JPH04254471A - Ceramic composite sintered body and sliding member using the same - Google Patents

Ceramic composite sintered body and sliding member using the same

Info

Publication number
JPH04254471A
JPH04254471A JP3032271A JP3227191A JPH04254471A JP H04254471 A JPH04254471 A JP H04254471A JP 3032271 A JP3032271 A JP 3032271A JP 3227191 A JP3227191 A JP 3227191A JP H04254471 A JPH04254471 A JP H04254471A
Authority
JP
Japan
Prior art keywords
sintered body
carbon
surface layer
silicon carbide
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3032271A
Other languages
Japanese (ja)
Other versions
JP2902796B2 (en
Inventor
Saburo Nagano
三郎 永野
Koichi Uetsubo
上坪 孝一
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3032271A priority Critical patent/JP2902796B2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Publication of JPH04254471A publication Critical patent/JPH04254471A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2902796B2 publication Critical patent/JP2902796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To improve the sliding property of the surface layer part without decreasing the strength of a sintered body itself using silicon carbide and silicon nitride as an aggregate by dispersing carbon in a manner that a larger amt. of carbon exists in the surface layer of the sintered body. CONSTITUTION:The above ceramic composite body is a sintered body essentially comprising silicon carbide and silicon nitride and contains dispersion of carbon. The amt. of carbon in the surface layer is larger than that in the inside. It is preferable that the carbon amt. is 5-30vol.% in the surface layer. If the amt. is less than 5vol.%, the desired sliding properties can not be obtd., and if it exceeds 30%, strength in the surface layer decreases. On the other hand, the inner area of the sintered body does not affect the sliding property, so that no carbon may be included. However, if the compsn. or structure of the sintered body from the surface to inside abruptly changes, the interfacial part suffers from stress due to the difference of characteristics and causes cracks or chipping. Therefore, the amt. of carbon is gradually decreased as shown in the figure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高強度を有するととも
に摺動特性に優れ、メカニカルシールや軸受等の摺動部
材に好適な複合焼結体およびこれを用いた摺動部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite sintered body which has high strength and excellent sliding properties and is suitable for sliding members such as mechanical seals and bearings, and a sliding member using the same.

【0002】0002

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較して
、硬度、強度、靱性および化学的安定性等に優れる材料
として注目され、たとえば、メカニカルシール部品、軸
受部品、薬品用バルブ部材として用いられている。
[Prior Art] Non-oxide ceramics such as silicon carbide and silicon nitride have attracted attention as materials that have superior hardness, strength, toughness, and chemical stability compared to other ceramics and metals. Used as mechanical seal parts, bearing parts, and chemical valve parts.

【0003】しかしながら、窒化珪素および炭化珪素単
体では十分な摺動特性が得られないことから、窒化珪素
粉末や炭化珪素粉末に対して、焼結助剤としてAl2 
O3 や周期律表第3a族元素酸化物、あるいは炭素お
よびB4 C等を添加すると同時にグラファイトやBN
等の固体潤滑材を添加し、これを真空中あるいは不活性
雰囲気中で焼成することにより、窒化珪素や炭化珪素か
らなるマトリックス中に前記固体潤滑材が均一分散させ
、これによりその焼結体表面における摺動特性を高める
ことが行われている。
However, silicon nitride and silicon carbide alone cannot provide sufficient sliding properties, so Al2 is used as a sintering aid for silicon nitride powder and silicon carbide powder.
At the same time as adding O3, oxides of Group 3a elements of the periodic table, or carbon and B4C, graphite and BN are added.
By adding a solid lubricant such as and firing it in a vacuum or an inert atmosphere, the solid lubricant is uniformly dispersed in a matrix made of silicon nitride or silicon carbide, and this causes the surface of the sintered body to be uniformly dispersed. Efforts are being made to improve the sliding characteristics of

【0004】0004

【発明が解決しようとする問題点】摺動特性を高めるた
めには、焼結体表層部における固体潤滑材の量が多い方
が望ましいが、固体潤滑材を多量に添加すると、焼結体
自体の緻密化が阻害されるとともに、いわゆる骨材とし
てのセラミックス自体の強度が低くなるために摺動部材
として割れや欠け等が生じやすくなるという問題があっ
た。そのために固体潤滑材の添加量にもおのずと制限が
あった。
[Problems to be Solved by the Invention] In order to improve the sliding properties, it is desirable to have a large amount of solid lubricant on the surface layer of the sintered body, but if a large amount of solid lubricant is added, the sintered body itself There is a problem in that the densification of ceramics is inhibited, and the strength of the ceramic itself as so-called aggregate becomes low, making it easy for sliding members to crack or chip. For this reason, there was naturally a limit to the amount of solid lubricant added.

【0005】また製法上、固体潤滑材自体の分散を均一
に行う必要があり、場合によっては焼結体内部の固体潤
滑材が焼結体の破壊源となり、強度を低下させるという
問題がある。しかも窒化珪素をマトリックスとした固体
潤滑材として分散した焼結体では、その窒化珪素結晶の
粒界に焼結助剤として添加した金属酸化物が存在するた
めに耐薬品性が悪く、その使用範囲が限定されるという
問題もある。
[0005] Furthermore, due to the manufacturing method, it is necessary to uniformly disperse the solid lubricant itself, and in some cases, there is a problem that the solid lubricant inside the sintered body becomes a source of destruction of the sintered body, reducing its strength. Moreover, sintered bodies in which silicon nitride is dispersed as a solid lubricant with a matrix have poor chemical resistance due to the presence of metal oxides added as sintering aids at the grain boundaries of the silicon nitride crystals. There is also the problem that it is limited.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、骨材として炭化珪素お
よび/または窒化珪素を用いた系において、分散含有さ
せる炭素等の固体潤滑材を焼結体表層部のみに多く存在
させ、内部における固体潤滑材の量を小さくすることに
より焼結体自体の強度を低下させることなく、表層部に
おける摺動性を向上することができ、これにより各種の
摺動部材として信頼性の高い安定した特性を発揮するこ
とができることを見出したものである。
[Means for Solving the Problems] As a result of repeated studies on the above problems, the present inventors have devised a system that uses silicon carbide and/or silicon nitride as aggregates to disperse and contain carbon, etc. By making a large amount of solid lubricant exist only in the surface layer of the sintered body and reducing the amount of solid lubricant inside, it is possible to improve the sliding properties in the surface layer without reducing the strength of the sintered body itself. The inventors have discovered that this makes it possible to exhibit highly reliable and stable characteristics as various sliding members.

【0007】本発明は、セラミックス焼結体における摺
動特性が、焼結体の表層部の構造および組織に支配され
る特性であり、また焼結体内部は、いわゆる摺動に対す
る支持部材的な作用をなすという考え方から、摺動特性
を大きく向上させるために添加される固体潤滑材を図1
に示すように、焼結体の表層部から内部にかけての固体
潤滑材が少なくなるようにしたことを特徴とする。
The present invention provides that the sliding characteristics of a ceramic sintered body are controlled by the structure and organization of the surface layer of the sintered body, and that the inside of the sintered body is a so-called support member for sliding. Figure 1 shows solid lubricants added to greatly improve sliding properties.
As shown in Fig. 2, the sintered body is characterized in that the amount of solid lubricant from the surface layer to the inside of the sintered body is reduced.

【0008】本発明の焼結体の骨材としては、炭化珪素
、窒化珪素、または炭化珪素と窒化珪素との複合体のい
ずれでもよく、これらのセラミックスは、それ自体強度
が高く、また摺動特性の点において他のセラミックスに
比較して優れた性質を有するものである。
The aggregate of the sintered body of the present invention may be silicon carbide, silicon nitride, or a composite of silicon carbide and silicon nitride, and these ceramics themselves have high strength and are easy to slide. It has superior properties compared to other ceramics.

【0009】また、固体潤滑材は、焼結体の表層部にお
いてその体積比率が5〜30%程度の割合で存在してい
ることが望ましく、5%より少ないと所望の摺動特性が
得られず、30%を越えると表層部における強度が低下
するために摺動面の欠損等が生じやすくなる。
[0009] Furthermore, it is desirable that the solid lubricant exists in the surface layer of the sintered body at a volume ratio of about 5 to 30%; if it is less than 5%, the desired sliding characteristics cannot be obtained. First, if it exceeds 30%, the strength of the surface layer portion decreases, making it easy for damage to the sliding surface to occur.

【0010】一方、焼結体内部は、摺動特性に関与しな
いという観点から、実質的に固体潤滑材が含有されてい
なくてもよく、骨材成分である炭化珪素や窒化珪素から
なることがよい。
On the other hand, the interior of the sintered body does not need to contain substantially any solid lubricant from the viewpoint that it does not affect the sliding properties, and may be composed of silicon carbide or silicon nitride, which are aggregate components. good.

【0011】しかしながら、焼結体表層部から内部にか
けて、その組成や組織が急変すると、その境界部分に特
性の相違により応力が発生しやすく、割れや欠け等を生
じることがあるために、表層部より内部にかけて図1に
示すように、固体潤滑材の量は徐々に少なくなるように
構成することがよい。
However, if the composition or structure of the sintered body suddenly changes from the surface layer to the inside, stress is likely to occur at the boundary due to the difference in characteristics, which may cause cracks or chips. As shown in FIG. 1, the amount of solid lubricant is preferably configured to gradually decrease toward the inside.

【0012】本発明のセラミックス複合焼結体を得る方
法について説明すると、従来のように炭化珪素や窒化珪
素等の骨材成分に対して固体潤滑材粉末を混合し焼成す
る方法では、均一組織となり、本発明の構成である表層
部と内部において固体潤滑材の含有量の異なる組織は形
成されない。
To explain the method for obtaining the ceramic composite sintered body of the present invention, the conventional method of mixing solid lubricant powder with aggregate components such as silicon carbide and silicon nitride and firing the mixture results in a uniform structure. According to the structure of the present invention, a structure in which the solid lubricant content differs between the surface layer portion and the interior portion is not formed.

【0013】そこで、本発明によれば、まず原料粉末と
して炭化珪素粉末を準備する。用いる炭化珪素粉末とし
てはα−SiC、β−SiCのいずれか、またはこれら
を混合して使用することもできる。炭化珪素粉末の平均
粒径は0.1〜2μm が適当である。また上記炭化珪
素粉末に対しては添加物として、カーボンブラックやグ
ラファイト等の炭素粉末あるいは熱分解により炭素を生
成しうるフェノール樹脂、コールタールピッチ、ショ糖
等の粉末や、B4 C等の硼素含有化合物を10重量%
以下の割合で添加することができる。
According to the present invention, silicon carbide powder is first prepared as a raw material powder. The silicon carbide powder used may be either α-SiC or β-SiC, or a mixture thereof. The average particle size of the silicon carbide powder is suitably 0.1 to 2 μm. Additives to the silicon carbide powder mentioned above include carbon powders such as carbon black and graphite, powders such as phenol resins that can generate carbon through thermal decomposition, coal tar pitch, and sucrose, and boron-containing materials such as B4C. 10% by weight of compound
It can be added in the following proportions.

【0014】上記炭化珪素粉末と、場合により上記添加
物を充分に添加混合した後、上記粉末にバインダー等を
添加し、周知の成形方法、たとえばプレス成形、押出成
形、鋳込み成形、冷間静水圧成形等により所望の形状に
成形する。成形体は、所望により200〜800℃で仮
焼することにより、フェノール樹脂等の炭素生成化合物
より炭素を生成させることができる。
After the silicon carbide powder and optionally the additives are sufficiently added and mixed, a binder or the like is added to the powder, and the powder is subjected to a known molding method such as press molding, extrusion molding, casting molding, or cold isostatic pressing. Form into a desired shape by molding or the like. The molded body can be calcined at 200 to 800°C, if desired, to generate carbon from a carbon-generating compound such as a phenol resin.

【0015】次に、上記のようにして得られた成形体を
焼成するが、本発明によれば、この焼成を下記数1
Next, the molded body obtained as described above is fired, and according to the present invention, this firing is carried out according to the following equation 1.

【数
1】    3SiC+2N2   →  Si3 N
4 +3Cで示されるように炭化珪素と窒素の反応によ
り窒化珪素および炭素が生成可能な雰囲気中で焼成する
。具体的には、1000℃以上、特に1500℃以上の
温度にて、雰囲気中に窒素ガスを必須成分として含むと
ともに該窒素ガス圧力が500気圧以上、特に1000
気圧以上の加圧下で焼成することにより数1の反応を進
行させることができる。
[Math. 1] 3SiC+2N2 → Si3 N
4 +3C, firing is carried out in an atmosphere in which silicon nitride and carbon can be produced by a reaction between silicon carbide and nitrogen. Specifically, at a temperature of 1000°C or higher, especially 1500°C or higher, the atmosphere contains nitrogen gas as an essential component and the nitrogen gas pressure is 500 atm or higher, especially 1000 °C or higher.
By firing under pressure equal to or higher than atmospheric pressure, the reaction shown in Equation 1 can proceed.

【0016】この焼成によれば、内部および表層部とも
に高緻密化が達成されるとともに、焼結体の表層部にお
いて特に上記反応が活発に生じ、焼結体の表層部に炭素
が内部よりも多くなるという特異的焼結体が形成される
[0016] According to this firing, high densification is achieved both in the interior and the surface layer, and the above reaction occurs particularly actively in the surface layer of the sintered body, so that carbon is more concentrated in the surface layer of the sintered body than in the inside. A specific sintered body is formed that increases in number.

【0017】この焼結のメカニズムについては定かでは
ないが、高温高圧下の窒素雰囲気中で、炭化珪素粒子の
表面から窒化珪素への反応が進行し、それに伴い体積膨
張が生じ、それによりある程度緻密化が進行し、一旦表
層部に緻密層が生じると焼結体内部への窒素ガスの進入
が抑制されるために、結果として表層部、内部ともに気
孔率10%以下の緻密体となるものの、表層部と内部に
おいてほぼ連続的に異なる組織が形成されると考えられ
る。
Although the mechanism of this sintering is not clear, in a nitrogen atmosphere under high temperature and high pressure, a reaction progresses from the surface of silicon carbide particles to silicon nitride, resulting in volumetric expansion, which results in some degree of densification. As the sintering progresses and once a dense layer is formed in the surface layer, the entry of nitrogen gas into the interior of the sintered body is suppressed, resulting in a dense body with a porosity of 10% or less in both the surface layer and the interior. It is thought that different structures are formed almost continuously between the surface layer and the inside.

【0018】よって、上記焼成によれば、焼成温度、焼
成時間等を制御することにより表層部において炭素の生
成量を高めるとともに、焼結体内部において炭素の生成
を抑制することができる。望ましくは焼結体の表層部は
完全に反応を進行させ、窒化珪素と炭素から構成される
ことが望ましい。この場合、その表層部には窒化珪素を
骨材とし炭素が約26体積%を割合で均一に分散した組
織が形成される。
Therefore, according to the above-described firing, by controlling the firing temperature, firing time, etc., it is possible to increase the amount of carbon produced in the surface layer portion and to suppress the production of carbon inside the sintered body. Preferably, the reaction proceeds completely in the surface layer of the sintered body, and it is desirable that the surface layer is composed of silicon nitride and carbon. In this case, a structure is formed in the surface layer in which silicon nitride is used as aggregate and carbon is uniformly dispersed at a ratio of about 26% by volume.

【0019】また、この焼結体の他の特徴としては、表
層部から内部にかけて骨材である炭化珪素および窒化珪
素の量比が変化することが挙げられ、炭化珪素/(窒化
珪素+炭化珪素)で表される組成比は表層部から内部に
かけて大きくなる。このような構成によれば、表層部は
窒化珪素的な特性、即ち耐熱衝撃性および靱性に優れた
特性を有する。また、通常の窒化珪素質焼結体によれば
、窒化珪素結晶粒子間に焼結助剤として用いられた金属
酸化物が粒界相として存在するが、この焼結体の表層部
では、窒化珪素結晶粒子間に金属酸化物が実質的に存在
しないことも大きな特徴であり、耐薬品性を高めること
ができ、摺動部材として適用範囲を広げることができる
Another feature of this sintered body is that the quantitative ratio of silicon carbide and silicon nitride, which are aggregates, changes from the surface layer to the inside, and the ratio of silicon carbide/(silicon nitride + silicon carbide) changes. The composition ratio expressed by ) increases from the surface layer to the inside. According to such a structure, the surface layer portion has characteristics similar to silicon nitride, that is, characteristics excellent in thermal shock resistance and toughness. Furthermore, in a normal silicon nitride sintered body, a metal oxide used as a sintering aid exists between silicon nitride crystal grains as a grain boundary phase, but in the surface layer of this sintered body, nitride Another major feature is that there is substantially no metal oxide between silicon crystal particles, which improves chemical resistance and expands the range of applications for sliding members.

【0020】なお、炭素量が少なくとも20体積%以上
の表層部はその厚みが10〜2000μm であること
が望ましく、厚みが10μm より薄いと摺動特性の長
期安定性に欠け、2000μm より厚いと表層部の強
度が低下し欠け等が発生しやすくなる。
[0020] It is preferable that the thickness of the surface layer containing at least 20% by volume of carbon is 10 to 2000 μm; if the thickness is less than 10 μm, the long-term stability of the sliding properties will be lacking, and if it is thicker than 2000 μm, the surface layer will be damaged. The strength of the parts decreases and chips are more likely to occur.

【0021】一方、焼結体の内部は炭化珪素あるいは炭
化珪素と窒化珪素を主体として構成されることが望まし
く、内部において炭化珪素/(炭化珪素+窒化珪素)の
組成比率が0.2以上であることが望ましい。
On the other hand, the interior of the sintered body is preferably composed mainly of silicon carbide or silicon carbide and silicon nitride, and the composition ratio of silicon carbide/(silicon carbide + silicon nitride) is 0.2 or more in the interior. It is desirable that there be.

【0022】[0022]

【作  用】本発明によれば、表層部における固体潤滑
材である炭素量を焼結体表層部のみに多く存在させるこ
とにより、焼結体全体としての強度を低下させることが
なく、表層部において比較的多量の炭素が存在しても内
部における強度が高いことから摺動部材としても安定し
た摺動特性を発揮することができる。しかも、表層部か
ら内部にかけての組織的な変化がほぼ連続的に形成され
ていることから、焼結体内での特性の相違により発生す
る応力を低減することができる。
[Function] According to the present invention, by making a large amount of carbon, which is a solid lubricant in the surface layer, exist only in the surface layer of the sintered body, the strength of the sintered body as a whole is not reduced, and the surface layer Even if a relatively large amount of carbon is present, the internal strength is high, so it can exhibit stable sliding characteristics as a sliding member. Moreover, since the structural changes from the surface layer to the inside are almost continuous, it is possible to reduce stress caused by differences in characteristics within the sintered body.

【0023】また、炭素を表層部において多量に存在さ
せることができるために、焼結体自体の熱伝導率を高め
ることができ、これにより摺動時に発生した熱を効率的
に放熱することもできる。さらに炭素を内部においても
適量存在させることにより焼結体全体の電気抵抗を小さ
くすることができ、これにより放電加工を行うことがで
きる。
Furthermore, since a large amount of carbon can be present in the surface layer, the thermal conductivity of the sintered body itself can be increased, and thereby the heat generated during sliding can be efficiently dissipated. can. Furthermore, by allowing an appropriate amount of carbon to exist inside the sintered body, the electrical resistance of the entire sintered body can be reduced, thereby allowing electric discharge machining to be performed.

【0024】骨材として、表層部を窒化珪素の骨材によ
り構成することにより耐熱衝撃性を高めることができる
Thermal shock resistance can be improved by forming the surface layer of silicon nitride aggregate as the aggregate.

【0025】[0025]

【実施例】β−SiC粉末(平均粒径0.4μm 、酸
素含有量0.1重量%)に対して、成形用バインダーと
してレゾール型フェノール樹脂20%溶液を適量添加し
、さらに溶媒としてアセトンを適量添加し、混練乾燥後
、篩を通して成形用顆粒を得た。この顆粒を金型プレス
を用いて成形圧2000kg/cm2 で外径20mm
、厚み10mmの円板状成形体を作成した。
[Example] To β-SiC powder (average particle size 0.4 μm, oxygen content 0.1% by weight), an appropriate amount of a 20% solution of resol type phenolic resin was added as a molding binder, and acetone was added as a solvent. After adding an appropriate amount and kneading and drying, the mixture was passed through a sieve to obtain moldable granules. These granules were molded using a mold press at a molding pressure of 2000 kg/cm2 to an outer diameter of 20 mm.
A disc-shaped molded body with a thickness of 10 mm was prepared.

【0026】次に成形体を600℃の不活性雰囲気(N
2 気流中)で仮焼し、フェノール樹脂を炭化させた後
、仮焼体の組成の分析を行った。そして、この仮焼体を
N2 圧力、焼成温度、焼成時間を表1に示した条件に
設定し焼成を行った。
Next, the molded body is placed in an inert atmosphere (N
2 in an air stream) to carbonize the phenol resin, the composition of the calcined body was analyzed. Then, this calcined body was fired under the conditions shown in Table 1: N2 pressure, firing temperature, and firing time.

【0027】得られた焼結体に対して、アルキメデス法
により密度を測定し、また表層部と焼結体内部より切り
出し粉砕後、LECO法で全炭素、全窒素および全珪素
を測定し、窒素は窒化珪素として計算し、残る珪素は炭
化珪素として存在するとして結合炭素を求め、残りを遊
離炭素として計算で求めた。また、骨材の構成相をX線
分析にて行った。なお、添加物としてB4 Cを添加し
た試料においてはB4 Cも窒化され、BNとなってい
るが添加量が微量であるためにX線回折測定では検出さ
れなかった。
The density of the obtained sintered body was measured by the Archimedes method, and the surface layer and the inside of the sintered body were cut out and crushed, and the total carbon, total nitrogen, and total silicon were measured by the LECO method. was calculated as silicon nitride, the remaining silicon was calculated as bonded carbon assuming that it existed as silicon carbide, and the rest was calculated as free carbon. In addition, the constituent phases of the aggregate were analyzed by X-ray analysis. In addition, in the sample to which B4 C was added as an additive, B4 C was also nitrided and became BN, but the amount added was so small that it was not detected by X-ray diffraction measurement.

【0028】特性評価としてJISR1601に基づき
4点曲げ強度を測定した。さらに抗折試験片により4端
子法により体積固有抵抗を測定した。また、耐薬品性テ
ストとして、8mm角のサイコロ状試料を切り出し、塩
酸20%溶液、硝酸60%溶液、硫酸90%溶液に3日
間浸漬後の状態を観察した。
As a characteristic evaluation, four-point bending strength was measured based on JISR1601. Further, the volume resistivity was measured using a 4-terminal method using a bending test piece. Further, as a chemical resistance test, a dice-shaped sample of 8 mm square was cut out, and the state was observed after immersing it in a 20% hydrochloric acid solution, a 60% nitric acid solution, and a 90% sulfuric acid solution for 3 days.

【0029】また、摺動特性評価として表面をラップ仕
上げしたφ50mmの円板にSUSII鋼球を固定ピン
として接触させ、試料円板を回転させ、その接触負荷と
摩擦力を測定することによって摩耗係数を求めた。
In addition, as a sliding property evaluation, a SUS II steel ball was brought into contact with a φ50 mm disk whose surface was lapped as a fixed pin, the sample disk was rotated, and the contact load and friction force were measured to determine the wear coefficient. I asked for

【0030】次に、比較例として、β−SiC粉末(平
均粒径0.4μm )100重量部にB4 C粉末を0
.4重量部添加混合する以外は前記方法と同様にして成
形体を作成し、その後、2050℃でアルゴン中で1時
間焼成を行い、緻密な炭化珪素質焼結体を作成し、前記
と同様に特性の測定および評価を行った(表中、試料N
o,1)。
Next, as a comparative example, B4C powder was added to 100 parts by weight of β-SiC powder (average particle size 0.4 μm).
.. A molded body was created in the same manner as above except that 4 parts by weight was added and mixed, and then fired at 2050°C in argon for 1 hour to create a dense silicon carbide sintered body. Characteristics were measured and evaluated (in the table, sample N
o, 1).

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【表3】[Table 3]

【0034】表1乃至表3によれば、従来の炭化珪素か
らなる焼結体では、摺動特性として摩擦係数は0.4〜
0.5であるのに対して、本発明品はいずれも摩擦係数
が0.2〜0.3のレベルまで達するものであった。ま
た、焼結体自体の強度も40kg/mm2 以上が達成
された。
According to Tables 1 to 3, conventional sintered bodies made of silicon carbide have a friction coefficient of 0.4 to 0.4 as sliding characteristics.
0.5, all of the products of the present invention reached a level of friction coefficient of 0.2 to 0.3. Furthermore, the strength of the sintered body itself was 40 kg/mm2 or more.

【0035】[0035]

【発明の効果】以上、詳述した通り、本発明によれば、
セラミックスを骨材とし、その焼結体表層部に固体潤滑
材を内部に比較して多量に存在させることにより、焼結
体全体としての強度を低下させることがなく、優れた摺
動特性が得られる。また、固体潤滑材としての炭素を表
層部において多量に存在させることにより焼結体自体の
熱伝導率および電気伝導率を高めることができ、それに
より摺動時に発生した熱を効率的に放熱することもでき
るとともに、放電加工を行うこともできる。
[Effects of the Invention] As detailed above, according to the present invention,
By using ceramics as aggregate and having a larger amount of solid lubricant present in the surface layer of the sintered body than inside, excellent sliding properties can be obtained without reducing the strength of the sintered body as a whole. It will be done. In addition, by having a large amount of carbon as a solid lubricant present in the surface layer, the thermal conductivity and electrical conductivity of the sintered body itself can be increased, thereby efficiently dissipating the heat generated during sliding. It is also possible to perform electrical discharge machining.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のセラミックス複合焼結体の表層部から
の深さに対する炭素量の変化を示す図である。
FIG. 1 is a diagram showing changes in carbon content with respect to depth from the surface layer of a ceramic composite sintered body of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  炭化珪素および/または窒化珪素を主
体とし、炭素を分散含有する焼結体であって、該焼結体
表層部における炭素量が内部よりも多いことを特徴とす
るセラミックス複合焼結体。
1. A ceramic composite sintered body mainly composed of silicon carbide and/or silicon nitride and containing carbon dispersed therein, characterized in that the amount of carbon in the surface layer of the sintered body is larger than in the inside. Concretion.
【請求項2】  焼結体表層部における炭素量が5〜3
0体積%である請求項1記載のセラミックス複合焼結体
[Claim 2] The amount of carbon in the surface layer of the sintered body is 5 to 3.
The ceramic composite sintered body according to claim 1, wherein the content is 0% by volume.
【請求項3】  炭化珪素および/または窒化珪素を骨
材として、固体潤滑材を分散含有する摺動部材において
、表層部における固体潤滑材の含有量が内部よよりも多
いことを特徴とする摺動部材。
3. A sliding member containing silicon carbide and/or silicon nitride as an aggregate and a solid lubricant dispersed therein, characterized in that the content of the solid lubricant is higher in the surface layer than in the interior. moving parts.
【請求項4】  固体潤滑材が炭素である請求項3記載
の摺動部材。
4. The sliding member according to claim 3, wherein the solid lubricant is carbon.
【請求項5】  表層部における炭素量が5〜30体積
%である請求項3記載の摺動部材。
5. The sliding member according to claim 3, wherein the amount of carbon in the surface layer portion is 5 to 30% by volume.
JP3032271A 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same Expired - Lifetime JP2902796B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3032271A JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032271A JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same

Publications (2)

Publication Number Publication Date
JPH04254471A true JPH04254471A (en) 1992-09-09
JP2902796B2 JP2902796B2 (en) 1999-06-07

Family

ID=12354331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032271A Expired - Lifetime JP2902796B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and sliding member using the same

Country Status (1)

Country Link
JP (1) JP2902796B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472075B1 (en) 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball
WO2005124171A1 (en) * 2004-06-15 2005-12-29 Nidec Sankyo Corporation Sintered bearing, method of manufacturing the same, and motor with sintered bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472075B1 (en) 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball
WO2005124171A1 (en) * 2004-06-15 2005-12-29 Nidec Sankyo Corporation Sintered bearing, method of manufacturing the same, and motor with sintered bearing

Also Published As

Publication number Publication date
JP2902796B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
Zhang et al. Mechanical properties of sintered ZrB2–SiC ceramics
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
JPS6228109B2 (en)
JPH0253387B2 (en)
JPH0769731A (en) High-strength, high-density conductive ceramic
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
US5462813A (en) Composite ceramic sintered material
US20020160902A1 (en) Composite material based on silicon carbide and carbon, process for its production and its use
Cygan et al. Thermal stability and coefficient of friction of the diamond composites with the titanium compound bonding phase
JPH0563430B2 (en)
JP2851717B2 (en) Sliding member
JPH04254471A (en) Ceramic composite sintered body and sliding member using the same
JP3035720B2 (en) Method for producing ceramic-carbon composite material and sliding component
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JPH0733527A (en) Sliding part
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
EP0375148B1 (en) Production of molded refractory shapes
JP3048687B2 (en) Method for producing silicon carbide-carbon composite material and sliding component
JP3694583B2 (en) Crusher parts
Samoilov et al. Physicomechanical and thermophysical properties of SiC-based ceramics
JP3153518B2 (en) Silicon carbide carbon composite ceramics