JP2784280B2 - Ceramic composite sintered body, method for producing the same, and sliding member - Google Patents

Ceramic composite sintered body, method for producing the same, and sliding member

Info

Publication number
JP2784280B2
JP2784280B2 JP3156826A JP15682691A JP2784280B2 JP 2784280 B2 JP2784280 B2 JP 2784280B2 JP 3156826 A JP3156826 A JP 3156826A JP 15682691 A JP15682691 A JP 15682691A JP 2784280 B2 JP2784280 B2 JP 2784280B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
silicon nitride
porous structure
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3156826A
Other languages
Japanese (ja)
Other versions
JPH059074A (en
Inventor
三郎 永野
政仁 中西
孝一 上坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3156826A priority Critical patent/JP2784280B2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Publication of JPH059074A publication Critical patent/JPH059074A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2784280B2 publication Critical patent/JP2784280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度を有するととも
に摺動特性に優れ、メカニカルシールや軸受等の摺動部
材に好適な複合焼結体およびこれを用いた摺動部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite sintered body having high strength and excellent sliding characteristics and suitable for sliding members such as mechanical seals and bearings, and a sliding member using the same.

【0002】[0002]

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較し
て、硬度、強度、靱性および化学的安定性等に優れる材
料として注目され、たとえば、メカニカルシール部品、
軸受部品、薬品用バルブ部材として用いられている。
2. Description of the Related Art Non-oxide ceramics represented by silicon carbide and silicon nitride have attracted attention as materials having excellent hardness, strength, toughness, chemical stability and the like as compared with other ceramics and metals. Mechanical seal parts,
It is used as bearing parts and valve members for chemicals.

【0003】しかしながら、窒化珪素および炭化珪素単
体では十分な摺動特性が得られないことから、窒化珪素
粉末や炭化珪素粉末に対して、焼結助剤としてAl2
3 や周期律表第3a族元素酸化物、あるいは炭素および
4 C等を添加すると同時にグラファイトやBN等の固
体潤滑材を添加し、これを真空中あるいは不活性雰囲気
中で焼成することにより、窒化珪素や炭化珪素からなる
マトリックス中に前記固体潤滑材を均一分散させ、これ
によりその焼結体表面における摺動特性を高めることが
行われている。
However, since silicon nitride and silicon carbide alone cannot provide sufficient sliding characteristics, Al 2 O 3 is used as a sintering aid for silicon nitride powder or silicon carbide powder.
By adding a solid lubricant such as graphite or BN at the same time as adding the element oxide of group 3 or the element of group 3a of the periodic table, or carbon and B 4 C, and baking this in a vacuum or in an inert atmosphere, It has been practiced to uniformly disperse the solid lubricant in a matrix made of silicon nitride or silicon carbide, thereby improving the sliding characteristics on the surface of the sintered body.

【0004】[0004]

【発明が解決しようとする問題点】摺動特性を高めるた
めには、焼結体表層部における固体潤滑材の量が多い方
が望ましいが、固体潤滑材を多量に添加すると、焼結体
自体の緻密化が阻害されるとともに、いわゆる骨材とし
てのセラミックス自体の強度が低くなるために摺動部材
として割れや欠け等が生じやすくなるという問題があっ
た。そのために固体潤滑材の添加量にもおのずと制限が
あった。
In order to enhance the sliding characteristics, it is desirable that the amount of the solid lubricant in the surface layer of the sintered body is large. And the strength of the ceramic itself as a so-called aggregate is reduced, so that the sliding member is liable to be cracked or chipped. Therefore, the amount of the solid lubricant added was naturally limited.

【0005】また製法上、固体潤滑材自体の分散を均一
に行う必要があり、場合によっては焼結体内部の固体潤
滑材が焼結体の破壊源となり、強度を低下させるという
問題がある。しかも窒化珪素をマトリックスとした固体
潤滑材として分散した焼結体では、その窒化珪素結晶の
粒界に焼結助剤として添加した金属酸化物が存在するた
めに耐薬品性が悪く、その使用範囲が限定されるという
問題もある。
[0005] In addition, it is necessary to uniformly disperse the solid lubricant itself in the manufacturing method, and in some cases, the solid lubricant inside the sintered body acts as a destruction source of the sintered body, resulting in a problem that the strength is reduced. Moreover, a sintered body dispersed as a solid lubricant containing silicon nitride as a matrix has poor chemical resistance due to the presence of a metal oxide added as a sintering aid at the grain boundaries of the silicon nitride crystal. There is also a problem that is limited.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、骨材として炭化珪素を
用いた系において、炭化珪素粒子により3次元的な網目
構造よりなる多孔質組織を形成し、その炭化珪素粒子の
空隙部を窒化珪素及び炭素により充たすことにより、優
れた機械的強度と摺動特性が得られ、さらに、組織中に
分散含有させる炭素を内部よりも焼結体表層部に多く存
在させ、内部における固体潤滑材の量を小さくすること
により焼結体自体の強度を低下させることなく、表層部
における摺動性を向上することができ、これにより各種
の摺動部材として信頼性の高い安定した特性を発揮する
ことができることを見出したものである。
Means for Solving the Problems The inventors of the present invention have studied the above problems, and as a result, have found that in a system using silicon carbide as an aggregate, a three-dimensional network structure is formed by silicon carbide particles. By forming a porous structure of the silicon carbide particles and filling the voids of the silicon carbide particles with silicon nitride and carbon, excellent mechanical strength and sliding characteristics are obtained. Even in the surface layer portion of the sintered body, it is possible to improve the slidability in the surface layer portion without reducing the strength of the sintered body itself by reducing the amount of the solid lubricant inside the sintered body, thereby It has been found that various sliding members can exhibit highly reliable and stable characteristics.

【0007】本発明は、セラミックス焼結体における摺
動特性が、焼結体の表層部の構造および組織に支配され
る特性であり、また焼結体内部は、いわゆる摺動に対す
る支持部材的な作用をなすという考え方から、摺動性を
向上させる成分である炭素等を保持する骨材部を炭化珪
素結晶を主体とする3次元的な網目構造よりなる多孔質
より形成し、その空隙部にて炭素等の固体潤滑材を保持
する構造よりなることを大きな特徴とするものである。
この骨材成分は、炭化珪素、または炭化珪素と窒化珪素
との複合体からなるもので、これらのセラミックスは、
それ自体強度が高く、また摺動特性の点において他のセ
ラミックスに比較して優れた性質を有する。
According to the present invention, the sliding characteristics of a ceramic sintered body are characteristics that are governed by the structure and structure of the surface layer portion of the sintered body. From the viewpoint of acting, the aggregate part holding carbon and the like, which is a component improving the slidability, is formed of a porous material having a three-dimensional network structure mainly composed of silicon carbide crystals, and the void part is formed in the void part. It is characterized by having a structure that holds a solid lubricant such as carbon.
This aggregate component is composed of silicon carbide or a composite of silicon carbide and silicon nitride.
As such, it has high strength and excellent properties in terms of sliding characteristics as compared with other ceramics.

【0008】また、本発明によれば、摺動特性を大きく
向上させるために添加される固体潤滑材を図1に示すよ
うに、焼結体の表層部から内部にかけての固体潤滑材が
少なくなるようにしたことを特徴とする。特に焼結体内
部は、摺動特性に関与しないという観点から、実質的に
固体潤滑材が含有されていなくてもよく、骨材成分であ
る炭化珪素や窒化珪素からなることがよい。
Further, according to the present invention, as shown in FIG. 1, the amount of the solid lubricant added from the surface to the inside of the sintered body is reduced as shown in FIG. It is characterized by doing so. In particular, from the viewpoint that the inside of the sintered body does not contribute to the sliding characteristics, a solid lubricant may not be substantially contained, and it is preferable that the sintered body be made of silicon carbide or silicon nitride which is an aggregate component.

【0009】しかしながら、焼結体表層部から内部にか
けて、その組成や組織が急変すると、その境界部分に特
性の相違により応力が発生しやすく、割れや欠け等を生
じることがあるために、表層部より内部にかけて図1に
示すように、固体潤滑材の量は徐々に少なくなるように
構成することがよい。
However, if the composition or the structure changes suddenly from the surface layer portion of the sintered body to the inside, stress is likely to be generated due to a difference in characteristics at the boundary portion, and cracks or chips may occur. As shown in FIG. 1, it is preferable that the amount of the solid lubricant gradually decreases toward the inside.

【0010】本発明のセラミックス複合焼結体を得る方
法について説明すると、従来のように炭化珪素や窒化珪
素等の骨材成分に対して固体潤滑材粉末を混合し焼成す
る方法では、均一組織となり、本発明の構成である表層
部と内部において固体潤滑材の含有量の異なる組織は形
成されない。
The method of obtaining a ceramic composite sintered body according to the present invention will be described. In the conventional method of mixing a solid lubricant powder with an aggregate component such as silicon carbide or silicon nitride and firing it, a uniform structure is obtained. A structure having different solid lubricant contents is not formed between the surface layer portion and the inside according to the present invention.

【0011】そこで、本発明によれば、まず原料粉末と
して炭化珪素粉末を準備する。用いる炭化珪素粉末とし
てはα−SiC、β−SiCのいずれか、またはこれら
を混合して使用することもできる。炭化珪素粉末の平均
粒径は0.1〜2μm が適当である。また上記炭化珪素
粉末に対しては焼結助剤を添加する。焼結助剤として
は、硼素およびB4 C等の硼素含有化合物、AlN等の
アルミニウム化合物、炭素あるいは焼成により炭素を生
成することのできる有機化合物等など一般に知られてい
る炭化珪素用焼結助剤が使用できる。
Therefore, according to the present invention, first, silicon carbide powder is prepared as a raw material powder. As the silicon carbide powder to be used, any of α-SiC and β-SiC, or a mixture thereof can be used. The average particle size of the silicon carbide powder is suitably from 0.1 to 2 μm. A sintering aid is added to the silicon carbide powder. Examples of the sintering aid include commonly known sintering aids for silicon carbide, such as boron and boron-containing compounds such as B 4 C, aluminum compounds such as AlN, carbon and organic compounds capable of producing carbon by firing. Agents can be used.

【0012】上記炭化珪素粉末と、場合により上記焼結
助剤を添加し、充分に混合した後、上記粉末にバインダ
ー等を添加し、周知の成形方法、たとえばプレス成形、
押出成形、鋳込み成形、冷間静水圧成形等により所望の
形状に成形する。成形体は、不活性雰囲気、真空中で仮
焼し、開気孔率の高い多孔質体とする。この多孔質体
は、炭化珪素結晶が3次元的に繋がった網目構造からな
る。
After the above-mentioned silicon carbide powder and, if necessary, the above-mentioned sintering aid are added and thoroughly mixed, a binder or the like is added to the above-mentioned powder, and a known molding method, for example, press molding,
It is formed into a desired shape by extrusion, casting, cold isostatic pressing, or the like. The molded body is calcined in an inert atmosphere and in a vacuum to form a porous body having a high open porosity. This porous body has a network structure in which silicon carbide crystals are connected three-dimensionally.

【0013】次に、上記のようにして得られた多孔質体
を焼成するが、本発明によれば、この焼成を下記化1
Next, the porous body obtained as described above is fired. According to the present invention, this firing is carried out by the following chemical formula 1.

【0014】[0014]

【化1】 3SiC+2N2 → Si3 4 +3C で示されるように炭化珪素と窒素の反応により窒化珪素
および炭素が生成可能な雰囲気中で焼成する。具体的に
は、1000℃以上、特に1500℃以上の温度にて、
雰囲気中に窒素ガスを必須成分として含むとともに該窒
素ガス圧力が50気圧以上で焼成することにより化1の
反応を進行させることができる。
Embedded image As shown by 3SiC + 2N 2 → Si 3 N 4 + 3C, firing is performed in an atmosphere in which silicon nitride and carbon can be generated by a reaction between silicon carbide and nitrogen. Specifically, at a temperature of 1000 ° C. or more, particularly 1500 ° C. or more,
The reaction of Chemical Formula 1 can be advanced by including nitrogen gas as an essential component in the atmosphere and firing at a nitrogen gas pressure of 50 atm or more.

【0015】かかる製造法において、焼成前の多孔質体
は、その開気孔率が5〜25%程度が望ましい。これ
は、開気孔率が5%より小さいと窒化珪素および炭素の
生成が少なくなり、摺動特性が充分でなく、また、25
%より大きいと、骨材としての強度が弱く焼結体の機械
的特性が低下し、また上記式で表される反応による窒化
珪素と炭素の生成によって空隙部が充分に充填されず、
ポアが残存し摺動特性が低下する。
In such a production method, the porous body before firing preferably has an open porosity of about 5 to 25%. This is because, if the open porosity is less than 5%, the production of silicon nitride and carbon is reduced, and the sliding characteristics are not sufficient.
%, The mechanical strength of the sintered body is reduced due to the low strength as the aggregate, and the voids are not sufficiently filled by the formation of silicon nitride and carbon by the reaction represented by the above formula,
Pore remains and sliding characteristics deteriorate.

【0016】この焼成によれば、窒素ガスと接する炭化
珪素表面で上記化1の反応が進み、反応により生成され
る窒化珪素および炭素により多孔質体の空隙部が充たさ
れ、表面の緻密化が進む。
According to this baking, the reaction of the above chemical formula 1 proceeds on the surface of the silicon carbide in contact with the nitrogen gas, and the voids of the porous body are filled with silicon nitride and carbon generated by the reaction, thereby densifying the surface. Advances.

【0017】また、焼結体の表層部において特に上記反
応が活発に生じるために、焼結体表層部の上記化1によ
る反応生成物、即ち、炭素と窒化珪素は内部よりも表層
部の方が多くなるという特異的焼結体が形成される。こ
れにより、表層部から内部にかけて骨材である炭化珪素
および窒化珪素の量比が変化することが挙げられ、炭化
珪素/(窒化珪素+炭化珪素)で表される組成比は表層
部から内部にかけて大きくなる。
In addition, since the above-mentioned reaction is particularly active in the surface layer of the sintered body, the reaction product of the surface layer of the sintered body, ie, carbon and silicon nitride, are more likely to be present in the surface layer than in the interior. , A specific sintered body is formed. As a result, the amount ratio of silicon carbide and silicon nitride as the aggregate changes from the surface layer portion to the inside, and the composition ratio expressed as silicon carbide / (silicon nitride + silicon carbide) changes from the surface layer portion to the inside. growing.

【0018】この焼結のメカニズムについては定かでは
ないが、高温高圧下の窒素雰囲気中で、炭化珪素粒子の
表面から窒化珪素への反応が進行し、それに伴い体積膨
張が生じ、それによりある程度緻密化が進行し、一旦表
層部に緻密層が生じると焼結体内部への窒素ガスの進入
が抑制されるために、結果として表層部、内部ともに気
孔率5%以下の緻密体となるものの、表層部と内部にお
いてほぼ連続的に異なる組織が形成されると考えられ
る。
The mechanism of the sintering is not clear, but the reaction of silicon carbide particles to silicon nitride proceeds from the surface of the silicon carbide particles in a nitrogen atmosphere under high temperature and high pressure, resulting in a volume expansion, thereby increasing the density to some extent. When the formation progresses and a dense layer is once formed in the surface layer portion, the entry of nitrogen gas into the inside of the sintered body is suppressed, and as a result, the surface layer portion and the inside become a dense body with a porosity of 5% or less, It is considered that a different structure is formed almost continuously between the surface layer and the inside.

【0019】[0019]

【作用】本発明によれば、炭素などの固体潤滑材を保持
する骨材を炭化珪素からなる3次元的な網目構造より構
成することにより焼結体全体としての強度を高めること
ができる。また、しかも表層部における固体潤滑材であ
る炭素量を焼結体表層部のみに多く存在させることによ
り、焼結体全体としての強度を低下させることがなく、
表層部において比較的多量の炭素が存在しても内部にお
ける強度が高いことから摺動部材としても安定した摺動
特性を発揮することができる。しかも、表層部から内部
にかけての組織的な変化がほぼ連続的に形成されている
ことから、焼結体内での特性の相違により発生する応力
を低減することができる。
According to the present invention, the strength of the entire sintered body can be increased by forming the aggregate holding the solid lubricant such as carbon from a three-dimensional network structure made of silicon carbide. Moreover, by increasing the amount of carbon, which is a solid lubricant in the surface layer portion, only in the surface layer portion of the sintered body, the strength of the entire sintered body is not reduced,
Even if a relatively large amount of carbon is present in the surface layer portion, the strength inside is high, so that the sliding member can exhibit stable sliding characteristics. Moreover, since the structural change from the surface layer portion to the inside is formed almost continuously, the stress generated due to the difference in the characteristics in the sintered body can be reduced.

【0020】また、骨材成分である炭化珪素粒子同士が
結合した組織であるために、焼結体自体の熱伝導率を高
めることができ、これにより摺動時に発生した熱を効率
的に放熱することもできる。さらに炭素を内部において
も適量存在させることにより焼結体全体の電気抵抗を小
さくすることができ、これにより放電加工を行うことが
できる。
In addition, since the structure has a structure in which silicon carbide particles, which are aggregate components, are bonded to each other, the thermal conductivity of the sintered body itself can be increased, so that heat generated during sliding can be efficiently radiated. You can also. Furthermore, the electric resistance of the entire sintered body can be reduced by allowing an appropriate amount of carbon to be present in the inside, whereby electric discharge machining can be performed.

【0021】また、焼結体表層部において、化1に示さ
れる反応を進行させ、炭化珪素の骨材からなる多孔質の
空隙部に多量の窒化珪素および炭素を形成させることに
より耐熱衝撃性および靱性に優れた表層部が形成され
る。
Further, in the surface layer portion of the sintered body, the reaction shown in Chemical Formula 1 is advanced to form a large amount of silicon nitride and carbon in the porous void portion made of the aggregate of silicon carbide, so that the thermal shock resistance and A surface layer having excellent toughness is formed.

【0022】また、通常の窒化珪素質焼結体によれば、
窒化珪素結晶粒子間に焼結助剤として用いられた金属酸
化物が粒界相として存在するが、この焼結体の表層部で
は、窒化珪素及び炭化珪素結晶粒子間に金属酸化物が実
質的に存在しないことも大きな特徴であり、耐薬品性を
高めることができ、摺動部材として適用範囲を広げるこ
とができる。
According to a normal silicon nitride sintered body,
The metal oxide used as a sintering aid exists between the silicon nitride crystal grains as a grain boundary phase, but in the surface layer portion of the sintered body, the metal oxide substantially exists between the silicon nitride and the silicon carbide crystal grains. Is also a major feature of the present invention, whereby the chemical resistance can be increased and the range of application as a sliding member can be expanded.

【0023】[0023]

【実施例】β−SiC粉末(平均粒径0.4μm 、酸素
含有量0.1重量%)に対して、成形用バインダーとし
てレゾール型フェノール樹脂20%溶液を適量添加し、
さらに溶媒としてアセトンを適量添加し、混練乾燥後、
篩を通して成形用顆粒を得た。この顆粒を金型プレスを
用いて成形圧2000kg/cm2 で外径60mm、厚
み10mmの円板状成形体を作成した。
EXAMPLE To a β-SiC powder (average particle size 0.4 μm, oxygen content 0.1% by weight), an appropriate amount of a resol type phenol resin 20% solution was added as a molding binder,
Further, an appropriate amount of acetone is added as a solvent, and after kneading and drying,
The granules for molding were obtained through a sieve. The granules were formed into a disk-shaped molded body having an outer diameter of 60 mm and a thickness of 10 mm at a molding pressure of 2000 kg / cm 2 using a mold press.

【0024】次に成形体を所定形状に生加工した後、不
活性雰囲気(Ar気流中) で2000℃で1時間焼成し
た。この仮焼体を表1に示したN2 圧力、焼成温度、焼
成時間に設定し焼成を行った。
Next, the green body was green-processed into a predetermined shape, and then fired at 2000 ° C. for 1 hour in an inert atmosphere (in an Ar gas stream). The calcined body was fired by setting the N 2 pressure, firing temperature and firing time shown in Table 1.

【0025】得られた焼結体に対して、アルキメデス法
により密度および焼結体の開気孔率を測定し、また表層
の構成相をX線回折測定分析にて行った。さらに焼上げ
面より0.2mm削りおとした面の摺動性評価を行っ
た。摺動特性評価は、表面をラップ仕上げしたφ50m
mの円板にSUSII鋼球を固定ピンとして接触させ、試
料円板を回転させ、その接触負荷と摩擦力を測定するこ
とによって摩耗係数を求めた。テスト終了後、同試料の
面を用いてビッカース硬度を計測した。また、得られた
焼結体の組織を電子顕微鏡により観察し3次元的な網目
構造の有無を確認した。さらに焼結体の強度をJISR
1601により測定した。その結果を表2に示した。
With respect to the obtained sintered body, the density and the open porosity of the sintered body were measured by the Archimedes method, and the constituent phases of the surface layer were analyzed by X-ray diffraction analysis. Further, the slidability of the surface which was cut down by 0.2 mm from the baked surface was evaluated. Sliding characteristics evaluation: φ50m with surface lap finished
The SUSII steel ball was brought into contact with the m-shaped disc as a fixing pin, the sample disc was rotated, and the contact load and the frictional force were measured to determine the wear coefficient. After the test, Vickers hardness was measured using the surface of the sample. Further, the structure of the obtained sintered body was observed with an electron microscope to confirm the presence or absence of a three-dimensional network structure. In addition, the strength of the sintered body
1601. The results are shown in Table 2.

【0026】次に、比較例として、β−SiC粉末(平
均粒径0.4μm )100重量部にB4 C粉末を0.4
重量部添加混合する以外は前記の方法と全く同様にして
成形体を作成し、その後、2050℃で真空中で1時間
焼成を行い、緻密な炭化珪素質焼結体を作成し、前記と
同様に各種特性の測定および摺動評価を行った(表中、
試料No,1)。
Next, as a comparative example, 0.4 parts of B 4 C powder was added to 100 parts by weight of β-SiC powder (average particle size: 0.4 μm).
Except for adding and mixing parts by weight, a molded body was prepared in exactly the same manner as described above, and then fired at 2050 ° C. for 1 hour in a vacuum to produce a dense silicon carbide sintered body. The various properties were measured and the sliding was evaluated (in the table,
Sample No, 1).

【0027】また、表中、試料No,3に対して、表面か
ら内部への組成分布を測定し、炭化珪素と窒化珪素との
組成分布ならび硬度分布を図1に、炭素量の変化を図2
に示した。
In the table, the composition distribution from the surface to the inside of the sample No. 3 was measured, and the composition distribution and the hardness distribution of silicon carbide and silicon nitride are shown in FIG. 2
It was shown to.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1および表2によれば、従来の炭化珪素
からなる焼結体では、摺動特性として摩擦係数は0.4
〜0.5であるのに対して、本発明品はいずれも摩擦係
数が0.2以下のレベルを達成することができ、いずれ
の焼結体のJISR1601による抗折強度を測定した
ところ、40kg/mm2 以上が達成された。
According to Tables 1 and 2, in the case of a conventional sintered body made of silicon carbide, the coefficient of friction as a sliding property is 0.4.
On the other hand, the friction coefficient of any of the products of the present invention was 0.2 or less, and the bending strength according to JISR1601 was measured. / Mm 2 or higher.

【0031】また、図1および図2によれば、焼結体表
面部で炭素および窒化珪素が内部よりも多量に存在して
いることがわかる。また、硬度分布によれば、焼結体表
面部は内部よりもわずかに硬度が低く、表面より0.5
mm付近に硬度の最大となる部位が存在することがわか
る。
FIGS. 1 and 2 show that carbon and silicon nitride are present in a larger amount on the surface of the sintered body than on the inside. According to the hardness distribution, the hardness of the surface of the sintered body is slightly lower than that of the inside and 0.5% lower than the surface.
It can be seen that there is a portion having a maximum hardness near mm.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明のセラミック
ス複合焼結体は、高強度を有しつつその表面の摩擦係数
が非常に小さいものであり、それにより、メカニカルシ
ールや軸受等の摺動部材への適用において優れた摺動特
性が発揮されるとともに部材の長寿命化を図ることがで
きる。
As described in detail above, the ceramic composite sintered body of the present invention has a high strength and a very small coefficient of friction on its surface. When applied to a moving member, excellent sliding characteristics can be exhibited, and the life of the member can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックス複合焼結体の表層部から
の深さに対する炭化珪素および窒化珪素の組成分布およ
び硬度分布を示す図である。
FIG. 1 is a diagram showing a composition distribution and a hardness distribution of silicon carbide and silicon nitride with respect to a depth from a surface layer portion of a ceramic composite sintered body of the present invention.

【図2】本発明のセラミックス複合焼結体の表層部から
の深さに対する炭素分布を示す図である。
FIG. 2 is a view showing a carbon distribution with respect to a depth from a surface layer portion of the ceramic composite sintered body of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−235767(JP,A) 特開 平4−270174(JP,A) 特開 平4−254473(JP,A) 特開 平2−44085(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/565──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-235767 (JP, A) JP-A-4-270174 (JP, A) JP-A-4-254473 (JP, A) JP-A-2- 44085 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 35/565

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも炭化珪素、窒化珪素および遊
離炭素からなり、前記炭化珪素が3次元的に繋がった多
孔質組織をなし、且つ該多孔質組織の空隙部が窒化珪素
および遊離炭素により占められていることを特徴とする
セラミック複合焼結体。
1. A porous structure comprising at least silicon carbide, silicon nitride and free carbon, wherein said silicon carbide forms a three-dimensionally connected porous structure, and a void portion of said porous structure is occupied by silicon nitride and free carbon. A ceramic composite sintered body characterized in that:
【請求項2】 焼結体表層部における窒化珪素および遊
離炭素の量が内部より多い組成からなる請求項1記載の
セラミック複合焼結体。
2. The ceramic composite sintered body according to claim 1, wherein the amount of silicon nitride and free carbon in the surface layer portion of the sintered body has a composition larger than that of the inside.
【請求項3】 炭化珪素粉末を主成分とする成形体を不
活性雰囲気で焼結し、多孔質組織の炭化珪素質焼結体を
得た後、該焼結体を炭化珪素が窒化する窒素ガス圧力下
で加圧熱処理し、前記多孔質組織の空隙部に窒化珪素お
よび遊離炭素を析出させたことを特徴とするセラミック
複合焼結体の製法。
3. A sintered body comprising silicon carbide powder as a main component is sintered in an inert atmosphere to obtain a silicon carbide sintered body having a porous structure. A method for producing a ceramic composite sintered body, comprising performing a pressure heat treatment under a gas pressure to precipitate silicon nitride and free carbon in voids of the porous structure.
【請求項4】 炭化珪素および窒化珪素を主成分とし、
硼素及び/又はアルミニウムの炭化物及び/または窒化
物、ならびに遊離炭素を分散含有するとともに、前記炭
化珪素質結晶が3次元的に繋がった多孔質組織をなし、
且つ該多孔質組織の空隙部が窒化珪素および遊離炭素に
より占められたセラミック複合焼結体よりなる摺動部
材。
4. A composition comprising silicon carbide and silicon nitride as main components,
A carbide and / or nitride of boron and / or aluminum and free carbon dispersed therein, and the silicon carbide-based crystal forms a three-dimensionally connected porous structure;
A sliding member comprising a ceramic composite sintered body in which voids of the porous structure are occupied by silicon nitride and free carbon.
JP3156826A 1991-01-31 1991-06-27 Ceramic composite sintered body, method for producing the same, and sliding member Expired - Fee Related JP2784280B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3156826A JP2784280B2 (en) 1991-06-27 1991-06-27 Ceramic composite sintered body, method for producing the same, and sliding member
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156826A JP2784280B2 (en) 1991-06-27 1991-06-27 Ceramic composite sintered body, method for producing the same, and sliding member

Publications (2)

Publication Number Publication Date
JPH059074A JPH059074A (en) 1993-01-19
JP2784280B2 true JP2784280B2 (en) 1998-08-06

Family

ID=15636197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156826A Expired - Fee Related JP2784280B2 (en) 1991-01-31 1991-06-27 Ceramic composite sintered body, method for producing the same, and sliding member

Country Status (1)

Country Link
JP (1) JP2784280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756411A (en) * 1994-12-28 1998-05-26 Sumitomo Electric Industries, Ltd. Sintered body of silicon nitride and method of producing the same

Also Published As

Publication number Publication date
JPH059074A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US8697259B2 (en) Boron carbide composite materials
JPH0662338B2 (en) Silicon carbide / Graphite / Carbon composite ceramic body
Zawrah et al. Liquid-phase sintering of SiC in presence of CaO
US4019913A (en) Process for fabricating silicon carbide articles
WO1993025495A1 (en) Porous silicon carbide
US5462813A (en) Composite ceramic sintered material
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US4990469A (en) Refractory material and process for production of the same
Gordeev et al. Low-pressure fabrication of diamond–SiC–Si composites
KR101272986B1 (en) Boron suboxide composite material
Nino et al. Effect of added Cr3C2 on the microstructure and mechanical properties of WC–SiC ceramics
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JPS6158862A (en) Silicon carbide/carbon composite ceramic body and manufacture
JP2851717B2 (en) Sliding member
JPH0157075B2 (en)
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JP3694583B2 (en) Crusher parts
JP3121996B2 (en) Alumina sintered body
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
US5045269A (en) Method for sintered shapes with controlled grain size
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS58130165A (en) Silicon carbide sliding material
JP2794122B2 (en) Fiber reinforced ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees