JP2003105461A - Ceramics/metal composite material and manufacturing method therefor - Google Patents

Ceramics/metal composite material and manufacturing method therefor

Info

Publication number
JP2003105461A
JP2003105461A JP2001296098A JP2001296098A JP2003105461A JP 2003105461 A JP2003105461 A JP 2003105461A JP 2001296098 A JP2001296098 A JP 2001296098A JP 2001296098 A JP2001296098 A JP 2001296098A JP 2003105461 A JP2003105461 A JP 2003105461A
Authority
JP
Japan
Prior art keywords
sic
alloy
composite material
matrix
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001296098A
Other languages
Japanese (ja)
Other versions
JP4573484B2 (en
Inventor
Yoshibumi Takei
義文 武井
Hiroyuki Tsuto
宏之 津戸
Tatsuya Shiogai
達也 塩貝
Ichiro Aoki
一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001296098A priority Critical patent/JP4573484B2/en
Publication of JP2003105461A publication Critical patent/JP2003105461A/en
Application granted granted Critical
Publication of JP4573484B2 publication Critical patent/JP4573484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramics/metal composite material having continuously changed thermal expansion coefficient, and also to provide a manufacturing method therefor. SOLUTION: An Al alloy is brought into contact with a raw material in which an SiC reinforcement is composed with a matrix consisting of Si or an Si alloy, and the Al alloy is held at 1,400 to 1,800 deg.C to diffuse Al component into the matrix. By this method, the ceramics/metal composite material in which the SiC reinforcement is composited with the Al-Si alloy matrix and the Al-Si alloy matrix has continuously graded Al concentration can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属マトリックス
中にセラミックス強化材が複合された金属−セラミック
ス複合材料およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a metal-ceramic composite material in which a ceramics reinforcing material is composited in a metal matrix, and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックス繊維または粒子で強化され
たセラミックスと金属との複合材料は、セラミックスと
金属の両方の特性を兼ね備えている。すなわち、高剛
性、低熱膨張性、耐摩耗性等のセラミックスの優れた特
性と、延性、高靱性、高熱伝導性等の金属の優れた特性
とを備えている。
2. Description of the Related Art A composite material of ceramics and metal reinforced with ceramics fibers or particles has both characteristics of ceramics and metal. That is, it has excellent characteristics of ceramics such as high rigidity, low thermal expansion and abrasion resistance, and excellent characteristics of metals such as ductility, high toughness and high thermal conductivity.

【0003】このようなセラミックスと金属との複合材
料の中で、マトリックスの金属がAlまたはAl合金で
あり、セラミックスが例えばSiCであるものは、Al
またはAl合金とセラミックスとの間で熱膨張係数が大
きく相違することから、部材中のSiCの含有率を変化
させることにより部材の熱膨張係数を制御することが可
能である。
Among such composite materials of ceramics and metals, those whose matrix metal is Al or Al alloy and whose ceramics are SiC are Al
Alternatively, since the coefficient of thermal expansion greatly differs between the Al alloy and the ceramic, it is possible to control the coefficient of thermal expansion of the member by changing the content rate of SiC in the member.

【0004】そして、本発明者らは、先に、SiCの含
有率を徐々に変化させた複数枚のシートを積層すること
により、その積層方向に熱膨張係数が徐々に変化した部
材を得る技術を提案している(特願2000−1510
49)。このような特徴を利用して、例えば熱膨張係数
が異なる異種材料からなる部材同士を接合する場合に、
これらの間に上述のようにして熱膨張係数が徐々に変化
した複合材料からなる部材を挿入することで、異種材料
間の熱膨張係数の違いによって発生する応力を緩和する
ことが可能である。
The inventors of the present invention firstly laminate a plurality of sheets of which the SiC content is gradually changed to obtain a member whose coefficient of thermal expansion is gradually changed in the laminating direction. (Japanese Patent Application No. 2000-1510)
49). Utilizing such characteristics, for example, when joining members made of different materials having different thermal expansion coefficients,
By inserting the member made of the composite material whose thermal expansion coefficient is gradually changed as described above, it is possible to relieve the stress generated due to the difference in thermal expansion coefficient between different materials.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うにして強化材であるSiCの含有率を変化させること
で熱膨張係数を変化させることは可能ではあるものの、
SiCの含有率の変化は段階的にならざるを得ず、熱膨
張係数の変化も段階的となって無視し得ない熱応力が発
生する場合もあり、熱膨張係数が連続的に変化した複合
材料が望まれている。
However, although it is possible to change the coefficient of thermal expansion by changing the content of SiC, which is the reinforcing material, in this way,
Since the change of the content rate of SiC must be stepwise, the change of the thermal expansion coefficient may also be stepwise and an ignorable thermal stress may occur. Materials are desired.

【0006】本発明はかかる事情に鑑みてなされたもの
であって、熱膨張係数が連続的に変化した金属−セラミ
ックス複合材料およびその製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metal-ceramic composite material whose coefficient of thermal expansion continuously changes, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく研究を重ねた結果、Al−Si合金マトリ
ックス中にSiC強化材が複合された金属−セラミック
ス複合材料において、マトリックス中のAlの濃度を連
続的に傾斜させることが有効であることを見出した。す
なわち、Siの室温付近の熱膨張係数は2.6×10
−6/℃であり、SiCの熱膨張係数である3.0×1
−6/℃とほぼ等しいのに対し、Alの熱膨張係数は
23×10−6/℃と大きな値であるから、Al−Si
合金マトリックス中のAl濃度を連続的に傾斜させるこ
とにより、熱膨張係数を連続的に変化させることがで
き、十分な熱応力緩和効果を得ることができる。また、
このようにAlを連続的に傾斜させるためには、Siま
たはSi合金からなるマトリックス中にSiC強化材が
複合された素材に、所定組成の溶融したAl合金を接触
させて高温状態でAl成分をマトリックス中に拡散させ
ることが有効であることを見出した。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that in a metal-ceramic composite material in which an SiC reinforcement is compounded in an Al--Si alloy matrix, It has been found that it is effective to continuously increase the Al concentration. That is, the coefficient of thermal expansion of Si near room temperature is 2.6 × 10.
−6 / ° C., which is the thermal expansion coefficient of SiC, 3.0 × 1
Although it is almost equal to 0 −6 / ° C., Al has a large thermal expansion coefficient of 23 × 10 −6 / ° C., so Al—Si
By continuously grading the Al concentration in the alloy matrix, the thermal expansion coefficient can be continuously changed, and a sufficient thermal stress relaxation effect can be obtained. Also,
As described above, in order to continuously incline Al, a molten Al alloy having a predetermined composition is brought into contact with a material in which a SiC reinforcing material is compounded in a matrix made of Si or a Si alloy, and the Al component is added at a high temperature. It has been found that diffusion in the matrix is effective.

【0008】本発明は、以上のような知見に基づいてな
されたものであり、以下の(1)〜(3)を提供する。
The present invention has been made based on the above findings, and provides the following (1) to (3).

【0009】(1)Al−Si合金マトリックス中にS
iC強化材が複合された金属−セラミックス複合材料で
あって、前記Al−Si合金マトリックスは、Alの濃
度が連続的に傾斜してなることを特徴とする金属−セラ
ミックス複合材料。
(1) S in an Al-Si alloy matrix
A metal-ceramics composite material in which an iC reinforcing material is composited, wherein the Al-Si alloy matrix has a continuously inclined Al concentration.

【0010】(2)上記(1)において、前記SiC強
化材は、SiC粉末および/またはSiC繊維で構成さ
れ、その粒径または長さが0.3μm以下の粒子の割合
が10%以下であり、かつ300μm以上の粒子の割合
が1%以下であって、該複合材料中のSiC強化材の含
有率が40〜80体積%の範囲であることを特徴とする
金属−セラミックス複合材料。
(2) In the above (1), the SiC reinforcing material is composed of SiC powder and / or SiC fiber, and the ratio of particles having a particle size or length of 0.3 μm or less is 10% or less. And a content of particles of 300 μm or more is 1% or less, and a content ratio of the SiC reinforcing material in the composite material is in a range of 40 to 80% by volume.

【0011】(3)SiまたはSi合金からなるマトリ
ックス中にSiC強化材が複合された素材に、溶融した
Al合金を接触させ、Al合金を1400〜1800℃
の温度範囲に保持することにより、Al成分を前記マト
リックス中に拡散させ、上記(1)または(2)の金属
−セラミックス複合材料を得ることを特徴とする金属−
セラミックス複合材料の製造方法。
(3) A molten Al alloy is brought into contact with a material in which a SiC reinforcing material is compounded in a matrix made of Si or a Si alloy, and the Al alloy is heated to 1400 to 1800 ° C.
By maintaining the temperature range of 1., the Al component is diffused in the matrix to obtain the metal-ceramic composite material of (1) or (2) above.
Manufacturing method of ceramic composite material.

【0012】[0012]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の金属−セラミックス複合材料は、Al
−Si合金マトリックス中にSiC強化材が複合された
SiC強化Si−Al合金基複合材料であって、Al−
Si合金マトリックスは、Alの濃度が連続的に傾斜し
てなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The metal-ceramic composite material of the present invention is made of Al
An SiC-reinforced Si-Al alloy matrix composite material in which a SiC reinforcement material is compounded in a -Si alloy matrix,
The Si alloy matrix has a continuous Al concentration gradient.

【0013】このような金属−セラミックス複合材料
は、SiC強化材を分散させたプリフォームに、溶融し
た金属SiまたはSi合金を含浸させてSiC強化Si
基複合材料(以下、「SiC/Si複合材料」と記す)
からなる素材を製造し、これに後述する拡散処理を施し
てマトリックス中にAl成分を拡散させることにより好
適に得ることができる。
In such a metal-ceramic composite material, a preform in which a SiC reinforcing material is dispersed is impregnated with molten metal Si or a Si alloy to obtain SiC reinforced Si.
Base composite material (hereinafter referred to as "SiC / Si composite material")
It can be suitably obtained by producing a material consisting of and subjecting it to a diffusion treatment described below to diffuse the Al component in the matrix.

【0014】本発明の複合材料中のSiC強化材の含有
率は40〜80体積%の範囲であることが好ましい。S
iC含有率が40体積%よりも低い場合には、素材であ
るSiC/Si複合材料の作製時におけるプリフォーム
の強度が不十分となるばかりでなく、SiC強化材の含
有率の制御が困難であり、したがって熱膨張係数を制御
することが困難となる。一方、SiCの含有率が80体
積%を超えると複合材料中に添加することができるAl
成分の割合が少なくなるため、充分な熱膨張係数の変化
を得ることが困難となる。なお、SiC強化材は、複合
材料中に均等に含まれていても、その含有率が傾斜して
いてもよい。SiC強化材の含有率を傾斜させた素材の
マトリックス中にAlを拡散させれば熱膨張係数をより
大きく傾斜させることができる。このようにSiC強化
材の含有率を傾斜させた場合にも全体としてSiC強化
材の含有率が40〜80体積%の範囲であることが好ま
しい。
The content of the SiC reinforcing material in the composite material of the present invention is preferably in the range of 40 to 80% by volume. S
When the iC content is lower than 40% by volume, not only the strength of the preform during the production of the raw material SiC / Si composite material becomes insufficient, but also the control of the content of the SiC reinforcing material becomes difficult. Yes, thus making it difficult to control the coefficient of thermal expansion. On the other hand, if the content of SiC exceeds 80% by volume, Al that can be added to the composite material
Since the ratio of the components is reduced, it becomes difficult to obtain a sufficient change in the thermal expansion coefficient. The SiC reinforcing material may be uniformly contained in the composite material or the content rate thereof may be inclined. If Al is diffused in the matrix of the material having the graded SiC reinforcing material content, the coefficient of thermal expansion can be further graded. Even when the content of the SiC reinforcing material is inclined as described above, the content of the SiC reinforcing material is preferably in the range of 40 to 80% by volume as a whole.

【0015】SiC強化材としては典型的にはSiC粉
末および/またはSiC繊維が用いられる。この場合
に、その粒径または長さが0.3μm以下の粒子の割合
が10%以下であり、かつ300μm以上の粒子の割合
が1%以下であることが好ましい。0.3μm以下の粒
子の割合が10%を超えると金属Siが含浸しにくく、
未含浸が生じやすい。一方、300μm以上の粒子が1
%を超えると、加工性が悪くなり、高精度で加工するこ
とが困難となるため好ましくない。
SiC powder and / or SiC fibers are typically used as the SiC reinforcement. In this case, it is preferable that the proportion of particles having a particle diameter or length of 0.3 μm or less is 10% or less, and the proportion of particles having a particle diameter or length of 300 μm or more is 1% or less. If the proportion of particles of 0.3 μm or less exceeds 10%, it is difficult to impregnate with metallic Si,
Not impregnated easily. On the other hand, particles of 300 μm or more are 1
If it exceeds%, the workability is deteriorated, and it becomes difficult to process with high accuracy, which is not preferable.

【0016】次に、本発明の金属−セラミックス複合材
料の製造方法について説明する。まず、SiC強化材を
分散させたプリフォームに溶融した金属SiまたはSi
合金を含浸させてSiC/Si複合材料からなる素材を
作製し、この素材に溶融したAl合金を接触させる。次
いで、Al合金を1400〜1800℃の温度範囲に保
持してAl成分を金属SiまたはSi合金からなるマト
リックス中に拡散させる。保持温度がAl合金の融点以
上であればAl成分がマトリックス中で拡散するが、1
400℃未満では拡散速度が極めて遅いため、製造上現
実的ではない。逆に1800℃を超えるとAl成分の蒸
発が生じて好ましくない。また、Al成分の濃度傾斜勾
配は、添加Al合金のAl濃度、保持温度および保持時
間を制御することによって制御可能である。例えば、保
持時間を長くすることでマトリックス中へのAlの拡散
が進むと、Al濃度傾斜の勾配が0に近づくが、わずか
でも濃度傾斜が存在する限り、本発明の範囲内に含まれ
る。この際の拡散方法は特に限定されない。
Next, a method for producing the metal-ceramic composite material of the present invention will be described. First, molten metal Si or Si in a preform in which a SiC reinforcement is dispersed
An alloy is impregnated to prepare a raw material made of a SiC / Si composite material, and a molten Al alloy is brought into contact with this raw material. Next, the Al alloy is kept in the temperature range of 1400 to 1800 ° C. to diffuse the Al component into the matrix made of metallic Si or Si alloy. If the holding temperature is higher than the melting point of the Al alloy, the Al component diffuses in the matrix, but 1
If the temperature is lower than 400 ° C., the diffusion rate is extremely slow, which is not practical in manufacturing. On the contrary, if the temperature exceeds 1800 ° C, the Al component is evaporated, which is not preferable. Further, the concentration gradient of the Al component can be controlled by controlling the Al concentration, holding temperature and holding time of the added Al alloy. For example, when the diffusion of Al into the matrix progresses by increasing the holding time, the gradient of the Al concentration gradient approaches 0, but as long as there is a slight concentration gradient, it is within the scope of the present invention. The diffusion method at this time is not particularly limited.

【0017】以下、本発明の製造方法をさらに詳細に説
明する。まず、SiC強化材として、好ましくは、粒径
または長さが0.3μm以下の粒子の割合が10%以下
であり、かつ300μm以上の粒子の割合が1%以下の
SiC粉末および/またはSiC繊維を用意する。用意
したSiC粉末および/またはSiC繊維を分級した
後、所定割合で混合することにより目的のSiC含有率
を得ることが可能である。
The manufacturing method of the present invention will be described in more detail below. First, as the SiC reinforcing material, preferably, a SiC powder and / or a SiC fiber in which the proportion of particles having a particle size or length of 0.3 μm or less is 10% or less and the proportion of particles of 300 μm or more is 1% or less. To prepare. The intended SiC content can be obtained by classifying the prepared SiC powder and / or SiC fibers and then mixing them at a predetermined ratio.

【0018】所定の充填状態が得られるように粒度を調
製したSiC粉末および/またはSiC繊維に好ましく
は含浸助剤として機能するカーボンブラック等の炭素源
およびバインダー等を混合し、この混合物を鋳込み成
形、加圧成形など種々の方法で目的のSiC含有率を有
するプリフォームを形成する。このとき、成型用のバイ
ンダーとして有機バインダーを用いることでバインダー
としての機能の他、炭素源としての機能を兼備するよう
にしてもよい。プリフォーム中のSiCの含有率は、S
iC粉末および/またはSiC繊維として配合されたも
ののみならず、含浸助剤として添加している炭素源や有
機バインダーも合金含浸後にSiCに変化することか
ら、目的の熱膨張係数を得るためにはこれらも勘案する
必要がある。
A carbon source such as carbon black, which preferably functions as an impregnation aid, and a binder are mixed with the SiC powder and / or the SiC fiber whose particle size is adjusted so as to obtain a predetermined filling state, and the mixture is cast-molded. A preform having a desired SiC content is formed by various methods such as pressure molding. At this time, an organic binder may be used as a molding binder so that it has a function as a carbon source as well as a function as a binder. The content of SiC in the preform is S
In order to obtain the desired coefficient of thermal expansion, not only the iC powder and / or the SiC fiber blended but also the carbon source and the organic binder added as the impregnation aid change to SiC after alloy impregnation. These also need to be considered.

【0019】形成されたプリフォームに、好ましくは窒
素分圧が1×10−3Torr(0.133Pa)以下
の真空中または不活性ガス中で溶融した金属Siまたは
Si合金をプリフォーム中に浸透させ、結果物を冷却す
ることにより、SiC/Si複合材料からなる素材を得
る。
The formed preform is preferably infiltrated with metallic Si or a Si alloy melted in a vacuum or an inert gas having a nitrogen partial pressure of 1 × 10 −3 Torr (0.133 Pa) or less. Then, the resultant product is cooled to obtain a raw material made of a SiC / Si composite material.

【0020】引き続き、得られたSiC/Si複合材料
からなる素材に溶融したAl合金を接触させ、マトリッ
クス中に拡散させる。この処理は、例えば素材の近傍に
Al合金塊を設置し、これを所定温度まで昇温して溶融
させ、SiC/Si複合材料からなる素材とAl合金溶
湯とを接触させて、所定時間保持することにより、Al
合金のAl成分がSiC/Si複合材料からなる素材の
マトリックス中へ拡散していき、これを降温することに
より、Al濃度が連続的に傾斜したSi−Al合金から
なるマトリックスを有する金属−セラミックス複合材料
が得られる。この際の拡散処理としては、容器内にプリ
フォームを設置し、その容器内で金属SiまたはSi合
金を溶融させてこれらをプリフォームに含浸させてSi
C/Si複合材料からなる素材を得た後、引き続きその
容器内の素材の近傍にAl合金塊を設置し、Al合金を
溶融させてマトリックス中へAl成分を拡散させる手法
が好適である。なお、素材の近傍にAl合金を設置する
代わりに、予め所定温度までAl合金を昇温しておき、
これに素材を所定時間浸漬するようにしてもよい。
Subsequently, a molten Al alloy is brought into contact with the obtained material composed of the SiC / Si composite material and diffused into the matrix. In this treatment, for example, an Al alloy lump is placed near the material, the material is heated to a predetermined temperature and melted, the material made of the SiC / Si composite material and the Al alloy molten metal are brought into contact with each other, and held for a predetermined time. By this, Al
The Al component of the alloy diffuses into the matrix of the material composed of the SiC / Si composite material, and the temperature of the Al component is lowered, whereby the metal-ceramic composite having the matrix composed of the Si-Al alloy in which the Al concentration is continuously inclined. The material is obtained. As the diffusion treatment at this time, a preform is installed in a container, metal Si or Si alloy is melted in the container, and the preform is impregnated with these to form Si.
After obtaining a raw material composed of a C / Si composite material, a method of successively placing an Al alloy lump in the vicinity of the raw material in the container and melting the Al alloy to diffuse the Al component into the matrix is suitable. Instead of installing the Al alloy in the vicinity of the material, the Al alloy is heated up to a predetermined temperature in advance,
The material may be immersed in this for a predetermined time.

【0021】以上の方法により金属−セラミックス複合
材料を作製することによりマトリックス中のAl濃度を
連続的に傾斜させることが可能であることから、熱膨張
係数が連続して変化する複合材料を得ることができる。
By producing a metal-ceramics composite material by the above method, the Al concentration in the matrix can be continuously graded, so that a composite material whose thermal expansion coefficient continuously changes can be obtained. You can

【0022】[0022]

【実施例】以下、本発明の実施例を比較例とともに示
す。
EXAMPLES Examples of the present invention will be shown below together with comparative examples.

【0023】(実施例) (1)SiC/Si複合材料からなる素材の作製 まず、強化材であるセラミックス粉末として粒度GP#
800のSiC粉末(信濃電気精錬社製)100質量部
に対し、フェノール樹脂(群栄化学社製 PL482
6)10質量部を添加して混合し、得られた混合粉末を
金型に投入し、プレス成形により300×300×30
mmのプレス体を作製した。得られたプレス体を150
℃に加熱して樹脂を硬化させ、プリフォームを作製し
た。このプリフォームをN中1000℃で焼成し樹脂
を炭化させた仮焼体を得た。得られた仮焼体に金属Si
を接触させ、この状態でAr雰囲気中1600℃に加熱
し、溶融した金属Siをプリフォーム中に含浸させ、S
iC/Si複合材料からなる素材を得た。得られたSi
C/Si複合材料からなる素材の密度を測定し、SiC
の含有率を推定した。結果を表1に示す。
(Example) (1) Fabrication of material composed of SiC / Si composite material First, grain size GP # was obtained as a ceramic powder as a reinforcing material.
To 100 parts by mass of 800 SiC powder (manufactured by Shinano Denki Smelting Co., Ltd.), phenol resin (PL482 manufactured by Gunei Chemical Co., Ltd.)
6) 10 parts by mass are added and mixed, and the obtained mixed powder is put into a mold and press-molded to 300 × 300 × 30.
A mm pressed body was prepared. 150 the obtained press body
The resin was cured by heating to ° C to prepare a preform. This preform was fired in N 2 at 1000 ° C. to obtain a calcined body in which the resin was carbonized. The obtained calcined body has metallic Si
And in this state, the preform is impregnated with molten metal Si by heating to 1600 ° C. in an Ar atmosphere.
A raw material composed of an iC / Si composite material was obtained. Obtained Si
Measure the density of the material consisting of C / Si composite material,
Was estimated. The results are shown in Table 1.

【0024】(2)Al成分の拡散 得られたSiC/Si複合材料からなる素材とAl−5
0質量%Si合金を接触させて設置し、昇温速度10℃
/minで昇温した後1600℃で30分間保持した。
その後600℃まで20℃/minで冷却してから放冷
し、Al濃度が傾斜したSiC強化Si−Al合金基複
合材料(以下、「Al濃度傾斜SiC/Si−Al複合
材料」と記す)を得た。
(2) Diffusion of Al component Material obtained from SiC / Si composite material and Al-5
Installed in contact with 0 mass% Si alloy, heating rate 10 ℃
After raising the temperature at 1 / min, the temperature was maintained at 1600 ° C. for 30 minutes.
After cooling to 600 ° C. at 20 ° C./min and then allowing to cool, a SiC reinforced Si—Al alloy matrix composite material having an Al concentration gradient (hereinafter referred to as “Al concentration gradient SiC / Si—Al composite material”) is obtained. Obtained.

【0025】(3)評価 得られたAl濃度傾斜SiC/Si−Al複合材料を、
Al成分拡散時の設置状態において高さ0mm(Al拡
散口)、15mm(中央)、30mm(Al拡散口と反
対側の端部)付近から加工により3×4×20mmの試
験片を採取し、それら試験片を用いて25℃を基準とし
た200℃における熱膨張係数を測定した。また、室温
〜400℃の間で500回昇降温を繰り返す繰り返し試
験を行った。それらの結果を表1に示す。
(3) Evaluation The obtained Al concentration gradient SiC / Si-Al composite material was
A test piece of 3 × 4 × 20 mm was sampled by processing from a height of 0 mm (Al diffusion port), 15 mm (center), and 30 mm (end opposite to the Al diffusion port) in the installed state when Al component was diffused, Using these test pieces, the coefficient of thermal expansion at 200 ° C. based on 25 ° C. was measured. In addition, a repeated test was performed in which temperature raising and lowering was repeated 500 times between room temperature and 400 ° C. The results are shown in Table 1.

【0026】(比較例)強化材として、信濃電気精錬社
製SiC粉末GP#1000に、GP#180を添加割
合が0質量%、30質量%、および60質量%となるよ
うに添加し、それぞれについてコロイダルシリカおよび
アクリル樹脂を混合してスラリーを調製し、これをドク
ターブレードにより厚さ約1mmのシートを作製した。
得られたシートにコロイダルシリカを配合したアクリル
樹脂を塗布し、各配合で作製したシートをそれぞれ10
枚ずつ重ね、さらにGP#180の配合量が多いものか
ら順に積み重ね、100℃で熱プレスすることによって
300×300×30mmのプリフォームを作製した。
さらに、このプリフォームを大気中1000℃で焼成し
て仮焼体とし、これをAl合金(AC8A)とともにN
中850℃で加熱し、SiC/Al複合材料を得た。
このようにして製造されたSiC含有率が段階的に変化
したSiC/Al複合材料について実施例と同様に熱膨
張係数を測定し、さらに繰り返し試験を行った。その結
果を表1に示す。
(Comparative Example) As a reinforcing material, GP # 180 was added to SiC powder GP # 1000 manufactured by Shinano Denki Smelting Co. so that the addition ratios were 0% by mass, 30% by mass and 60% by mass, respectively. A colloidal silica and an acrylic resin were mixed to prepare a slurry, and a slurry having a thickness of about 1 mm was prepared using a doctor blade.
Acrylic resin containing colloidal silica was applied to the obtained sheet, and 10 sheets were prepared with each composition.
The preforms of 300 × 300 × 30 mm were produced by stacking them one by one, stacking them in order from the one having the largest amount of GP # 180, and hot-pressing at 100 ° C.
Further, this preform is fired at 1000 ° C. in the atmosphere to form a calcined body, which is N together with an Al alloy (AC8A).
It heated at 850 degreeC in 2 and obtained the SiC / Al composite material.
The coefficient of thermal expansion of the SiC / Al composite material thus manufactured, in which the SiC content was changed in a stepwise manner, was measured in the same manner as in the example, and further repeated tests were performed. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、実施例ではAl拡散口
端部からAl非拡散口端部に向けて熱膨張係数が単調に
減少しており、繰り返し試験で割れが発生しなかったこ
とから、熱膨張係数が連続的に変化していると推測され
た。これに対し、比較例では熱膨張係数の変化は段階的
であるため割れが発生した。
As shown in Table 1, in the examples, the coefficient of thermal expansion monotonically decreased from the end of the Al diffusion hole to the end of the non-diffusion port, and cracking did not occur in the repeated test. It was speculated that the coefficient of thermal expansion was continuously changing. On the other hand, in the comparative example, the change in the thermal expansion coefficient was gradual, so cracking occurred.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
熱膨張係数が連続的に変化した金属−セラミックス複合
材料およびその製造方法を得ることができる。
As described above, according to the present invention,
It is possible to obtain a metal-ceramic composite material having a coefficient of thermal expansion continuously changed and a method for producing the same.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 49/14 C22C 49/14 C23C 10/22 C23C 10/22 // C22C 101:14 C22C 101:14 (72)発明者 塩貝 達也 千葉県佐倉市大作二丁目4番2号 太平洋 セメント株式会社内 (72)発明者 青木 一郎 千葉県佐倉市大作二丁目4番2号 太平洋 セメント株式会社内 Fターム(参考) 4K020 AA08 AA22 AC01 BA08 BB02 BB27 BB41 Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 49/14 C22C 49/14 C23C 10/22 C23C 10/22 // C22C 101: 14 C22C 101: 14 (72) Invention Tatsuya Shiogai 2-4 Daisaku, Sakura City, Chiba Prefecture, Taiheiyo Cement Co., Ltd. (72) Inventor Ichiro Aoki F-4 Term, 2-4, Daisaku Cement Co., Ltd., Sakura City, Chiba Prefecture (reference) 4K020 AA08 AA22 AC01 BA08 BB02 BB27 BB41

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al−Si合金マトリックス中にSiC
強化材が複合された金属−セラミックス複合材料であっ
て、前記Al−Si合金マトリックスは、Alの濃度が
連続的に傾斜してなることを特徴とする金属−セラミッ
クス複合材料。
1. SiC in an Al--Si alloy matrix.
A metal-ceramics composite material in which a reinforcing material is composited, wherein the Al-Si alloy matrix has a continuously inclined Al concentration.
【請求項2】 前記SiC強化材は、SiC粉末および
/またはSiC繊維で構成され、その粒径または長さが
0.3μm以下の粒子の割合が10%以下であり、かつ
300μm以上の粒子の割合が1%以下であって、該複
合材料中のSiC強化材の含有率が40〜80体積%の
範囲であることを特徴とする請求項1に記載の金属−セ
ラミックス複合材料。
2. The SiC reinforcing material is composed of SiC powder and / or SiC fiber, and the ratio of particles having a particle size or length of 0.3 μm or less is 10% or less and that of 300 μm or more. The metal-ceramic composite material according to claim 1, wherein the ratio is 1% or less and the content of the SiC reinforcing material in the composite material is in the range of 40 to 80% by volume.
【請求項3】 SiまたはSi合金からなるマトリック
ス中にSiC強化材が複合された素材に、溶融したAl
合金を接触させ、Al合金を1400〜1800℃の温
度範囲に保持することにより、Al成分を前記マトリッ
クス中に拡散させ、請求項1または請求項2に記載の金
属−セラミックス複合材料を得ることを特徴とする金属
−セラミックス複合材料の製造方法。
3. A molten Al is added to a material in which a SiC reinforcing material is compounded in a matrix made of Si or a Si alloy.
A metal-ceramic composite material according to claim 1 or 2, wherein the alloy is contacted and the Al alloy is maintained in a temperature range of 1400 to 1800 ° C. to diffuse the Al component into the matrix. A method for producing a characteristic metal-ceramic composite material.
JP2001296098A 2001-09-27 2001-09-27 Metal-ceramic composite material and manufacturing method thereof Expired - Fee Related JP4573484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296098A JP4573484B2 (en) 2001-09-27 2001-09-27 Metal-ceramic composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296098A JP4573484B2 (en) 2001-09-27 2001-09-27 Metal-ceramic composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003105461A true JP2003105461A (en) 2003-04-09
JP4573484B2 JP4573484B2 (en) 2010-11-04

Family

ID=19117405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296098A Expired - Fee Related JP4573484B2 (en) 2001-09-27 2001-09-27 Metal-ceramic composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4573484B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556669B2 (en) 2004-06-28 2009-07-07 Mitsubishi Materials Corporation Au-sn alloy powder for solder paste
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member
CN110468358A (en) * 2019-08-28 2019-11-19 苏州宏久航空防热材料科技有限公司 A kind of metal ceramic-based composite material barrel support of fibre reinforced and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136604A (en) * 1989-10-23 1991-06-11 Dai Art Saegusa:Kk Casting method for precious metal accessory
JPH05502063A (en) * 1990-08-25 1993-04-15 グリコ―メタル―ウエルケ―グリコ・ベー・フアウ・ウント・コンパニー・コマンデイトゲゼルシヤフト Bearing materials and their manufacturing methods
JPH05123823A (en) * 1991-10-30 1993-05-21 Yoshida Cast Kogyo Kk Method and device for manufacturing noble metal jewelry having plural colors
JPH06509841A (en) * 1991-04-29 1994-11-02 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ Gradient composite and its manufacturing method
JPH08325655A (en) * 1995-05-26 1996-12-10 Aisin Takaoka Ltd Production of aluminum casting
JP2001089834A (en) * 1999-09-22 2001-04-03 Furukawa Electric Co Ltd:The High reliability aluminum matrix composite plate
JP2001105124A (en) * 1999-10-04 2001-04-17 Kubota Corp Heat radiation substrate for semi conductor device
JP2001335899A (en) * 2000-05-23 2001-12-04 Taiheiyo Cement Corp Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP2002283041A (en) * 2001-03-23 2002-10-02 Taiheiyo Cement Corp Laminated structural member and its producing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136604A (en) * 1989-10-23 1991-06-11 Dai Art Saegusa:Kk Casting method for precious metal accessory
JPH05502063A (en) * 1990-08-25 1993-04-15 グリコ―メタル―ウエルケ―グリコ・ベー・フアウ・ウント・コンパニー・コマンデイトゲゼルシヤフト Bearing materials and their manufacturing methods
JPH06509841A (en) * 1991-04-29 1994-11-02 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ Gradient composite and its manufacturing method
JPH05123823A (en) * 1991-10-30 1993-05-21 Yoshida Cast Kogyo Kk Method and device for manufacturing noble metal jewelry having plural colors
JPH08325655A (en) * 1995-05-26 1996-12-10 Aisin Takaoka Ltd Production of aluminum casting
JP2001089834A (en) * 1999-09-22 2001-04-03 Furukawa Electric Co Ltd:The High reliability aluminum matrix composite plate
JP2001105124A (en) * 1999-10-04 2001-04-17 Kubota Corp Heat radiation substrate for semi conductor device
JP2001335899A (en) * 2000-05-23 2001-12-04 Taiheiyo Cement Corp Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP2002283041A (en) * 2001-03-23 2002-10-02 Taiheiyo Cement Corp Laminated structural member and its producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556669B2 (en) 2004-06-28 2009-07-07 Mitsubishi Materials Corporation Au-sn alloy powder for solder paste
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member
CN110468358A (en) * 2019-08-28 2019-11-19 苏州宏久航空防热材料科技有限公司 A kind of metal ceramic-based composite material barrel support of fibre reinforced and preparation method thereof

Also Published As

Publication number Publication date
JP4573484B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US8863816B2 (en) Metal-infiltrated titanium—silicon-carbide and titanium—aluminum-carbide bodies
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
US7250123B2 (en) Composite construction and manufacturing method thereof
JPH10504063A (en) Boron carbide cermet structural material with high bending strength at high temperature
KR910009872B1 (en) Sintered magnesium-based composite material and process for preparing same
KR960007373B1 (en) Process for preparation self-supporting bodies and the products made thereby
KR100276937B1 (en) Manufacturing method of boron carbide / aluminum summit with fine structure
EP0636594A2 (en) Ceramic matrix composite material and method of producing thereof
EP0630306B1 (en) Method for forming bodies by reactive infiltration
JP2003105461A (en) Ceramics/metal composite material and manufacturing method therefor
US20200189145A1 (en) INDIRECT ADDITIVE MANUFACTURING PROCESS FOR PRODUCING SiC-B4C-Si COMPOSITES
JP2002356754A (en) Method for manufacturing composite material, and composite material manufactured by the same
US5187128A (en) Process for preparing self-supporting bodies
KR102444652B1 (en) high volume reinforced aluminum composite and method of manufacturing the same
JP4907777B2 (en) Metal-ceramic composite material
EP0517449A2 (en) Infiltration forming composites of silicon carbide and molybdenum silicide free of silicon
JP2000344582A (en) Fiber/reinforced composite material
JP2005146392A (en) Metal-based composite material, and its production method
CN1566023A (en) Ceramic-metal and ceramic-ceramic light composite material and manufacturing method thereof
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP2000288714A (en) Production of metal-ceramics composite material
JP4177522B2 (en) Manufacturing method of functionally graded composite material
JPH11236269A (en) Silicon nitride sintered body and cutting tool using the same
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2000054090A (en) Metal-ceramics composite and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4573484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees