JPH11152530A - Production of metal-ceramics composite - Google Patents

Production of metal-ceramics composite

Info

Publication number
JPH11152530A
JPH11152530A JP32974197A JP32974197A JPH11152530A JP H11152530 A JPH11152530 A JP H11152530A JP 32974197 A JP32974197 A JP 32974197A JP 32974197 A JP32974197 A JP 32974197A JP H11152530 A JPH11152530 A JP H11152530A
Authority
JP
Japan
Prior art keywords
metal
preform
powder
composite material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32974197A
Other languages
Japanese (ja)
Inventor
Heishiro Takahashi
平四郎 高橋
Hiromasa Shimojima
浩正 下嶋
Mitsuyoshi Kimura
光良 木村
Kazunari Naito
一成 内藤
Mutsuo Hayashi
睦夫 林
Takeshi Higuchi
毅 樋口
Tomikazu Koyama
富和 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERANKUSU KK
Taiheiyo Cement Corp
Original Assignee
SERANKUSU KK
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERANKUSU KK, Nihon Cement Co Ltd filed Critical SERANKUSU KK
Priority to JP32974197A priority Critical patent/JPH11152530A/en
Publication of JPH11152530A publication Critical patent/JPH11152530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a metal-ceramics composite in which the time required for penetration of a metal is shortened and an Al2 O3 powder minimal in the occurrence of metal-vein is used as a reinforcement. SOLUTION: A preform is prepared by using ceramic fibers or grains as a reinforcement and a metal as a base material is allowed to penetrate into the preform, by which the metal-ceramics composite is produced. In this method, the preform is prepared by adding, as a binder, 1-10 pts.wt. of inorganic powder composed essentially of alumina-silica and having 0.1-100 μm average grain size to 100 pts.wt. of Al2 O3 powder having 1-150 μm average grain size, molding the resultant powder mixture, and then burning the resultant molded part at 1100-1500 deg.C for 1-5 hr. Subsequently, an alloy composed essentially of aluminum is allowed to penetrate into the resultant preform at 700-1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属に強化材を複
合させる複合材料に関し、特に強化材にセラミックスを
用いる金属−セラミックス複合材料の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material comprising a metal and a reinforcing material, and more particularly to a method for producing a metal-ceramic composite material using ceramics as the reinforcing material.

【0002】[0002]

【従来の技術】セラミックス繊維または粒子で強化され
た金属−セラミックスの複合材料は、金属とセラミック
スの両方の特性を兼ね備えており、例えばこの複合材料
は、高剛性、低熱膨張性、耐摩耗性等のセラミックスの
優れた特性と、延性、高靱性、高熱伝導性等の金属の優
れた特性を備えている。このように、従来から難しいと
されていたセラミックスと金属の両方の特性を備えてい
るため、機械装置メーカ等の業界から次世代の材料とし
て注目されている。
2. Description of the Related Art A metal-ceramic composite material reinforced with ceramic fibers or particles has both characteristics of a metal and a ceramic. For example, this composite material has high rigidity, low thermal expansion, abrasion resistance and the like. It has the excellent properties of ceramics and the excellent properties of metals such as ductility, high toughness, and high thermal conductivity. As described above, since it has both the characteristics of ceramics and metal, which have been considered difficult, it has been drawing attention as a next-generation material from industries such as mechanical device manufacturers.

【0003】この複合材料、特に金属としてアルミニウ
ムをマトリックスとする複合材料の製造方法は、粉末冶
金法、高圧鋳造法、真空鋳造法等の方法が従来から知ら
れている。しかし、これらの方法は、強化材であるセラ
ミックスの含有量を多くできない、あるいは大型の加圧
装置が必要である、もしくはニアネット成形が困難であ
る、コストが極めて高いなどの理由により、いずれも満
足できるものではなかった。
As a method for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, methods such as powder metallurgy, high pressure casting, and vacuum casting have been conventionally known. However, all of these methods are not capable of increasing the content of ceramics as a reinforcing material, require a large-sized pressurizing device, are difficult to form near nets, and are extremely expensive. It was not satisfactory.

【0004】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法が特に注目されている。この方法は、SiCやA
23などのセラミックス粉末で形成されたプリフォー
ムに、アルミニウムインゴットを接触させ、これをN2
雰囲気中で700〜900℃に加熱して溶融したアルミ
ニウム合金をプリフォームに含浸させる方法である。こ
れは、化学反応を利用してセラミックス粉末への溶融金
属の濡れ性を改善することにより、加圧しなくても金属
をプリフォームに含浸できるようにした優れた方法であ
る。
Accordingly, recently, a non-pressurized metal infiltration method developed by Rankside Company of the United States has attracted particular attention as a manufacturing method for solving the above problem. This method uses SiC or A
l to 2 O 3 preform formed of ceramic powder, such as, by contacting the aluminum ingots, which N 2
This is a method of impregnating a preform with an aluminum alloy that has been heated to 700 to 900 ° C. and melted in an atmosphere. This is an excellent method in which the preform can be impregnated with the metal without applying pressure by improving the wettability of the molten metal to the ceramic powder using a chemical reaction.

【0005】この化学反応のメカニズムをさらに詳しく
述べると、先ずアルミニウム合金中のMgが揮発し、そ
の揮発したMgがN2と反応してセラミックス粉末の表
面に窒化マグネシウムを生成(N2+3Mg→Mg
32)し、このMg32がAlと極めて反応し易い(M
32+2Al→2AlN+3Mg)ため、溶融したア
ルミニウム合金がプリフォームに加圧しなくても浸透し
ていくものである。この反応で生成した窒化アルミニウ
ム(AlN)は、セラミックス表面に薄い層となって沈
積し、Mgはアルミニウム合金中に溶け込み、このMg
濃度が高いほどプリフォーム中へのアルミニウム合金の
浸透速度が大となり、浸透時間を短縮する働きを持つ。
[0005] More particularly the mechanism of this reaction, firstly volatilize Mg in the aluminum alloy, generate magnesium nitride in the volatilized Mg is N 2 and the reaction to the surface of the ceramic powder (N 2 + 3Mg → Mg
3 N 2 ), and this Mg 3 N 2 is extremely easy to react with Al (M
g 3 N 2 + 2Al → 2AlN + 3Mg), so that the molten aluminum alloy permeates the preform without pressing. The aluminum nitride (AlN) produced by this reaction is deposited as a thin layer on the ceramic surface, and Mg dissolves in the aluminum alloy,
The higher the concentration, the higher the penetration rate of the aluminum alloy into the preform, and the shorter the penetration time.

【0006】また、この方法では、セラミックスの含有
率を30〜85vol%と広く、かつ高い範囲まで変え
ることができ、しかも、この方法で形成されたプリフォ
ームは、その形状の自由度が高いので、かなり複雑な形
状をニアネットで作ることも可能である。このようにこ
の方法は、加圧装置が不要であり、セラミックスの含有
率を高くすることができ、ニアネット成形も可能となる
方法であるので、前記した問題が解決される優れた方法
である。
In this method, the content of ceramics can be varied as wide as 30 to 85 vol% and can be changed to a high range. In addition, the preform formed by this method has a high degree of freedom in its shape. It is also possible to make quite complex shapes with near nets. As described above, this method does not require a pressurizing device, can increase the content of ceramics, and enables near-net molding. Therefore, this method is an excellent method that solves the above-described problem. .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、強化材
であるセラミックス粉末にAl23粉末を用いる場合、
SiCやAlN粉末などに比べ、強度や靱性などの機械
的特性に優れているものの、次のような製造上の問題が
いくつかあった。そのため、機械的特性が優れているに
も関わらず、その普及が妨げられていた。
However, when Al 2 O 3 powder is used as a ceramic powder as a reinforcing material,
Although it is superior in mechanical properties such as strength and toughness as compared with SiC or AlN powder, there are some manufacturing problems as follows. For this reason, its spread has been hindered despite its excellent mechanical properties.

【0008】それは、 (1)他のセラミックス粉末に比べ金属の濡れ性が劣
り、アルミニウム合金の浸透に長時間を必要とする。 (2)N2ガスの行き渡りが不安定なため、プリフォー
ムの表面部には金属は早く浸透されるが、プリフォーム
の内部への浸透が遅くなり、金属の浸透に長時間を必要
とする。 (3)プリフォームに亀裂が入り易く、その生じた亀裂
部分が金属だけとなるメタルベインとなり、強度が低下
する。などである。
[0008] (1) The wettability of metal is inferior to other ceramic powders, and it takes a long time for aluminum alloy to penetrate. (2) Since the distribution of the N 2 gas is unstable, the metal permeates the surface of the preform quickly, but the permeation into the inside of the preform becomes slow, and it takes a long time for the metal to permeate. . (3) The preform is easily cracked, and the cracked portion becomes a metal vane consisting only of metal, and the strength is reduced. And so on.

【0009】本発明は、上述した金属−セラミックス複
合材料の製造方法が有する課題に鑑みなされたものであ
って、その目的は、金属の浸透時間を短縮することがで
き、メタルベインの発生を抑えることのできる金属−セ
ラミックス複合材料の製造方法を提供することにある。
The present invention has been made in view of the problems of the above-described method for manufacturing a metal-ceramic composite material, and has as its object to reduce the metal permeation time and suppress the generation of metal vanes. It is an object of the present invention to provide a method for producing a metal-ceramic composite material that can be used.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、強化材であるAl2
3粉末同士を結合するバインダーにアルミナ−シリカ
質の無機粉末を用いれば、金属の浸透時間を短縮するこ
とができ、メタルベインの発生も抑えることのできる複
合材料が得られるとの知見を得て本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that Al 2 as a reinforcing material is used.
It has been found that if alumina-silica-based inorganic powder is used as a binder for binding O 3 powders, a composite material that can reduce the permeation time of metal and suppress the generation of metal bain can be obtained. Thus, the present invention has been completed.

【0011】即ち本発明は、セラミックス繊維または粒
子を強化材としてプリフォームを形成し、そのプリフォ
ームに基材である金属を浸透させる金属−セラミックス
複合材料の製造方法において、該プリフォームの形成方
法が、1〜150μmの平均粒径を有するAl23粉末
100重量部に対し、バインダーとして0.1〜100
μmの平均粒径を有するアルミナ−シリカ質を主成分と
する無機粉末を1〜10重量部加え成形した後、その成
形体を1100〜1500℃の温度で1〜5時間焼成す
る方法であり、その形成されたプリフォームにアルミニ
ウムを主成分とする合金を700〜1000℃の温度で
浸透させることを特徴とする金属−セラミックス複合材
料の製造方法とすることを要旨とする。以下さらに詳細
に説明する。
That is, the present invention relates to a method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and a metal as a base material is penetrated into the preform. Is 0.1 to 100 as a binder with respect to 100 parts by weight of Al 2 O 3 powder having an average particle size of 1 to 150 μm.
An alumina powder having an average particle diameter of 1 μm is formed by adding 1 to 10 parts by weight of an inorganic powder containing silica as a main component, and then firing the formed body at a temperature of 1100 to 1500 ° C. for 1 to 5 hours, The gist is to provide a method for producing a metal-ceramic composite material, characterized by infiltrating an alloy containing aluminum as a main component into the formed preform at a temperature of 700 to 1000 ° C. This will be described in more detail below.

【0012】上述したように複合材料の製造方法として
は、プリフォームの形成方法が、1〜150μmの平均
粒径を有するAl23粉末100重量部に対し、バイン
ダーとして0.1〜100μmの平均粒径を有するアル
ミナ−シリカ質を主成分とする無機粉末を1〜10重量
部加え成形した後、その成形体を1100〜1500℃
の温度で1〜5時間焼成する方法であり、その形成され
たプリフォームにアルミニウムを主成分とする合金を7
00〜1000℃の温度で浸透させる金属−セラミック
ス複合材料の製造方法とした。
As described above, as a method for producing a composite material, a method for forming a preform is such that a binder of 0.1 to 100 μm is used as a binder for 100 parts by weight of Al 2 O 3 powder having an average particle size of 1 to 150 μm. After adding 1 to 10 parts by weight of an inorganic powder mainly composed of alumina-silica having an average particle size and molding, the molded body is heated to 1100 to 1500 ° C.
Baking at a temperature of 1 to 5 hours, and forming an alloy containing aluminum as a main component on the formed preform.
A method for producing a metal-ceramic composite material that is permeated at a temperature of 00 to 1000 ° C was adopted.

【0013】Al23粉末の細かさを平均粒径で1〜1
50μmとしたのは、平均粒径が1μmより細かいと粒
子と粒子との間隔が狭くなり、金属の浸透に支障を来た
し、150μmより粗いと、セラミックス粒子の充填率
が55vol%より低くなり、プリフォームの強度が低
下し好ましくないためである。
The fineness of the Al 2 O 3 powder is 1 to 1 in average particle size.
When the average particle diameter is smaller than 1 μm, the distance between the particles becomes narrower, which hinders the penetration of the metal. When the average particle diameter is coarser than 150 μm, the packing ratio of the ceramic particles becomes lower than 55 vol%. This is because the strength of the reform is unfavorably reduced.

【0014】また、添加するバインダーの種類をアルミ
ナ−シリカ質を主成分とする無機粉末としたのは、Al
23粉末に介在し、焼成すればガラス化してAl23
子同士を強く結合させるものとして選択したものであ
る。そして、その細かさを平均粒径で0.1〜100μ
mとしたのは、従来のバインダーのコロイダルシリカ液
やアルミナ水和物のコロイド液では、生成する無機バイ
ンダーが細かすぎてAl23粉末の粒子間の空隙が狭く
なり、浸透時に溶融金属が通り難く、金属の浸透時間を
長くさせていたので、これを金属が浸透し易くするため
粗いものとしたものである。その細かさが平均粒径で
0.1μmより細かいと、浸透時間が長くなり好ましく
なく、逆に平均粒径が100μmより粗いと、セラミッ
クス粒子間の空隙が大きくなりすぎて充填率が大きく低
下するのでこれも好ましくない。
The kind of the binder to be added is an inorganic powder containing alumina-silica as a main component.
It is selected as one that intervenes in the 2 O 3 powder, vitrifies when fired, and strongly bonds the Al 2 O 3 particles together. And the fineness is 0.1 to 100 μm in average particle size.
The reason for this is that in the conventional colloidal silica solution of a binder and the colloidal solution of alumina hydrate, the generated inorganic binder is too fine, the gap between the particles of the Al 2 O 3 powder is narrowed, and the molten metal during permeation is reduced. Since it is difficult to pass through and the permeation time of the metal is extended, this is roughened to facilitate the permeation of the metal. If the fineness is smaller than 0.1 μm in average particle diameter, the permeation time becomes longer, which is not preferable. Conversely, if the average particle size is coarser than 100 μm, the voids between the ceramic particles become too large and the packing ratio is greatly reduced. This is also not preferred.

【0015】そのバインダーの添加量をAl23粉末1
00重量部に対し1〜10重量部としたのは、1重量部
より少ないと、プリフォームの強度が低下して好ましく
なく、10重量部より多いと、閉気孔が生じて浸透し難
くなるので好ましくないためである。そのバインダーを
用いてAl23粉末を成形した後、その成形体をバイン
ダーが焼結する1100〜1500℃の温度で1〜5時
間焼成すれば、通気性の良い、亀裂の入り難いプリフォ
ームとなり、このプリフォームにアルミニウムを主成分
とする合金を700〜1000℃の温度で浸透させれ
ば、金属の浸透時間の短い、メタルベインの発生の少な
い金属−セラミックス複合材料が得られる。
The amount of the binder to be added is set to Al 2 O 3 powder 1
The reason for setting the amount to 1 to 10 parts by weight with respect to 00 parts by weight is that if the amount is less than 1 part by weight, the strength of the preform decreases, and if it is more than 10 parts by weight, closed pores are formed and penetration becomes difficult. This is because it is not preferable. After the Al 2 O 3 powder is molded using the binder, the molded body is fired at a temperature of 1100 to 1500 ° C. for sintering the binder for 1 to 5 hours. By infiltrating the preform with an alloy containing aluminum as a main component at a temperature of 700 to 1000 ° C., a metal-ceramic composite material having a short metal penetration time and little generation of metal vanes can be obtained.

【0016】[0016]

【発明の実施の形態】本発明の金属−セラミックス複合
材料の製造方法を述べると、先ず強化材として1〜15
0μmの平均粒径を有するAl23粉末を用意し、その
粉末100重量部に対し、イオン交換水10〜50重量
部程度、バインダーとして前述の無機粉末、例えば、カ
オリン、ハイシリカ、ムライトなどのアルミナ−シリカ
質を主成分とする無機粉末を1〜10重量部加え、その
ほかに必要があれば消泡剤、尿素などを加える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a metal-ceramic composite material of the present invention will be described.
An Al 2 O 3 powder having an average particle diameter of 0 μm is prepared, and about 10 to 50 parts by weight of ion-exchanged water is used for 100 parts by weight of the powder, and the above-mentioned inorganic powder such as kaolin, high silica, or mullite as a binder is used. 1-10 parts by weight of an inorganic powder mainly composed of alumina-silica is added, and if necessary, an antifoaming agent, urea, etc. are added.

【0017】得られた配合物をポットミルなどで混合す
る。混合したスラリーは、振動を印加して沈降成形す
る。スラリーの粘度は、粘性が高いと粉末が沈降しない
ため、100ポイズ以下が望ましい。通常はシリコーン
ゴム型を使用するが、プラスチック、アルミニウム等の
型であってもよく、特に限定はない。粒子が沈降する間
はなるべく振動を加え充填をよくする。得られた成形体
は冷凍して脱型する。冷凍は水が凍ればよく温度に限定
はない。脱型した成形体を1100〜1500℃の焼成
温度で大気中で1〜5時間焼成してプリフォームを作製
する。
The resulting composition is mixed with a pot mill or the like. The mixed slurry is subjected to sedimentation molding by applying vibration. The viscosity of the slurry is preferably 100 poise or less because the powder does not settle if the viscosity is high. Normally, a silicone rubber mold is used, but a mold of plastic, aluminum or the like may be used, and there is no particular limitation. During the sedimentation of the particles, vibration is applied as much as possible to improve the filling. The obtained compact is frozen and demolded. Freezing is not limited as long as the water is frozen. The demolded molded body is fired in the air at a firing temperature of 1100 to 1500 ° C for 1 to 5 hours to produce a preform.

【0018】得られたプリフォームに窒素気流中で非加
圧、あるいは加圧して700〜1000℃の温度でAl
−Si−Mg系またはAl−Mg系などのアルミニウム
合金を浸透させた後、冷却して金属−セラミックス複合
材料を作製する。
The obtained preform is not pressurized or pressurized in a nitrogen stream at a temperature of 700 to 1000 ° C.
After infiltrating an aluminum alloy such as -Si-Mg or Al-Mg, the metal-ceramic composite material is produced by cooling.

【0019】以上の方法で金属−セラミックス複合材料
を作製すれば、金属の浸透時間が短縮され、また、メタ
ルベインの発生の少ない金属−セラミックス複合材料が
得られる。
When a metal-ceramic composite material is prepared by the above-described method, a metal-ceramic composite material having a reduced metal permeation time and less generation of metal vanes can be obtained.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0021】(実施例1〜4) (1)プリフォームの形成 強化材として#320(平均粒径40μm)の市販Al
23粉末を70重量部、#600(平均粒径20μ)の
市販Al23粉末を30重量部、それにイオン交換水を
40重量部、表1に示すバインダーを2.5重量部加え
てポットミルで16時間混合した。得られたスラリーを
200×200×厚さ20mmの成形体が得られるシリ
コーンゴム型に流し込み、振動を印加して沈降成形し
た。成形後、ゴム型ごと−30℃に冷凍して脱型した。
脱型後、1200℃で3時間焼成してプリフォームを形
成した。
(Examples 1 to 4) (1) Formation of preform Commercially available Al having # 320 (average particle size: 40 μm) as a reinforcing material
2 O 3 powder of 70 parts by weight, # 600 30 parts by weight of commercially available Al 2 O 3 powder (average particle size 20 [mu]), it 40 parts by weight of ion-exchanged water, binder 2.5 parts by weight of shown in Table 1 And mixed in a pot mill for 16 hours. The obtained slurry was poured into a silicone rubber mold from which a molded body of 200 × 200 × 20 mm in thickness was obtained, and subjected to sedimentation molding by applying vibration. After the molding, the whole rubber mold was frozen at -30 ° C and demolded.
After releasing from the mold, it was baked at 1200 ° C. for 3 hours to form a preform.

【0022】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−7Mgの合金をプリ
フォームの1.0重量倍量置き、825℃の窒素気流中
で45時間プリフォームに合金を浸透させて金属ーセラ
ミックス複合材料を作製した。
(2) Preparation of Metal-Ceramic Composite Material An Al-7Mg alloy was placed on the obtained preform in an amount 1.0% by weight of the preform, and the preform was formed in a nitrogen stream at 825 ° C. for 45 hours. A metal-ceramic composite material was produced by infiltrating the alloy.

【0023】(3)評価 得られたプリフォームの嵩密度をアルキメデス法で測定
し、プリフォームの粉末充填率を求めた。また、プリフ
ォームの外観を目視観察し、亀裂の有るものを×、亀裂
はないがササクレの有るものを△、亀裂もササクレも無
いものを○とした。さらに、そのプリフォームから切り
出した4×3×40mmの試験片を、JIS R 16
01(ファインセラミックスの曲げ強さ試験方法)によ
り3点曲げ強さを求めた。さらにまた、得られた複合材
料の外観を目視観察し、メタルベインの有るものを×、
メタルベインの無いものを○とした。また、プリフォー
ムと同様試験片を切り出し、3点曲げ強さをJIS R
1601により求めた。また、JIS R 1602
(ファインセラミックスの弾性率試験方法)に基づき超
音波パルス法でヤング率を求めた。さらに別にシェブロ
ンノッチを導入した試験片を作製し、JIS R 16
07(ファインセラミックスの破壊靱性試験方法)に準
じて破壊靱性値を求めた。それらの結果を表1に示す。
(3) Evaluation The bulk density of the obtained preform was measured by the Archimedes method, and the powder filling rate of the preform was determined. Further, the appearance of the preform was visually observed, and those having cracks were evaluated as ×, those without cracks but with cracks were marked with △, and those without cracks and cracks were marked with ○. Further, a 4 × 3 × 40 mm test piece cut out from the preform was subjected to JIS R 16
The three-point bending strength was determined by 01 (test method for bending strength of fine ceramics). Furthermore, the appearance of the obtained composite material was visually observed, and those having metal vanes were evaluated as ×,
A sample without metal vanes was marked with a circle. In addition, a test piece was cut out in the same manner as the preform, and the three-point bending strength was measured according to JIS R
1601. In addition, JIS R 1602
The Young's modulus was determined by an ultrasonic pulse method based on (Fine ceramics elastic modulus test method). Further, a test piece into which a chevron notch was introduced was prepared, and JIS R 16
The fracture toughness value was determined according to 07 (the method for testing the fracture toughness of fine ceramics). Table 1 shows the results.

【0024】(比較例1〜2)バインダーを表1のバイ
ンダーとし、その添加量を10重量部とした他は実施例
1と同様にしてプリフォームを形成し、複合材料を作製
した。プリフォームの粉末充填率、外観、曲げ強さおよ
び複合材料の外観、曲げ強さ、ヤング率、破壊靱性値を
実施例1と同様に求めた。それらの結果を表1に示す。
(Comparative Examples 1 and 2) A preform was formed in the same manner as in Example 1 except that the binder was used as the binder shown in Table 1 and the added amount was changed to 10 parts by weight to produce a composite material. The powder filling ratio, appearance, bending strength, and appearance, bending strength, Young's modulus, and fracture toughness of the preform were determined in the same manner as in Example 1. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、実施例において
は、外観には亀裂は認められず、粉末充填率はいずれも
60%前後以上であり、曲げ強さも1.5MPaより大
きく堅固なプリフォームとなっていた。また、そのプリ
フォームから作製された金属−セラミックスの複合材料
にはメタルベインが認められず、機械的特性も良好であ
った。
As is clear from Table 1, in the examples, no cracks were observed in the appearance, the powder filling ratio was around 60% or more, the bending strength was more than 1.5 MPa, and the solid preform was hard. Had become. The metal-ceramic composite material produced from the preform had no metal vanes and had good mechanical properties.

【0027】これに対して比較例では、プリフォームの
曲げ強さはいずれも実施例と同じような値であるが、亀
裂が認められた。そのプリフォームに金属を浸透させた
複合材料にはメタルベインが発生し、その部分の強度
(下段の値)はメタルベインの認められない部分の強度
(上段の値)に比べ低下していた。また、金属の浸透時
間は、実施例では48時間で完全に浸透していたが、比
較例では比較例1、2とも72時間以上ないと完全に浸
透されなかった。
On the other hand, in the comparative examples, the bending strengths of the preforms were all the same as those of the examples, but cracks were observed. Metal vanes were generated in the composite material in which the preform was impregnated with metal, and the strength of the portions (lower value) was lower than the strength of the portions where no metal vanes were observed (upper value). In addition, the metal permeation time was 48 hours in the example, but the metal did not completely penetrate in the comparative examples unless both the comparative examples 1 and 2 had 72 hours or more.

【0028】[0028]

【発明の効果】以上の方法で金属−セラミックス複合材
料を作製すれば、金属の浸透時間が短縮され、また、メ
タルベインの発生の少ないAl23粉末を強化材とする
金属−セラミックス複合材料が得られるようになった。
このことにより、他のセラミックス粉末を用いた複合材
料に比べ、強度や靱性などの材料特性が優れているの
で、その用途をさらに拡大できるものとして期待でき
る。
According to the present invention, a metal-ceramic composite material is prepared by the above-described method, and the metal permeation time is reduced, and a metal-ceramic composite material using Al 2 O 3 powder, which generates less metal bain, as a reinforcing material. Can be obtained.
As a result, since the material properties such as strength and toughness are superior to composite materials using other ceramic powders, the use thereof can be expected to be further expanded.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 一成 神奈川県大和市深見3204−7 (72)発明者 林 睦夫 埼玉県浦和市大牧560 (72)発明者 樋口 毅 東京都東久留米市氷川台1−3−9 (72)発明者 小山 富和 東京都北区浮間1−3−1−805 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazunari Naito 3204-7 Fukami, Yamato-shi, Kanagawa (72) Inventor Mutsumi Hayashi 560 Omaki, Urawa-shi, Saitama (72) Inventor Takeshi Higuchi Hikawadai, Higashi-Kurume-shi, Tokyo 1-3-9 (72) Inventor Tomiwa Koyama 1-3-1-805, Ukima, Kita-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス繊維または粒子を強化材と
してプリフォームを形成し、そのプリフォームに基材で
ある金属を浸透させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1〜1
50μmの平均粒径を有するAl23粉末100重量部
に対し、バインダーとして0.1〜100μmの平均粒
径を有するアルミナ−シリカ質を主成分とする無機粉末
を1〜10重量部加え成形した後、その成形体を110
0〜1500℃の温度で1〜5時間焼成する方法であ
り、その形成されたプリフォームにアルミニウムを主成
分とする合金を700〜1000℃の温度で浸透させる
ことを特徴とする金属−セラミックス複合材料の製造方
法。
1. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and a metal as a base material is permeated into the preform. ~ 1
To 100 parts by weight of Al 2 O 3 powder having an average particle diameter of 50 μm, 1 to 10 parts by weight of an inorganic powder mainly composed of alumina-silica having an average particle diameter of 0.1 to 100 μm is added as a binder and molded. After that, the molded body is
A method of firing at a temperature of 0 to 1500 ° C for 1 to 5 hours, wherein an alloy containing aluminum as a main component is infiltrated into the formed preform at a temperature of 700 to 1000 ° C. Material manufacturing method.
JP32974197A 1997-11-14 1997-11-14 Production of metal-ceramics composite Pending JPH11152530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32974197A JPH11152530A (en) 1997-11-14 1997-11-14 Production of metal-ceramics composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32974197A JPH11152530A (en) 1997-11-14 1997-11-14 Production of metal-ceramics composite

Publications (1)

Publication Number Publication Date
JPH11152530A true JPH11152530A (en) 1999-06-08

Family

ID=18224769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32974197A Pending JPH11152530A (en) 1997-11-14 1997-11-14 Production of metal-ceramics composite

Country Status (1)

Country Link
JP (1) JPH11152530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340801B1 (en) * 1999-10-06 2002-06-20 황해웅 Device and method for producing metal matrix composite materials by using wire-supplier
CN107032826A (en) * 2017-04-07 2017-08-11 西安明科微电子材料有限公司 A kind of preparation method of hollow alumina ball/SiC reinforcement Cu-base composites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340801B1 (en) * 1999-10-06 2002-06-20 황해웅 Device and method for producing metal matrix composite materials by using wire-supplier
CN107032826A (en) * 2017-04-07 2017-08-11 西安明科微电子材料有限公司 A kind of preparation method of hollow alumina ball/SiC reinforcement Cu-base composites

Similar Documents

Publication Publication Date Title
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
JPH11152530A (en) Production of metal-ceramics composite
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP4907777B2 (en) Metal-ceramic composite material
JPH11172348A (en) Metal-ceramics composite and its production
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH1180860A (en) Production of metal-ceramics composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JP4217278B2 (en) Method for producing metal-ceramic composite material
JPH10140263A (en) Production of metal-ceramics composite
JP3828622B2 (en) Method for producing metal-ceramic composite material
JP4217279B2 (en) Method for producing metal-ceramic composite material
JPH11264032A (en) Production of metal-ceramics composite material for casting
JPH11228261A (en) Material for heat sink and its production
JP4276304B2 (en) Method for producing metal-ceramic composite material
JPH1180859A (en) Metal-ceramics composite material and its production
JP4053110B2 (en) Metal-ceramic composite material
JP2000288714A (en) Production of metal-ceramics composite material
JPH10219369A (en) Composite material of ceramics and metal, and its production
JP2000054090A (en) Metal-ceramics composite and its manufacture
JPH11228262A (en) Metal-ceramic composite material and its production
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP4294882B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP2002249833A (en) Ceramics/metal composite material and its manufacturing method