JP2902796B2 - Ceramic composite sintered body and sliding member using the same - Google Patents

Ceramic composite sintered body and sliding member using the same

Info

Publication number
JP2902796B2
JP2902796B2 JP3032271A JP3227191A JP2902796B2 JP 2902796 B2 JP2902796 B2 JP 2902796B2 JP 3032271 A JP3032271 A JP 3032271A JP 3227191 A JP3227191 A JP 3227191A JP 2902796 B2 JP2902796 B2 JP 2902796B2
Authority
JP
Japan
Prior art keywords
sintered body
carbon
surface layer
silicon carbide
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3032271A
Other languages
Japanese (ja)
Other versions
JPH04254471A (en
Inventor
三郎 永野
孝一 上坪
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3032271A priority Critical patent/JP2902796B2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Publication of JPH04254471A publication Critical patent/JPH04254471A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2902796B2 publication Critical patent/JP2902796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度を有するととも
に摺動特性に優れ、メカニカルシールや軸受等の摺動部
材に好適な複合焼結体およびこれを用いた摺動部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite sintered body having high strength and excellent sliding characteristics and suitable for sliding members such as mechanical seals and bearings, and a sliding member using the same.

【0002】[0002]

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較し
て、硬度、強度、靱性および化学的安定性等に優れる材
料として注目され、たとえば、メカニカルシール部品、
軸受部品、薬品用バルブ部材として用いられている。
2. Description of the Related Art Non-oxide ceramics represented by silicon carbide and silicon nitride have attracted attention as materials having excellent hardness, strength, toughness, chemical stability and the like as compared with other ceramics and metals. Mechanical seal parts,
It is used as bearing parts and valve members for chemicals.

【0003】しかしながら、窒化珪素および炭化珪素単
体では十分な摺動特性が得られないことから、窒化珪素
粉末や炭化珪素粉末に対して、焼結助剤としてAl2
3 や周期律表第3a族元素酸化物、あるいは炭素および
4 C等を添加すると同時にグラファイトやBN等の固
体潤滑材を添加し、これを真空中あるいは不活性雰囲気
中で焼成することにより、窒化珪素や炭化珪素からなる
マトリックス中に前記固体潤滑材が均一分散させ、これ
によりその焼結体表面における摺動特性を高めることが
行われている。
However, since silicon nitride and silicon carbide alone cannot provide sufficient sliding characteristics, Al 2 O 3 is used as a sintering aid for silicon nitride powder or silicon carbide powder.
By adding a solid lubricant such as graphite or BN at the same time as adding the element oxide of group 3 or the element of group 3a of the periodic table, or carbon and B 4 C, and baking this in a vacuum or in an inert atmosphere, It has been practiced to uniformly disperse the solid lubricant in a matrix made of silicon nitride or silicon carbide, thereby improving the sliding characteristics on the surface of the sintered body.

【0004】[0004]

【発明が解決しようとする問題点】摺動特性を高めるた
めには、焼結体表層部における固体潤滑材の量が多い方
が望ましいが、固体潤滑材を多量に添加すると、焼結体
自体の緻密化が阻害されるとともに、いわゆる骨材とし
てのセラミックス自体の強度が低くなるために摺動部材
として割れや欠け等が生じやすくなるという問題があっ
た。そのために固体潤滑材の添加量にもおのずと制限が
あった。
In order to enhance the sliding characteristics, it is desirable that the amount of the solid lubricant in the surface layer of the sintered body is large. And the strength of the ceramic itself as a so-called aggregate is reduced, so that the sliding member is liable to be cracked or chipped. Therefore, the amount of the solid lubricant added was naturally limited.

【0005】また製法上、固体潤滑材自体の分散を均一
に行う必要があり、場合によっては焼結体内部の固体潤
滑材が焼結体の破壊源となり、強度を低下させるという
問題がある。しかも窒化珪素をマトリックスとした固体
潤滑材として分散した焼結体では、その窒化珪素結晶の
粒界に焼結助剤として添加した金属酸化物が存在するた
めに耐薬品性が悪く、その使用範囲が限定されるという
問題もある。
[0005] In addition, it is necessary to uniformly disperse the solid lubricant itself in the manufacturing method, and in some cases, the solid lubricant inside the sintered body acts as a destruction source of the sintered body, resulting in a problem that the strength is reduced. Moreover, a sintered body dispersed as a solid lubricant containing silicon nitride as a matrix has poor chemical resistance due to the presence of a metal oxide added as a sintering aid at the grain boundaries of the silicon nitride crystal. There is also a problem that is limited.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、骨材とて炭化珪素およ
び窒化珪素の複合体を用い、固体潤滑材として分散含有
させる炭素を焼結体の表層部のみに多く存在させ、内部
における炭素の量を小さくすることにより焼結体自体の
強度を低下させることなく、表層部における摺動部材と
しての信頼性の高い安定した特性を発揮することができ
ることを見いだしたものである。
Means for Solving the Problems The present inventors have studied the above problems and found that a composite of silicon carbide and silicon nitride is used as an aggregate and dispersed and contained as a solid lubricant. A large amount of carbon is present only in the surface layer of the sintered body, and the amount of carbon in the interior is reduced, thereby reducing the strength of the sintered body itself and ensuring a stable and highly reliable sliding member in the surface layer. It has been found that characteristics can be exhibited.

【0007】本発明は、セラミックス焼結体における摺
動特性が、焼結体の表層部の構造および組織に支配され
る特性であり、また焼結体内部は、いわゆる摺動に対す
る支持部材的な作用をなすという考え方から、摺動特性
を大きく向上させるために添加される固体潤滑材を図1
に示すように、焼結体の表層部から内部にかけての固体
潤滑材が少なくなるようにしたことを特徴とする。
According to the present invention, the sliding characteristics of a ceramic sintered body are characteristics that are governed by the structure and structure of the surface layer portion of the sintered body. Based on the idea that it works, the solid lubricant added to greatly improve the sliding characteristics is shown in FIG.
As shown in (1), the amount of the solid lubricant from the surface layer portion to the inside of the sintered body is reduced.

【0008】本発明の焼結体からなる骨材としては、炭
化珪素と窒化珪素との複合体からなるもので、それ自体
強度が高く、また摺動特性の点においても他のセラミッ
クスに比較して優れた性質を有するものである。
[0008] The aggregate made of the sintered body of the present invention is made of a composite of silicon carbide and silicon nitride, and has a high strength per se and a sliding property as compared with other ceramics. It has excellent properties.

【0009】また、固体潤滑材は、焼結体の表層部にお
いてその体積比率が5〜30%の割合で存在しているこ
とが必要であり、5%よりも少ないと所望の摺動特性が
得られず、30%を越えると表層部における強度が低下
するために摺動面の欠損等が生じやすくなる。
Further, the solid lubricant must have a volume ratio of 5 to 30% in the surface layer portion of the sintered body. If the solid lubricant is less than 5%, desired sliding characteristics are obtained. If it is not obtained and exceeds 30%, the strength at the surface layer is reduced, so that the sliding surface is likely to be damaged.

【0010】一方、焼結体内部は、摺動特性に関与しな
いという観点から、実質的に固体潤滑材が含有されてい
なくてもよく、骨材成分である炭化珪素や窒化珪素から
なることがよい。
On the other hand, the interior of the sintered body may not substantially contain a solid lubricant from the viewpoint that it does not affect the sliding characteristics, and may be made of silicon carbide or silicon nitride which is an aggregate component. Good.

【0011】しかしながら、焼結体表層部から内部にか
けて、その組成や組織が急変すると、その境界部分に特
性の相違により応力が発生しやすく、割れや欠け等を生
じることがあるために、表層部より内部にかけて図1に
示すように、固体潤滑材の量は徐々に少なくなるように
構成することがよい。
However, if the composition or the structure changes suddenly from the surface layer portion of the sintered body to the inside thereof, stress is likely to be generated due to a difference in characteristics at the boundary portion, and cracks or chips may be generated. As shown in FIG. 1, it is preferable that the amount of the solid lubricant gradually decreases toward the inside.

【0012】本発明のセラミックス複合焼結体を得る方
法について説明すると、従来のように炭化珪素や窒化珪
素等の骨材成分に対して固体潤滑材粉末を混合し焼成す
る方法では、均一組織となり、本発明の構成である表層
部と内部において固体潤滑材の含有量の異なる組織は形
成されない。
The method for obtaining the ceramic composite sintered body of the present invention will be described. In the conventional method of mixing and firing a solid lubricant powder with an aggregate component such as silicon carbide or silicon nitride, a uniform structure is obtained. A structure having different solid lubricant contents is not formed between the surface layer portion and the inside according to the present invention.

【0013】そこで、本発明によれば、まず原料粉末と
して炭化珪素粉末を準備する。用いる炭化珪素粉末とし
てはα−SiC、β−SiCのいずれか、またはこれら
を混合して使用することもできる。炭化珪素粉末の平均
粒径は0.1〜2μm が適当である。また上記炭化珪素
粉末に対しては添加物として、カーボンブラックやグラ
ファイト等の炭素粉末あるいは熱分解により炭素を生成
しうるフェノール樹脂、コールタールピッチ、ショ糖等
の粉末や、B4 C等の硼素含有化合物を10重量%以下
の割合で添加することができる。
Therefore, according to the present invention, first, silicon carbide powder is prepared as a raw material powder. As the silicon carbide powder to be used, any of α-SiC and β-SiC, or a mixture thereof can be used. The average particle size of the silicon carbide powder is suitably from 0.1 to 2 μm. As an additive to the silicon carbide powder, as an additive, a carbon powder such as carbon black or graphite, a powder such as a phenol resin, coal tar pitch, or sucrose capable of generating carbon by thermal decomposition, or a boron such as B 4 C The contained compound can be added at a ratio of 10% by weight or less.

【0014】上記炭化珪素粉末と、場合により上記添加
物を充分に添加混合した後、上記粉末にバインダー等を
添加し、周知の成形方法、たとえばプレス成形、押出成
形、鋳込み成形、冷間静水圧成形等により所望の形状に
成形する。成形体は、所望により200〜800℃で仮
焼することにより、フェノール樹脂等の炭素生成化合物
より炭素を生成させることができる。
After sufficiently adding and mixing the above-mentioned silicon carbide powder and the above-mentioned additives in some cases, a binder or the like is added to the above-mentioned powder, and a known molding method, for example, press molding, extrusion molding, casting molding, cold isostatic pressing is performed. It is formed into a desired shape by molding or the like. If desired, the molded body can be calcined at 200 to 800 ° C. to generate carbon from a carbon-generating compound such as a phenol resin.

【0015】次に、上記のようにして得られた成形体を
焼成するが、本発明によれば、この焼成を下記数1
Next, the molded body obtained as described above is fired. According to the present invention, this firing is carried out by the following equation (1).

【数1】 3SiC+2N2 → Si3 4 +3C で示されるように炭化珪素と窒素の反応により窒化珪素
および炭素が生成可能な雰囲気中で焼成する。具体的に
は、1000℃以上、特に1500℃以上の温度にて、
雰囲気中に窒素ガスを必須成分として含むとともに該窒
素ガス圧力が500気圧以上、特に1000気圧以上の
加圧下で焼成することにより数1の反応を進行させるこ
とができる。
As shown by 3SiC + 2N 2 → Si 3 N 4 + 3C, firing is performed in an atmosphere in which silicon nitride and carbon can be generated by a reaction between silicon carbide and nitrogen. Specifically, at a temperature of 1000 ° C. or more, particularly 1500 ° C. or more,
The reaction of Formula 1 can proceed by baking under an atmosphere containing nitrogen gas as an essential component and pressurizing the nitrogen gas at a pressure of 500 atm or more, particularly 1000 atm or more.

【0016】この焼成によれば、内部および表層部とも
に高緻密化が達成されるとともに、焼結体の表層部にお
いて特に上記反応が活発に生じ、焼結体の表層部に炭素
が内部よりも多くなるという特異的焼結体が形成され
る。
According to this sintering, high densification is achieved in both the inside and the surface layer, and the above-mentioned reaction particularly occurs actively in the surface layer of the sintered body, so that carbon is more present in the surface layer of the sintered body than in the inside. A specific sintered body that increases is formed.

【0017】この焼結のメカニズムについては定かでは
ないが、高温高圧下の窒素雰囲気中で、炭化珪素粒子の
表面から窒化珪素への反応が進行し、それに伴い体積膨
張が生じ、それによりある程度緻密化が進行し、一旦表
層部に緻密層が生じると焼結体内部への窒素ガスの進入
が抑制されるために、結果として表層部、内部ともに気
孔率10%以下の緻密体となるものの、表層部と内部に
おいてほぼ連続的に異なる組織が形成されると考えられ
る。
Although the mechanism of this sintering is not clear, the reaction of silicon carbide particles into silicon nitride proceeds from the surface of the silicon carbide particles in a nitrogen atmosphere under high temperature and high pressure, resulting in a volume expansion, and as a result, a certain density When the formation progresses and a dense layer is once formed on the surface portion, the entry of nitrogen gas into the sintered body is suppressed, and as a result, the surface layer portion and the inside become a dense body with a porosity of 10% or less. It is considered that a different structure is formed almost continuously between the surface layer and the inside.

【0018】よって、上記焼成によれば、焼成温度、焼
成時間等を制御することにより表層部において炭素の生
成量を高めるとともに、焼結体内部において炭素の生成
を抑制することができる。望ましくは焼結体の表層部は
完全に反応を進行させ、窒化珪素と炭素から構成される
ことが望ましい。この場合、その表層部には窒化珪素を
骨材とし炭素が約26体積%を割合で均一に分散した組
織が形成される。
Therefore, according to the above firing, the amount of carbon generated in the surface layer portion can be increased by controlling the firing temperature, the firing time, and the like, and the generation of carbon in the sintered body can be suppressed. Desirably, the surface portion of the sintered body is allowed to completely react and is composed of silicon nitride and carbon. In this case, a structure in which silicon nitride is used as an aggregate and carbon is uniformly dispersed at a ratio of about 26% by volume is formed in the surface layer.

【0019】また、この焼結体の他の特徴としては、表
層部から内部にかけて骨材である炭化珪素および窒化珪
素の量比が変化することが挙げられ、炭化珪素/(窒化
珪素+炭化珪素)で表される組成比は表層部から内部に
かけて大きくなる。このような構成によれば、表層部は
窒化珪素的な特性、即ち耐熱衝撃性および靱性に優れた
特性を有する。また、通常の窒化珪素質焼結体によれ
ば、窒化珪素結晶粒子間に焼結助剤として用いられた金
属酸化物が粒界相として存在するが、この焼結体の表層
部では、窒化珪素結晶粒子間に金属酸化物が実質的に存
在しないことも大きな特徴であり、耐薬品性を高めるこ
とができ、摺動部材として適用範囲を広げることができ
る。
Another characteristic of this sintered body is that the ratio of the amounts of silicon carbide and silicon nitride, which are aggregates, changes from the surface layer portion to the inside, and the ratio is silicon carbide / (silicon nitride + silicon carbide). ) Increases from the surface layer portion to the inside. According to such a configuration, the surface layer has silicon nitride-like characteristics, that is, characteristics excellent in thermal shock resistance and toughness. According to a normal silicon nitride-based sintered body, the metal oxide used as a sintering aid exists as a grain boundary phase between silicon nitride crystal grains. Another major feature is that the metal oxide does not substantially exist between the silicon crystal particles, so that the chemical resistance can be improved and the application range as a sliding member can be expanded.

【0020】なお、炭素量が少なくとも20体積%以上
の表層部はその厚みが10〜2000μm であることが
望ましく、厚みが10μm より薄いと摺動特性の長期安
定性に欠け、2000μm より厚いと表層部の強度が低
下し欠け等が発生しやすくなる。
The surface portion having a carbon content of at least 20% by volume preferably has a thickness of 10 to 2000 μm. If the thickness is less than 10 μm, the long-term stability of the sliding characteristics is lacking. The strength of the portion is reduced, and chipping or the like is likely to occur.

【0021】一方、焼結体の内部は炭化珪素あるいは炭
化珪素と窒化珪素を主体として構成されることが望まし
く、内部において炭化珪素/(炭化珪素+窒化珪素)の
組成比率が0.2以上であることが望ましい。
On the other hand, the interior of the sintered body is preferably composed mainly of silicon carbide or silicon carbide and silicon nitride. In the interior, the composition ratio of silicon carbide / (silicon carbide + silicon nitride) is 0.2 or more. Desirably.

【0022】[0022]

【作 用】本発明によれば、表層部における固体潤滑材
である炭素量を焼結体表層部のみに多く存在させること
により、焼結体全体としての強度を低下させることがな
く、表層部において比較的多量の炭素が存在しても内部
における強度が高いことから摺動部材としても安定した
摺動特性を発揮することができる。しかも、表層部から
内部にかけての組織的な変化がほぼ連続的に形成されて
いることから、焼結体内での特性の相違により発生する
応力を低減することができる。
According to the present invention, by increasing the amount of carbon, which is a solid lubricant in the surface layer portion, only in the surface layer portion of the sintered body, the strength of the entire sintered body is not reduced, and the surface layer portion is not deteriorated. In this case, even if a relatively large amount of carbon is present, since the strength inside is high, stable sliding characteristics can be exhibited even as a sliding member. Moreover, since the structural change from the surface layer portion to the inside is formed almost continuously, the stress generated due to the difference in the characteristics in the sintered body can be reduced.

【0023】また、炭素を表層部において多量に存在さ
せることができるために、焼結体自体の熱伝導率を高め
ることができ、これにより摺動時に発生した熱を効率的
に放熱することもできる。さらに炭素を内部においても
適量存在させることにより焼結体全体の電気抵抗を小さ
くすることができ、これにより放電加工を行うことがで
きる。
In addition, since a large amount of carbon can be present in the surface layer, the thermal conductivity of the sintered body itself can be increased, and the heat generated during sliding can be efficiently radiated. it can. Furthermore, the electric resistance of the entire sintered body can be reduced by allowing an appropriate amount of carbon to be present in the inside, whereby electric discharge machining can be performed.

【0024】骨材として、表層部を窒化珪素の骨材によ
り構成することにより耐熱衝撃性を高めることができ
る。
The thermal shock resistance can be enhanced by forming the surface layer of the silicon nitride aggregate as the aggregate.

【0025】[0025]

【実施例】β−SiC粉末(平均粒径0.4μm 、酸素
含有量0.1重量%)に対して、成形用バインダーとし
てレゾール型フェノール樹脂20%溶液を適量添加し、
さらに溶媒としてアセトンを適量添加し、混練乾燥後、
篩を通して成形用顆粒を得た。この顆粒を金型プレスを
用いて成形圧2000kg/cm2 で外径20mm、厚
み10mmの円板状成形体を作成した。
EXAMPLE To a β-SiC powder (average particle size 0.4 μm, oxygen content 0.1% by weight), an appropriate amount of a 20% solution of a resol type phenol resin was added as a molding binder,
Further, an appropriate amount of acetone is added as a solvent, and after kneading and drying,
The granules for molding were obtained through a sieve. The granules were molded using a mold press at a molding pressure of 2000 kg / cm 2 to form a disk-shaped molded body having an outer diameter of 20 mm and a thickness of 10 mm.

【0026】次に成形体を600℃の不活性雰囲気(N
2 気流中)で仮焼し、フェノール樹脂を炭化させた後、
仮焼体の組成の分析を行った。そして、この仮焼体をN
2 圧力、焼成温度、焼成時間を表1に示した条件に設定
し焼成を行った。
Next, the compact was placed in an inert atmosphere at 600 ° C. (N
After calcination in ( 2 air currents) and carbonizing the phenolic resin,
The composition of the calcined body was analyzed. Then, this calcined body is N
2 The pressure, firing temperature, and firing time were set to the conditions shown in Table 1, and firing was performed.

【0027】得られた焼結体に対して、アルキメデス法
により密度を測定し、また表層部と焼結体内部より切り
出し粉砕後、LECO法で全炭素、全窒素および全珪素
を測定し、窒素は窒化珪素として計算し、残る珪素は炭
化珪素として存在するとして結合炭素を求め、残りを遊
離炭素として計算で求めた。また、骨材の構成相をX線
分析にて行った。なお、添加物としてB4 Cを添加した
試料においてはB4 Cも窒化され、BNとなっているが
添加量が微量であるためにX線回折測定では検出されな
かった。
The density of the obtained sintered body was measured by the Archimedes method, and cut out from the surface layer and the inside of the sintered body. After pulverization, total carbon, total nitrogen and total silicon were measured by the LECO method. Was calculated as silicon nitride, the remaining silicon was determined as being present as silicon carbide, bond carbon was determined, and the remainder was calculated as free carbon. The constituent phases of the aggregate were analyzed by X-ray analysis. In addition, in the sample to which B 4 C was added as an additive, B 4 C was also nitrided and became BN, but was not detected by X-ray diffraction measurement because the added amount was very small.

【0028】特性評価としてJISR1601に基づき
4点曲げ強度を測定した。さらに抗折試験片により4端
子法により体積固有抵抗を測定した。また、耐薬品性テ
ストとして、8mm角のサイコロ状試料を切り出し、塩
酸20%溶液、硝酸60%溶液、硫酸90%溶液に3日
間浸漬後の状態を観察した。
As a characteristic evaluation, a four-point bending strength was measured based on JISR1601. Further, the volume resistivity was measured by a four-terminal method using a bending test piece. Further, as a chemical resistance test, an 8 mm square die-shaped sample was cut out, and the state after immersion in a 20% hydrochloric acid solution, a 60% nitric acid solution, and a 90% sulfuric acid solution for 3 days was observed.

【0029】また、摺動特性評価として表面をラップ仕
上げしたφ50mmの円板にSUSII鋼球を固定ピンと
して接触させ、試料円板を回転させ、その接触負荷と摩
擦力を測定することによって摩耗係数を求めた。
As an evaluation of sliding characteristics, a SUSII steel ball was brought into contact with a disk of φ50 mm having a lap-finished surface as a fixed pin, the sample disk was rotated, and the contact load and frictional force were measured to measure the wear coefficient. I asked.

【0030】次に、比較例として、β−SiC粉末(平
均粒径0.4μm )100重量部にB4 C粉末を0.4
重量部添加混合する以外は前記方法と同様にして成形体
を作成し、その後、2050℃でアルゴン中で1時間焼
成を行い、緻密な炭化珪素質焼結体を作成し、前記と同
様に特性の測定および評価を行った(表中、試料No,
1)。
Next, as a comparative example, 0.4 parts of B 4 C powder was added to 100 parts by weight of β-SiC powder (average particle size 0.4 μm).
Except for adding and mixing parts by weight, a molded body is prepared in the same manner as described above, and then calcined in argon at 2050 ° C. for 1 hour to produce a dense silicon carbide sintered body. Was measured and evaluated (in the table, sample No,
1).

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】表1乃至表3によれば、従来の炭化珪素か
らなる焼結体では、摺動特性として摩擦係数は0.4〜
0.5であるのに対して、本発明品はいずれも摩擦係数
が0.2〜0.3のレベルまで達するものであった。ま
た、焼結体自体の強度も40kg/mm2 以上が達成さ
れた。
According to Tables 1 to 3, in the case of a conventional sintered body made of silicon carbide, the coefficient of friction as a sliding characteristic is 0.4 to 0.4.
In contrast to 0.5, the products of the present invention all reached a coefficient of friction of 0.2 to 0.3. Further, the strength of the sintered body itself was at least 40 kg / mm 2 .

【0035】[0035]

【発明の効果】以上、詳述した通り、本発明によれば、
セラミックスを骨材とし、その焼結体表層部に固体潤滑
材を内部に比較して多量に存在させることにより、焼結
体全体としての強度を低下させることがなく、優れた摺
動特性が得られる。また、固体潤滑材としての炭素を表
層部において多量に存在させることにより焼結体自体の
熱伝導率および電気伝導率を高めることができ、それに
より摺動時に発生した熱を効率的に放熱することもでき
るとともに、放電加工を行うこともできる。
As described above, according to the present invention,
By using ceramics as the aggregate and having a large amount of solid lubricant on the surface of the sintered body compared to the inside, excellent sliding characteristics can be obtained without lowering the strength of the entire sintered body. Can be In addition, the thermal conductivity and electrical conductivity of the sintered body itself can be increased by allowing a large amount of carbon as a solid lubricant to be present in the surface layer, thereby efficiently radiating heat generated during sliding. And electrical discharge machining can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックス複合焼結体の表層部から
の深さに対する炭素量の変化を示す図である。
FIG. 1 is a diagram showing a change in carbon content with respect to a depth from a surface layer of a ceramic composite sintered body of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−138376(JP,A) 特開 昭62−182178(JP,A) 特開 昭63−236782(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/565 - 35/577 C04B 35/584 - 35/596 C10M 111/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-138376 (JP, A) JP-A-62-182178 (JP, A) JP-A-63-236782 (JP, A) (58) Field (Int.Cl. 6 , DB name) C04B 35/565-35/577 C04B 35/584-35/596 C10M 111/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化珪素および窒化珪素を主体とする焼結
体中に炭素を分散含有してなり、該焼結体表層部に前記
炭素を内部よりも多い5〜30体積%の割合で含むこと
を特徴とするセラミックス複合焼結体。
1. A sintered body mainly composed of silicon carbide and silicon nitride, wherein carbon is dispersed and contained, and the surface layer portion of the sintered body contains the carbon in an amount of 5 to 30% by volume which is larger than that of the inside. A ceramic composite sintered body characterized in that:
【請求項2】炭化珪素および窒化珪素を主体とする焼結
体中に炭素を分散含有してなり、該焼結体表層部に前記
炭素を内部よりも多い5〜30体積%の割合で含むこと
を特徴とする摺動部材。
2. A sintered body mainly composed of silicon carbide and silicon nitride, wherein carbon is dispersed and contained, and the surface layer portion of the sintered body contains the carbon in an amount of 5 to 30% by volume which is larger than that of the inside. A sliding member characterized by the above-mentioned.
JP3032271A 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same Expired - Lifetime JP2902796B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3032271A JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032271A JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same

Publications (2)

Publication Number Publication Date
JPH04254471A JPH04254471A (en) 1992-09-09
JP2902796B2 true JP2902796B2 (en) 1999-06-07

Family

ID=12354331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032271A Expired - Lifetime JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same

Country Status (1)

Country Link
JP (1) JP2902796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472075B1 (en) 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball
WO2005124171A1 (en) * 2004-06-15 2005-12-29 Nidec Sankyo Corporation Sintered bearing, method of manufacturing the same, and motor with sintered bearing

Also Published As

Publication number Publication date
JPH04254471A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US5322824A (en) Electrically conductive high strength dense ceramic
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
Koh et al. Oxidation behavior of titanium boride at elevated temperatures
Zhang et al. Mechanical properties of sintered ZrB2–SiC ceramics
Kim et al. Densification and mechanical properties of B4C with Al2O3 as a sintering aid
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
US5462813A (en) Composite ceramic sintered material
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
Cygan et al. Thermal stability and coefficient of friction of the diamond composites with the titanium compound bonding phase
CA1152536A (en) Dense sintered silicon carbide ceramic
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JP2851717B2 (en) Sliding member
EP0178753A1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP3035720B2 (en) Method for producing ceramic-carbon composite material and sliding component
US6156238A (en) Liquid phase-sintered, electrically conductive and oxidation-resistant ceramic material, a process for producing it and its use
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
Zhao et al. Microstructure and mechanical properties of titanium carbonitride whisker reinforced β-sialon matrix composites
JP3048687B2 (en) Method for producing silicon carbide-carbon composite material and sliding component
JP3694583B2 (en) Crusher parts