JP2012077323A - Aluminum-silicon-carbide composite and heat transfer member - Google Patents

Aluminum-silicon-carbide composite and heat transfer member Download PDF

Info

Publication number
JP2012077323A
JP2012077323A JP2010221435A JP2010221435A JP2012077323A JP 2012077323 A JP2012077323 A JP 2012077323A JP 2010221435 A JP2010221435 A JP 2010221435A JP 2010221435 A JP2010221435 A JP 2010221435A JP 2012077323 A JP2012077323 A JP 2012077323A
Authority
JP
Japan
Prior art keywords
layer
heat transfer
transfer member
aluminum
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221435A
Other languages
Japanese (ja)
Other versions
JP5602566B2 (en
Inventor
Mamoru Ishii
守 石井
Tamotsu Harada
保 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010221435A priority Critical patent/JP5602566B2/en
Publication of JP2012077323A publication Critical patent/JP2012077323A/en
Application granted granted Critical
Publication of JP5602566B2 publication Critical patent/JP5602566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum-silicon-carbide composite that stably warps when heat is transferred thereto, and a heat transfer member made thereof.SOLUTION: The Al-SiC composite 1 comprises an SiC porous body impregnated with a metal essentially comprising aluminum and has a multilayered structure equipped with a first layer 2 and a second layer 3, wherein the first layer 2 has a thermal expansion coefficient at 50-150°C of 6-9 ppm/K and the second layer 3 has a thermal expansion coefficient at 50-150°C larger by 4-8.5 ppm/K than that of the layer 2.

Description

本発明は、アルミニウム−炭化珪素質複合体、及びこれからなる伝熱部材に関する。   The present invention relates to an aluminum-silicon carbide composite and a heat transfer member comprising the same.

近年、ハイブリッド車両、電気自動車、鉄道車両などには、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)などの電力用半導体素子(パワーデバイス)を実装したパワーモジュールが搭載されている。半導体素子が発生する熱を放熱拡散させる放熱部材と、半導体素子が搭載されるセラミックス基板との間には、通常、熱を速やかに放熱部材に伝熱する伝熱部材を介在させている。セラミックス基板と伝熱部材とははんだ付けやろう付けで接合される。   2. Description of the Related Art In recent years, power modules mounted with power semiconductor elements (power devices) such as IGBTs (Insulated Gate Bipolar Transistors) are mounted on hybrid vehicles, electric vehicles, railway vehicles, and the like. In general, a heat transfer member that quickly transfers heat to the heat dissipation member is interposed between the heat dissipation member that dissipates and diffuses the heat generated by the semiconductor element and the ceramic substrate on which the semiconductor element is mounted. The ceramic substrate and the heat transfer member are joined by soldering or brazing.

半導体素子の動作に伴う繰り返しの熱サイクルによって接合部でクラックが発生することを防止するために、セラミックス基板との熱膨張率差が小さいアルミニウム−炭化珪素質複合体からなる伝熱部材を用いることが多い。アルミニウム−炭化珪素質複合体は軽量である点も利点である。   Use of a heat transfer member made of an aluminum-silicon carbide composite that has a small difference in thermal expansion coefficient from the ceramic substrate in order to prevent cracks from occurring at the joint due to repeated thermal cycles accompanying the operation of the semiconductor element. There are many. The aluminum-silicon carbide composite is also advantageous in that it is lightweight.

ところで、放熱部材と伝熱部材とは、通常、複数のボルトで取り付けられている。しかし、放熱部材と伝熱部材との間に隙間が生じた場合、伝熱効率は著しく低下する。そこで、伝熱部材の放熱部材側の面に予め凸状の反りを付け、その反発力を利用して、隙間が生じることを防止することが提案されている。   By the way, the heat radiating member and the heat transfer member are usually attached with a plurality of bolts. However, when a gap is generated between the heat dissipation member and the heat transfer member, the heat transfer efficiency is significantly reduced. Therefore, it has been proposed that a convex warp is provided in advance on the surface of the heat transfer member on the heat dissipating member side, and the repulsive force is used to prevent the formation of a gap.

この反りは、所定の形状を有する治具を用いて、加熱下、伝熱部材を加圧することによって形成している(例えば、特許文献1参照)。また、伝熱部材の表面をダイヤモンドなどからなる切削工具で切削加工して反りを形成することもある。   This warp is formed by pressurizing the heat transfer member under heating using a jig having a predetermined shape (see, for example, Patent Document 1). Further, the surface of the heat transfer member may be cut with a cutting tool made of diamond or the like to form a warp.

特許3792180号公報Japanese Patent No. 3792180

しかしながら、治具を用いて高温高圧化で反りを形成する場合、反り量を調整することは困難であり、且つ反り形状が一定せず反り面に凹凸が生じるので、放熱部材と伝熱部材との間に隙間が生じるおそれがあるという問題がある。   However, when forming a warp by using a jig at a high temperature and a high pressure, it is difficult to adjust the amount of warp, and the warp shape is not constant, and the warp surface is uneven, so that the heat dissipation member and the heat transfer member There is a problem that a gap may be formed between them.

また、切削加工で反りを形成する場合、アルミニウム−炭化珪素質複合体は非常に硬いため、切削コストが非常に高くなるという問題がある。   In addition, when warping is formed by cutting, the aluminum-silicon carbide composite is very hard, so that there is a problem that the cutting cost becomes very high.

本発明は、以上の点に鑑み、熱が伝わった際に安定的に反りが発生するアルミニウム−炭化珪素質複合体、及びこれからなる伝熱部材を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an aluminum-silicon carbide composite in which warpage is stably generated when heat is transmitted, and a heat transfer member comprising the same.

本発明のアルミニウム−炭化珪素質複合体は、炭化珪素多孔体にアルミニウムを主成分とする金属を含浸したアルミニウム−炭化珪素質複合体であって、50℃〜150℃における熱膨張係数が6ppm/K〜9ppm/Kである第1の層と、50℃〜150℃における熱膨張係数が前記第1の層よりも4ppm/K〜8.5ppm/Kだけ大きい第2の層とを備える多層構造であることを特徴とする。   The aluminum-silicon carbide composite of the present invention is an aluminum-silicon carbide composite obtained by impregnating a silicon carbide porous body with a metal containing aluminum as a main component, and has a thermal expansion coefficient of 6 ppm / at 50 ° C to 150 ° C. A multilayer structure comprising a first layer having a K to 9 ppm / K and a second layer having a thermal expansion coefficient at 50 ° C. to 150 ° C. that is 4 ppm / K to 8.5 ppm / K greater than that of the first layer It is characterized by being.

本発明のアルミニウム−炭化珪素質複合体によれば、第1の層と第2の層との熱膨張係数との間に所定の差があるので、温度上昇したとき、温度に応じた反りが安定的に発生し、常温では反りが発生しない。   According to the aluminum-silicon carbide composite of the present invention, there is a predetermined difference between the thermal expansion coefficients of the first layer and the second layer. It occurs stably and does not warp at room temperature.

本発明のアルミニウム−炭化珪素質複合体において、前記第1の層の炭化珪素充填率が65%〜85%であり、前記第2の層の炭化珪素充填率が前記第1の層よりも10%〜50%だけ小さいことが好ましい。この場合、前記熱膨張係数を有する第1の層及び第2の層を確実且つ容易に形成することができる。   In the aluminum-silicon carbide based composite of the present invention, the silicon carbide filling rate of the first layer is 65% to 85%, and the silicon carbide filling rate of the second layer is 10 than that of the first layer. It is preferable to be smaller by% to 50%. In this case, the first layer and the second layer having the thermal expansion coefficient can be reliably and easily formed.

また、本発明のアルミニウム−炭化珪素質複合体において、前記第1の層は多粒度配合の炭化珪素粉末を原料粉末とする型成形体を焼成した焼結体からなり、前記第2の層は一粒度配合の炭化珪素粉末及び金属粉末又はカーボン粉末を原料粉末とする型成形体を焼成した焼結体からなることが好ましい。この場合、前記炭化珪素充填率を有する第1の層及び第2の層を容易に形成することができる。   Moreover, in the aluminum-silicon carbide based composite of the present invention, the first layer is formed of a sintered body obtained by firing a molded body using a silicon carbide powder having a multi-grain blend as a raw material powder, and the second layer is It is preferably made of a sintered body obtained by firing a die-molded body made of silicon carbide powder of a single particle size and metal powder or carbon powder as raw material powder. In this case, the first layer and the second layer having the silicon carbide filling rate can be easily formed.

また、本発明のアルミニウム−炭化珪素質複合体において、前記第1の層と前記第2の層との間に、80重量%を超える金属を含む金属層が介在しないことが好ましい。この場合、金属層によって熱伝導が阻害されないので、伝熱性能が優れたものとなる。   In the aluminum-silicon carbide based composite of the present invention, it is preferable that a metal layer containing more than 80% by weight of metal is not interposed between the first layer and the second layer. In this case, since the heat conduction is not hindered by the metal layer, the heat transfer performance is excellent.

本発明の伝熱部材は、第1の主面がセラミックス基板と接合され、前記第1の主面と反対側に位置する第2の主面が当該伝熱部材に複数の固定部位で固定される固定部材と接触し、本発明のアルミニウム−炭化珪素質複合体からなる伝熱部材であって、前記第1の層の表面に機械加工を施して前記第1の主面とする共に、前記第2の層の表面を表面粗さRaが3μm以下になるように機械加工を施して前記第2の主面とすることを特徴とする。   In the heat transfer member of the present invention, the first main surface is bonded to the ceramic substrate, and the second main surface located on the opposite side of the first main surface is fixed to the heat transfer member at a plurality of fixing portions. A heat transfer member made of the aluminum-silicon carbide composite of the present invention, wherein the surface of the first layer is machined to form the first main surface, The surface of the second layer is machined so that the surface roughness Ra is 3 μm or less to form the second main surface.

本発明の伝熱部材によれば、第1の層と第2の層との熱膨張係数の相違によって、伝熱部材に熱が伝わったとき、固定部材側に凸となる反りが温度上昇に応じて安定的に発生する。そして、伝熱部材は複数の固定部位で固定部材と固定されている。そのため、固定部位間で第2の主面と固定部材の密着は高く且つ温度が高くなるにつれて強くなり、伝熱部材と固定部材とが確実に接触する。さらに、第2の主面の表面粗さRaが3μm以下であるので、反りによる伝熱部材と固定部材との密着がより良好となる。   According to the heat transfer member of the present invention, when heat is transferred to the heat transfer member due to the difference in thermal expansion coefficient between the first layer and the second layer, the warping that protrudes toward the fixed member increases the temperature. It is generated stably in response. The heat transfer member is fixed to the fixing member at a plurality of fixing portions. For this reason, the adhesion between the second main surface and the fixing member is high between the fixing portions and becomes stronger as the temperature increases, so that the heat transfer member and the fixing member are reliably in contact with each other. Furthermore, since the surface roughness Ra of the second main surface is 3 μm or less, the adhesion between the heat transfer member and the fixing member due to warpage becomes better.

また、本発明の伝熱部材において、前記第1の主面を加熱したとき、前記第2の主面に100℃−200mm当り3μm〜8μmの反りが発生することが好ましい。反りが3μm未満では、伝熱部材と固定部材とのと良好な密着が得られない。また、反りが8μmを超えると、伝熱部材とセラミックス基板との接合部に影響を及ぼし、剥離が生じるおそれがある。   In the heat transfer member of the present invention, when the first main surface is heated, it is preferable that a warp of 3 μm to 8 μm occurs at 100 ° C.-200 mm on the second main surface. If the warpage is less than 3 μm, good adhesion between the heat transfer member and the fixing member cannot be obtained. On the other hand, if the warpage exceeds 8 μm, the bonded portion between the heat transfer member and the ceramic substrate may be affected, and peeling may occur.

また、本発明の伝熱部材において、前記第1の主面を300℃に加熱したとき、前記第2の主面の温度が250℃以上であることが好ましい。この場合、伝熱部材の伝熱性能が優れていることが確保される。   In the heat transfer member of the present invention, it is preferable that when the first main surface is heated to 300 ° C., the temperature of the second main surface is 250 ° C. or higher. In this case, it is ensured that the heat transfer performance of the heat transfer member is excellent.

本発明の実施形態に係るAl−SiC複合材の概念縦断面図。The conceptual longitudinal cross-sectional view of the Al-SiC composite material which concerns on embodiment of this invention. Al−SiC複合材の作製方法を説明するための概念縦断面図。The conceptual longitudinal cross-sectional view for demonstrating the preparation methods of an Al-SiC composite material. 本発明の実施形態に係る伝熱部材の使用状態を説明するための概念縦断面図。The conceptual longitudinal cross-sectional view for demonstrating the use condition of the heat-transfer member which concerns on embodiment of this invention.

本発明の実施形態に係るアルミニウム−炭化珪素質複合体1(以下、「Al−SiC複合体1」という)について説明する。   An aluminum-silicon carbide composite 1 (hereinafter referred to as “Al—SiC composite 1”) according to an embodiment of the present invention will be described.

図1に示すように、Al−SiC複合体1は、炭化珪素(SiC)多孔体にアルミニウム(Al)を主成分とする金属を含浸した多層構造であり、50℃〜150℃における熱膨張係数が6ppm/K〜9ppm/K、好ましくは6.5ppm/K〜9ppm/K、より好ましくは7.1ppm/K〜8.8ppm/Kである第1の層2と、50℃〜150℃における熱膨張係数が層2よりも4ppm/K〜8.5ppm/K、好ましくは4.5ppm/K〜8ppm/K、より好ましくは4.9ppm/K〜7.7ppm/Kだけ大きい第2の層3とを備えている。   As shown in FIG. 1, the Al—SiC composite 1 has a multilayer structure in which a silicon carbide (SiC) porous body is impregnated with a metal mainly composed of aluminum (Al), and has a thermal expansion coefficient at 50 ° C. to 150 ° C. A first layer 2 having a thickness of 6 ppm / K to 9 ppm / K, preferably 6.5 ppm / K to 9 ppm / K, more preferably 7.1 ppm / K to 8.8 ppm / K, and 50 ° C. to 150 ° C. Second layer having a coefficient of thermal expansion greater than layer 2 by 4 ppm / K to 8.5 ppm / K, preferably 4.5 ppm / K to 8 ppm / K, more preferably 4.9 ppm / K to 7.7 ppm / K 3 is provided.

アルミニウムを主成分とする金属とは、アルミニウムを80重量%以上、好ましくは85重量%以上、より好ましくは90重量%以上含む金属であって、極端に特性が変化しない範囲であれば含まれる金属成分は特に限定されず、鉄や銅等が含まれていてもよい。   The metal containing aluminum as a main component is a metal containing aluminum in an amount of 80% by weight or more, preferably 85% by weight or more, more preferably 90% by weight or more. A component is not specifically limited, Iron, copper, etc. may be contained.

アルミニウムとSiCとの複合材では、SiCの充填率が10%増えると複合材の熱膨張係数が2ppm/K〜3ppm/K低下する。そこで、層2のSiC充填率を65%〜85%、好ましくは67%〜81%、より好ましくは70%〜80%とし、層3のSiC充填率を層2よりも10%〜50%、好ましくは15%〜40%、より好ましくは18%〜37%だけ小さくすれば、各層2,3の熱膨張係数を上記のようにすることができる。   In the composite material of aluminum and SiC, when the filling rate of SiC increases by 10%, the thermal expansion coefficient of the composite material decreases by 2 ppm / K to 3 ppm / K. Therefore, the SiC filling rate of the layer 2 is 65% to 85%, preferably 67% to 81%, more preferably 70% to 80%, and the SiC filling rate of the layer 3 is 10% to 50% than the layer 2, If it is preferably reduced by 15% to 40%, more preferably 18% to 37%, the thermal expansion coefficients of the layers 2 and 3 can be made as described above.

SiCの高充填化は、SiC成形体(プリフォーム)の成形時に粗い粒子と細かい粒子とを混合した多粒度配合のSiC粉末を使用することにより調整できる。一方、SiCの低充填化は、成形時に粒度が単粒のみ、即ち一粒度配合のSiC粉末を使用して、さらにアルミニウム粉末やカーボン粉末を添加することにより調整できる。   The high filling of SiC can be adjusted by using a SiC powder having a multi-particulate formulation in which coarse particles and fine particles are mixed when forming a SiC molded body (preform). On the other hand, the low filling of SiC can be adjusted by using a single-grained SiC powder at the time of molding, that is, by adding an aluminum powder or a carbon powder.

通常、多層構造のAl−SiC複合材を作製する場合、SiCの充填率が異なるSiC成形体を別個に作製し、これらのSiC成形体を積み重ねた状態でアルミニウムを主成分とする金属を含浸させることが考えられる。しかし、この方法では、SiC成形体の間に金属層が形成され、熱伝導の阻害や、熱膨張係数差により発生した反りによってクラックが発生するおそれがあるなどの問題が生じる。   Normally, when producing an Al-SiC composite material having a multilayer structure, SiC compacts having different SiC filling rates are separately produced, and impregnated with a metal mainly composed of aluminum in a state where these SiC compacts are stacked. It is possible. However, in this method, a metal layer is formed between the SiC molded bodies, and there arises a problem that cracks may occur due to the inhibition of heat conduction or the warpage caused by the difference in thermal expansion coefficient.

そこで、Al−SiC複合体1は、振動成形法を用いて、高充填率の層2と低充填率の層3とを一体的に成形して作製することが好ましい。これによれば、SiC充填率の異なる層2,3の境界で金属層が形成されず、前記問題が生じない。   Therefore, the Al—SiC composite 1 is preferably manufactured by integrally molding the high filling rate layer 2 and the low filling rate layer 3 using a vibration molding method. According to this, the metal layer is not formed at the boundary between the layers 2 and 3 having different SiC filling ratios, and the above problem does not occur.

具体的には、図2を参照して、高充填率の層2の原料粉末として、二粒度配合したSiC粉末を用いる。二粒度配合したSiC粉末は、平均粒径5μm〜40μm、好ましくは5μm〜30μm、より好ましくは10μm〜25μmのSiC細粉と、平均粒径50μm〜120μm、好ましくは50μm〜100μm、より好ましくは60μm〜80μmのSiC粗粉とからなり、SiC細粉が10重量%〜50重量%、好ましくは20重量%〜40重量%、より好ましくは25重量%〜35重量%を占めるものである。なお、高充填率の層2の原料粉末として、三粒度配合など二粒度配合を超える多粒度配合したSiC粉末を用いてもよい。   Specifically, referring to FIG. 2, SiC powder mixed with two particle sizes is used as the raw material powder for layer 2 having a high filling rate. The SiC powder blended in two particle sizes has an average particle size of 5 μm to 40 μm, preferably 5 μm to 30 μm, more preferably 10 μm to 25 μm, and an average particle size of 50 μm to 120 μm, preferably 50 μm to 100 μm, more preferably 60 μm. It consists of ˜80 μm SiC coarse powder, and the SiC fine powder occupies 10 wt% to 50 wt%, preferably 20 wt% to 40 wt%, more preferably 25 wt% to 35 wt%. In addition, as the raw material powder of the layer 2 having a high filling rate, a SiC powder mixed in a multi-particulate manner exceeding a two-particulate composition such as a three-particulate composition may be used.

この原料粉末に水とシリカバインダーを添加して混合してスラリー化して型4に流し込み、所定時間、例えば60分浸透振動成形する。   Water and a silica binder are added to the raw material powder, mixed and slurried, poured into a mold 4, and subjected to osmotic vibration molding for a predetermined time, for example, 60 minutes.

一方、低充填率の層3の原料粉末として、一粒度配合のSiC粉末にアルミニウム粉末又はカーボン粉末を混合したものを用いる。一粒度配合したSiC粉末は、平均粒径10μm〜150μm、好ましくは20μm〜100μm、より好ましくは30μm〜70μmのSiC粉末からなるものである。そして、原料粉末には、平均粒径15μm〜45μm、好ましくは20μm〜40μm、より好ましくは25μm〜35μmのアルミニウム粉末が1重量%〜5重量%、好ましくは1.5重量%〜4重量%、より好ましくは2重量%〜3.5重量%を占めるか、平均粒径0.5μm〜5μm、好ましくは1μm〜3.5μm、より好ましくは1μm〜2.5μmのカーボン粉末が0.5重量%〜5重量%、好ましくは1重量%〜3.5重量%、より好ましくは1重量%〜2.5重量%を占めるものである。   On the other hand, as a raw material powder for the layer 3 having a low filling rate, a mixture of SiC powder having a single particle size and aluminum powder or carbon powder is used. The SiC powder having a single particle size is composed of SiC powder having an average particle size of 10 μm to 150 μm, preferably 20 μm to 100 μm, more preferably 30 μm to 70 μm. In the raw material powder, an aluminum powder having an average particle size of 15 μm to 45 μm, preferably 20 μm to 40 μm, more preferably 25 μm to 35 μm is 1 wt% to 5 wt%, preferably 1.5 wt% to 4 wt%, More preferably, it occupies 2 wt% to 3.5 wt%, or an average particle size of 0.5 μm to 5 μm, preferably 1 μm to 3.5 μm, more preferably 1 μm to 2.5 μm is 0.5 wt%. Occupying -5% by weight, preferably 1% -3.5% by weight, more preferably 1% -2.5% by weight.

この原料粉末に水とシリカバインダーを添加して混合してスラリー化して、前記スラリーの上から型4に流し込み、所定時間、例えば20分浸透振動成形する。   Water and a silica binder are added to the raw material powder and mixed to form a slurry, which is poured into the mold 4 from above the slurry, and subjected to osmotic vibration molding for a predetermined time, for example, 20 minutes.

その後、水分を除去した後、80℃〜300℃、好ましくは100℃〜250℃、より好ましくは150℃〜200℃で乾燥し、700℃〜1300℃、好ましくは800℃〜1250℃、より好ましくは1000℃〜1150℃で、大気雰囲気下又は窒素雰囲気下で焼成する。なお、焼成時間は、SiC成形体の大きさ、焼成炉への投入量、焼成雰囲気等の条件に合わせて、適宜決められる。仮焼する際に、カーボン粉末は焼き飛び、アルミニウムは溶解してもよい。   Then, after removing moisture, it is dried at 80 ° C to 300 ° C, preferably 100 ° C to 250 ° C, more preferably 150 ° C to 200 ° C, and 700 ° C to 1300 ° C, preferably 800 ° C to 1250 ° C, more preferably. Is fired at 1000 ° C. to 1150 ° C. in an air atmosphere or a nitrogen atmosphere. The firing time is appropriately determined in accordance with conditions such as the size of the SiC molded body, the amount charged into the firing furnace, and the firing atmosphere. During the calcination, the carbon powder may be burned off and the aluminum may be dissolved.

これにより、SiCの初期充填率が高い層と、SiCの初期充填率が低い層とが積層したSiC成形体が作製される。その後、必要に応じて、SiC成形体を所望の形状に生加工する。   As a result, a SiC molded body in which a layer having a high initial filling rate of SiC and a layer having a low initial filling rate of SiC are laminated is produced. Thereafter, if necessary, the SiC molded body is processed into a desired shape.

次に、5MPa〜90MPa、好ましくは10MPa〜50MPa、より好ましくは10MPa〜30MPaの浸透圧で、700℃〜900℃、好ましくは700℃〜850℃、より好ましくは750℃〜850℃の温度に溶解したアルミニウムを主成分に含む金属をSiC成形体に含浸させる。なお、アルミニウムを主成分に含む金属は、前述した金属からなる合金であって、具体的には、純アルミニウム合金である1000系のアルミニウム合金、例えばA1050、A1070、A1080、A1085、A1100であることが最も好ましい。また、2000系や3000系のアルミニウム合金であってもよい。   Next, it dissolves at a temperature of 700 ° C. to 900 ° C., preferably 700 ° C. to 850 ° C., more preferably 750 ° C. to 850 ° C. at an osmotic pressure of 5 MPa to 90 MPa, preferably 10 MPa to 50 MPa, more preferably 10 MPa to 30 MPa. The SiC molded body is impregnated with a metal containing aluminum as a main component. The metal containing aluminum as a main component is an alloy made of the above-described metal, and specifically, a 1000 series aluminum alloy that is a pure aluminum alloy, for example, A1050, A1070, A1080, A1085, and A1100. Is most preferred. Further, it may be a 2000 series or 3000 series aluminum alloy.

含浸方法は、特に限定されないが、例えば、金型4にSiC成形体をセットし、その金型4を予熱し、別に溶融した金属を金型4内に注入し、高圧鋳造するものであってもよい。   Although the impregnation method is not particularly limited, for example, a SiC molded body is set in the mold 4, the mold 4 is preheated, and another molten metal is injected into the mold 4 to perform high pressure casting. Also good.

これにより、SiC充填率が高い層2と、SiC充填率が低い層3とが積層したAl−SiC複合体1が作製される。   Thereby, the Al-SiC composite 1 in which the layer 2 having a high SiC filling rate and the layer 3 having a low SiC filling rate are laminated is manufactured.

以下、本発明の実施形態に係る伝熱部材11について説明する。   Hereinafter, the heat transfer member 11 according to the embodiment of the present invention will be described.

図3を参照して、伝熱部材11は前述したAl−SiC複合体1を素材として用いて、これを加工してなるものである。具体的には、層2の表面に機械加工を施して、2mm〜6mm、好ましくは3mm〜5mm、より好ましくは3mm〜4mmの厚さとすると共に層3の表面に機械加工を施して、2mm〜6mm、好ましくは3mm〜5mm、より好ましくは3mm〜4mmの厚さとする。   With reference to FIG. 3, the heat transfer member 11 is obtained by processing the above-described Al—SiC composite 1 as a material. Specifically, the surface of layer 2 is machined to a thickness of 2 mm to 6 mm, preferably 3 mm to 5 mm, more preferably 3 mm to 4 mm, and the surface of layer 3 is machined to 2 mm to The thickness is 6 mm, preferably 3 mm to 5 mm, more preferably 3 mm to 4 mm.

これにより、伝熱部材11は、50℃〜150℃における熱膨張係数が6ppm/K〜9ppm/Kである第1の層12と、50℃〜150℃における熱膨張係数が層2より4ppm/K〜8.5ppm/Kだけ大きな第2の層13とを備えた平板状の多層構造となる。なお、層12が伝熱部材11の全厚に占める割合は、40%〜60%、好ましくは45%〜55%であり、より好ましくは48%〜52%である。伝熱部材11の厚さが薄すぎると、衝撃などにより破損するおそれがあり、厚さが厚すぎると、伝熱性能が低下するおそれがある。   As a result, the heat transfer member 11 has a thermal expansion coefficient at 50 ° C. to 150 ° C. of 6 ppm / K to 9 ppm / K, and a thermal expansion coefficient at 50 ° C. to 150 ° C. of 4 ppm / It becomes a flat multilayer structure provided with the second layer 13 that is larger by K to 8.5 ppm / K. The ratio of the layer 12 to the total thickness of the heat transfer member 11 is 40% to 60%, preferably 45% to 55%, and more preferably 48% to 52%. If the thickness of the heat transfer member 11 is too thin, the heat transfer member 11 may be damaged due to an impact or the like. If the thickness is too thick, the heat transfer performance may be deteriorated.

層13の表面13aは、表面粗さRaが1μm〜3μm、好ましくは1.5μm〜3μm、より好ましくは1.8μm〜2.7μmとなるように機械加工が施され、セラミックス基板5と接合される第1の主面である上面13aとなる。層12の表面12aは、表面粗さRaが1μm〜3μm、好ましくは1.5μm〜3μm、より好ましくは1.8μm〜2.7μmとなるように砥石などの研磨具を用いて機械加工が施され、固定部材6と接触し、第1の主面13aと反対側に位置する第2の主面である下面12aとなる。なお、上面13a及び下面12aは共に、室温で平らとなるように、平面度を4μm以下、好ましくは3μm以下、より好ましくは2.7μm以下とする。   The surface 13a of the layer 13 is machined to have a surface roughness Ra of 1 μm to 3 μm, preferably 1.5 μm to 3 μm, more preferably 1.8 μm to 2.7 μm, and is bonded to the ceramic substrate 5. The upper surface 13a is the first main surface. The surface 12a of the layer 12 is machined using a polishing tool such as a grindstone so that the surface roughness Ra is 1 μm to 3 μm, preferably 1.5 μm to 3 μm, more preferably 1.8 μm to 2.7 μm. Then, it comes into contact with the fixing member 6 and becomes the lower surface 12a that is the second main surface located on the opposite side of the first main surface 13a. Note that the flatness of both the upper surface 13a and the lower surface 12a is 4 μm or less, preferably 3 μm or less, and more preferably 2.7 μm or less so that it is flat at room temperature.

そして、伝熱部材11の複数の隅部には、伝熱部材11を固定部材6に固定するために、ボルトなどの締結具7が挿通される貫通穴11aが切削加工により形成される。なお、伝熱部材11は、放熱フィンなどの放熱部材である固定部材6とセラミックス基板5との間に介在する部材であり、熱伝導体ベースや単にベースとも呼称される。   In order to fix the heat transfer member 11 to the fixing member 6, through holes 11 a through which fasteners 7 such as bolts are inserted are formed in the plurality of corners of the heat transfer member 11 by cutting. The heat transfer member 11 is a member interposed between the fixing member 6 which is a heat radiating member such as a heat radiating fin and the ceramic substrate 5, and is also referred to as a heat conductor base or simply a base.

セラミックス基板5は、アルミナ、窒化アルミニウム、窒化珪素などのセラミックスから形成されている。セラミックス基板5の上面には、図示しないが、回路層が形成されており、回路層上に半導体素子が接合されている。半導体素子は、例えばIGBTなど発熱量が大きな半導体素子であるが、これに限定されない。   The ceramic substrate 5 is formed of ceramics such as alumina, aluminum nitride, silicon nitride. Although not shown, a circuit layer is formed on the upper surface of the ceramic substrate 5, and a semiconductor element is bonded on the circuit layer. The semiconductor element is a semiconductor element that generates a large amount of heat, such as an IGBT, but is not limited thereto.

伝熱部材11の上面13aには、図示しないが、メッキ被膜が形成される。このメッキ被膜は、ニッケル(Ni)を主成分したものからなり、ニッケル合金や純ニッケルを用いて、無電界メッキや電界メッキにより形成される。   Although not shown, a plating film is formed on the upper surface 13 a of the heat transfer member 11. This plating film is made of nickel (Ni) as a main component, and is formed by electroless plating or electroplating using a nickel alloy or pure nickel.

セラミックス基板5の下面5aと伝熱部材11のメッキ被膜が形成された上面13aとの間に、熱伝導性が優れた材料からなるはんだ材やろう材を介在させて、セラミックス基板5と伝熱部材11とははんだ付けやろう付けにより接合される。   Between the lower surface 5a of the ceramic substrate 5 and the upper surface 13a on which the plating film of the heat transfer member 11 is formed, a solder material or a brazing material made of a material having excellent thermal conductivity is interposed, so that the heat transfer with the ceramic substrate 5 is achieved. The member 11 is joined by soldering or brazing.

そして、セラミックス基板5が接合された伝熱部材11は、アルミニウムや鋼等の金属などからなる固定部材6に複数の締結具7を用いて固定される。ここでは、伝熱部材11の四隅に貫通穴11aが形成されており、これら貫通穴11aをそれぞれ挿通するボルト7により、伝熱部材11と固定部材6とが締結される。   The heat transfer member 11 to which the ceramic substrate 5 is bonded is fixed to a fixing member 6 made of a metal such as aluminum or steel using a plurality of fasteners 7. Here, through holes 11 a are formed at four corners of the heat transfer member 11, and the heat transfer member 11 and the fixing member 6 are fastened by bolts 7 respectively inserted through the through holes 11 a.

伝熱部材11は、半導体素子が発生した熱を固定部材6に伝熱する。伝熱部材11は、上面13aを300℃に加熱したとき、下面12aの温度が250℃以上、好ましくは280℃以上、より好ましくは295℃以上であり、伝熱性能が優れている。   The heat transfer member 11 transfers the heat generated by the semiconductor element to the fixed member 6. In the heat transfer member 11, when the upper surface 13a is heated to 300 ° C, the temperature of the lower surface 12a is 250 ° C or higher, preferably 280 ° C or higher, more preferably 295 ° C or higher, and the heat transfer performance is excellent.

熱が伝熱部材11に伝わると、セラミックス基板5及び伝熱部材11は温度が上昇して、熱膨張をする。一方、半導体素子からの発熱が停止すると、セラミックス基板5及び伝熱部材11は温度が低下して、熱収縮する。   When heat is transferred to the heat transfer member 11, the temperature of the ceramic substrate 5 and the heat transfer member 11 rises and thermally expands. On the other hand, when the heat generation from the semiconductor element stops, the temperature of the ceramic substrate 5 and the heat transfer member 11 decreases and the heat shrinks.

セラミックス基板5と伝熱部材11のセラミックス基板5と接合された層13との熱膨張係数の相違が小さいので、上述した熱膨張及び熱収縮の熱サイクルにおいて、これらの差に起因してセラミックス基板5と層13との間に発生する熱応力は小さい。よって、これらの間の接合部にクラックなどが発生して破損することが防止される。   Since the difference in thermal expansion coefficient between the ceramic substrate 5 and the layer 13 bonded to the ceramic substrate 5 of the heat transfer member 11 is small, the ceramic substrate is caused by these differences in the thermal cycle of thermal expansion and thermal contraction described above. The thermal stress generated between 5 and the layer 13 is small. Therefore, it is prevented that a crack or the like is generated at the joint portion between them and is damaged.

また、層12と層13との間に熱膨張係数の所定の相違があり、且つ層12より層13のほうが熱膨張係数が大きいので、伝熱部材11に熱が伝わったとき、固定部材6側に、即ち下方に凸となる反り(以下、「下凸の反り」という)が発生する。そして、その反り量は、100℃−200mm当り3μm〜8μm、好ましくは3.5μm〜7.5μm、より好ましくは4μm〜7μmとなる。   Further, there is a predetermined difference in thermal expansion coefficient between the layer 12 and the layer 13, and the layer 13 has a larger thermal expansion coefficient than the layer 12, so that when the heat is transferred to the heat transfer member 11, the fixing member 6 A warp that protrudes to the side, that is, downward (hereinafter referred to as “downward warp”) occurs. The amount of warpage is 3 μm to 8 μm, preferably 3.5 μm to 7.5 μm, more preferably 4 μm to 7 μm per 100 ° C.-200 mm.

伝熱部材11は、室温で下面12aが平らであり、且つ四隅がボルト7で固定部材6に固定されているので、下凸の反りにより、下面12aと固定部材6の密着は高く温度が高くなるにつれて強くなる。よって、伝熱部材11と固定部材6とが確実に接触する。さらに、下面12aの表面粗さRaが3μm以下であるので、反りによる伝熱部材11と固定部材6の上面6aとの密着がより良好となる。   Since the lower surface 12a of the heat transfer member 11 is flat at room temperature and the four corners are fixed to the fixing member 6 with bolts 7, the close contact between the lower surface 12a and the fixing member 6 is high and the temperature is high due to downward warping. It becomes stronger as it becomes. Therefore, the heat transfer member 11 and the fixing member 6 are reliably in contact with each other. Furthermore, since the surface roughness Ra of the lower surface 12a is 3 μm or less, the adhesion between the heat transfer member 11 and the upper surface 6a of the fixing member 6 due to warpage becomes better.

なお、反り量が3μm未満では、伝熱部材11と固定部材6との良好な密着が得られない。また、反り量が8μmを超えると、伝熱部材11とセラミックス基板5との接合部に影響を及ぼし、剥離が生じるおそれがある。   If the amount of warpage is less than 3 μm, good adhesion between the heat transfer member 11 and the fixing member 6 cannot be obtained. On the other hand, if the amount of warpage exceeds 8 μm, it may affect the joint between the heat transfer member 11 and the ceramic substrate 5 and may cause peeling.

なお、以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、Al−SiC複合体1及び伝熱部材11は、熱膨張係数が異なる2層2,3、12,13からなる場合について説明したが、これに限定されない。例えば、これら2層2,3、12,13の間に、これらの中間値の熱膨張係数を有する1又は複数の層を備えていてもよい、また、この場合、熱膨張係数は、下面12aから上面13aに向って実質的に断続的に又は連続的に大きくなっていればよい。   Although the embodiment of the present invention has been described above with reference to the drawings, the present invention is not limited to this. For example, although the case where the Al—SiC composite 1 and the heat transfer member 11 are composed of the two layers 2, 3, 12, and 13 having different thermal expansion coefficients has been described, the present invention is not limited thereto. For example, one or a plurality of layers having a thermal expansion coefficient between these two layers 2, 3, 12, and 13 may be provided between the two layers 2, 3, 12, and 13. It suffices if it increases substantially intermittently or continuously from the surface toward the upper surface 13a.

〔実施例及び比較例〕
以下、実施例及び比較例を説明する。表1に実施例1−10をまとめた。
[Examples and Comparative Examples]
Hereinafter, examples and comparative examples will be described. Table 1 summarizes Examples 1-10.

Figure 2012077323
Figure 2012077323

〔実施例1−10〕
二粒度配合(粒度#90番/粒度#800番=7/3(実施例1−4)、粒度#180番/粒度#1000番=7/3(実施例5−8)、粒度#90番/粒度#500番=3/7(実施例9,10))したSiC粉末(太平洋ランダム株式会社製又は信濃電気製錬株式会社製)からなる原料粉末にイオン交換水とシリカバインダー(日産化学工業株式会社製)を添加して混合したSiCスラリーを型4に流し込み60分浸透振動成形した。
[Example 1-10]
Two particle size blending (particle size # 90 / particle size # 800 = 7/3 (Example 1-4), particle size # 180 / particle size # 1000 = 7/3 (Example 5-8), particle size # 90 / Particle size # 500 = 3/7 (Examples 9 and 10)) raw material powder made of SiC powder (manufactured by Taiheiyo Random Co., Ltd. or Shinano Denki Smelting Co., Ltd.) and ion-exchange water and silica binder (Nissan Chemical Industries SiC slurry added and mixed was poured into a mold 4 and subjected to permeation vibration molding for 60 minutes.

その後、その上に、単粒(粒度#240番(実施例1,5,9)、粒度#320番(実施例2,6,10)、粒度#500番(実施例3,4,7,8)のSiC粉末(信濃電気製錬株式会社製)に粒度#500番のアルミニウム粉末(ミナルコ株式会社製)(実施例1,2,4−7,9,10)又は粒径2.5μmのカーボン粉末(昭和電工株式会社製)(実施例3,8)を混合した原料粉末にイオン交換水とシリカバインダー(日産化学工業株式会社製)を添加したSiCスラリーを型4に流し込み20分浸透振動成形した。なお、アルミニウム粉末はSiC粉末に対して3重量%、カーボン粉末はSiC粉末に対して2重量%添加した。また、共に外割でシリカバインダーを10重量%、イオン交換水を25重量%添加してスラリー化した。   Thereafter, on that, single particles (particle size # 240 (Examples 1, 5, 9), particle size # 320 (Examples 2, 6, 10), particle size # 500 (Examples 3, 4, 7, 8) SiC powder (manufactured by Shinano Denki Smelting Co., Ltd.) and particle size # 500 aluminum powder (manufactured by Minalco Co., Ltd.) (Examples 1, 2, 4-7, 9, 10) or 2.5 μm in particle size A SiC slurry prepared by adding ion-exchanged water and silica binder (manufactured by Nissan Chemical Industries, Ltd.) to a raw powder mixed with carbon powder (manufactured by Showa Denko KK) (Examples 3 and 8) is poured into a mold 4 and oscillated for 20 minutes The aluminum powder was added at 3% by weight to the SiC powder, the carbon powder was added at 2% by weight with respect to the SiC powder, and 10% by weight of silica binder and 25% by weight of ion-exchanged water. % To make a slurry .

その後、水分を除去した後、200℃で乾燥し、1100℃で16時間焼成した。これにより、200mm×100mm×15mmのSiC成形体を作製した。そして、各層の厚さがそれぞれ3.5mm、総厚さが7mmになるように、SiC成形体を生加工した。   Then, after removing moisture, it was dried at 200 ° C. and baked at 1100 ° C. for 16 hours. Thereby, a SiC molded body of 200 mm × 100 mm × 15 mm was produced. Then, the SiC molded body was raw-processed so that each layer had a thickness of 3.5 mm and a total thickness of 7 mm.

その後、80MPaの浸透圧で800℃の温度に溶解した純アルミニウム系合金(A1050)をSiC成形体に含浸させて、Al−SiC複合体1を作製した。   Thereafter, a pure aluminum-based alloy (A1050) melted at a temperature of 800 ° C. at an osmotic pressure of 80 MPa was impregnated in the SiC molded body to produce an Al—SiC composite 1.

その後、Al−SiC複合体1の上下面をそれぞれ1mmずつ切削加工した。伝熱部材11の下面12aは表面粗さRaが3μm以下となるように粒度#800番以下の砥石で研磨加工した。そして、伝熱部材11の四隅にボルト用として直径8mmの貫通穴11aを切削加工により形成して、伝熱部材11を作製した。なお、貫通穴11aは端面より15mmに位置に穴の中心が来るように加工した。   Thereafter, the upper and lower surfaces of the Al—SiC composite 1 were each cut by 1 mm. The lower surface 12a of the heat transfer member 11 was polished with a grindstone having a particle size of # 800 or less so that the surface roughness Ra was 3 μm or less. And the through-hole 11a of diameter 8mm was formed in the four corners of the heat-transfer member 11 by a cutting process, and the heat-transfer member 11 was produced. In addition, the through hole 11a was processed so that the center of the hole comes to a position 15 mm from the end face.

その後、伝熱部材11の上面13aにニッケルの無電界メッキを施し、この上面13aと窒化アルミニウムからなるセラミックス基板5の下面5aとの間に鉛と錫の重量比が37:63からなる共晶はんだを介在させて、接合した。その後、伝熱部材11を厚さ7mmのアルミニウム板からなる固定部材6に4本のボルト7で固定した。   Thereafter, electroless plating of nickel is applied to the upper surface 13a of the heat transfer member 11, and the eutectic having a weight ratio of lead and tin of 37:63 between the upper surface 13a and the lower surface 5a of the ceramic substrate 5 made of aluminum nitride. It joined by interposing solder. Thereafter, the heat transfer member 11 was fixed to the fixing member 6 made of an aluminum plate having a thickness of 7 mm with four bolts 7.

そして、伝熱部材11にヒーターを載置して上面13aを300℃まで加熱させ、その際の下面12aの温度をサーモグラフィカメラで測定して、上下面の温度差を求めた。全実施例1−10において、上下面の温度差は21℃〜46℃であり、伝熱部材11の伝熱性能は良好であった。これから、伝熱部材11は熱が伝わったとき、固定部材6に良好に密着していることが分かった。また、伝熱部材11とセラミックス基板5との接合部にはクラックなどの不具合は生じなかった。   And the heater was mounted in the heat-transfer member 11, the upper surface 13a was heated to 300 degreeC, the temperature of the lower surface 12a in that case was measured with the thermography camera, and the temperature difference of an up-and-down surface was calculated | required. In all Examples 1-10, the temperature difference between the upper and lower surfaces was 21 ° C. to 46 ° C., and the heat transfer performance of the heat transfer member 11 was good. From this, it was found that the heat transfer member 11 was in good contact with the fixing member 6 when heat was transferred. In addition, no defects such as cracks occurred at the joint between the heat transfer member 11 and the ceramic substrate 5.

表2に比較例1−5をまとめた。   Table 2 summarizes Comparative Examples 1-5.

Figure 2012077323
Figure 2012077323

〔比較例1〕
実施例1と同じ粒度配合で高充填率と低充填率のSiC成形体を別々に成形した。そして、これを積み重ねて実施例1と同じ条件でA1005を含浸させた。Al−SiC複合体のSiC充填率の異なる境界面に幅約100μmのアルミニウム層が形成されていた。上下面の温度差は61℃であり、伝熱部材の伝熱性能が劣っていることが分かった。これは、伝熱部材の境界面に形成されたアルミニウム層によって熱伝導が阻害されたためであると考えられる。
[Comparative Example 1]
SiC compacts having the same particle size formulation as in Example 1 and a high filling factor and a low filling factor were separately molded. Then, these were stacked and impregnated with A1005 under the same conditions as in Example 1. An aluminum layer having a width of about 100 μm was formed on the boundary surfaces having different SiC filling rates of the Al—SiC composite. The temperature difference between the upper and lower surfaces was 61 ° C., and it was found that the heat transfer performance of the heat transfer member was inferior. This is presumably because heat conduction was hindered by the aluminum layer formed on the boundary surface of the heat transfer member.

〔比較例2〕
SiC粉末の粒度配合を粒度#180番/粒度#1000番の二粒度配合のみとし、各層のSiC充填率を同じとしたこと以外は、実施例1と同様の方法で伝熱部材を作製した。上下面の温度差は69℃であり、伝熱部材の伝熱性能が劣っていることが分かった。これは、反りが発生せず、伝熱部材と固定部材との間に隙間が発生したためであると考えられる。
[Comparative Example 2]
A heat transfer member was produced in the same manner as in Example 1 except that the SiC powder had a particle size blend of only # 180 / particle size # 1000 and the SiC filling rate of each layer was the same. The temperature difference between the upper and lower surfaces was 69 ° C., indicating that the heat transfer performance of the heat transfer member was inferior. This is considered to be because no warp occurred and a gap was generated between the heat transfer member and the fixing member.

〔比較例3〕
実施例5と同じ粒度配合のSiC粉末であるが、低充填率側のSiC粉末に粒度#240番のアルミニウム粉末を実施例1の1.3倍添加して、SiC成形体の低充填率層のSiC充填率25%とした。そして、これ以外は実施例1と同様の方法で伝熱部材を作製した。伝熱部材の上面を300℃まで昇温させたところ、セラミックス基板と伝熱部材との接合部のはんだにクラックが生じた。これは、SiC充填率の差に起因する層間の熱膨張係数の差によって、大きな反りが発生したためであると考えられる。
[Comparative Example 3]
Although it is SiC powder of the same particle size mixing as Example 5, 1.3 times the aluminum powder of particle size # 240 is added to the SiC powder of the low filling rate side 1.3 times of Example 1, and the low filling rate layer of a SiC molded object The SiC filling rate was 25%. And the heat-transfer member was produced by the method similar to Example 1 except this. When the upper surface of the heat transfer member was heated to 300 ° C., cracks occurred in the solder at the joint between the ceramic substrate and the heat transfer member. This is considered to be because a large warp occurred due to the difference in the thermal expansion coefficient between the layers due to the difference in the SiC filling rate.

〔比較例4〕
高充填率側のSiC粉末の粒度配合を粒度#90番/粒度#500番(充填率67%)に、低充填率側のSiC粉末の粒度配合を粒度#90番/粒度#320番(充填率63%)として、SiC充填率の差を小さくした。これ以外は実施例1と同様の方法で伝熱部材を作製した。上下面の温度差は68℃であり、伝熱部材の伝熱性能が劣っていることが分かった。これは、伝熱部材の層間での熱膨張係数の差が小さく、十分な量の反りが発生しなかったためであると考えられる。
[Comparative Example 4]
The particle size combination of SiC powder on the high filling rate side is particle size # 90 / particle size # 500 (filling rate 67%), and the particle size combination of SiC powder on the low filling rate side is particle size # 90 / particle size # 320 (packing) The difference in the SiC filling rate was made small. Except this, the heat-transfer member was produced by the same method as Example 1. The temperature difference between the upper and lower surfaces was 68 ° C., indicating that the heat transfer performance of the heat transfer member was inferior. This is presumably because the difference in thermal expansion coefficient between the layers of the heat transfer member was small, and a sufficient amount of warpage did not occur.

〔比較例5〕
下面の表面粗さRaを6.89μmとした以外は実施例1と同様の方法で伝熱部材を作製した。上下面の温度差は64℃であり、伝熱部材の伝熱性能が劣っていることが分かった。これは、伝熱部材の固定部材への接触面である下面が粗かったので、伝熱部材と固定部材とが良好に密着しなかったためであると考えられる。
[Comparative Example 5]
A heat transfer member was produced in the same manner as in Example 1 except that the surface roughness Ra of the lower surface was 6.89 μm. The temperature difference between the upper and lower surfaces was 64 ° C., and it was found that the heat transfer performance of the heat transfer member was inferior. This is considered to be because the heat transfer member and the fixing member did not adhere well because the lower surface, which is the contact surface of the heat transfer member to the fixing member, was rough.

1…アルミニウム−炭化珪素質複合体(Al−SiC複合体)、 2…第1の層(SiC低充填率層)、 3…第2の層(SiC高充填率層)、 4…型、 5…セラミックス基板、 6…固定部材(放熱部材)、 7…締結具(ボルト)、 11…伝熱部材、 12…第1の層(SiC低充填率層)、 12a…第2の主面(下面)、 13…第2の層(SiC高充填率層)、 13a…第1の主面(上面)。   DESCRIPTION OF SYMBOLS 1 ... Aluminum-silicon carbide composite (Al-SiC composite), 2 ... 1st layer (SiC low filling rate layer), 3 ... 2nd layer (SiC high filling rate layer), 4 ... type | mold, 5 DESCRIPTION OF SYMBOLS ... Ceramic substrate, 6 ... Fixing member (heat dissipation member), 7 ... Fastener (bolt), 11 ... Heat transfer member, 12 ... 1st layer (SiC low filling rate layer), 12a ... 2nd main surface (lower surface) ), 13 ... 2nd layer (SiC high filling rate layer), 13a ... 1st main surface (upper surface).

Claims (7)

炭化珪素多孔体にアルミニウムを主成分とする金属を含浸したアルミニウム−炭化珪素質複合体であって、
50℃〜150℃における熱膨張係数が6ppm/K〜9ppm/Kである第1の層と、50℃〜150℃における熱膨張係数が前記第1の層よりも4ppm/K〜8.5ppm/Kだけ大きい第2の層とを備える多層構造であることを特徴とするアルミニウム−炭化珪素質複合体。
An aluminum-silicon carbide composite in which a silicon carbide porous body is impregnated with a metal mainly composed of aluminum,
A first layer having a thermal expansion coefficient at 50 ° C. to 150 ° C. of 6 ppm / K to 9 ppm / K, and a thermal expansion coefficient at 50 ° C. to 150 ° C. of 4 ppm / K to 8.5 ppm / An aluminum-silicon carbide based composite having a multilayer structure including a second layer larger by K.
前記第1の層の炭化珪素充填率が65%〜85%であり、前記第2の層の炭化珪素充填率が前記第1の層よりも10%〜50%だけ小さいことを特徴とする請求項1に記載のアルミニウム−炭化珪素質複合体。   The silicon carbide filling factor of the first layer is 65% to 85%, and the silicon carbide filling factor of the second layer is 10% to 50% smaller than that of the first layer. Item 4. The aluminum-silicon carbide composite according to Item 1. 前記第1の層は多粒度配合の炭化珪素粉末を原料粉末とする型成形体を焼成した焼結体からなり、前記第2の層は一粒度配合の炭化珪素粉末及び金属粉末又はカーボン粉末を原料粉末とする型成形体を焼成した焼結体からなることを特徴とする請求項1又は2に記載のアルミニウム−炭化珪素質複合体。   The first layer is made of a sintered body obtained by firing a molded body using a silicon carbide powder having a multi-grain composition as a raw material powder, and the second layer is made of silicon carbide powder and a metal powder or carbon powder having a single grain composition. The aluminum-silicon carbide composite according to claim 1 or 2, comprising a sintered body obtained by firing a molded body as a raw material powder. 前記第1の層と前記第2の層との間に、80重量%を超える金属を含む金属層が介在しないことを特徴とする請求項1から3の何れか1項に記載のアルミニウム−炭化珪素質複合体。   4. The aluminum-carbonization according to claim 1, wherein a metal layer containing a metal exceeding 80 wt% is not interposed between the first layer and the second layer. 5. Silicon composite. 第1の主面がセラミックス基板と接合され、前記第1の主面と反対側に位置する第2の主面が当該伝熱部材に複数の固定部位で固定される固定部材と接触し、請求項1から4の何れか1項に記載のアルミニウム−炭化珪素質複合体からなる伝熱部材であって、
前記第1の層の表面に機械加工を施して前記第1の主面とする共に、前記第2の層の表面を表面粗さRaが3μm以下になるように機械加工を施して前記第2の主面とすることを特徴とする伝熱部材。
The first main surface is bonded to the ceramic substrate, and the second main surface located opposite to the first main surface is in contact with a fixing member fixed to the heat transfer member at a plurality of fixing portions; A heat transfer member comprising the aluminum-silicon carbide composite according to any one of Items 1 to 4,
The surface of the first layer is machined to be the first main surface, and the surface of the second layer is machined so that the surface roughness Ra is 3 μm or less. A heat transfer member characterized by having a main surface.
前記第1の主面を加熱したとき、前記第2の主面に100℃−200mm当り3μm〜8μmの反りが発生することを特徴とする請求項5に記載の伝熱部材。   6. The heat transfer member according to claim 5, wherein when the first main surface is heated, warpage of 3 μm to 8 μm per 100 ° C.-200 mm occurs on the second main surface. 前記第1の主面を300℃に加熱したとき、前記第2の主面の温度が250℃以上であることを特徴とする請求項5又は6に記載の伝熱部材。   The heat transfer member according to claim 5 or 6, wherein when the first main surface is heated to 300 ° C, the temperature of the second main surface is 250 ° C or higher.
JP2010221435A 2010-09-30 2010-09-30 Heat transfer member made of aluminum-silicon carbide composite Expired - Fee Related JP5602566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221435A JP5602566B2 (en) 2010-09-30 2010-09-30 Heat transfer member made of aluminum-silicon carbide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221435A JP5602566B2 (en) 2010-09-30 2010-09-30 Heat transfer member made of aluminum-silicon carbide composite

Publications (2)

Publication Number Publication Date
JP2012077323A true JP2012077323A (en) 2012-04-19
JP5602566B2 JP5602566B2 (en) 2014-10-08

Family

ID=46237910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221435A Expired - Fee Related JP5602566B2 (en) 2010-09-30 2010-09-30 Heat transfer member made of aluminum-silicon carbide composite

Country Status (1)

Country Link
JP (1) JP5602566B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694775A (en) * 2015-03-20 2015-06-10 江苏时代华宜电子科技有限公司 SiC/Al2(WO4)3/Al composite material with adjustable thermal expansion
CN106098634A (en) * 2016-06-27 2016-11-09 安徽汉升新金属技术有限公司 Aluminum-base silicon carbide electronic package base plate, mould and manufacture method
JP2018154859A (en) * 2017-03-16 2018-10-04 昭和電工株式会社 Material for plastic working, plastically worked body and thermal conductor
JP7460868B2 (en) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド Electronic converter designed based on welding technology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157964A (en) * 1997-11-26 1999-06-15 Denki Kagaku Kogyo Kk Tabular composite and heat dissipating component using the same
JP2001105124A (en) * 1999-10-04 2001-04-17 Kubota Corp Heat radiation substrate for semi conductor device
JP2001335899A (en) * 2000-05-23 2001-12-04 Taiheiyo Cement Corp Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP2001335859A (en) * 2000-05-24 2001-12-04 Sumitomo Electric Ind Ltd Aluminum-silicon carbide composite material and its production method
JP2003105461A (en) * 2001-09-27 2003-04-09 Taiheiyo Cement Corp Ceramics/metal composite material and manufacturing method therefor
WO2006030676A1 (en) * 2004-09-14 2006-03-23 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-silicon carbide composite
JP3792180B2 (en) * 2002-07-10 2006-07-05 電気化学工業株式会社 Manufacturing method of heat dissipation parts
JP2012054487A (en) * 2010-09-03 2012-03-15 Denso Corp Electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157964A (en) * 1997-11-26 1999-06-15 Denki Kagaku Kogyo Kk Tabular composite and heat dissipating component using the same
JP2001105124A (en) * 1999-10-04 2001-04-17 Kubota Corp Heat radiation substrate for semi conductor device
JP2001335899A (en) * 2000-05-23 2001-12-04 Taiheiyo Cement Corp Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP2001335859A (en) * 2000-05-24 2001-12-04 Sumitomo Electric Ind Ltd Aluminum-silicon carbide composite material and its production method
JP2003105461A (en) * 2001-09-27 2003-04-09 Taiheiyo Cement Corp Ceramics/metal composite material and manufacturing method therefor
JP3792180B2 (en) * 2002-07-10 2006-07-05 電気化学工業株式会社 Manufacturing method of heat dissipation parts
WO2006030676A1 (en) * 2004-09-14 2006-03-23 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-silicon carbide composite
JP2012054487A (en) * 2010-09-03 2012-03-15 Denso Corp Electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694775A (en) * 2015-03-20 2015-06-10 江苏时代华宜电子科技有限公司 SiC/Al2(WO4)3/Al composite material with adjustable thermal expansion
CN106098634A (en) * 2016-06-27 2016-11-09 安徽汉升新金属技术有限公司 Aluminum-base silicon carbide electronic package base plate, mould and manufacture method
JP2018154859A (en) * 2017-03-16 2018-10-04 昭和電工株式会社 Material for plastic working, plastically worked body and thermal conductor
JP7460868B2 (en) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド Electronic converter designed based on welding technology

Also Published As

Publication number Publication date
JP5602566B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP3468358B2 (en) Silicon carbide composite, method for producing the same, and heat radiation component using the same
JP5144279B2 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
TWI357788B (en)
JP5988977B2 (en) Heat dissipation parts for semiconductor elements
KR101344152B1 (en) - aluminum/silicon carbide composite and radiating part comprising the same
JP5021636B2 (en) Aluminum-silicon carbide composite and processing method thereof
JP5128951B2 (en) Heat sink module and manufacturing method thereof
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
WO2011096542A1 (en) Substrate for power module, and power module
JP6462899B2 (en) Heat dissipation plate material for high output elements
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
WO2015115649A1 (en) Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
JP6958441B2 (en) Manufacturing method of insulated circuit board with heat sink
JP5602566B2 (en) Heat transfer member made of aluminum-silicon carbide composite
JP3539634B2 (en) Silicon nitride substrate for circuit mounting and circuit substrate
JP4148123B2 (en) Radiator and power module
JP2021100006A (en) Semiconductor package
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP2004231513A (en) Circuit board excellent in high strength/high heat conductivity
JP3737072B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4395747B2 (en) Insulated circuit board and power module structure
JP3732193B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4127379B2 (en) Method for producing aluminum-silicon carbide composite
JP2002033423A (en) Module structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees