JP2000288714A - Production of metal-ceramics composite material - Google Patents

Production of metal-ceramics composite material

Info

Publication number
JP2000288714A
JP2000288714A JP9712399A JP9712399A JP2000288714A JP 2000288714 A JP2000288714 A JP 2000288714A JP 9712399 A JP9712399 A JP 9712399A JP 9712399 A JP9712399 A JP 9712399A JP 2000288714 A JP2000288714 A JP 2000288714A
Authority
JP
Japan
Prior art keywords
composite material
powder
metal
preform
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9712399A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuto
宏之 津戸
Tamotsu Harada
保 原田
Yoshibumi Takei
義文 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP9712399A priority Critical patent/JP2000288714A/en
Publication of JP2000288714A publication Critical patent/JP2000288714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method for obtaining a metal-ceramics composite material containing high content of the ceramic powder even in the case of forming a preform with a dry-compaction. SOLUTION: The producing method of the metal-cramics composite material is formed of the preform having >=60 vol.% powder filling rario by dry- compacting powder adding and mixing a penetrating accelerator composed of Mg, Al or Ti into SiC powder at least containing of grain having <=3 aspect ratio and containing <=10 wt.% grain having <=2 μm grain diameter, and is penetrated with molten aluminum alloy into the formed preform in nitrogen gas under non-pressurizing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリフォームに金
属を浸透させて複合させる金属−セラミックス複合材料
の製造方法に関し、特にそのプリフォームを乾式成形で
形成して成る金属−セラミックス複合材料の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-ceramic composite material in which a preform is impregnated with a metal to form a composite, and more particularly to a method for producing a metal-ceramic composite material formed by dry-forming the preform. About the method.

【0002】[0002]

【従来の技術】セラミックス繊維または粒子で強化され
たセラミックスと金属の複合材料は、セラミックスと金
属の両方の特性を兼ね備えており、例えばこの複合材料
は、高剛性、低熱膨張性、耐摩耗性等のセラミックスの
優れた特性を、延性、高靭性、高熱伝導性等の金属の優
れた特性を備えている。このように、従来から難しいと
されていたセラミックスと金属の両方の特性を備えてい
るため、機械装置メーカ等の業界から次世代の材料とし
て注目されている。
2. Description of the Related Art A ceramic-metal composite material reinforced with ceramic fibers or particles has both characteristics of ceramic and metal. For example, this composite material has high rigidity, low thermal expansion property, abrasion resistance, etc. It has the excellent properties of metal such as ductility, high toughness, and high thermal conductivity. As described above, since it has both characteristics of ceramics and metal, which has been considered difficult, it has been drawing attention as a next-generation material from industries such as mechanical device manufacturers.

【0003】この複合材料、特に金属としてアルミニウ
ムをマトリックスとする複合材料の製造方法は、粉末冶
金法、高圧鋳造法、真空鋳造法等の方法が従来から知ら
れている。しかし、これらの方法では、強化材であるセ
ラミックスの含有量を多くできない、あるいは大型の加
圧装置が必要である、もしくはニアネット成形が困難で
あるなどの理由により、いずれも満足できるものではな
かった。
As a method for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, methods such as powder metallurgy, high pressure casting, and vacuum casting have been conventionally known. However, none of these methods is satisfactory because these methods cannot increase the content of the ceramics as a reinforcing material, require a large-sized pressing device, or are difficult to form near-net. Was.

【0004】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法が特に注目されている。この方法は、SiCやA
23などのセラミックス粉末で形成されたプリフォー
ムに、アルミニウムインゴットを接触させ、これをN2
雰囲気中で700〜900℃に加熱して溶融したアルミ
ニウム合金をプリフォームに含浸させる方法である。こ
れは、化学反応を利用してセラミックス粉末への溶融金
属の濡れ性を改善することにより、加圧しなくても金属
をプリフォームに含浸できるようにした優れた方法であ
る。
Accordingly, recently, a non-pressurized metal infiltration method developed by Rankside Company of the United States has attracted particular attention as a manufacturing method for solving the above problem. This method uses SiC or A
l to 2 O 3 preform formed of ceramic powder, such as, by contacting the aluminum ingots, which N 2
This is a method of impregnating a preform with an aluminum alloy that has been heated to 700 to 900 ° C. and melted in an atmosphere. This is an excellent method in which the preform can be impregnated with the metal without applying pressure by improving the wettability of the molten metal to the ceramic powder using a chemical reaction.

【0005】また、この方法では、セラミックスの含有
率を30〜85vol%と広く、かつ高い範囲まで変え
ることができ、例えば熱膨張率で6.2×10-6/℃、
ヤング率で265GPa、破壊靱性で10MN/
3/2、熱伝導度で170w/m℃の特性値を有するS
iCを70vol%含む金属−セラミックス複合材料も
容易に作製することができる。さらに、この方法で作製
されたプリフォームは、その形状の自由度が高いので、
かなり複雑な形状をニアネットで作ることも可能であ
る。このようにこの方法は、加圧装置が不要である、セ
ラミックスの含有率を高くすることができ、ニアネット
成形も可能となる方法であるので、前記した問題が解決
される優れた方法である。
Further, in this method, the ceramic content can be varied as wide as 30 to 85 vol% and a high range. For example, the thermal expansion coefficient is 6.2 × 10 -6 / ° C.
265 GPa in Young's modulus, 10 MN / in fracture toughness
m 3/2 , having a characteristic value of 170 w / m ° C. in thermal conductivity
A metal-ceramic composite material containing 70 vol% iC can also be easily produced. Furthermore, since the preform manufactured by this method has a high degree of freedom in its shape,
It is also possible to make fairly complex shapes with near nets. As described above, this method does not require a pressurizing device, can increase the content of ceramics, and can also perform near-net molding. Therefore, this method is an excellent method that solves the above-described problem. .

【0006】こうして作製した複合材料は、セラミック
ス、特に最も汎用性の高いAl23と組み合わせて使用
する機会が増えている。こうした組み合わせで使用する
場合、熱膨張率に大きな違いがあると、構造に狂いが生
じたり、反り、破損の可能性すらある。そこで、Al2
3と組み合わせて使う場合には、複合材料中のセラミ
ックスの含有率を変えれば、熱膨張率も変えることがで
きるので、セラミックスの含有率を高くしてAl23
熱膨張率に近づけた金属−セラミックス複合材料を用い
ている。
[0006] The composite material thus produced is increasingly used in combination with ceramics, particularly Al 2 O 3, which is the most versatile. When used in such a combination, if there is a large difference in the coefficient of thermal expansion, the structure may be deformed, warped, or even broken. Therefore, Al 2
When used in combination with O 3 , by changing the content of ceramics in the composite material, the coefficient of thermal expansion can also be changed, so increasing the content of ceramics and approaching the coefficient of thermal expansion of Al 2 O 3 Metal-ceramic composite material.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このセ
ラミックスの含有率の高い金属−セラミックス複合材料
を作製するには、セラミックス粉末の充填率の高いプリ
フォームを形成しなければならず、しかもそのプリフォ
ームを形成するには、湿式成形法の一種である沈降成形
法、すなわち水で調製したスラリーを用い、そのスラリ
ー中のセラミックス粉末を沈降させて成形するなどの方
法で形成しなければならないので、プリフォーム中に工
程の短縮、不良率の低減に効果のあるMgなどの金属か
ら成る浸透促進材を含ませることができないという問題
があった。
However, in order to produce a metal-ceramic composite material having a high content of ceramics, a preform having a high filling rate of ceramic powder must be formed. In order to form the powder, it is necessary to form the powder by a sedimentation molding method, which is a type of wet molding method, that is, by using a slurry prepared with water, and sedimenting and molding the ceramic powder in the slurry. There has been a problem that a penetration enhancer made of a metal such as Mg which is effective in shortening the process and reducing the defective rate cannot be included in the reform.

【0008】それは、水により金属粉末の酸化、水和反
応が起こるので、金属粉末添加による浸透促進効果が失
われてしまうからである。また、水を用いず、プレスな
どの乾式成形で金属粉末を含んだプリフォームを形成す
る方法もあるが、プレスなどの乾式成形では、セラミッ
クス粉末を密に充填することが難しく、セラミックスの
含有率はせいぜい50vol%止まりであった。
[0008] This is because the oxidation and hydration reaction of the metal powder occurs with water, so that the effect of promoting the penetration by the addition of the metal powder is lost. There is also a method of forming a preform containing metal powder by dry molding such as pressing without using water.However, in dry molding such as pressing, it is difficult to densely fill the ceramic powder, and the ceramic content is low. At most, it stopped at 50 vol%.

【0009】本発明は、上述した金属−セラミックス複
合材料の製造方法が有する課題に鑑みなされたものであ
って、その目的は、乾式成形でプリフォームを形成して
も高含有率のセラミックス粉末を含む金属−セラミック
ス複合材料が得られる製造方法を提供することにある。
The present invention has been made in view of the problems of the above-described method for producing a metal-ceramic composite material, and has as its object to produce a ceramic powder having a high content even when a preform is formed by dry molding. It is an object of the present invention to provide a production method by which a metal-ceramic composite material can be obtained.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、適切なセラミックス
粉末を用いてプリフォームを形成すれば、乾式成形でも
高充填率のプリフォームを形成することができるとの知
見を得て本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, if a preform is formed using an appropriate ceramic powder, a preform having a high filling ratio can be obtained even in dry molding. The present inventors have obtained the knowledge that they can be formed, and have completed the present invention.

【0011】即ち本発明は、(1)アスペクト比が3以
下の粒子を少なくとも含み、かつ粒径が2μm以下の粒
子を10重量%以下含むSiC粉末に、Mg、Alまた
はTiから成る浸透促進材を添加し混合した粉末をプレ
ス機で乾式成形して60vol%以上の粉末充填率を有
するプリフォームを形成し、その形成したプリフォーム
に溶融したアルミニウム合金を窒素中で非加圧で浸透さ
せることを特徴とする金属−セラミックス複合材料の製
造方法(請求項1)とし、また、(2)アスペクト比が
3以下の粒子を含む量が、40重量%以上であることを
特徴とする請求項1記載の金属−セラミックス複合材料
の製造方法(請求項2)とし、さらに、(3)粒径が2
μm以下の粒子を含む量が、5〜2重量%であることを
特徴とする請求項1または2記載の金属−セラミックス
複合材料の製造方法(請求項3)とすることを要旨とす
る。以下さらに詳細に説明する。
That is, the present invention relates to (1) a permeation enhancer made of Mg, Al or Ti in SiC powder containing at least 10% by weight of particles having an aspect ratio of 3 or less and having a particle size of 2 μm or less. Is added and mixed is dry-formed with a pressing machine to form a preform having a powder filling ratio of 60 vol% or more, and the molten aluminum alloy is infiltrated into the formed preform in nitrogen without pressure. A method for producing a metal-ceramic composite material (Claim 1), wherein (2) the amount of particles having an aspect ratio of 3 or less is 40% by weight or more. (2) The method for producing a metal-ceramic composite material according to the above (claim 2).
The gist of the present invention is to provide a method for producing a metal-ceramic composite material according to claim 1 or 2, wherein the amount of particles containing particles having a size of μm or less is 5 to 2% by weight. This will be described in more detail below.

【0012】上記で述べたように、本発明の複合材料の
製造方法としては、アスペクト比が3以下の粒子を少な
くとも含み、かつ粒径が2μm以下の粒子を10重量%
以下含むSiC粉末に、Mg、AlまたはTiから成る
浸透促進材を添加し混合した粉末をプレス機で乾式成形
して60vol%以上の粉末充填率を有するプリフォー
ムを形成し、その形成したプリフォームに溶融したアル
ミニウム合金を窒素中で非加圧で浸透させることとする
製造方法とした(請求項1)。
As described above, the method for producing a composite material according to the present invention includes a method of producing a composite material containing at least particles having an aspect ratio of 3 or less and having a particle size of 2 μm or less by 10% by weight.
A preform having a powder filling rate of 60 vol% or more is formed by dry-molding a powder obtained by adding a permeation enhancer made of Mg, Al or Ti to a SiC powder containing the mixture and pressing the mixture, and forming the preform. The manufacturing method is to infiltrate the molten aluminum alloy in nitrogen without pressure.

【0013】この製造方法では、先ず適切なセラミック
ス粉末として、アスペクト比が3以下の粒子を少なくと
も含み、かつ粒径が2μm以下の粒子を10重量%以下
含むSiC粉末を用いる。SiC粉末を用いたのは、こ
のSiC粉末の含有率を高含有率とすれば、熱膨張率が
Al23に近い複合材料とすることができる上に、高い
剛性を有する複合材料が得られることによる。
In this manufacturing method, first, as a suitable ceramic powder, an SiC powder containing at least particles having an aspect ratio of 3 or less and containing 10% by weight or less of particles having a particle size of 2 μm or less is used. The reason for using the SiC powder is that if the content of the SiC powder is set to a high content, a composite material having a coefficient of thermal expansion close to that of Al 2 O 3 and a composite material having high rigidity can be obtained. Depends on

【0014】そのSiC粉末としてアスペクト比で3以
下の粒子を用いたのは、アスペクト比が3より大きいと
粒子が角張って粒子間隔が大きくなり、乾式成形では6
0vol%以上の粉末充填率を達成することが難しいこ
とによる。そのアスペクト比が3以下の粒子を含む量
は、全量でなくても構わなく、30重量%程度以上含め
ばよいが、これを40重量%以上にすれば(請求項
2)、SiC粉末の充填率を60vol%以上にさらに
し易い。
The reason why particles having an aspect ratio of 3 or less are used as the SiC powder is that if the aspect ratio is larger than 3, the particles become angular and the particle spacing becomes large.
This is because it is difficult to achieve a powder filling rate of 0 vol% or more. The amount of the particles having an aspect ratio of 3 or less may not be the entire amount, and may be about 30% by weight or more. If the amount is 40% by weight or more (claim 2), the filling of the SiC powder is performed. The ratio is more easily increased to 60 vol% or more.

【0015】また、そのSiC粉末中に粒径が2μm以
下の微細粒子を10重量%以下含むこととしたのは、1
0重量%より多いと溶融したアルミニウム合金の浸透に
障害を生じ、複合材料中に未浸透部分が発生し、好まし
くないことによる。この2μm以下の微細粒子の含有量
を5〜2重量%にすれば(請求項3)、浸透の障害がさ
らに生じ難くなり、また微細粒子が少なすぎて粉末充填
率が低下する心配もなくなる。
The reason why the SiC powder contains 10% by weight or less of fine particles having a particle size of 2 μm or less is as follows.
If the content is more than 0% by weight, the penetration of the molten aluminum alloy is hindered, and a non-penetrated portion occurs in the composite material, which is not preferable. When the content of the fine particles of 2 μm or less is set to 5 to 2% by weight (claim 3), the impediment to penetration is further reduced, and there is no fear that the amount of fine particles is too small to lower the powder filling rate.

【0016】さらに、このSiC粉末にさらにMg、A
lまたはTiから成る浸透促進材を加えることにしたの
は、これら浸透促進材を加えないと工程の短縮、不良率
の低減が難しくなることによる。これら金属が溶融金属
の浸透を促進するのは、理由は不明であるが、アルミニ
ウム合金のセラミックス粉末に対する濡れ性が改善され
るためと思われる。
Further, Mg and A are added to the SiC powder.
The reason why the penetration enhancer made of l or Ti is added is that if these penetration enhancers are not added, it becomes difficult to shorten the process and reduce the defective rate. The reason why these metals promote the penetration of the molten metal is unknown, but it is considered that the wettability of the aluminum alloy to the ceramic powder is improved.

【0017】そして、その浸透促進材を混合したSiC
粉末をプレス機で乾式成形してプリフォームを形成す
る。そのプリフォームの粉末充填率を60vol%以上
としたのは、60vol%より低いとAl23に近い熱
膨張率の複合材料が得られないことによる。
Then, the SiC mixed with the penetration enhancer
The powder is dry-formed with a press to form a preform. The reason why the powder filling rate of the preform is set to 60 vol% or more is that if it is lower than 60 vol%, a composite material having a thermal expansion coefficient close to that of Al 2 O 3 cannot be obtained.

【0018】その形成したプリフォームに溶融したアル
ミニウム合金を窒素中で非加圧で浸透させれば、高含有
率のセラミックス粉末を含む金属−セラミックス複合材
料が得られる。
If a molten aluminum alloy is permeated into the formed preform in a non-pressurized manner in nitrogen, a metal-ceramic composite material containing a high content of ceramic powder can be obtained.

【0019】[0019]

【発明の実施の形態】本発明の製造方法をさらに詳しく
述べると、先ず強化材としてアスペクト比が3以下の粒
子を含み、かつ2μm以下の粒子を10重量%以下含む
SiC粉末を用意する。この粉末にMg、AlまたはT
iから成る浸透促進材を加え、これにさらに慣用の無機
バインダーや有機バインダーを添加して混合する。
BEST MODE FOR CARRYING OUT THE INVENTION The production method of the present invention will be described in more detail. First, as a reinforcing material, an SiC powder containing particles having an aspect ratio of 3 or less and containing particles of 2 μm or less and 10% by weight or less is prepared. Mg, Al or T
A permeation enhancer made of i is added, and a conventional inorganic binder or organic binder is further added thereto and mixed.

【0020】得られた混合粉末を成形用型に充填し、そ
れをプレス機で乾式成形して60vol%以上の粉末充
填率を有するプリフォームを形成する。その形成したプ
リフォームに溶融したアルミニウム合金を窒素中で非加
圧で浸透させ、それを冷却した後、必要に応じて機械加
工することにより、金属−セラミックス複合材料を作製
する。
The obtained mixed powder is filled in a molding die and dry-molded by a press machine to form a preform having a powder filling rate of 60 vol% or more. The molten aluminum alloy is infiltrated into the formed preform in a non-pressurized manner in nitrogen, cooled, and then machined as necessary to produce a metal-ceramic composite material.

【0021】以上の方法で金属−セラミックス複合材料
を作製すれば、乾式成形でプリフォームを形成しても高
含有率のセラミックス粉末を含む金属−セラミックス複
合材料を作製することができる。
If a metal-ceramic composite material is produced by the above method, a metal-ceramic composite material containing a high content of ceramic powder can be produced even if a preform is formed by dry molding.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0023】(実施例1、2) (1)複合材料の作製 強化材として実施例1では、表1のアスペクト比を有す
る独ESK(ELEKTROSCHMELZWERK
KEMPTEM GMBH)社の市販SiC粉末(C#
700D Dark、平均粒径17μm、2μm以下の
粒子5重量%、アスペクト比3)40重量%と信濃電気
精錬社の市販SiC粉末(#180、平均粒径70μ
m、2μm以下の粒子は含まず、アスペクト比5)60
重量%に、表1に示す浸透促進材を2重量%(外割)加
え、V型混合機で15分間混合した。
(Examples 1 and 2) (1) Preparation of Composite Material In Example 1, ESK (ELEKTROSCHMELZWERK) having an aspect ratio shown in Table 1 was used as a reinforcing material.
KEMPTEM GMBH) commercial SiC powder (C #
700D Dark, average particle diameter 17 μm, 5% by weight of particles having a particle diameter of 2 μm or less, aspect ratio 3) 40% by weight, and a commercially available SiC powder of Shinano Electric Refining Co., Ltd.
m, not including particles of 2 μm or less, aspect ratio 5) 60
2% by weight (outside weight) of the penetration enhancer shown in Table 1 was added to the weight%, and the mixture was mixed for 15 minutes with a V-type mixer.

【0024】得られた混合粉末に有機バインダーとして
積水化学社の市販PVA(BL−5)を添加し、V型混
合機で15分間混合した後、それを金型に充填して10
0kg/cm2の圧力でプレスして100×100×3
0mmのプリフォームを形成した。このプリフォームに
プリフォームの2倍重量のAl85%−Si10%−M
g5%合金を組み合わせて電気炉に入れ、これを窒素雰
囲気中で825℃の温度で12時間加熱してアルミニウ
ム合金を浸透させ、冷却して複合材料を作製した。
To the obtained mixed powder, PVA (BL-5) commercially available from Sekisui Chemical Co., Ltd. was added as an organic binder, and mixed for 15 minutes with a V-type mixer.
Pressing at a pressure of 0 kg / cm 2 100 × 100 × 3
A 0 mm preform was formed. This preform has Al85% -Si10% -M twice the weight of the preform.
The combined g5% alloy was placed in an electric furnace, which was heated in a nitrogen atmosphere at a temperature of 825 ° C. for 12 hours to infiltrate the aluminum alloy, and cooled to produce a composite material.

【0025】(2)評価 得られたプリフォームの嵩比重をアルキメデス法で測定
し、プリフォームの粉末充填率を求めた。また、得られ
た複合材料を切断し、その切断面を目視で観察してアル
ミニウム合金の浸透状態を調べた。それらの結果を表1
に示す。
(2) Evaluation The bulk specific gravity of the obtained preform was measured by the Archimedes method, and the powder filling rate of the preform was determined. Further, the obtained composite material was cut, and the cut surface was visually observed to check the permeation state of the aluminum alloy. Table 1 shows the results.
Shown in

【0026】(比較例1〜3)比較例1では、SiC粉
末としてアスペクト比が3以下の粒子を含まない信濃電
気精錬社の市販SiC粉末(#180、平均粒径70μ
m、2μ以下の粒子を含まず、アスペクト比5)を全量
用いた他は、比較例2では、Mg、Al、Ti以外の金
属粉末を含んだSiC粉末を用いた他は、比較例3で
は、独ESK社の市販SiC粉末(C#700D Da
rk、平均粒径17μm、2μm以下の粒子5重量%、
アスペクト比3)の代わりに2μm以下の微細粒子をよ
り多く含むNorton社のSiC粉末(平均粒径10
μm、2μm以下の粒子28重量%、アスペクト比3)
を用いた他は実施例1と同様に複合材料を作製し、評価
した。
(Comparative Examples 1 to 3) In Comparative Example 1, a commercially available SiC powder (# 180, average particle diameter of 70 μm) from Shinano Electric Refining Co., which does not contain particles having an aspect ratio of 3 or less as SiC powder.
Comparative Example 2 did not include particles having a particle size of m, 2 μm or less, and used Comparative Example 3 except that SiC powder containing metal powders other than Mg, Al, and Ti was used in Comparative Example 2 except that the entire amount of aspect ratio 5) was used. , A commercial SiC powder from ESK (C # 700D Da)
rk, 5% by weight of particles having an average particle diameter of 17 μm and 2 μm or less,
Instead of aspect ratio 3), Norton's SiC powder (average particle size 10
μm, 28% by weight of particles of 2 μm or less, aspect ratio 3)
A composite material was prepared and evaluated in the same manner as in Example 1 except that was used.

【0027】表1から明らかなように、実施例1、2で
は、SiC粉末の充填率がいずれも60vol%以上で
あった。また、アルミニウム合金の浸透状態も未浸透部
分がなく、良好であった。このことは、セラミックス粉
末を適切なセラミックス粉末とすれば、乾式成形でプリ
フォームを形成してもAl23に近い熱膨張率を有する
複合材料を作製することができるということを示してい
る。
As is clear from Table 1, in Examples 1 and 2, the filling rate of the SiC powder was 60 vol% or more. In addition, the permeation state of the aluminum alloy was good with no unpermeated portion. This indicates that if the ceramic powder is an appropriate ceramic powder, a composite material having a coefficient of thermal expansion close to that of Al 2 O 3 can be produced even when a preform is formed by dry molding. .

【0028】これに対して、比較例1では、アスペクト
比が3以下の粒子を含んでいないので、粉末充填率が6
0vol%を大きく下廻っていた。また、比較例2で
は、浸透促進材に本発明の金属を用いていないので、複
合材料中に未浸透部分が認められた。さらに、比較例3
では、2μm以下の微細粒子が10重量%より多すぎた
ので、これも複合材料中に未浸透部分が認められた。
On the other hand, Comparative Example 1 does not contain particles having an aspect ratio of 3 or less, so that the powder filling rate is 6%.
It was much less than 0 vol%. In Comparative Example 2, since the metal of the present invention was not used as the penetration enhancer, a non-penetrated portion was observed in the composite material. Further, Comparative Example 3
In this case, since the fine particles having a size of 2 μm or less were more than 10% by weight, an unpermeated portion was also observed in the composite material.

【0029】[0029]

【発明の効果】以上の通り、本発明の金属−セラミック
ス複合材料の製造方法であれば、乾式成形でプリフォー
ムを形成しても高含有率のセラミックス粉末を含む金属
−セラミックス複合材料を作製することができるように
なった。このことにより、乾式成形でプリフォームを形
成してもAl23に近い熱膨張率を有する複合材料を作
製することができるようになったので、この複合材料の
生産性、歩留まりを大きく向上させることができるよう
になった。 整理番号 TKS264 化学式等を記載した書面
As described above, according to the method for producing a metal-ceramic composite material of the present invention, a metal-ceramic composite material containing a high content of ceramic powder is produced even when a preform is formed by dry molding. Now you can do it. As a result, even when a preform is formed by dry molding, a composite material having a thermal expansion coefficient close to that of Al 2 O 3 can be produced, so that the productivity and yield of this composite material are greatly improved. You can now let. Reference number TKS264 Document describing chemical formula etc.

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比が3以下の粒子を少なくと
も含み、かつ粒径が2μm以下の粒子を10重量%以下
含むSiC粉末に、Mg、AlまたはTi粉末から成る
浸透促進材を添加し混合した粉末をプレス機で乾式成形
して60vol%以上の粉末充填率を有するプリフォー
ムを形成し、その形成したプリフォームに溶融したアル
ミニウム合金を窒素中で非加圧で浸透させることを特徴
とする金属−セラミックス複合材料の製造方法。
An SiC powder containing at least particles having an aspect ratio of 3 or less and having a particle size of 2 μm or less and 10% by weight or less is mixed with a penetration enhancer made of Mg, Al or Ti powder. A metal characterized in that a powder is dry-formed with a press machine to form a preform having a powder filling rate of 60 vol% or more, and a molten aluminum alloy is permeated into the formed preform in nitrogen without pressure. A method for producing a ceramic composite material.
【請求項2】 アスペクト比が3以下の粒子を含む量
が、40重量%以上であることを特徴とする請求項1記
載の金属−セラミックス複合材料の製造方法。
2. The method for producing a metal-ceramic composite material according to claim 1, wherein an amount of particles having an aspect ratio of 3 or less is 40% by weight or more.
【請求項3】 粒径が2μm以下の粒子を含む量が、5
〜2重量%であることを特徴とする請求項1または2記
載の金属−セラミックス複合材料の製造方法。
3. An amount containing particles having a particle size of 2 μm or less is 5
3. The method for producing a metal-ceramic composite material according to claim 1, wherein the amount is from 2 to 2% by weight.
JP9712399A 1999-04-05 1999-04-05 Production of metal-ceramics composite material Pending JP2000288714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9712399A JP2000288714A (en) 1999-04-05 1999-04-05 Production of metal-ceramics composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9712399A JP2000288714A (en) 1999-04-05 1999-04-05 Production of metal-ceramics composite material

Publications (1)

Publication Number Publication Date
JP2000288714A true JP2000288714A (en) 2000-10-17

Family

ID=14183799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9712399A Pending JP2000288714A (en) 1999-04-05 1999-04-05 Production of metal-ceramics composite material

Country Status (1)

Country Link
JP (1) JP2000288714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113464A1 (en) * 2004-05-19 2005-12-01 Ceramtec Ag Innovative Ceramic Engineering Method for producing metal ceramic composite materials
JP2010258458A (en) * 2010-04-26 2010-11-11 Dowa Holdings Co Ltd Metal-ceramic composite heat-dissipating plate integrated with ceramic insulating substrate and method of manufacturing the same
US9782935B2 (en) 2015-03-18 2017-10-10 Ricoh Company, Ltd. Powder material for three-dimensional modeling, kit for three-dimensional modeling, device for manufacturing three-dimensional object, and method of manufacturing three-dimensional object
CN109277545A (en) * 2017-07-21 2019-01-29 中国科学院金属研究所 A kind of preparation method of continuous SiC fiber enhancing TiAl based composites blade

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113464A1 (en) * 2004-05-19 2005-12-01 Ceramtec Ag Innovative Ceramic Engineering Method for producing metal ceramic composite materials
JP2010258458A (en) * 2010-04-26 2010-11-11 Dowa Holdings Co Ltd Metal-ceramic composite heat-dissipating plate integrated with ceramic insulating substrate and method of manufacturing the same
US9782935B2 (en) 2015-03-18 2017-10-10 Ricoh Company, Ltd. Powder material for three-dimensional modeling, kit for three-dimensional modeling, device for manufacturing three-dimensional object, and method of manufacturing three-dimensional object
CN109277545A (en) * 2017-07-21 2019-01-29 中国科学院金属研究所 A kind of preparation method of continuous SiC fiber enhancing TiAl based composites blade

Similar Documents

Publication Publication Date Title
JP5394475B2 (en) Boron carbide composite material
CN102173802A (en) In-situ (TiB2+SiC)/Ti3SiC2 complex phase ceramic material and preparation method thereof
JP2000288714A (en) Production of metal-ceramics composite material
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
JPH11172348A (en) Metal-ceramics composite and its production
JP3948797B2 (en) Method for producing silicon carbide composite
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
KR102444652B1 (en) high volume reinforced aluminum composite and method of manufacturing the same
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP4217279B2 (en) Method for producing metal-ceramic composite material
JP2001003147A (en) Production of metal-ceramics composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JPH10219369A (en) Composite material of ceramics and metal, and its production
JPH0497976A (en) Silicon carbide-based composite body and its production
JPH1180860A (en) Production of metal-ceramics composite material
JP4183361B2 (en) Method for producing metal-ceramic composite material
JP2000087156A (en) Metal-ceramic composite material for casting and its manufacture
JP4294882B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JPH11241130A (en) Production of metal-ceramic composite material
JP2002030400A (en) Ceramics/metal composite material excellent in high temperature strength, and its manufacturing method
JPH10140263A (en) Production of metal-ceramics composite
Manu et al. Fabrication and Characterization of a Hybrid Functionally Graded Metal-matrix Composite Using the Technique of Squeeze Infiltration