2500th cycle, and the cross section of the interface on the water cooling jacket side was confirmed. A small crack was observed in the sample. From the above results, it can be seen that the power module using the heat-dissipating substrate made of the Al-SiC-based composite material having the gradient composition of the present invention can be put to practical use with considerably higher reliability than a practically acceptable level. I understand.

【0050】このように、本発明のAl−SiC系複合
材料においては、一端のAl系金属層から他端に向かっ
てAl−SiC系複合化層の組成が傾斜組成になってい
るため、熱伝導率と熱膨張係数が段階的に変化し、変形
や破壊を防ぐことができると共に、高い熱伝導率を発揮
することができる。また、片方が熱膨張係数の小さなセ
ラミックス部材で且つ他方が熱膨張係数の大きな金属部
材であるとき、片方のセラミックス部材に本発明のAl
−SiC系複合材料のSiC量の多い側を接合し、及び
他方の金属部材にAl金属側を接合して用いると、従来
の単一組成のAl−SiC複合材料に比べて、高い信頼
性の半導体装置を提供することができる。
As described above, in the Al-SiC-based composite material of the present invention, since the composition of the Al-SiC-based composite layer has a gradient composition from the Al-based metal layer at one end to the other end, the thermal composition of the Al-SiC-based composite layer is inclined. The conductivity and the coefficient of thermal expansion change stepwise, so that deformation and destruction can be prevented, and high thermal conductivity can be exhibited. When one of the ceramic members has a small coefficient of thermal expansion and the other is a metal member having a large coefficient of thermal expansion, one of the ceramic members may be made of the Al material of the present invention.
When the side having a large amount of SiC of the SiC-based composite material is bonded and the Al metal side is bonded to the other metal member and used, compared with the conventional single-composition Al-SiC composite material, higher reliability is obtained. A semiconductor device can be provided.

【0051】また、本発明のAl−SiC系複合材料の
傾斜組成は、上記具体例のような段階的なものに限られ
ず、各混合粉末の組成変化を細かくし、且つ多数の混合
粉末層を配置することによって、連続的に変化する傾斜
組成とすることも可能である。
Further, the gradient composition of the Al—SiC-based composite material of the present invention is not limited to the stepwise composition as in the above-mentioned specific example, and the composition change of each mixed powder is made fine, and a large number of mixed powder layers are formed. By arranging, it is also possible to obtain a gradient composition that changes continuously.

【0052】[0052]

【発明の効果】本発明によれば、一端にAlを主成分と
する金属層を備え、その他端側がAl−SiC系の傾斜
組成を有する複合化層からなっていて、高熱伝導率であ
ると共に、熱伝導率及び熱膨張係数が段階的又は連続的
に変化しているAl−SiC系複合材料を提供すること
ができる。従って、本本発明のAl−SiC系複合材料
は、半導体装置に搭載される放熱基板として好適であ
り、実装時及びその実用時に熱膨張係数差による熱応力
の歪を緩和して基板の変形や損傷を防止でき、しかも金
属層には他の部品を簡単に且つ優れた強度で接合するこ
とができる。
According to the present invention, a metal layer mainly composed of Al is provided at one end, and a composite layer having an Al-SiC-based graded composition is provided at the other end, and has a high thermal conductivity. It is possible to provide an Al-SiC-based composite material in which the thermal conductivity and the coefficient of thermal expansion change stepwise or continuously. Therefore, the Al-SiC-based composite material of the present invention is suitable as a heat-radiating substrate mounted on a semiconductor device. Can be prevented, and other parts can be joined to the metal layer easily and with excellent strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のAl−SiC系複合材料とその各層の
断面組織を模式的に示す図面である。
FIG. 1 is a drawing schematically showing an Al—SiC-based composite material of the present invention and a cross-sectional structure of each layer thereof.

【図2】本発明のAl−SiC系複合材料を放熱基板と
して用いたパワーモジュールを模式的に示す断面図であ
る。
FIG. 2 is a cross-sectional view schematically showing a power module using the Al—SiC-based composite material of the present invention as a heat dissipation substrate.

【符号の説明】[Explanation of symbols]

1 放熱基板 2 セラミックス基板 3 Si半導体素子 4 放熱構造体 DESCRIPTION OF SYMBOLS 1 Heat dissipation board 2 Ceramics board 3 Si semiconductor element 4 Heat dissipation structure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/12 (C22C 47/14 23/14 101:18) //(C22C 47/14 H01L 23/12 J 101:18) 23/14 M ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/12 (C22C 47/14 23/14 101: 18) // (C22C 47/14 H01L 23/12 J 101: 18) 23/14 M

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを主成分とする金属と、炭
化珪素を主成分とする粒子とからなるアルミニウム−炭
化珪素系複合材料であって、該複合材料の一端にアルミ
ニウムを主成分とする金属層を有し、該金属層に接して
他端側にアルミニウムを主成分とする金属マトリックス
中に炭化珪素を主成分とする粒子が分散した複合化層が
配置されていて、当該複合化層は該金属層側と他端との
間で炭化珪素の量が段階的又は連続的に変化しているこ
とを特徴とするアルミニウム−炭化珪素系複合材料。
An aluminum-silicon carbide composite material comprising a metal containing aluminum as a main component and particles containing silicon carbide as a main component, and a metal layer containing aluminum as a main component at one end of the composite material. A composite layer in which particles mainly composed of silicon carbide are dispersed in a metal matrix mainly composed of aluminum in contact with the metal layer on the other end side, and the composite layer is An aluminum-silicon carbide-based composite material, wherein the amount of silicon carbide changes stepwise or continuously between the metal layer side and the other end.
【請求項2】 前記複合化層は前記金属層側から他端に
向かって炭化珪素の量が段階的又は連続的に増加してい
ることを特徴とする、請求項1に記載のアルミニウム−
炭化珪素系複合材料。
2. The aluminum alloy according to claim 1, wherein the amount of silicon carbide in the composite layer increases stepwise or continuously from the metal layer side toward the other end.
Silicon carbide composite material.
【請求項3】 前記複合化層中の炭化珪素量が、該複合
化層が前記金属層に接する一端で50体積%以下、及び
該複合化層の他端で75体積%以下であることを特徴と
する、請求項2に記載のアルミニウム−炭化珪素系複合
材料。
3. The amount of silicon carbide in the composite layer is 50% by volume or less at one end where the composite layer is in contact with the metal layer, and 75% by volume or less at the other end of the composite layer. The aluminum-silicon carbide-based composite material according to claim 2, characterized in that:
【請求項4】 20℃での熱伝導率が150W/m・K
以上であることを特徴とする、請求項1〜3のいずれか
に記載のアルミニウム−炭化珪素系複合材料。
4. The thermal conductivity at 20 ° C. is 150 W / m · K.
The aluminum-silicon carbide-based composite material according to any one of claims 1 to 3, wherein:
【請求項5】 20℃での熱伝導率が180W/m・K
以上であることを特徴とする、請求項4に記載のアルミ
ニウム−炭化珪素系複合材料。
5. The thermal conductivity at 20 ° C. is 180 W / m · K.
The aluminum-silicon carbide composite material according to claim 4, wherein:
【請求項6】 請求項1〜5のいずれかに記載のアルミ
ニウム−炭化珪素系複合材料を放熱基板として用いた半
導体装置。
6. A semiconductor device using the aluminum-silicon carbide composite material according to claim 1 as a heat dissipation substrate.
【請求項7】 アルミニウムを主成分とする金属と、炭
化珪素を主成分とする粒子からなるアルミニウム−炭化
珪素系複合材料の製造方法であって、原料粉末としてア
ルミニウムを主成分とする金属粉末と炭化珪素粉末とを
準備する工程と、これらの原料粉末を混合して炭化珪素
量の異なる複数種のアルミニウム−炭化珪素系混合粉末
を調製する工程と、一端にアルミニウムを主成分とする
金属粉末の層を配置すると共に、該金属粉末層の他端側
に複数種のアルミニウム−炭化珪素系混合粉末の層を該
金属粉末層側からみて炭化珪素含有量の少ない順に配置
し、加圧成形して成形体とする工程と、該成形体を不活
性ガス中にて該成形体中に含まれるアルミニウムを主成
分とする金属の融点以上の温度で燒結して、燒結体とす
る工程とを含むことを特徴とするアルミニウム−炭化珪
素系複合材料の製造方法。
7. A method for producing an aluminum-silicon carbide composite material comprising a metal mainly composed of aluminum and particles mainly composed of silicon carbide, wherein a metal powder mainly composed of aluminum is used as a raw material powder. A step of preparing silicon carbide powder, a step of mixing these raw material powders to prepare a plurality of types of aluminum-silicon carbide-based mixed powders having different amounts of silicon carbide, and a step of mixing metal powder containing aluminum as a main component at one end. Along with disposing the layers, layers of a plurality of types of aluminum-silicon carbide-based mixed powder are arranged on the other end side of the metal powder layer in ascending order of the silicon carbide content when viewed from the metal powder layer side, and pressure-formed. Forming a molded body, and sintering the formed body in an inert gas at a temperature equal to or higher than the melting point of a metal containing aluminum as a main component contained in the formed body to form a sintered body. A method for producing an aluminum-silicon carbide composite material, comprising:
【請求項8】 前記成形体とする工程の成形圧力が40
0MPa以上であることを特徴とする、請求項7に記載
のアルミニウム−炭化珪素系複合材料の製造方法。
8. The molding pressure in the step of forming a molded body is 40.
The method for producing an aluminum-silicon carbide composite material according to claim 7, wherein the pressure is 0 MPa or more.
【請求項9】 前記燒結体とする工程の燒結温度T
(℃)が、前記成形体中に含まれるアルミニウムを主成
分とする金属の融点をTm(℃)とするとき、Tm<T
<(Tm+15)の関係を満たすことを特徴とする、請
求項7又は8に記載のアルミニウム−炭化珪素系複合材
料の製造方法。
9. A sintering temperature T for the step of forming a sintered body.
(° C.) is defined as Tm (° C.) where the melting point of a metal containing aluminum as a main component contained in the compact is Tm (° C.).
The method for producing an aluminum-silicon carbide composite material according to claim 7, wherein the relationship of (Tm + 15) is satisfied.
【請求項10】 前記燒結体とする工程において、前記
成形体を不活性ガス中にて該成形体中に含まれるアルミ
ニウムを主成分とする金属の融点以上の温度で予備加熱
した後、熱間で鍛造することを特徴とする、請求項7〜
9のいずれかに記載のアルミニウム−炭化珪素系複合材
料の製造方法。
10. In the step of forming the sintered body, the formed body is preliminarily heated in an inert gas at a temperature equal to or higher than the melting point of a metal containing aluminum as a main component contained in the formed body. Characterized by being forged by:
10. The method for producing an aluminum-silicon carbide composite material according to any one of items 9.
JP2000152313A 2000-05-24 2000-05-24 Aluminum-silicon carbide composite material and its production method Pending JP2001335859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152313A JP2001335859A (en) 2000-05-24 2000-05-24 Aluminum-silicon carbide composite material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152313A JP2001335859A (en) 2000-05-24 2000-05-24 Aluminum-silicon carbide composite material and its production method

Publications (1)

Publication Number Publication Date
JP2001335859A true JP2001335859A (en) 2001-12-04

Family

ID=18657751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152313A Pending JP2001335859A (en) 2000-05-24 2000-05-24 Aluminum-silicon carbide composite material and its production method

Country Status (1)

Country Link
JP (1) JP2001335859A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176569A (en) * 2008-01-24 2009-08-06 Ngk Insulators Ltd Ceramic heater and its manufacturing method
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member
CN103367270A (en) * 2013-07-11 2013-10-23 中国人民解放军国防科学技术大学 Aluminum silicon carbide composite material with laser welding layer and preparing method of aluminum silicon carbide composite material
CN104046823A (en) * 2014-06-13 2014-09-17 上海和辉光电有限公司 Graded metal-ceramic composite and preparation method thereof
JP2016018975A (en) * 2014-07-11 2016-02-01 株式会社デンソー Heat conduction member
KR101619806B1 (en) 2014-12-17 2016-05-11 세일정기 (주) Method for manufacturing heatsink and the heatsink thereby
JP2016113696A (en) * 2014-12-15 2016-06-23 ベ イ,ゴン Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
JP2018154859A (en) * 2017-03-16 2018-10-04 昭和電工株式会社 Material for plastic working, plastically worked body and thermal conductor
JP2019065311A (en) * 2017-09-28 2019-04-25 昭和電工株式会社 Raw sheet for plastic processing
JP7460868B2 (en) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド Electronic converter designed based on welding technology

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176569A (en) * 2008-01-24 2009-08-06 Ngk Insulators Ltd Ceramic heater and its manufacturing method
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member
CN103367270A (en) * 2013-07-11 2013-10-23 中国人民解放军国防科学技术大学 Aluminum silicon carbide composite material with laser welding layer and preparing method of aluminum silicon carbide composite material
CN104046823A (en) * 2014-06-13 2014-09-17 上海和辉光电有限公司 Graded metal-ceramic composite and preparation method thereof
JP2016018975A (en) * 2014-07-11 2016-02-01 株式会社デンソー Heat conduction member
JP2016113696A (en) * 2014-12-15 2016-06-23 ベ イ,ゴン Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
KR101619806B1 (en) 2014-12-17 2016-05-11 세일정기 (주) Method for manufacturing heatsink and the heatsink thereby
JP2018154859A (en) * 2017-03-16 2018-10-04 昭和電工株式会社 Material for plastic working, plastically worked body and thermal conductor
JP2019065311A (en) * 2017-09-28 2019-04-25 昭和電工株式会社 Raw sheet for plastic processing
JP7460868B2 (en) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド Electronic converter designed based on welding technology

Similar Documents

Publication Publication Date Title
JP3468358B2 (en) Silicon carbide composite, method for producing the same, and heat radiation component using the same
EP0987231B1 (en) Silicon carbide based composite material and manufacturing method thereof
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JP4080030B2 (en) Semiconductor substrate material, semiconductor substrate, semiconductor device, and manufacturing method thereof
EP1873272B1 (en) Alloy material for dissipating heat from semiconductor device and method for production thereof
JP4304749B2 (en) Method for manufacturing member for semiconductor device
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JPS63156075A (en) High heat conductivity electric insulation aluminum nitride sintered body and manufacture
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP4305986B2 (en) Method for producing silicon carbide composite material
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP4674999B2 (en) Integrated ceramic circuit board manufacturing method
JP4253932B2 (en) Method for producing silicon carbide composite material
JP2001158933A (en) Al-SiC COMPOSITE MATERIAL, PRODUCING METHOD THEREFOR AND SEMICONDUCTOR SYSTEM USING SAME
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
JP2001217364A (en) Al-SiC COMPOSITE
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2003268482A (en) Al-SiC COMPOSITE MATERIAL