KR100340801B1 - Device and method for producing metal matrix composite materials by using wire-supplier - Google Patents

Device and method for producing metal matrix composite materials by using wire-supplier Download PDF

Info

Publication number
KR100340801B1
KR100340801B1 KR1019990043069A KR19990043069A KR100340801B1 KR 100340801 B1 KR100340801 B1 KR 100340801B1 KR 1019990043069 A KR1019990043069 A KR 1019990043069A KR 19990043069 A KR19990043069 A KR 19990043069A KR 100340801 B1 KR100340801 B1 KR 100340801B1
Authority
KR
South Korea
Prior art keywords
metal
molten metal
wire
plasma
supplied
Prior art date
Application number
KR1019990043069A
Other languages
Korean (ko)
Other versions
KR20010036169A (en
Inventor
강석봉
이정무
윤상철
알렉세프세르게이
Original Assignee
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원 filed Critical 황해웅
Priority to KR1019990043069A priority Critical patent/KR100340801B1/en
Publication of KR20010036169A publication Critical patent/KR20010036169A/en
Application granted granted Critical
Publication of KR100340801B1 publication Critical patent/KR100340801B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

본 발명은 와이어 공급장치를 이용한 금속기지복합재료의 제조장치 및 방법에 관한 것으로서, 순금속이나 합금으로 이루어진 기지금속을 용해로에서 완전 용해하여 몰드(1)로 공급하고, 불활성가스를 플라즈마건(4)에서 해리시켜 플라즈마제트를 형성하며, 와이어공급장치(9)를 이용하여 강화재(强化材)로 구성된 와이어 코드(7)의 공급속도를 조절하면서 스풀(8)을 통해 상기 플라즈마건(4)에 부착된 와이어포트(5)로 이송시키고, 고온ㆍ고속의 플라즈마제트에 의해 형성된 분말을 용탕(12)에 투입하여 전자기 교반장치(11)로 이 혼합용탕을 회전교반하며, 교반된 용탕을 승ㆍ하강장치(3)로 상기 몰드(1)로부터 인출시킬 수 있어; 고융점금속 및 세라믹소재등 광범위한 강화입자가 사용될 수 있고, 강화재로 구성된 와이어 코드로서 공급되므로 플라즈마제트 발생장치의 전압 및 전류를 조절하면 강화분말의 크기를 다양하게 할 수 있으며, 전자기 교반장치를 이용하여 보다 균일한 혼합이 이루어질 수 있으므로 최종제품의 품질이 우수한 금속기지복합재료를 제조하는 장치 및 방법을 제공한다.The present invention relates to an apparatus and method for manufacturing a metal base composite material using a wire supply device, wherein a base metal made of pure metal or an alloy is completely dissolved in a melting furnace and supplied to a mold (1), and an inert gas is supplied to a plasma gun (4). Dissociate in to form a plasma jet, and attach to the plasma gun (4) through the spool (8) while controlling the feed rate of the wire cord (7) made of reinforcement material using the wire supply device (9). The molten metal is introduced into the molten metal 12, and the powder formed by the plasma jet of high temperature and high speed is introduced into the molten metal 12, and the mixed molten metal is rotated and stirred by the electromagnetic stirring apparatus 11, and the stirred molten metal is raised and lowered. Device 3 can be withdrawn from the mold 1; A wide range of reinforcing particles such as high melting point metals and ceramic materials can be used and supplied as a wire cord composed of reinforcing materials, so that the size of the reinforcing powder can be varied by controlling the voltage and current of the plasma jet generator, and using an electromagnetic stirring device. As a result, more uniform mixing may be achieved, thereby providing an apparatus and method for manufacturing a metal base composite having excellent quality of the final product.

Description

와이어 공급장치를 이용한 금속기지복합재료의 제조장치 및 방법{Device and method for producing metal matrix composite materials by using wire-supplier}Device and method for producing metal matrix composite materials by using wire-supplier}

본 발명은 와이어 공급장치를 이용한 금속기지복합재료의 제조장치 및 방법에 관한 것으로서, 더욱 상세하게는 와이어 공급장치를 이용하여 순금속이나 합금 강화재 와이어(wire) 혹은 세라믹분말을 포함하는 플렉시블 와이어(flexible wire)를 공급하되, 플라즈마를 이용하여 공급된 와이어를 분말형태로 만들어 용탕에 분사하여 혼합시키는 금속기지복합재료의 제조장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for manufacturing a metal base composite material using a wire feeder, and more particularly, to a flexible wire including a pure metal or an alloy reinforcement wire or a ceramic powder using a wire feeder. The present invention relates to an apparatus and method for manufacturing a metal base composite material, wherein a wire is supplied by using plasma, and powder is made into a powder to spray and mix the molten metal.

통상 금속이나 합금의 특성을 향상시키기 위해서, 강화입자(强化粒子)인 금속분말(metal powder)이나 세라믹분말(ceramic powder)을 금속기지(metal matrix) 내에 투입하여 제조한 합금을 금속기지복합재료라 한다. 그 예로서, 알루미늄합금에 융점이 높은 티타늄, 지르코늄, 망간 등을 첨가하거나, 순금속 및 합금(알루미늄, 마그네슘, 티타늄, 구리 등)내에 이종(異種)의 세라믹입자(SiC, Al2O3등)나 금속입자(철, 티타늄 등)를 강제로 혼합하여 용융금속의 기지내에 균일하게 분산시켜 제조한 복합재료를 들 수 있다.In order to improve the properties of metals or alloys, alloys prepared by incorporating metal powder or ceramic powder, which are reinforcing particles, into a metal matrix are called metal base composite materials. do. For example, titanium, zirconium, manganese, etc., which have a high melting point, may be added to an aluminum alloy, or different types of ceramic particles (such as SiC, Al 2 O 3 ) in pure metals and alloys (aluminum, magnesium, titanium, copper, etc.) may be used. And composite materials produced by forcibly mixing metal particles (iron, titanium, etc.) and uniformly dispersing them in the matrix of molten metal.

이와 같은 금속기지복합재료의 제조방법은 공정에 따라 고상법과 액상법으로 대별된다.The method for producing a metal base composite material is roughly classified into a solid phase method and a liquid phase method depending on the process.

고상법은 분말야금법에 의해 금속고체입자나 휘스커(whisker)상태의 세라믹분말을 기지용 금속분말과 균일하게 혼합한 상태에서, 냉간압축 또는 열간압축시킨 후 일정시간 소결(sintering)하는 방법이다. 이 방법은 금속기지내에 강화입자를 균일하게 혼합할 수 있는 장점이 있으나, 제조비용이 다른 방법에 비해 높다는 단점이 있다.The solid phase method is a method in which metal solid particles or whisker ceramic powders are uniformly mixed with a known metal powder by powder metallurgy, followed by cold compression or hot compression, followed by sintering for a predetermined time. This method has the advantage of uniformly mixing the reinforcing particles in the metal base, but has the disadvantage that the manufacturing cost is higher than other methods.

이를 해소하기 위한 액상법은, 종래의 금속주조법을 응용한 것으로서 알루미늄 및 마그네슘합금 등의 저융점의 기지금속 용탕에 이종의 세라믹분말이나 금속분말을 가압 또는 비가압상태에서 투입, 혼합하여 제조하는 방법이다. 이 방법은 염가로 부품을 대량 생산할 수 있다는 장점이 있으나, 분말 강화입자와 기지금속간의 젖음성 및 반응성의 문제로 인해 용융기지금속내에 첨가할 수 있는 강화입자의 종류, 크기 및 부피분율 등에 제한이 있을 뿐 아니라, 공공등의 주조결함이 발생되고 투입된 강화입자가 기지금속에 골고루 분산되지 않는 등 제조상의 어려움도 따랐다.The liquid phase method to solve this problem is a method of applying a conventional metal casting method, and is prepared by injecting and mixing heterogeneous ceramic powders or metal powders in a low-melting base metal molten metal such as aluminum and magnesium alloy under pressure or unpressurization. . This method has the advantage of being able to mass-produce parts at low cost, but there are limitations on the type, size and volume fraction of reinforcing particles that can be added to the molten base metal due to problems of wettability and reactivity between powder reinforcement particles and base metals. In addition, manufacturing defects have been followed, such as casting defects in the public light, and reinforcement particles introduced are not evenly dispersed in the base metal.

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 발명의 목적은 강화재료로서 제조단가가 높은 종래의 금속분말이나 분말형태로는 균일한 공급이 용이치 않은 세라믹분말을 금속와이어나 플렉시블 코드로 대체한 후, 고에너지원인 플라즈마제트를 이용하여 분말화시키고 용탕에 투입함으로써, 액상법에서의 단점을 극복하고 투입되는 입자의 종류 및 크기를 자유로이 조절할 수 있고, 균일한 혼합으로 품질이 우수한 금속기지복합재료의 제조장치 및 방법을 제공하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention is to reinforce a conventional metal powder or powder in the form of powder as a reinforcing material in the form of a metal wire or a flexible cord is not easy to supply uniformly After replacement, it is powdered by using plasma jet, which is a high energy source, and injected into the molten metal, thereby overcoming the disadvantages of the liquid phase method, and freely controlling the type and size of the injected particles. An apparatus and method for producing a material are provided.

도 1은 본 발명에 따른 금속기지복합재료의 제조장치를 도시하는 구성도,1 is a block diagram showing an apparatus for manufacturing a metal base composite material according to the present invention;

도 2는 본 발명 장치 및 방법에 의해 제조된 Al-30%Ti 복합재료의 미세조직도,Figure 2 is a microstructure of the Al-30% Ti composite material produced by the apparatus and method of the present invention,

도 3은 본 발명 장치 및 방법에 의해 제조된 Al-13%SiC 복합재료의 미세조직도.Figure 3 is a microstructure of the Al-13% SiC composite material produced by the apparatus and method of the present invention.

<도면부호의 설명><Description of Drawing>

1... 몰드 2... 전자기 교반장치1 ... mold 2 ... electromagnetic stirring device

3... 승ㆍ하강장치 4... 플라즈마건(plasma gun)3. Lifting and lowering device 4 ... Plasma gun

5... 와이어 포트(wire port) 6... 플라즈마발생 제어기5 ... wire port 6 ... plasma generator

7... 와이어 코드(wire cord) 8... 스풀(spool)7 ... wire cord 8 ... spool

9... 와이어 공급장치 10... 냉각장치9 ... wire supply 10 ... chiller

11... 냉각수 12... 용탕11 ... coolant 12 ... molten metal

상기한 목적을 달성하기 위해 본 발명은, 용해된 기지금속의 용탕이 수용되는 몰드와; 플라즈마 발생용 가스의 유량 및 속도를 조절하기 위해 플라즈마건에 연결되는 플라즈마발생 제어기와; 용탕을 교반하기 위해 상기 몰드의 외주에 설치한 전자기 교반장치와; 교반된 이 용탕을 인출하기 위한 승ㆍ하강장치와; 인출되는 용탕을 냉각하기 위한 냉각장치로 구성되는 것으로서; 강화재로 구성된 와이어 코드가 와이어 공급장치에 의해 속도가 조절되어 스풀을 통해 플라즈마건에 설치된 와이어 포트(wire port)로 공급되는 것을 특징으로 하는 금속기지복합재료의 제조장치를 제공한다.In order to achieve the above object, the present invention is a mold containing a molten metal of molten base metal; A plasma generation controller connected to the plasma gun for controlling the flow rate and velocity of the plasma generation gas; An electromagnetic stirring device installed on an outer circumference of the mold for stirring the molten metal; A raising and lowering device for pulling out the stirred molten metal; It is composed of a cooling device for cooling the molten metal drawn out; Provided is an apparatus for manufacturing a metal base composite material, characterized in that the wire cord made of a reinforcing material is controlled by a wire supply device and supplied to a wire port installed in a plasma gun through a spool.

또한, 본 발명은 기지금속을 용해로에서 완전 용해하는 단계와; 상기 용해된 기지금속의 용탕이 몰드로 공급되는 단계와; 불활성가스가 플라즈마건에서 해리되어 플라즈마제트가 형성되는 단계와; 강화재로 구성된 와이어 코드가 와이어공급장치에 의해 속도가 조절되고 스풀을 통해 상기 플라즈마건에 부착된 와이어포트로 공급되는 단계와; 공급된 와이어 코드가 상기 플라즈마제트에 의해 분말화되어 상기 용탕에 투입되는 단계와; 전자기 교반장치에 의해 용탕이 회전교반되는 단계와; 교반된 상기 용탕이 승ㆍ하강장치에 의해 수직으로 설치된 상기 몰드를 통해 인출되는 단계와; 냉각장치에 의해 인출되는 용탕이 냉각되는 단계를 특징으로 하는 와이어 공급장치를 이용한 금속기지복합재료의 제조방법을 제공한다.In addition, the present invention comprises the steps of completely dissolving the base metal in the melting furnace; Supplying the molten base metal with the molten metal to a mold; Dissociating the inert gas in the plasma gun to form a plasma jet; Supplying a wire cord composed of a reinforcing material to a wire port controlled by a wire supply device and through a spool to a wire port attached to the plasma gun; The supplied wire cord is powdered by the plasma jet and injected into the molten metal; Melting and rotating the molten metal by an electromagnetic stirring device; Drawing out the stirred molten metal through the mold installed vertically by a lifting device; Provided is a method for producing a metal base composite material using a wire feeder, characterized in that the molten metal drawn out by the cooling device is cooled.

이하, 상기의 목적을 구체적으로 실현할 수 있는 본 발명 구성의 바람직한 실시예를 첨부한 도 1을 참조하여 설명한다.Hereinafter, a preferred embodiment of the present invention configuration that can specifically realize the above object will be described with reference to FIG.

먼저, 기지(matrix)가 되는 금속이나 합금을 용해로(미도시)에 장입하고 융점 이상으로 가열하여 완전히 용해시킨 후, 몰드(1)에 붓는다.First, a metal or an alloy serving as a matrix is charged into a melting furnace (not shown), heated to a melting point or more, and completely dissolved, and then poured into the mold 1.

다음, 플라즈마발생 제어기(6)에 의해 압력 및 유량이 조절된 플라즈마용 가스(Ar, N2등 불활성가스)가 플라즈마건(plasma gun, 4)에 공급된다. 여기서 플라즈마용 가스의 공급유량은 그 종류에 따라 차이가 있는데, 아르곤(Ar)인 경우 50∼150 ℓ/min 정도이다.Next, the plasma gas (Ar, N 2, etc. inert gas) whose pressure and flow rate are adjusted by the plasma generation controller 6 are supplied to the plasma gun 4. Here, the supply flow rate of the plasma gas varies depending on the type thereof, and in the case of argon (Ar), it is about 50 to 150 l / min.

상기 플라즈마건(4)에서 아크가 발생되면 아크열에 의해 공급된 플라즈마용 가스는 해리되면서 플라즈마상태가 형성된다.When the arc is generated in the plasma gun 4, the plasma gas supplied by the arc heat is dissociated to form a plasma state.

한편, 금속와이어 또는 플렉시블 코드(7)는 와이어공급장치(9)로부터 스풀(8)을 통해 플라즈마건(4)에 설치된 와이어포트(wire port, 5)로 공급된다. 이와 같이 공급되는 와이어의 속도는 와이어공급장치(9)에 의해 제어되는데, 요구되는 강화재의 종류 및 크기에 따라 다르다. 예를 들면, 티타늄(Ti) 와이어의 경우 요구되는 강화재의 크기에 따라 5∼50 g/min의 속도로 공급된다. 와이어 공급속도가 너무 느리게 되면 와이어 끝 부분이 와이어포트(5)에 녹아 붙게 되고, 너무 빠르면 플라즈마제트에 의해 와이어가 제대로 녹지 않아 강화재 크기가 제어되기 어려워진다.On the other hand, the metal wire or flexible cord 7 is supplied from the wire supply device 9 to the wire port 5 installed in the plasma gun 4 through the spool 8. The speed of the wire supplied in this way is controlled by the wire supply device 9, which depends on the type and size of the reinforcement required. For example, titanium (Ti) wire is supplied at a rate of 5-50 g / min depending on the size of the reinforcement required. If the wire feed rate is too slow, the wire ends are melted in the wire port 5, and if too fast, the wire is not properly melted by the plasma jet, and thus the reinforcement size becomes difficult to control.

플라즈마제트가 분사되면 공급된 플렉시블 코드(7)의 외피막이 녹으면서 세라믹 강화재 분말이 주입된다. 혹은, 금속와이어를 사용할 경우에는 고온의 제트에 의해 분말상태로 되어 용탕(12)으로 고속주입된다.When the plasma jet is injected, the ceramic reinforcing powder is injected while the outer coating film of the supplied flexible cord 7 is melted. Alternatively, when metal wires are used, they are powdered by high temperature jets and injected into the molten metal 12 at high speed.

이 때, 몰드(1) 외부에 설치된 전자기 교반장치(2)를 구동시키면 이동자기장이 발생되고, 이로 인해 용탕(12)이 회전하므로 주입되는 강화입자를 용탕(12)내에 균일하게 분포시킬 수 있다. 또한, 전자기 교반장치(2)와 연결된 변압기(미도시)를 통해 40V, 10A에서 140V, 130A까지 전압 및 전류의 세기를 달리하여 공정에 따른 교반속도로 제어할 수 있다.At this time, when the electromagnetic stirring device 2 installed outside the mold 1 is driven, a moving magnetic field is generated, and as a result, the molten metal 12 rotates, thereby uniformly distributing the injected reinforcing particles in the molten metal 12. . In addition, it is possible to control the stirring speed according to the process by varying the strength of the voltage and current from 40V, 10A to 140V, 130A through a transformer (not shown) connected to the electromagnetic stirring device (2).

사전 설정된 강화입자의 분포를 가진 용탕이 최종 제조되면, 이 용탕은 몰드(1) 하부에 연결된 승ㆍ하강장치(3)에 의해 아래로 인출되면서, 냉각장치(10)로부터의 냉각수(11)에 의해 표면이 냉각되도록 구성되어 있다.When the molten metal having a predetermined distribution of the strengthening particles is finally produced, the molten metal is drawn down by the elevating and lowering device 3 connected to the lower part of the mold 1 to the cooling water 11 from the cooling device 10. It is configured to cool the surface.

상술(上述)한 바와 같은 본 발명 장치 및 방법에 따라 강화재분말이 제조되는 2종류의 실시예를 하기와 같이 설명한다.Two types of examples in which reinforcing material powders are prepared according to the present invention apparatus and method as described above will be described as follows.

(제1실시예)(First embodiment)

공급되는 순수 티타늄(Ti) 와이어를 플라즈마건(4)에서 발생된 고속의 플라즈마제트에 의해 분말형태로 만든 다음 순수 알루미늄(Al) 용탕에 고속으로 주입하여 Al-Ti복합재료를 제조하는 예이다.The pure titanium (Ti) wire is made into a powder form by the high-speed plasma jet generated from the plasma gun (4), and then injected into the pure aluminum (Al) molten metal at high speed to prepare an Al-Ti composite material.

도 1에 도시된 바와 같이, 순수 알루미늄을 용해로(미도시)에 장입하고 융점 이상으로 가열하여 완전히 용해시킨 후, 몰드(1)에 붓었다.As shown in Fig. 1, pure aluminum was charged into a melting furnace (not shown), heated to a melting point or higher, and completely dissolved, and then poured into the mold 1.

다음, 플라즈마용 1차 가스로서 아르곤(Ar)을 80ℓ/min로 공급하면서 100A의 전류 및 30V의 전압으로 초기 아크를 발생시킨 후, 다시 플라즈마용 2차 가스로서 질소(N2)를 45 ℓ/min로 공급하여 전류와 전압을 각각 500A, 65V로 증가시켜 아크의 길이와 속도를 증대시켰다. 상기 2차 가스는 전압을 증가시켜 플라즈마 아크의 출력을 향상시키는 역할을 수행한다.Next, an initial arc was generated at a current of 100 A and a voltage of 30 V while argon (Ar) was supplied at 80 L / min as the primary gas for plasma, and again 45 L / N of nitrogen (N 2 ) was used as the secondary gas for plasma. By supplying min, the current and voltage were increased to 500A and 65V, respectively, to increase the length and speed of the arc. The secondary gas serves to improve the output of the plasma arc by increasing the voltage.

이와 동시에, 와이어 공급장치(9)에 연결된 순수 티타늄 와이어(7)를 30g/min의 속도로 플라즈마건(4)에 부착된 와이어 포트(5)로 공급하였다.At the same time, the pure titanium wire 7 connected to the wire supply device 9 was supplied to the wire port 5 attached to the plasma gun 4 at a rate of 30 g / min.

발생된 아크의 고열에 의해 상기 플라즈마용 가스가 해리되면서 고온, 고속의 플라즈마제트가 발생되면, 상기 플라즈마건(4)에 공급되는 티타늄 와이어(7)가 녹으면서 분말상태로 되어 용탕에 고속으로 주입된다. 이 때, 몰드(1) 외부에 설치된 전자기 교반장치(2)를 구동시키고 이 장치(2)와 연결된 변압기를 통해 75V, 50A로 전압 및 전류를 공급함으로써, 용탕을 회전ㆍ교반시켜 강화입자를 용탕내에 균일하게 분포시켰다.When the plasma gas is dissociated by the high temperature of the generated arc and a high-temperature, high-speed plasma jet is generated, the titanium wire 7 supplied to the plasma gun 4 melts into powder and is injected into the molten metal at high speed. do. At this time, by driving the electromagnetic stirring device 2 installed outside the mold 1 and supplying voltage and current at 75 V and 50 A through a transformer connected to the device 2, the molten metal is rotated and stirred to melt the reinforcing particles. Evenly distributed in the.

Al-30%Ti의 강화입자 분포를 가진 용탕이 제조되면 몰드(1) 하부에 연결된 승ㆍ하강장치(3)를 이용하여 아래로 인출하면서 냉각수(11)를 분사하여 냉각하였다.When a molten metal having a reinforced particle distribution of Al-30% Ti was produced, the cooling water 11 was sprayed and cooled while being drawn down by using the raising and lowering device 3 connected to the lower part of the mold 1.

이와 같이 제조된 Al-30%Ti 복합재료의 미세조직 사진을 도 2에 도시하였다.A microstructure photograph of the Al-30% Ti composite material thus prepared is shown in FIG. 2.

조직도 중 어두운 부분은 티타늄 입자를 나타내고 밝은 부분은 알루미늄 기지금속을 나타내는 것으로서, 알루미늄기지 내에 티타늄 입자가 매우 균일하게 분포됨을 알 수 있다.The dark part of the organization chart represents titanium particles and the bright part represents aluminum base metal, and it can be seen that the titanium particles are very uniformly distributed in the aluminum base.

(제2실시예)Second Embodiment

공급되는 SiC 플렉시블 코드의 외피(外皮)를 플라즈마건(4)에서 발생된 고온, 고속의 플라즈마제트를 이용하여 녹이고, 남은 SiC 분말을 Al-6.5%Cu-1.7%Mn 합금의 용탕에 고속으로 주입하여 Al-SiC 복합재료를 제조하는 예이다.The outer shell of the supplied SiC flexible cord is melted using a high-temperature, high-speed plasma jet generated from the plasma gun 4, and the remaining SiC powder is injected into the molten Al-6.5% Cu-1.7% Mn alloy at high speed. Is an example of manufacturing an Al-SiC composite material.

도 1에 도시된 바와 같이, 먼저, 알루미늄, 구리, 망간, 마그네슘을 조성에 맞게 절단하여 용해로(미도시)에 장입하고 융점 이상으로 가열하여 완전히 용해시킨 후 몰드에 부었다.As shown in FIG. 1, first, aluminum, copper, manganese, and magnesium were cut to fit the composition, charged in a melting furnace (not shown), heated to a melting point or more, and completely dissolved, and then poured into a mold.

다음, 플라즈마용 1차 가스로서 아르곤(Ar)을 80ℓ/min로 공급하면서 100A의전류 및 30V의 전압으로 초기 아크를 발생시킨 후, 다시 플라즈마용 2차 가스로서 질소(N2)를 45 ℓ/min로 공급하여 전류와 전압을 각각 500A, 65V로 증가시켜 아크의 길이와 속도를 증대시켰다. 상기 2차 가스는 전압을 증가시켜 플라즈마 아크의 출력을 향상시키는 역할을 수행한다.Next, an initial arc was generated at a current of 100 A and a voltage of 30 V while argon (Ar) was supplied at 80 L / min as the primary gas for plasma, and again 45 L / N of nitrogen (N 2 ) was used as the secondary gas for plasma. By supplying min, the current and voltage were increased to 500A and 65V, respectively, to increase the length and speed of the arc. The secondary gas serves to improve the output of the plasma arc by increasing the voltage.

이와 동시에, 와이어 공급장치(9)에 연결된 SiC 플렉시블 코드를 10g/min의 속도로 플라즈마건(4)에 부착된 와이어 포트(5)로 공급하였다.At the same time, the SiC flexible cord connected to the wire supply device 9 was supplied to the wire port 5 attached to the plasma gun 4 at a rate of 10 g / min.

발생된 아크의 고열에 의해 상기 플라즈마용 가스가 해리되면서 고온, 고속의 플라즈마제트가 발생되면, 상기 플라즈마건(4)에 공급되는 플렉시블 코드(7)의 외피막이 녹고, 동시에 남아있는 세라믹분말이 용탕에 고속으로 주입된다. 이 때, 몰드(1) 외부에 설치된 전자기 교반장치(2)를 구동시키고 이 장치(2)와 연결된 변압기를 통해 75V, 50A로 전압 및 전류를 공급함으로써, 용탕을 회전ㆍ교반시켜 강화입자를 용탕내에 균일하게 분포시켰다.When the plasma gas is dissociated by the high temperature of the generated arc and a high-temperature, high-speed plasma jet is generated, the outer film of the flexible cord 7 supplied to the plasma gun 4 melts, and at the same time, the remaining ceramic powder is molten. Is injected at high speed. At this time, by driving the electromagnetic stirring device 2 installed outside the mold 1 and supplying voltage and current at 75 V and 50 A through a transformer connected to the device 2, the molten metal is rotated and stirred to melt the reinforcing particles. Evenly distributed in the.

Al-13%SiC의 강화입자 분포를 가진 용탕이 제조되면 몰드(1) 하부에 연결된 승ㆍ하강장치(3)를 이용하여 아래로 인출하면서 냉각수(11)를 분사하여 냉각하였다.When a molten metal having a distribution of reinforced particles of Al-13% SiC was produced, the cooling water 11 was sprayed and cooled while being pulled down by using the raising and lowering device 3 connected to the lower part of the mold 1.

이와 같이 제조된 Al-13%SiC 복합재료의 미세조직 사진을 도 3에 도시하였다.A microstructure photograph of the Al-13% SiC composite material thus prepared is shown in FIG. 3.

조직도 중 어두운 부분은 세라믹 입자를 나타내고 밝은 부분은 알루미늄 기지금속을 나타내는 것으로서, 알루미늄기지 내에 세라믹 입자가 매우 균일하게 분포됨을 알 수 있다.The dark part of the organization chart represents the ceramic particles and the bright part represents the aluminum matrix metal, and it can be seen that the ceramic particles are very uniformly distributed in the aluminum base.

상기한 바와 같은 구성의 본 발명에 따르면, 고온ㆍ고속의 플라즈마제트를 이용하여 분사하므로 Ni, Cu, Cr, Mo, Fe, Ti 등의 고융점금속 및 SiC, TiC, WC, Cr3C2, SiO2, Al2O3, Cr2O3, C, BN 등의 광범위한 강화입자를 사용할 수 있고, 이러한 강화재로 구성된 와이어 코드로서 연속공급하게 되므로 제조시간이 단축되며, 플라즈마제트 발생장치의 전압 및 전류를 조절함으로써 강화분말의 크기를 다양하게 할 수 있으며, 전자기 교반장치를 이용하여 보다 균일한 혼합을 할 수 있으므로 최종제품의 품질이 매우 우수하다는 잇점이 있다.According to the present invention having the above-described configuration, it is sprayed using a high-temperature, high-speed plasma jet, high melting point metals such as Ni, Cu, Cr, Mo, Fe, Ti and SiC, TiC, WC, Cr 3 C 2 , A wide range of reinforcing particles such as SiO 2 , Al 2 O 3 , Cr 2 O 3 , C, BN can be used, and the supply time is continuously supplied as a wire cord composed of such reinforcing materials. By controlling the current, the size of the reinforcement powder can be varied, and the uniformity of the final product can be obtained by using an electromagnetic stirring device.

Claims (2)

금속기지복합재료를 제조하는 장치에 있어서,In the apparatus for producing a metal base composite material, 용해된 기지금속의 용탕이 수용되는 몰드(1)와,A mold 1 in which molten metal of molten base metal is accommodated; 플라즈마발생 제어기(6)에 의해 유량 및 속도가 조절된 플라즈마 발생용 가스를 플라즈마제트로 형성하기 위한 플라즈마건(4)과,A plasma gun 4 for forming a plasma generating gas whose plasma flow rate and velocity are controlled by the plasma generating controller 6 into a plasma jet; 강화재로 구성된 와이어 코드(7)의 속도를 조절하여 공급하기 위한 와이어 공급장치(9)와,A wire supply device 9 for controlling and supplying a speed of the wire cord 7 composed of a reinforcing material, 이 와이어 공급장치(9)로부터 스풀(8)을 통해 공급되는 와이어 코드(7)를 최종 안내하기 위해 플라즈마건(4)에 설치되는 와이어포트(5)와,A wire port 5 installed in the plasma gun 4 for final guiding the wire cord 7 supplied from the wire supply device 9 through the spool 8, 용탕(12)을 교반하기 위해 상기 몰드(1)의 외주에 설치한 전자기 교반장치(2)와,An electromagnetic stirring device 2 installed on the outer circumference of the mold 1 for stirring the molten metal 12, 교반된 이 용탕(12)을 인출하기 위한 승ㆍ하강장치(3)와,A raising and lowering device 3 for pulling out the stirred molten metal 12, 인출되는 용탕을 냉각하기 위한 냉각장치(10)로 구성되는 와이어 공급장치를 이용한 금속기지복합재료의 제조장치.Apparatus for producing a metal base composite material using a wire supply device consisting of a cooling device (10) for cooling the molten metal drawn out. 기지금속을 용해로에서 완전 용해하는 단계와,Completely dissolving the base metal in the melting furnace, 상기 용해된 기지금속의 용탕이 몰드(1)로 공급되는 단계와,Supplying the molten matrix metal to the mold 1; 불활성가스가 플라즈마건(4)에서 해리되어 플라즈마제트가 형성되는 단계와,Inert gas is dissociated in the plasma gun (4) to form a plasma jet; 강화재로 구성된 와이어 코드(7)가 와이어공급장치(9)에 의해 속도가 조절되고 스풀(8)을 통해 상기 플라즈마건(4)에 부착된 와이어포트(5)로 공급되는 단계와,A wire cord 7 composed of a reinforcing material is regulated in speed by a wire supply device 9 and supplied through a spool 8 to a wire port 5 attached to the plasma gun 4, 공급된 와이어 코드(7)가 상기 플라즈마제트에 의해 분말화되어 상기 용탕(12)에 투입되는 단계와,The supplied wire cord 7 is powdered by the plasma jet and injected into the molten metal 12; 전자기 교반장치(2)에 의해 용탕이 회전교반되는 단계와,Molten metal is stirred by the electromagnetic stirring device (2); 교반된 상기 용탕이 승ㆍ하강장치(3)에 의해 수직으로 설치된 상기 몰드(1)를 통해 인출되는 단계와,The stirred molten metal is drawn out through the mold 1 installed vertically by the lifting and lowering device 3, 냉각장치(10)에 의해 인출되는 용탕이 냉각되는 단계를 특징으로 하는 와이어 공급장치를 이용한 금속기지복합재료의 제조방법.Method for producing a metal base composite material using a wire supply device characterized in that the molten metal drawn out by the cooling device (10) is cooled.
KR1019990043069A 1999-10-06 1999-10-06 Device and method for producing metal matrix composite materials by using wire-supplier KR100340801B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990043069A KR100340801B1 (en) 1999-10-06 1999-10-06 Device and method for producing metal matrix composite materials by using wire-supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990043069A KR100340801B1 (en) 1999-10-06 1999-10-06 Device and method for producing metal matrix composite materials by using wire-supplier

Publications (2)

Publication Number Publication Date
KR20010036169A KR20010036169A (en) 2001-05-07
KR100340801B1 true KR100340801B1 (en) 2002-06-20

Family

ID=19614205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990043069A KR100340801B1 (en) 1999-10-06 1999-10-06 Device and method for producing metal matrix composite materials by using wire-supplier

Country Status (1)

Country Link
KR (1) KR100340801B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485257B1 (en) * 2002-07-11 2005-04-25 한국기계연구원 A method for manufacturing aluminium based alloy using plasma
KR100782263B1 (en) * 2006-12-20 2007-12-04 주식회사 포스코 Apparatus for feeding ca-wire having anti-curling means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330863A (en) * 1997-05-28 1998-12-15 Suzuki Motor Corp Manufacture of mg-based composite material or mg alloy based composite material
JPH1143728A (en) * 1997-07-23 1999-02-16 Chichibu Onoda Cement Corp Production of metal-ceramics composite
JPH11152530A (en) * 1997-11-14 1999-06-08 Nippon Cement Co Ltd Production of metal-ceramics composite
KR19990055357A (en) * 1997-12-27 1999-07-15 이구택 Method for manufacturing metal composite materials using moving magnetic fields

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330863A (en) * 1997-05-28 1998-12-15 Suzuki Motor Corp Manufacture of mg-based composite material or mg alloy based composite material
JPH1143728A (en) * 1997-07-23 1999-02-16 Chichibu Onoda Cement Corp Production of metal-ceramics composite
JPH11152530A (en) * 1997-11-14 1999-06-08 Nippon Cement Co Ltd Production of metal-ceramics composite
KR19990055357A (en) * 1997-12-27 1999-07-15 이구택 Method for manufacturing metal composite materials using moving magnetic fields

Also Published As

Publication number Publication date
KR20010036169A (en) 2001-05-07

Similar Documents

Publication Publication Date Title
EP0427379B1 (en) Method for producing titanium particles
CN105132705B (en) The method and device of vacuum magnetic control electric arc remelting refining metal
US3829538A (en) Control method and apparatus for the production of powder metal
JPH0422563A (en) Method for casting dental metal
EP0358162B1 (en) Apparatus for producing metal powder
EP0907756B1 (en) Processing of electroslag refined metal
CN113909635A (en) Device and method for electric arc double-wire additive manufacturing under action of external longitudinal magnetic field
AU2020356227A1 (en) Device for atomizing a melt stream by means of a gas
KR100435000B1 (en) Die-casting process for rheocasting method and apparatus thereof
KR100340801B1 (en) Device and method for producing metal matrix composite materials by using wire-supplier
US20240200167A1 (en) Aluminum matrix composite with high strength, high toughness, high thermal conductivity, and good weldability for 5g base station and preparation method thereof
KR100306679B1 (en) Device and Method for producing metal matrix composite materials by using plasma source
CN110004332A (en) Al3Sc-Al3The preparation method of Zr/Al composite material inovulant
KR100442155B1 (en) Method of manufacturing material for magnesium alloy members and magnesium alloy members
JP2001108376A (en) Bottom casting type float melting apparatus
KR20190009000A (en) Two-stage melting and casting system and method
JP2004025302A (en) Method and apparatus for preparing alloy molten metal for casting process
JPH0353361B2 (en)
KR100485257B1 (en) A method for manufacturing aluminium based alloy using plasma
KR100351204B1 (en) Horizontal Continuous Casting Equipment for Fabrication of Metal Matrix Composites
JPH08332557A (en) Centrifugal casting apparatus
JP3140025B2 (en) Method for producing particle-dispersed aluminum alloy using high energy density heat source
CN106119618A (en) A kind of evanohm and powder metallurgy forming method thereof
KR20070024266A (en) Automatic fabrication system of rheology material with horizontality by using electro magnetic stirring equipment
JPH04305355A (en) Device for vacuum melting, solidifying metal of metallic base composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060605

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee