JP4294882B2 - Metal-ceramic composite material and manufacturing method thereof - Google Patents

Metal-ceramic composite material and manufacturing method thereof Download PDF

Info

Publication number
JP4294882B2
JP4294882B2 JP2001073593A JP2001073593A JP4294882B2 JP 4294882 B2 JP4294882 B2 JP 4294882B2 JP 2001073593 A JP2001073593 A JP 2001073593A JP 2001073593 A JP2001073593 A JP 2001073593A JP 4294882 B2 JP4294882 B2 JP 4294882B2
Authority
JP
Japan
Prior art keywords
metal
composite material
ceramic composite
alumina
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001073593A
Other languages
Japanese (ja)
Other versions
JP2002275558A (en
Inventor
義文 武井
一郎 青木
宏之 津戸
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001073593A priority Critical patent/JP4294882B2/en
Publication of JP2002275558A publication Critical patent/JP2002275558A/en
Application granted granted Critical
Publication of JP4294882B2 publication Critical patent/JP4294882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、非加圧で複合化させた金属−セラミックス複合材料およびその製造方法に関する。
【0002】
【従来の技術】
一般に、金属−セラミックス複合材料は、金属が有する延性、高靭性、高熱伝導性、高電気伝導性等の特性とセラミックスが有する高剛性、低熱膨張性、耐摩耗性等の特性を兼ね備えている。当該材料は、従来から難しいとされていた金属とセラミックスがそれぞれ有する特性の調和が採れているため、機械装置の業界等から次世代の材料として普及しつつある。
その中でも、Al合金は軽量かつ耐食性に優れるほか熱伝導性や電導性においても優れているため、かかるAl合金の特徴を生かして基材にAl合金を用いた金属−セラミックス複合材料が注目されている。
【0003】
Al合金を用いた金属−セラミックス複合材料の製造方法として、粉末冶金法、高圧鋳造法、真空鋳造法等の方法が知られているが、いずれの方法によっても強化材であるセラミックスの含有量を増加させることが困難なため剛性の向上にも限界があることに加え、大型の加圧装置を必要とし、ニアネット成形も困難である等種々の問題があった。
【0004】
上記問題を解決する方法に非加圧浸透法がある。この方法は、SiCやAl2O3等のセラミックス粉末からなるプリフォームに、Mgを含むアルミニウムインゴットを接触させた状態で、N2雰囲気下、700〜900℃に加熱して、加圧なしで溶融したアルミニウム合金をプリフォーム中に浸透させる方法であって、MgとN2との化学反応を利用してセラミックス粉末に対する溶融アルミニウム合金の濡れ性を改善することにより、加圧なしでアルミニウム合金をプリフォーム中に浸透できる点に特徴がある。
しかし、この方法では、Mgの存在が不可欠であるため、使用環境によっては、複合材料中のMgが飛散する場合があった。その結果、Mgを含まない溶融アルミニウム合金をセラミックス粉末中に高圧で押し込める高圧含浸法が現在では多用されているが、やはり大型の加圧装置が必要なこと、また、複雑な形状品を作製するのが困難なこと等の問題を残している。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、上述した金属−セラミックス複合材料の製造方法が有する課題に鑑みてなされたもので、Mgを含まないアルミニウム合金であっても、加圧装置を使用することなく浸透可能で、複雑な形状でも容易に作製できる金属−セラミックス複合材料およびその製造方法を提供する。
【0006】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため鋭意研究した結果、Siを含むアルミニウム合金を基材として用いれば、Mgを含まずとも、アルミナ粉末および/またはアルミナ繊維により形成したプリフォームに非加圧で浸透可能であるとの知見を得て本発明を完成した。
【0007】
即ち、本発明は、以下の金属−セラミックス複合材料および製造方法を提供するものである。
(1)アルミナ粉末および/またはアルミナ繊維を強化材とし、Al−Si合金を基材としてなる金属−セラミックス複合材料であって、該アルミナ粉末および/またはアルミナ繊維をアルミナ質のバインダーによりプリフォームとし、これにAl−Si合金の溶融物を非加圧で浸透させてなることを特徴とする金属−セラミックス複合材料(請求項1)。
(2)Al−Si合金がSiを10〜99質量%含むことを特徴とする請求項1に記載の金属−セラミックス複合材料(請求項2)。
(3)アルミナ粉末が粒径3μm以下の粒子を5体積%以下含み、アルミナ繊維が平均長さ5〜1000μmであることを特徴とする請求項1または2に記載の金属−セラミックス複合材料(請求項3)。
(4)金属−セラミックス複合材料におけるアルミナ粉末および/またはアルミナ繊維の充填率が40〜80体積%であることを特徴とする請求項1〜3に記載の金属−セラミックス複合材料(請求項4)。
(5)アルミナ粉末および/またはアルミナ繊維を強化材とし、Al−Si合金を基材としてなる金属−セラミックス複合材料の製造において、アルミナ粉末および/またはアルミナ繊維をアルミナ質のバインダーによりプリフォームとし、これにAl−Si合金の溶融物を非加圧で浸透させることを特徴とする金属−セラミックス複合材料の製造方法(請求項5)。
【0008】
【発明の実施の形態】
以下さらに本発明を詳細に説明する。
本発明で強化材として使用するアルミナ粉末やアルミナ繊維は、Al2O3を主成分として含むものであればよく、その他の成分を含んでいてもかまわない。
アルミナ粉末の粒度は、粒径3μm以下の粒子を5体積%以下含むものが好ましい。粒径3μm以下の粒子が5体積%超えると、Al−Si合金の溶融物の含浸速度が遅くなるほか、未含浸部分が生じ易くなる。
また、アルミナ繊維は、平均長さが5〜1000μmのものが好ましい。平均長さが5μm未満では、Al−Si合金の溶融物の含浸速度が遅くなるほか、未含浸部分が生じ易くなる。また、平均長さが1000μmを超えると金属−セラミックス複合材料の寸法安定性を損なう場合がある。
【0009】
また、アルミナ粉末および/またはアルミナ繊維のプリフォームを形成するために使用するアルミナ質のバインダーは、Al2O3、Al(OH)3等を含むアルミナゾルが好適である。
【0010】
本発明で基材として用いるAl−Si合金は、Siを10〜99体積%含むものが好ましい。Siが10体積%未満ではAl−Si合金の溶融物の含浸速度が遅くなるほか、未含浸部分が生じ易くなる。また、Siが99体積%を超えると金属−セラミックス複合材料の破壊靭性が低下して割れ易くなる。
また、このAl−Si合金は、本発明の解決課題の趣旨からMgを含まないものが好ましい。
【0011】
本発明の金属−セラミックス複合材料の製造方法は、アルミナ粉末および/またはアルミナ繊維にアルミナ質のバインダーを添加・混合し、この混合物を金型に入れて所定の形状のプリフォームを加圧成形等の公知の方法で成形する。
次に、成形したプリフォームにAl−Si合金を接触させ、窒素分圧が1×10-3Torr以下の真空中または不活性ガス中でAl−Si合金が溶融する温度以上に該接触体を加熱することにより、Al−Si合金の溶融物を非加圧下で自発的にプリフォームに浸透させた後、冷却する方法である。
【0012】
ここで、金属−セラミックス複合材料におけるアルミナ粉末および/またはアルミナ繊維の充填率は、40〜80体積%が好ましい。充填率が40体積%未満ではプリフォームの強度が低くなって形状が保持できず、また、80体積%を超えるとプリフォームを作製することが困難となる。
【0013】
【実施例】
以下、実施例を挙げて本発明をより詳細に説明する。
【0014】
表1に、以下の試験に使用した材料を示す。
【0015】
【表1】

Figure 0004294882
【0016】
複合材料の作製
アルミナ粉末100重量部にイオン交換水50重量部加え、さらにアルミナ質のバインダーを3重量部加えてスラリーを調製した。このスラリーを金型に流し込み、フイルタープレスで脱水して脱型し、1200℃で焼成して、表2に示す充填率を有し大きさが50×50×30mmのプリフォームを成形した。
次に、表2に示すSi含有率を有するAl−Si合金を該プリフォームの上に載置し、真空中で1500℃に加熱して該合金を溶融し、この状態を5時間保持したのち冷却して、表2に記載の金属−セラミックス複合材料を作製した。
【0017】
浸透状態の評価
上記のプリフォームを手で持ち、軽く力を加えてプリフォームが壊れた場合をプリフォームの強度不良とした。また、上記の金属−セラミックス複合材料を切断し、その切断面を目視で観察してAl−Si合金の浸透状態を調べた。これらの結果を表2に示す。
【0018】
【表2】
Figure 0004294882
【0019】
表1から明らかなように、Al−Si合金のSi含有率、並びに強化材であるアルミナ粉末の粒度および充填率が本発明の範囲内にある実施例1では、Al−Si合金の浸透状態が良好で、未浸透部分がなかった。
これに対して、比較例1では、強化材の充填率が低すぎたため、プリフォームの強度が小さかった。また、比較例2では、充填率85体積%のプリフォームを作製するのは困難であった。さらに、比較例3では、アルミナ粉末の粒度が小さすぎるため、未含浸部分が多くみられた。比較例4では、合金のSi含有率が小さいため、ほとんど浸透していなかった。
【0020】
【発明の効果】
本発明によれば、Mgを含まないアルミニウム合金であっても、加圧装置を使用することなく浸透可能で、複雑な形状でも作製が容易な金属−セラミックス複合材料およびその製造方法を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal / ceramic composite material composited without pressure and a method for producing the same.
[0002]
[Prior art]
In general, a metal-ceramic composite material has properties such as ductility, high toughness, high thermal conductivity, and high electrical conductivity that a metal has and properties such as high rigidity, low thermal expansion, and wear resistance that a ceramic has. Such materials are becoming popular as next-generation materials from the machinery industry and the like because the properties of metals and ceramics, which are conventionally considered difficult, are harmonized.
Among them, Al alloys are lightweight and have excellent corrosion resistance, as well as excellent thermal conductivity and electrical conductivity. Therefore, metal-ceramic composite materials using Al alloys as a base material have been attracting attention, taking advantage of the characteristics of such Al alloys. Yes.
[0003]
Known methods for producing a metal-ceramic composite material using an Al alloy include powder metallurgy, high-pressure casting, vacuum casting, and the like. Since it is difficult to increase the rigidity, there is a limit to improvement in rigidity, and there are various problems such as requiring a large pressure device and difficult to form near net.
[0004]
There is a non-pressure permeation method as a method for solving the above problem. In this method, an aluminum alloy melted without pressure by heating to 700 to 900 ° C. in an N2 atmosphere in a state where an aluminum ingot containing Mg is brought into contact with a preform made of ceramic powder such as SiC or Al2O3. In which the aluminum alloy penetrates into the preform without pressure by improving the wettability of the molten aluminum alloy with respect to the ceramic powder by utilizing the chemical reaction between Mg and N2. There is a feature in what can be done.
However, in this method, since the presence of Mg is indispensable, Mg in the composite material may be scattered depending on the use environment. As a result, the high pressure impregnation method in which a molten aluminum alloy not containing Mg is pressed into ceramic powder at high pressure is widely used nowadays, but still requires a large pressure device and produces a complicated shape product. The problem of being difficult is left.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the problems of the above-described method for producing a metal-ceramic composite material, and even an aluminum alloy not containing Mg can be permeated without using a pressurizing device. Provided are a metal-ceramic composite material that can be easily produced even in a complicated shape, and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have found that if an aluminum alloy containing Si is used as a base material, the preform formed from alumina powder and / or alumina fiber is not added even if Mg is not contained. The present invention was completed with the knowledge that it was possible to penetrate under pressure.
[0007]
That is, the present invention provides the following metal-ceramic composite material and production method.
(1) A metal-ceramic composite material using alumina powder and / or alumina fiber as a reinforcing material and an Al—Si alloy as a base material, wherein the alumina powder and / or alumina fiber is formed into a preform with an alumina binder. A metal-ceramic composite material obtained by impregnating a melt of an Al—Si alloy with no pressure applied thereto (Claim 1).
(2) The metal-ceramic composite material according to claim 1, wherein the Al-Si alloy contains 10 to 99 mass% of Si (claim 2).
(3) The metal-ceramic composite material according to claim 1 or 2, wherein the alumina powder contains 5% by volume or less of particles having a particle size of 3 µm or less, and the alumina fibers have an average length of 5 to 1000 µm. Item 3).
(4) The metal-ceramic composite material according to any one of claims 1 to 3, wherein a filling rate of alumina powder and / or alumina fiber in the metal-ceramic composite material is 40 to 80% by volume (claim 4). .
(5) In the production of a metal-ceramic composite material using alumina powder and / or alumina fiber as a reinforcing material and an Al-Si alloy as a base material, the alumina powder and / or alumina fiber is made into a preform with an alumina binder, A method for producing a metal-ceramic composite material, wherein a molten Al-Si alloy is impregnated therewith without pressure (Claim 5).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is further described in detail below.
The alumina powder or alumina fiber used as a reinforcing material in the present invention may be any material that contains Al2O3 as a main component, and may contain other components.
The particle size of the alumina powder is preferably one containing 5% by volume or less of particles having a particle size of 3 μm or less. When the particle size of 3 μm or less exceeds 5% by volume, the impregnation rate of the Al—Si alloy melt is slowed, and an unimpregnated portion tends to occur.
The alumina fibers preferably have an average length of 5 to 1000 μm. When the average length is less than 5 μm, the impregnation rate of the melt of the Al—Si alloy is slow, and unimpregnated portions are likely to occur. Moreover, when average length exceeds 1000 micrometers, the dimensional stability of a metal-ceramic composite material may be impaired.
[0009]
The alumina binder used to form the alumina powder and / or the alumina fiber preform is preferably an alumina sol containing Al2O3, Al (OH) 3, or the like.
[0010]
The Al—Si alloy used as a base material in the present invention preferably contains 10 to 99% by volume of Si. When Si is less than 10% by volume, the impregnation rate of the melt of the Al—Si alloy is slow, and unimpregnated portions are likely to occur. Moreover, when Si exceeds 99 volume%, the fracture toughness of a metal-ceramic composite material will fall and it will become easy to crack.
Further, the Al—Si alloy is preferably one that does not contain Mg for the purpose of the problem to be solved by the present invention.
[0011]
The method for producing a metal-ceramic composite material of the present invention includes adding and mixing an alumina binder to alumina powder and / or alumina fiber, and placing the mixture in a mold to press-mold a preform having a predetermined shape. It shape | molds by the well-known method of these.
Next, the Al-Si alloy is brought into contact with the molded preform, and the contact body is brought to a temperature equal to or higher than the temperature at which the Al-Si alloy melts in a vacuum or an inert gas having a nitrogen partial pressure of 1 × 10 -3 Torr or less. In this method, the molten Al-Si alloy is spontaneously permeated into the preform under non-pressurization by heating and then cooled.
[0012]
Here, the filling rate of alumina powder and / or alumina fiber in the metal-ceramic composite material is preferably 40 to 80% by volume. If the filling rate is less than 40% by volume, the strength of the preform is lowered and the shape cannot be maintained, and if it exceeds 80% by volume, it becomes difficult to produce the preform.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0014]
Table 1 shows the materials used for the following tests.
[0015]
[Table 1]
Figure 0004294882
[0016]
Production of composite material A slurry was prepared by adding 50 parts by weight of ion-exchanged water to 100 parts by weight of alumina powder and further adding 3 parts by weight of an alumina binder. This slurry was poured into a mold, dehydrated by a filter press, demolded, and fired at 1200 ° C. to form a preform having a filling rate shown in Table 2 and a size of 50 × 50 × 30 mm.
Next, an Al—Si alloy having the Si content shown in Table 2 was placed on the preform, heated to 1500 ° C. in a vacuum to melt the alloy, and this state was maintained for 5 hours. It cooled and produced the metal-ceramic composite material of Table 2.
[0017]
Evaluation of penetration state When the above preform was held by hand and the preform was broken by applying light force, the strength of the preform was considered to be poor. Further, the metal-ceramic composite material was cut, and the cut surface was visually observed to examine the penetration state of the Al-Si alloy. These results are shown in Table 2.
[0018]
[Table 2]
Figure 0004294882
[0019]
As is apparent from Table 1, in Example 1 in which the Si content of the Al—Si alloy and the particle size and filling rate of the alumina powder as the reinforcing material are within the scope of the present invention, the penetration state of the Al—Si alloy is It was good and there were no unpenetrated parts.
On the other hand, in Comparative Example 1, the strength of the preform was small because the filling rate of the reinforcing material was too low. In Comparative Example 2, it was difficult to produce a preform with a filling rate of 85% by volume. Furthermore, in Comparative Example 3, since the particle size of the alumina powder was too small, many unimpregnated portions were observed. In the comparative example 4, since the Si content rate of the alloy was small, it hardly penetrated.
[0020]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even if it is an aluminum alloy which does not contain Mg, the metal-ceramics composite material which can be penetrated without using a pressurization apparatus, and is easy to manufacture also with a complicated shape, and its manufacturing method can be provided.

Claims (1)

アルミナ粉末および/またはアルミナ繊維を強化材とし、Siを10〜99体積%含むAl−Si合金を基材としてなる金属−セラミックス複合材料の製造において、アルミナ粉末および/またはアルミナ繊維をアルミナ質のバインダーであるアルミナゾルによりプリフォームとし、これにAl−Si合金の溶融物を窒素分圧が1×10 −3 Torr以下の真空中または不活性ガス中で浸透させることを特徴とする金属−セラミックス複合材料の製造方法。Alumina powder and / or alumina fiber is used as a reinforcing material, and alumina powder and / or alumina fiber is used as an alumina binder in the production of a metal-ceramic composite material based on an Al-Si alloy containing 10 to 99% by volume of Si. A metal-ceramic composite material, characterized in that a preform is formed from an alumina sol , and a molten Al-Si alloy is permeated in a vacuum or inert gas having a nitrogen partial pressure of 1 × 10 -3 Torr or less. Manufacturing method.
JP2001073593A 2001-03-15 2001-03-15 Metal-ceramic composite material and manufacturing method thereof Expired - Fee Related JP4294882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073593A JP4294882B2 (en) 2001-03-15 2001-03-15 Metal-ceramic composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073593A JP4294882B2 (en) 2001-03-15 2001-03-15 Metal-ceramic composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002275558A JP2002275558A (en) 2002-09-25
JP4294882B2 true JP4294882B2 (en) 2009-07-15

Family

ID=18930991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073593A Expired - Fee Related JP4294882B2 (en) 2001-03-15 2001-03-15 Metal-ceramic composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4294882B2 (en)

Also Published As

Publication number Publication date
JP2002275558A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4294882B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
JP3847009B2 (en) Method for producing silicon carbide composite
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JP2002212690A (en) Method for producing metal-ceramics composite material having thickness part
JP2000288714A (en) Production of metal-ceramics composite material
JP2000178668A (en) Production of metal-ceramics composite material
JPH1180860A (en) Production of metal-ceramics composite material
JP2002194456A (en) Method for manufacturing large-size thick-walled ceramics/metal composite material
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JP4172862B2 (en) Method for producing metal-ceramic composite material
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP2002249833A (en) Ceramics/metal composite material and its manufacturing method
JP4183361B2 (en) Method for producing metal-ceramic composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP2002371330A (en) Method for manufacturing metal-ceramic composite material
JPH10219369A (en) Composite material of ceramics and metal, and its production
JP2001003147A (en) Production of metal-ceramics composite material
JPH11152530A (en) Production of metal-ceramics composite
JP2002371329A (en) Method for manufacturing metal-ceramic composite material
JP2001226177A (en) Metal-ceramic composite material and method for producing the same
JP2002235128A (en) Method for producing metal - ceramics composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees