JPH11236269A - Silicon nitride sintered body and cutting tool using the same - Google Patents

Silicon nitride sintered body and cutting tool using the same

Info

Publication number
JPH11236269A
JPH11236269A JP10043977A JP4397798A JPH11236269A JP H11236269 A JPH11236269 A JP H11236269A JP 10043977 A JP10043977 A JP 10043977A JP 4397798 A JP4397798 A JP 4397798A JP H11236269 A JPH11236269 A JP H11236269A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
phase
compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10043977A
Other languages
Japanese (ja)
Other versions
JP3762090B2 (en
Inventor
Masashi Sakagami
勝伺 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP04397798A priority Critical patent/JP3762090B2/en
Publication of JPH11236269A publication Critical patent/JPH11236269A/en
Application granted granted Critical
Publication of JP3762090B2 publication Critical patent/JP3762090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the silicon nitride sintered body consisting of a composite material which is formed by dispersing a Ti compound-based reinforcing phase in a silicon nitride matrix and in which the dispersed reinforcing phase exhibits its maximum material property improvement effect through enhancement of wettability of the reinforcing phase by the matrix, and accordingly, which has high strength, high toughness, high hardness and excellent wear resistance. SOLUTION: This sintered body consists of a composite material that is formed by dispersing a reinforcing phase 2 in a matrix phase 1 in a 10 to 40 vol.% ratio of the reinforcing phase 2 based on the total volume of these phases 1 and 2, wherein the matrix phase 1 comprises a main phase consisting of β-silicon nitride crystals and a grain boundary phase contg. at least one group 3a element of the Periodic Table; and the reinforcing phase 2 comprises particles or whiskers of at least one Ti compound selected from nitride, carbide-nitride and carbide-oxide-nitride of Ti, and at least one transition metal selected from Ni, Fe, Co, Cu, Mo, W and Mn and more specifically, consists of core parts 2a each consisting of such a Ti compound(s) and a shell parts 2b each of which is formed on the periphery of one of the core parts 2a and contains such a transition metal(s).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗部品、摺動
部品、耐蝕性部品、耐熱用部品、もしくは装飾用部品な
どに適用され、とりわけ、切削工具に好適に使用される
耐摩耗性に優れた窒化珪素質焼結体と、それを用いた切
削工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to wear-resistant parts, sliding parts, corrosion-resistant parts, heat-resistant parts, decorative parts, and the like. The present invention relates to an excellent silicon nitride sintered body and a cutting tool using the same.

【0002】[0002]

【従来の技術】一般に、セラミックスは、金属に比べ比
重が小さいため、製品重量が軽く、金属より高い硬度を
有し、耐摩耗性、耐酸化性、耐蝕性及び耐熱性に優れて
いることから、耐摩耗性を有する切削工具や、ベアリン
グ用ボールなどの摺動用部品、バルブ、ヘッドライナ
ー、発熱体、焼成管などの耐熱性部品、時計ケース、釣
り具のリール用ガイドなどの装飾用部品などの幅広い分
野に用いられている。
2. Description of the Related Art In general, since ceramics have a lower specific gravity than metals, they are lighter in weight, have higher hardness than metals, and are excellent in wear resistance, oxidation resistance, corrosion resistance and heat resistance. , Wear-resistant cutting tools, sliding parts such as balls for bearings, heat-resistant parts such as valves, headliners, heating elements, firing tubes, etc., decorative parts such as watch case, fishing reel guides, etc. Is used in a wide range of fields.

【0003】このような用途に用いられるセラミックス
材料は、アルミナ、炭化珪素、窒化アルミニウム、グラ
ファイトあるいは窒化珪素を主体とするセラミックスが
最も使用されているが、金属より破壊靭性や強度が低い
ために、セラミックス複合材料の様々な検討が進められ
ている。
[0003] Ceramic materials mainly used for such applications are mainly alumina, silicon carbide, aluminum nitride, graphite or silicon nitride, but have a lower fracture toughness and strength than metals. Various studies on ceramic composite materials are under way.

【0004】その中でも、上記の主成分に対して、硬質
粒子や、繊維状結晶粒子(ウイスカー、ファイバー)を
分散させることにより、靱性あるいは強度を改善する試
みが行われている。例えば、分散相としては、ジルコニ
ア等の酸化物粒子の他に、カーボンファイバー、炭化珪
素、炭化チタン、炭窒化チタン等の炭化物、炭窒化物な
どの粒子、あるいはそれらのウイスカー等が知られてい
る。
Among them, attempts have been made to improve the toughness or strength by dispersing hard particles or fibrous crystal particles (whiskers, fibers) in the above-mentioned main components. For example, as the dispersed phase, in addition to oxide particles such as zirconia, carbon fibers, silicon carbide, titanium carbide, carbides such as titanium carbonitride, particles such as carbonitrides, or whiskers thereof are known. .

【0005】[0005]

【発明が解決しようとする課題】例えば、アルミナ−炭
化珪素ウイスカー系複合材料は、アルミナセラミックス
に比較して靭性や強度を大きく向上できるものの、アル
ミナ自体の強度、靱性および高温強度等の特性が低いた
めに、その効果も限界があり、使用できる用途が限られ
ている。
For example, alumina-silicon carbide whisker-based composite materials can greatly improve toughness and strength as compared with alumina ceramics, but have low properties such as strength, toughness and high-temperature strength of alumina itself. Therefore, its effect is also limited, and its usable applications are limited.

【0006】これに対して、窒化珪素質焼結体は、焼成
の段階で結晶が針状に成長するために、この針状結晶が
からみあった構造となることにより、セラミックスの中
でも靭性や強度、耐熱衝撃性等に優れた材料であるが、
実用的には不十分であることから、炭化珪素ウイスカー
を分散させて靭性や強度をさらに向上させる試みがあ
る。ところが、窒化珪素や炭化珪素は、いずれも金属と
の凝着、溶着性がアルミナより高く、また、硬度が低い
ため耐摩耗性が低いという問題があった。
[0006] On the other hand, the silicon nitride sintered body has a structure in which the needle-like crystals are entangled because the crystals grow into needles at the stage of firing. Although it is a material with excellent thermal shock resistance,
There is an attempt to further improve toughness and strength by dispersing silicon carbide whiskers because they are not practically sufficient. However, both silicon nitride and silicon carbide have a problem that their adhesion to metal and adhesion are higher than that of alumina, and their hardness is low, so that their wear resistance is low.

【0007】そこで、本発明者は、窒化珪素質焼結体の
靭性や強度の向上に加え、耐摩耗性を向上させる上で、
それ自体、硬度が高く、耐摩耗性に優れたTiCやTi
Nなどのチタン化合物ウイスカーを分散させる試みを行
ったが、期待される効果が得られないものであった。そ
れは、上記チタン化合物が、窒化珪素との濡れ性が悪い
ために、窒化珪素マトリックスとの密着性や親和性が低
く、相互適合性が十分でない点であることがわかった。
Accordingly, the present inventor has proposed that, in addition to improving the toughness and strength of the silicon nitride based sintered body, improving the wear resistance.
TiC or Ti with high hardness and excellent wear resistance
An attempt was made to disperse whisker of titanium compound such as N, but the expected effect was not obtained. It has been found that the titanium compound has poor wettability with silicon nitride, so that the titanium compound has low adhesion and affinity with a silicon nitride matrix, and mutual compatibility is not sufficient.

【0008】従って、本発明の目的は、窒化珪素をマト
リックスとして、Ti化合物系強化相を分散せしめた複
合材料において、前記強化相とマトリックスとの濡れ性
を向上させて、強化相による特性向上効果を最大源に発
揮し、高強度、高靱性および高硬度を有し耐摩耗性に優
れた窒化珪素質焼結体を提供するにある。
Accordingly, an object of the present invention is to improve the wettability between the reinforcing phase and the matrix in a composite material in which a silicon compound is used as a matrix and a Ti compound-based reinforcing phase is dispersed, thereby improving the properties by the reinforcing phase. To provide a silicon nitride sintered body having high strength, high toughness and high hardness and excellent wear resistance.

【0009】[0009]

【課題を解決するための手段】本発明者は、窒化珪素系
マトリックス相とTi化合物系強化相との濡れ性を向上
させるための具体的な構成について種々検討した結果、
Ti化合物系強化相中に、特定の遷移金属を存在せしめ
ることにより、窒化珪素マトリックスとの濡れ性が改善
されることを見いだし、本発明に至った。
The present inventors have conducted various studies on a specific structure for improving the wettability between a silicon nitride-based matrix phase and a Ti compound-based reinforcing phase.
The present inventors have found that the presence of a specific transition metal in the Ti compound-based reinforcing phase improves the wettability with the silicon nitride matrix, leading to the present invention.

【0010】即ち、本発明の窒化珪素質焼結体は、β−
窒化珪素結晶からなる主相と、少なくとも周期律表第3
a族元素を含有する粒界相とを具備するマトリックス相
中に、Tiの窒化物、炭窒化物、炭酸窒化物のうちの少
なくとも1種のTi化合物からなる粒子あるいはウイス
カーと、Ni、Fe、Co、Cu、Mo、WおよびMn
の群から選ばれる少なくとも1種の遷移金属を含有する
強化相が10〜40体積%の割合で分散してなることを
特徴とするものである。
That is, the silicon nitride sintered body of the present invention has a β-
A main phase made of silicon nitride crystal and at least
In a matrix phase including a grain boundary phase containing a group a element, particles or whiskers of at least one Ti compound of Ti nitride, carbonitride, and carbonitride, and Ni, Fe, Co, Cu, Mo, W and Mn
Characterized in that the reinforcing phase containing at least one transition metal selected from the group of is dispersed at a rate of 10 to 40% by volume.

【0011】また、前記強化相は、Tiの窒化物、炭窒
化物、炭酸窒化物のうちの少なくとも1種のTi化合物
からなる粒子あるいはウイスカーからなるコア部と、該
コア部の周囲に前記遷移金属を含有するシェル部を有す
ること、前記遷移金属が、前記Ti化合物以外の全成分
を100重量%として、金属に換算して0.01〜8重
量%の割合で含まれること、前記マトリックス相が、マ
トリックス全量中、窒化珪素を70〜95重量%、周期
律表第3a族元素を酸化物換算で1〜15重量%、アル
ミニウムを酸化物換算量で7重量%以下、不純物的酸素
を酸化珪素換算量で10重量%以下の割合で含むこと、
焼結体の相対密度が95%以上、気孔率が3%以下、平
均ボイド径が5μm以下であること、該焼結体のラマン
分光分析法により検出される窒化珪素の206cm-1
ピーク強度X1 と、Siの521cm-1のピーク強度X
2 との比(X2 /X1 )が0.2〜3であること等の種
々の特徴を具備するものである。
Further, the strengthening phase includes a core portion made of particles or whiskers made of at least one kind of Ti compound of Ti nitride, carbonitride, and carbonitride, and the transition around the core portion. A metal-containing shell portion, wherein the transition metal is contained at a ratio of 0.01 to 8% by weight in terms of metal, with 100% by weight of all components other than the Ti compound; In the total amount of the matrix, 70 to 95% by weight of silicon nitride, 1 to 15% by weight of Group 3a element of the periodic table in terms of oxide, 7% by weight or less of aluminum in terms of oxide, and oxidation of impurity oxygen Contained in a proportion of 10% by weight or less in terms of silicon,
The sintered body has a relative density of 95% or more, a porosity of 3% or less, an average void diameter of 5 μm or less, and a peak intensity of 206 cm −1 of silicon nitride detected by Raman spectroscopy of the sintered body. X 1 and the peak intensity X of Si at 521 cm −1
It has various features such as a ratio of (X 2 / X 1 ) to 2 being 0.2 to 3.

【0012】また、本発明によれば、上記の窒化珪素質
焼結体を切削工具として用いることを特徴とするもので
ある。
Further, according to the present invention, the above-mentioned silicon nitride based sintered body is used as a cutting tool.

【0013】[0013]

【作用】窒化珪素質焼結体の靭性、強度および硬度を向
上させる場合、セラミックウイスカー等を強化相として
分散させることが効果的であるが、その中でも、硬度が
高く、耐摩耗性に優れたTiC等のTi化合物を選択す
ることにより機械的特性の向上が期待できる。しかも、
窒化珪素に対して、Ti化合物を添加し焼成した焼結体
では、強度、靭性はある程度の効果が見られたが、耐摩
耗性については顕著な向上は見られず、むしろ耐摩耗性
が劣化する傾向が見られた。
In order to improve the toughness, strength and hardness of a silicon nitride sintered body, it is effective to disperse a ceramic whisker or the like as a reinforcing phase. Among them, among them, the hardness is high and the wear resistance is excellent. By selecting a Ti compound such as TiC, improvement in mechanical properties can be expected. Moreover,
In the sintered body obtained by adding a Ti compound to silicon nitride and firing, a certain effect was observed in the strength and toughness, but the wear resistance was not significantly improved, but rather deteriorated. There was a tendency to.

【0014】これは、Ti化合物が、窒化珪素との濡れ
性、密着性や親和性が悪く、相互適合性が十分でないた
めであり、そのために、Ti化合物の形状や添加量など
を細かく制御しなければならない。つまり、相互適合性
が悪い物質を分散させると、添加量や形状によって、ク
ラックのブリッジング効果により靭性や強度は向上する
が、焼結性が劣化したり、分散強化物質と窒化珪素マト
リックスとの濡れ性、密着性や親和性が悪いため相互の
結合力が低下し、焼結体表面の分散強化相の脱落(脱
粒)等が発生するために耐摩耗性は劣化したものと推察
される。
This is because the Ti compound has poor wettability, adhesion and affinity with silicon nitride, and is not sufficiently compatible with each other. For this reason, the shape and the amount of the Ti compound to be controlled are finely controlled. There must be. In other words, when a substance having poor mutual compatibility is dispersed, toughness and strength are improved due to the bridging effect of cracks depending on the amount and shape of addition, but sinterability is deteriorated, or the dispersion strengthening substance and the silicon nitride matrix are mixed. It is presumed that the abrasion resistance was degraded because the mutual bonding force was reduced due to poor wettability, adhesion, and affinity, and the dispersion strengthening phase on the sintered body surface was dropped (degranulated).

【0015】これに対して、本発明によれば、Ti化合
物からなる強化相中に、Ni、Fe、Co、Cu、M
o、WおよびMnの群から選ばれる少なくとも1種の遷
移金属を含有せしめると、上記遷移金属が、いわゆるT
i化合物からなるコア部の周囲にシェル部を形成するこ
とにより、強化相の窒化珪素マトリックスへの濡れ性を
改善して相互適合性を向上させる作用を成す結果、焼結
体の靭性や強度とともに、耐摩耗性を著しく向上させる
ことができる。
On the other hand, according to the present invention, Ni, Fe, Co, Cu, M
When at least one transition metal selected from the group consisting of o, W and Mn is contained, the transition metal becomes a so-called T
By forming a shell part around the core part made of the i-compound, the effect of improving the wettability of the reinforcing phase to the silicon nitride matrix and improving the mutual compatibility is achieved. The wear resistance can be significantly improved.

【0016】[0016]

【発明の実施の形態】本発明の窒化珪素質焼結体は、図
1の概略組織図に示すように、窒化珪素質マトリックス
相1と、Ti化合物系強化相2とから構成される。窒化
珪素質マトリックス相1は、β−窒化珪素結晶からなる
主相と、少なくとも周期律表第3a族元素を含有する粒
界相とを具備する。一方、Ti化合物系強化相2は、T
iの窒化物、炭窒化物、炭酸窒化物のうちの少なくとも
1種の粒子あるいはウイスカーを主体とするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon nitride based sintered body of the present invention is composed of a silicon nitride based matrix phase 1 and a Ti compound based reinforcing phase 2 as shown in the schematic structure diagram of FIG. The silicon nitride matrix phase 1 has a main phase composed of β-silicon nitride crystal and a grain boundary phase containing at least an element of Group 3a of the periodic table. On the other hand, the Ti compound-based strengthening phase 2
It is mainly composed of at least one kind of particles or whiskers of the nitride, carbonitride and carbonitride of i.

【0017】Ti化合物系強化相2中のTi化合物とし
ては、Tiの窒化物、炭窒化物、炭酸窒化物のうちの少
なくとも1種からなる粒子あるいはウイスカー(繊維状
物質)からなり、例えば、TiC,TiC、TiCN、
TiCO、TiNO、TiCNO等が挙げられる。これ
らの粒子及びウイスカーは、化学量論組成であっても、
又は非化学量論組成からなっているものでもよい。
The Ti compound in the Ti compound-based reinforcing phase 2 is a particle or whisker (fibrous substance) made of at least one of Ti nitride, carbonitride, and carbonitride. , TiC, TiCN,
TiCO, TiNO, TiCNO and the like can be mentioned. These particles and whiskers have a stoichiometric composition,
Alternatively, it may be composed of a non-stoichiometric composition.

【0018】また、前記Ti化合物は、特にウイスカー
であることが望ましく、その場合、ウイスカーは長繊維
状のもの又は短繊維状のもの、もしくはこれらの混合物
であってもよいが、平均粒径(短軸径)が0.1〜2μ
m、好ましくは0.5〜1.5μmで、平均アスペクト
比が2〜50、好ましくは4〜30であるものが望まし
い。これは、平均粒径が2μmを越えると焼結性が妨げ
られ、マトリックスとウイスカーの結合力が低下し、焼
結体の靱性、強度及び耐摩耗性が低下するからである。
平均アスペクト比も同様の理由による。
The Ti compound is preferably a whisker. In this case, the whisker may be in the form of long fibers or short fibers, or a mixture thereof. 0.1 to 2μ
m, preferably 0.5 to 1.5 μm, and an average aspect ratio of 2 to 50, preferably 4 to 30. This is because if the average particle size exceeds 2 μm, the sinterability is hindered, the bonding force between the matrix and the whiskers is reduced, and the toughness, strength and wear resistance of the sintered body are reduced.
The average aspect ratio is for the same reason.

【0019】又、粒子形状のTi化合物を用いる場合に
は、平均粒径が0.2〜3μm、好ましくは0.4〜
1.5μmであることが望ましい。これは、粒子形状で
ある場合、平均粒径が3μmをこえるとマトリックスと
の結合力が低下し、焼結体の靱性、強度及び耐摩耗性が
低下するからである。
When a Ti compound in the form of particles is used, the average particle size is 0.2 to 3 μm, preferably 0.4 to 3 μm.
It is desirable that the thickness be 1.5 μm. This is because, in the case of a particle shape, if the average particle size exceeds 3 μm, the bonding force with the matrix decreases, and the toughness, strength and wear resistance of the sintered body decrease.

【0020】本発明によれば、Ti化合物系強化相2中
に、Ni、Fe、Co、Cu、Mo、WおよびMnの群
から選ばれる少なくとも1種の遷移金属を含有すること
が重要である。これらの遷移金属の存在によって、Ti
化合物系強化相2の窒化珪素質マトリックス相1との濡
れ性を改善し、相互適合性を向上させることができるの
である。
According to the present invention, it is important that the Ti compound based reinforcing phase 2 contains at least one transition metal selected from the group consisting of Ni, Fe, Co, Cu, Mo, W and Mn. . Due to the presence of these transition metals, Ti
The wettability of the compound-based reinforcing phase 2 with the silicon nitride matrix phase 1 can be improved, and the mutual compatibility can be improved.

【0021】上記のようにTi化合物系強化相2中に前
記遷移金属が含まれる場合、組織上、図1に示すよう
に、Ti化合物系強化相2は、概して、Ti化合物から
なる中心部(コア部)2aと、その周囲に前記遷移金属
を含むシェル部2bが形成される。この遷移金属は、酸
化物、窒化物、酸窒化物もしくは珪化物として存在する
ことが望ましく、その場合、遷移金属は、コア部2a中
にTi化合物との固溶体を形成する。但し、遷移金属
は、コア部2aよりも、主としてシェル部2bに多く含
まれる。
When the transition metal is contained in the Ti compound-based reinforced phase 2 as described above, the Ti compound-based reinforced phase 2 generally has a central part (FIG. 1) composed of a Ti compound. A core portion 2a and a shell portion 2b containing the transition metal around the core portion 2a are formed. This transition metal desirably exists as an oxide, nitride, oxynitride or silicide, in which case the transition metal forms a solid solution with the Ti compound in the core portion 2a. However, the transition metal is mainly contained more in the shell part 2b than in the core part 2a.

【0022】このように、遷移金属が、コア−シェル構
造におけるシェル部2bに多く含まれることにより、強
化相2と、窒化珪素マトリックス相1との濡れ性の向上
に寄与できる。なお、上記シェル部2bは、必ずしも全
周囲に形成されていなくても、コア部2aの周囲の50
%以上に形成されていれば、その効果が発揮される。
As described above, since the transition metal is largely contained in the shell portion 2b in the core-shell structure, it is possible to contribute to improvement in wettability between the reinforcing phase 2 and the silicon nitride matrix phase 1. Note that the shell portion 2b is not necessarily formed on the entire periphery, but may be formed around the core portion 2a.
%, The effect is exhibited.

【0023】このシェル部2bの厚みは、特に限定され
るものではないが、好ましくは平均で0.1〜0.5μ
m程度が望ましい。
The thickness of the shell portion 2b is not particularly limited, but is preferably 0.1 to 0.5 μm on average.
m is desirable.

【0024】本発明においては、上記Ti化合物は、全
量中に、10〜40体積%、特に15〜30体積%の割
合で含有されていることが望ましい。上記含有量が10
体積%よりも少ないとTi化合物による機械的特性の向
上効果が期待できず、含有量が40体積%を超えると焼
結性やマトリックスとの結合力が低下し、強度や耐摩耗
性が低下する場合がある。なお、前記Ti化合物系強化
相2中に含有される前記遷移金属は、Ti化合物以外の
全成分の合計量を100重量%とした時に、0.01〜
8重量%の割合で含有され、特に強度や耐摩耗性の向上
の点で0.1〜5重量%、また、0.5〜4重量%でさ
らに耐摩耗性を向上できる。
In the present invention, the Ti compound is desirably contained in a total amount of 10 to 40% by volume, particularly 15 to 30% by volume. The above content is 10
If the content is less than 30% by volume, the effect of improving the mechanical properties by the Ti compound cannot be expected, and if the content exceeds 40% by volume, the sinterability and the bonding force with the matrix decrease, and the strength and wear resistance decrease. There are cases. In addition, the said transition metal contained in the said Ti compound type | system | group reinforcement | strengthening phase 2 is 0.01-0.0% when the total amount of all the components other than a Ti compound is 100 weight%.
It is contained at a ratio of 8% by weight, and in particular, from 0.1 to 5% by weight and from 0.5 to 4% by weight in terms of improvement in strength and wear resistance, wear resistance can be further improved.

【0025】一方、窒化珪素質マトリックス相は、組成
上、前記Ti化合物以外の全成分の合計量を100重量
%とした時、窒化珪素を75〜95重量%、好適には8
0〜90重量%含む。窒化珪素結晶相は、平均粒径(短
軸径)が0.5〜2μm、平均アスペクト比が3以上の
針状のβ−窒化珪素粒子からなり、それが互いに絡み合
った構造となることで、焼結体の破壊靱性および強度の
向上に寄与する。
On the other hand, in terms of composition, the silicon nitride matrix phase contains 75 to 95% by weight, preferably 8% by weight of silicon nitride when the total amount of all components other than the Ti compound is 100% by weight.
0-90% by weight. The silicon nitride crystal phase is composed of acicular β-silicon nitride particles having an average particle diameter (minor axis diameter) of 0.5 to 2 μm and an average aspect ratio of 3 or more, and has a structure in which they are entangled with each other. It contributes to the improvement of fracture toughness and strength of the sintered body.

【0026】さらに、上記窒化珪素質焼結体には、焼結
助剤成分として、周期律表第3a族元素を含み、その含
有量は酸化物換算で1〜15重量%、好適には3〜10
重量%であることが望ましい。その他の焼結助剤として
は、アルミニウムを酸化物換算量7重量%以下、好適に
は5重量%以下、さらに不純物的酸素を酸化珪素換算量
で10重量%以下、好適には8重量%以下の割合でそれ
ぞれ含むことが望ましい。上記周期律表第3a族元素と
しては、Y、Er、Yb、Lu、Sm等が挙げられ、こ
れらの中でもY、Yb,Erが好適である。
Further, the silicon nitride-based sintered body contains a Group 3a element of the periodic table as a sintering aid component, and its content is 1 to 15% by weight in terms of oxide, preferably 3% by weight. -10
% By weight. Other sintering aids include aluminum in an amount of 7% by weight or less, preferably 5% by weight or less in terms of oxide, and 10% by weight or less, preferably 8% by weight or less in terms of silicon oxide in terms of silicon oxide. It is desirable to include each in the ratio of. Examples of the Group 3a element of the periodic table include Y, Er, Yb, Lu, and Sm, and among them, Y, Yb, and Er are preferable.

【0027】ここで、上記不純物的酸素とは、焼結体中
の全酸素量から焼結体中のYまたは希土類元素(RE)
およびAlに対して化学量論組成(RE2 3 およびA
23 )で結合していると仮定される酸素量を差し引
いた残りの酸素量であり、そのほとんどは窒化珪素粉末
中の不可避的酸素または意図的に添加されたSiO2
分より構成される。
Here, the impurity oxygen refers to the amount of Y or rare earth element (RE) in the sintered body based on the total amount of oxygen in the sintered body.
Stoichiometric composition (RE 2 O 3 and A
l 2 O 3 ), which is the remaining oxygen content after subtracting the oxygen content assumed to be bound by the reaction, and most of the remaining oxygen content is composed of unavoidable oxygen in the silicon nitride powder or SiO 2 component added intentionally. You.

【0028】前記周期律表第3a族元素、アルミニウ
ム、不純物的酸素は、窒化珪素結晶相の粒界に、ガラス
相を形成するか、または希土類元素−Si3 4 −Si
2 系の結晶相として存在してもよい。なお、アルミニ
ウムは、β−窒化珪素結晶相中に一部固溶していてもよ
い。
The group 3a element of the periodic table, aluminum and impurity oxygen form a glass phase at the grain boundary of the silicon nitride crystal phase, or form a rare earth element—Si 3 N 4 —Si
It may exist as an O 2 -based crystal phase. Note that aluminum may be partially dissolved in the β-silicon nitride crystal phase.

【0029】また、本発明の窒化珪素質焼結体は、優れ
た機械的特性を得る上で、相対密度が95%以上、好適
には98%以上であり、気孔率を3%以下、好適には
1.5%以下であることが、優れた耐摩耗性を達成する
上で望ましい。
In order to obtain excellent mechanical properties, the silicon nitride sintered body of the present invention has a relative density of 95% or more, preferably 98% or more, and a porosity of 3% or less. Is preferably 1.5% or less in order to achieve excellent wear resistance.

【0030】さらに、窒化珪素質焼結体内には、実質的
にはボイドが存在しないことが望ましいが、不可避的に
ボイドが発生する場合、ボイドを均一に点在させること
で、破壊源であるクラックが発生した場合において、ク
ラックの進展により破損や欠損および割損が生じても、
クラックの進展を防止することができる。このボイドの
平均径は5μm以下であることが望ましい。これは、平
均ボイド径が5μmを越えると、微小な脱粒摩耗やチッ
ピングを併発し、脱粒が増加し、摩耗が増加するためで
ある。
Further, it is desirable that substantially no voids exist in the silicon nitride sintered body. However, if voids are inevitably generated, the voids are uniformly dispersed to be a source of destruction. When cracks occur, even if breakage, breakage and breakage occur due to crack propagation,
Cracks can be prevented from developing. The average diameter of the voids is desirably 5 μm or less. This is because, when the average void diameter exceeds 5 μm, minute shedding and chipping occur at the same time, shedding increases, and wear increases.

【0031】このようなボイドを均一に点在させるに
は、窒化珪素原料を混合粉砕し、造粒なしに、成形、焼
成したり、混合粉末を一旦造粒した後、この造粒した粉
体を成形時に成形圧力を十分に上げて造粒粉体をつぶす
ことにより、均一に点在させることができる。なお、ボ
イド径分布は、用いる原料粉末と成形時の圧力、さらに
は焼成条件による緻密化の程度によって制御できる。
In order to uniformly disperse such voids, the silicon nitride raw material is mixed and pulverized, molded and fired without granulation, or once the mixed powder is granulated, and then the granulated powder is mixed. Can be uniformly scattered by sufficiently increasing the molding pressure during molding to crush the granulated powder. The void diameter distribution can be controlled by the raw material powder used, the pressure at the time of molding, and the degree of densification by firing conditions.

【0032】さらに、本発明によれば、かかる焼結体を
ラマン分光分析法によって分析した時に、微小のSiが
検出されることが望ましい。このSiは、走査型電子顕
微鏡(SEM)においても観察することができないレベ
ルのものであり、ラマン分光分析法によって検出される
ものである。このSiがSEM観察では検出できないも
のの、おそらく窒化珪素質マトリックス中の窒化珪素結
晶粒界中もしくは窒化珪素粒内に分散しているものと推
察される。
Further, according to the present invention, when such a sintered body is analyzed by Raman spectroscopy, it is desirable that minute Si is detected. This Si is at a level that cannot be observed even with a scanning electron microscope (SEM), and is detected by Raman spectroscopy. Although this Si cannot be detected by SEM observation, it is presumed that it is probably dispersed in silicon nitride crystal grain boundaries in the silicon nitride matrix or in silicon nitride grains.

【0033】このようなSiをマトリックス中に存在さ
せることにより、強度および靱性を高めることができ
る。この理由は定かではないが、おそらく粒界に分散す
るSiがクラックの進展を妨げる作用をなしているため
と推察される。
The presence of such Si in the matrix can enhance the strength and toughness. The reason for this is not clear, but is presumed to be because Si dispersed at the grain boundaries acts to hinder the progress of cracks.

【0034】しかし、ここで粒界に存在するSi粒子
は、ごく微量であることが必要であり、例えば、X線回
折測定法によって検出されるレベルで存在すると、それ
が破壊源となり、焼結体の強度を劣化させてしまう。こ
れに対して、本発明の焼結体は、ごく微量のSiまで検
出可能なラマン分光分析法に従い、特定のレベルで存在
することが必要である。それは、具体的にはβ−窒化珪
素の206cm-1付近に存在するピークの強度をX1
Siの521cm-1付近のピークの強度をX2 としたと
き、X2 /X1 で表されるピーク比が0.2〜3、好ま
しくは0.5〜2であることが望ましい。このピーク比
が0.2よりも低いと強度、靱性の向上効果が低く、所
望の特性が得られず、3を越えると、析出したSi自体
が破壊源となり強度を劣化させてしまうためである。
However, the Si particles present at the grain boundaries need to be very small. For example, if the Si particles are present at a level detected by X-ray diffraction measurement, they become sources of destruction and cause sintering. It degrades the strength of the body. On the other hand, the sintered body of the present invention needs to be present at a specific level according to Raman spectroscopy in which even a trace amount of Si can be detected. Specifically, the intensity of the peak existing near 206 cm −1 of β-silicon nitride is X 1 ,
When the intensity of the peak near 521 cm −1 of Si is X 2 , the peak ratio represented by X 2 / X 1 is desirably 0.2 to 3, preferably 0.5 to 2. If the peak ratio is lower than 0.2, the effect of improving the strength and toughness is low, and desired characteristics cannot be obtained. If the peak ratio exceeds 3, the precipitated Si itself becomes a source of destruction and deteriorates the strength. .

【0035】次に、本発明の窒化珪素質焼結体を製造す
る方法について説明すると、窒化珪素原料として、窒化
珪素粉末、特にα化率が90%以上の粉末を用いるか、
あるいは窒化珪素原料の0〜80重量%相当量を珪素粉
末に置き換え、珪素粉末を低温で窒化するとα−Si3
4 が生成されやすくなり、窒化後の成形体のα−Si
3 4 の含有量を高めることができる。このようなα−
Si3 4 の含有量の大きい成形体を焼成すると、針状
のβ−窒化珪素結晶相の生成を増加させることができ、
焼結体の強度および靱性を高くさせることができる。ま
た、窒化珪素粉末の平均粒径は、0.4〜1.2μm、
不純物酸素量は0.5〜1.5重量%が適当である。
Next, the method for producing the silicon nitride sintered body of the present invention will be described. As the silicon nitride raw material, a silicon nitride powder, in particular, a powder having an α-rate of 90% or more is used.
Alternatively, when the equivalent of 0 to 80% by weight of the silicon nitride raw material is replaced with silicon powder and the silicon powder is nitrided at a low temperature, α-Si 3
N 4 is likely to be generated, and the α-Si
It is possible to increase the content of 3 N 4. Such α-
Firing a compact having a high Si 3 N 4 content can increase the generation of needle-like β-silicon nitride crystal phases,
The strength and toughness of the sintered body can be increased. The average particle size of the silicon nitride powder is 0.4 to 1.2 μm,
An appropriate amount of impurity oxygen is 0.5 to 1.5% by weight.

【0036】次に、このような窒化珪素粉末に対して、
周期律表第3a族元素酸化物、場合によっては、Al2
3 粉末、さらにはSiO2 粉末を、焼成前の成形体組
成が、希土類元素の酸化物換算量が1〜15重量%、特
に3〜10重量%、Al2 3 を7重量%以下、特に5
重量%以下、さらには、成形体中の全酸素量から周期律
表第3a族元素酸化物粉末、Al2 3 粉末中の酸素分
を差し引いた残りの酸素量が、SiO2 換算で10重量
%以下、特に8重量%以下となるように添加する。
Next, for such silicon nitride powder,
Group 3a element oxide of the periodic table, and in some cases, Al 2
The O 3 powder, and further the SiO 2 powder, the composition of the molded body before firing has a rare earth element oxide equivalent of 1 to 15 wt%, particularly 3 to 10 wt%, and Al 2 O 3 of 7 wt% or less, Especially 5
% By weight or less, and the remaining oxygen content obtained by subtracting the oxygen content in the Group 3a element oxide powder and the Al 2 O 3 powder from the total oxygen content in the molded body is 10 weight in terms of SiO 2. %, Especially 8% by weight or less.

【0037】また、上記の成分の他に、Ni、Co、
W、Mo、Mn、CuおよびFeのうちの少なくとも1
種の遷移金属の酸化物、窒化物、酸窒化物もしくは珪化
物粉末を金属に換算して0.01〜8重量%の割合で添
加し、さらに、上記の成分に対して、Tiの窒化物、炭
窒化物、炭酸窒化物のうちの少なくとも1種の粒子ある
いはウイスカーを10〜40体積%の割合で添加混合す
る。
In addition to the above components, Ni, Co,
At least one of W, Mo, Mn, Cu and Fe
Oxides, nitrides, oxynitrides or silicide powders of various kinds of transition metals are added at a ratio of 0.01 to 8% by weight in terms of metal, and a nitride of Ti is added to the above components. , A carbonitride or a carbonitride, and at least one kind of particles or whiskers are added and mixed at a ratio of 10 to 40% by volume.

【0038】得られた混合粉末をメッシュパス造粒、ス
プレー造粒、乾式造粒等により30〜300μmの大き
さの造粒体を形成した後に、公知の成形法、たとえばプ
レス成形、鋳込み成形、押し出し成形、射出成形、冷間
静水圧成形などにより所望の形状に成形する。
After forming a granulated body having a size of 30 to 300 μm from the obtained mixed powder by mesh pass granulation, spray granulation, dry granulation or the like, a known molding method such as press molding, cast molding, It is formed into a desired shape by extrusion molding, injection molding, cold isostatic pressing or the like.

【0039】つぎに、この成形体を1650〜1850
℃、特に1700〜1800℃の窒素雰囲気中、特にS
iO含有雰囲気中で公知の焼成方法により、焼結体密度
が理論密度の95%以上となる条件で焼成緻密化する。
焼成方法としては、常圧焼成、窒素ガス加圧焼成、熱間
静水圧焼成法など周知の焼成方法が採用される。SiO
の雰囲気は、SiO2 +Si、もしくはSiO2 +Si
3 4 の混合粉末を成形体が収納される焼成鉢内に一緒
に入れて焼成することにより形成することができる。
Next, this molded product was used for 1650 to 1850
C, especially 1700-1800 C in a nitrogen atmosphere, especially S
By a known firing method in an iO-containing atmosphere, the sintered body is densified by firing under the condition that the density of the sintered body is 95% or more of the theoretical density.
As the firing method, a well-known firing method such as normal pressure firing, nitrogen gas pressure firing, and hot isostatic pressure firing method is employed. SiO
Atmosphere is SiO 2 + Si or SiO 2 + Si
The mixed powder of 3 N 4 can be molded article is formed by firing put together in a firing bowl to be accommodated.

【0040】なお、焼結体中のマトリックス中にSiを
残存させるためには、焼成温度を、窒化珪素が常圧にて
珪素と窒素ガスに分解する平衡温度から約30℃低い温
度範囲内で焼成して、ごく微量のSi3 4 を分解さ
せ、分解によって生成されたSiがマトリックス中の窒
化珪素結晶粒子の粒界中に存在することになる。なお、
Si量は、上記温度範囲での保持時間などにより任意に
制御することが可能である。
In order to leave Si in the matrix of the sintered body, the sintering temperature should be set within a range of about 30 ° C. lower than the equilibrium temperature at which silicon nitride decomposes into silicon and nitrogen gas at normal pressure. By firing, a very small amount of Si 3 N 4 is decomposed, and the Si generated by the decomposition is present in the grain boundaries of the silicon nitride crystal particles in the matrix. In addition,
The amount of Si can be arbitrarily controlled by, for example, the holding time in the above temperature range.

【0041】また、上記のようにして焼成した焼結体を
さらに熱間静水圧焼成によって、1600〜1800℃
の温度で窒素ガス、またはアルゴンガス中で1000〜
2000atmの圧力下で焼成して、さらに緻密化を図
ることもできる。
Further, the sintered body fired as described above is further subjected to hot isostatic pressure firing at 1600 to 1800 ° C.
At a temperature of 1000 to 1000 in nitrogen gas or argon gas.
It can be further densified by firing under a pressure of 2000 atm.

【0042】[0042]

【実施例】平均粒径が1μm、α化率98%、酸素含有
量が1.2重量%の窒化珪素(Si3 4 )粉末、平均
粒径が0.7μmの珪素粉末、平均粒径が1μm以下の
各種の周期律表第3a族元素酸化物(RE2 3 )、酸
化アルミニウム(Al2 3 )および酸化珪素(SiO
2 )の粉末、さらには、遷移金属化合物と、Ti化合物
を、成形体組成が表1,2の比率になるように混合し
た。なお、Ti化合物としては、平均粒径が0.5〜1
μmの粒子状、平均粒径(短軸径)が0.8μm、平均
アスペクト比が10〜20のTi化合物ウイスカーを用
いた。
EXAMPLE A silicon nitride (Si 3 N 4 ) powder having an average particle diameter of 1 μm, an alpha conversion of 98% and an oxygen content of 1.2% by weight, a silicon powder having an average particle diameter of 0.7 μm, and an average particle diameter Is 3 μm or less, oxides of the elements of Group 3a of the periodic table (RE 2 O 3 ), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 )
The powder of 2 ), and further, the transition metal compound and the Ti compound were mixed so that the composition of the molded body had the ratio shown in Tables 1 and 2. The Ti compound has an average particle size of 0.5 to 1
A Ti compound whisker having a particle size of μm, an average particle diameter (minor axis diameter) of 0.8 μm, and an average aspect ratio of 10 to 20 was used.

【0043】得られた混合物をスプレードライによって
粒径が40〜200μmの造粒体を作製した。その後、
0.3〜3t/cm2 の圧力でもってラバープレス(ア
イソスタテイックプレス)成形をおこなった。
The resulting mixture was spray-dried to form granules having a particle size of 40 to 200 μm. afterwards,
Rubber press (isostatic press) molding was performed at a pressure of 0.3 to 3 t / cm 2 .

【0044】そして、成形体中にSi粉末を含まない場
合には、窒素圧9気圧の窒素中、表1の焼成温度で5時
間焼成し、その後に炉冷して焼結体を得た。また、Si
粉末を含む場合には、1150℃で5時間加熱して窒化
させ、その後に表1の焼成温度で5時間焼成し、続けて
炉冷して焼結体を得た。なお、ボイドの大きさは成形時
の圧力によって制御した。
When no Si powder was contained in the compact, the compact was fired in a nitrogen atmosphere at a nitrogen pressure of 9 atm at the firing temperature shown in Table 1 for 5 hours and then cooled in a furnace to obtain a sintered body. In addition, Si
When the powder was included, the powder was heated at 1150 ° C. for 5 hours to be nitrided, then fired at the firing temperature shown in Table 1 for 5 hours, and subsequently cooled in a furnace to obtain a sintered body. The size of the void was controlled by the pressure during molding.

【0045】なお、焼成は、各成形体を成形体重量の5
%のSiO2 +Si(重量比で1:1)混合粉末を配置
し、炭化珪素質の匣鉢に入れて焼成した。なお、試料N
o.22については、SiO2 +Si混合粉末を配置せず
に焼成した。
In the firing, each molded body was subjected to 5% of the weight of the molded body.
% SiO 2 + Si (1: 1 by weight) mixed powder was placed, placed in a silicon carbide sagger, and fired. The sample N
For O.22, they were fired without placing a SiO 2 + Si powder mixture.

【0046】かくして得られた各焼結体に対して、相対
密度、気孔率、強度、靭性、硬度および平均ボイド径を
以下の方法で測定し、その結果を表4に示した。相対密
度および気孔率は、JISR1601にて規定された条
件の形状にまで加工し、アルキメデス法に基づく比重測
定から求めた。強度は、JISR1601に基づき室温
の4点曲げ抗折強度試験をおこなって求めた。靭性は鏡
面仕上げをおこなった試料に対して、JIS−R160
7に基づく室温での破壊靱性を測定した。硬度は、ビッ
カース硬度(荷重1kg)により測定した。さらに平均
ボイド径は、SEMや実体顕微鏡を用いてを調べた。
The relative density, porosity, strength, toughness, hardness and average void diameter of each of the sintered bodies thus obtained were measured by the following methods. The results are shown in Table 4. The relative density and the porosity were obtained by processing to a shape defined by JISR1601 and measuring the specific gravity based on the Archimedes method. The strength was determined by performing a four-point bending strength test at room temperature based on JISR1601. The toughness of the mirror-finished sample was measured according to JIS-R160.
The fracture toughness at room temperature based on No. 7 was measured. Hardness was measured by Vickers hardness (load 1 kg). Further, the average void diameter was examined using a SEM or a stereomicroscope.

【0047】さらに、ラマン分光分析法により窒化珪素
の206cm-1のピーク強度X1 と、Siの521cm
-1のピーク強度X2 とのX2 /X1 比を求めた。なお、
試料No.3についてそのラマン分光分析チャートを図2
に示した。
Further, by Raman spectroscopy, the peak intensity X 1 of silicon nitride at 206 cm -1 and the peak intensity X of Si at 521 cm -1 were measured.
The X 2 / X 1 ratio with the peak intensity X 2 of −1 was determined. In addition,
FIG. 2 is a Raman spectroscopic analysis chart of Sample No. 3.
It was shown to.

【0048】また、各組成の焼結体を用いて下記表3の
条件で切削テストを行い、テスト後の摩耗量を測定し
た。
Further, a cutting test was performed using the sintered bodies having the respective compositions under the conditions shown in Table 3 below, and the wear amount after the test was measured.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】表1および表4の結果から明らかな通り、
遷移金属を全く添加しない試料No.7,25では、摩耗
量が3mm以上と大きく、耐摩耗特性が低いものであっ
たが、本発明に従い、所定量の遷移金属を添加せしめた
本発明試料は、いずれも強度800MPa以上、靭性
7.0MPa・m1/2 以上、硬度15.0GPa以上の
機械的特性を有し、摩耗特性においても、切削テスト1
で1.0mm以下、切削テスト2では0.5mm以下の
優れた耐摩耗性を有するものであった。
As is clear from the results in Tables 1 and 4,
Samples Nos. 7 and 25 to which no transition metal was added had a large abrasion amount of 3 mm or more and low abrasion resistance properties. However, according to the present invention, the sample of the present invention to which a predetermined amount of transition metal was added was used. All have mechanical properties of a strength of 800 MPa or more, a toughness of 7.0 MPa · m 1/2 or more, and a hardness of 15.0 GPa or more.
And a cutting test 2 having excellent wear resistance of 0.5 mm or less.

【0054】表1の結果によると、Ti化合物の量が本
発明範囲より少ない試料No.1、23では、耐摩耗性の
効果が十分でなく、本発明範囲より多い試料No.6、2
4では、焼結性が低下するとともに、耐摩耗性は大幅に
劣化した。
According to the results shown in Table 1, in Samples Nos. 1 and 23 in which the amount of the Ti compound was smaller than the range of the present invention, the effect of the abrasion resistance was not sufficient, and in Samples Nos.
In No. 4, the sinterability was reduced and the wear resistance was significantly deteriorated.

【0055】本発明品の中で、ラマン分光分析による強
度比が0.2〜3の試料は、この範囲から逸脱する試料
No.20、21、22よりも優れた特性を示し、いずれ
も室温強度900MPa以上、靱性が8.0MPa・m
1/2 以上で切削テスト1で0.4mm以下、切削テスト
2で0.3mm以下の優れた特性であった。
Among the products of the present invention, the samples having an intensity ratio of 0.2 to 3 by Raman spectroscopy show characteristics superior to those of samples No. 20, 21, and 22 which deviate from this range. Strength of 900 MPa or more, toughness of 8.0 MPa · m
Excellent characteristics of 0.4 mm or less in cutting test 1 at 1/2 or more and 0.3 mm or less in cutting test 2.

【0056】[0056]

【発明の効果】以上の通り、本発明の窒化珪素質焼結体
によれば、窒化珪素マトリックス相とのTiの窒化物、
炭窒化物、炭酸窒化物のうちの少なくとも1種のTi化
合物からなる粒子、あるいはそのウイスカーとの濡れ性
を改善し、強度、靱性および耐摩耗性に優れ、切削工具
等に好適な焼結体を得ることができる。
As described above, according to the silicon nitride sintered body of the present invention, a nitride of Ti with a silicon nitride matrix phase,
Particles made of at least one Ti compound of carbonitrides and carbonitrides or their whiskers have improved wettability, and have excellent strength, toughness and wear resistance, and are suitable for cutting tools and the like. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化珪素質焼結体の概略組織図を示
す。
FIG. 1 is a schematic structural diagram of a silicon nitride based sintered body of the present invention.

【図2】本発明の窒化珪素質焼結体(試料No.3)のラ
マン分光分析チャートの一例を示す。
FIG. 2 shows an example of a Raman spectroscopic analysis chart of the silicon nitride based sintered body (sample No. 3) of the present invention.

【符号の説明】[Explanation of symbols]

1 マトリックス相 2 強化相 3 コア部 4 シェル部 DESCRIPTION OF SYMBOLS 1 Matrix phase 2 Reinforcement phase 3 Core part 4 Shell part

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】β−窒化珪素結晶からなる主相と、少なく
とも周期律表第3a族元素を含有する粒界相とを具備す
るマトリックス相中に、Tiの窒化物、炭窒化物、炭酸
窒化物のうちの少なくとも1種のTi化合物からなる粒
子、あるいはそのウイスカーと、Ni、Fe、Co、C
u、Mo、WおよびMnの群から選ばれる少なくとも1
種の遷移金属を含有する強化相を10〜40体積%の割
合で分散してなることを特徴とする窒化珪素質焼結体。
1. A matrix phase comprising a main phase composed of β-silicon nitride crystal and a grain boundary phase containing at least an element belonging to Group 3a of the periodic table. Made of at least one kind of Ti compound among the materials, or whiskers thereof, and Ni, Fe, Co, C
at least one selected from the group consisting of u, Mo, W and Mn
A silicon nitride based sintered body characterized in that a reinforcing phase containing a kind of transition metal is dispersed at a ratio of 10 to 40% by volume.
【請求項2】前記強化相が、Tiの窒化物、炭窒化物、
炭酸窒化物のうちの少なくとも1種のTi化合物の粒子
あるいはウイスカーからなるコア部と、該コア部の周囲
に前記遷移金属を含有するシェル部を有することを特徴
とする請求項1記載の窒化珪素質焼結体。
2. The method according to claim 1, wherein the reinforcing phase is Ti nitride, carbonitride,
The silicon nitride according to claim 1, further comprising a core portion made of particles or whiskers of at least one Ti compound of carbonitrides, and a shell portion containing the transition metal around the core portion. Quality sintered body.
【請求項3】前記遷移金属が、前記Ti化合物以外の全
成分を100重量%として、金属に換算して、0.01
〜8重量%の割合で含まれることを特徴とする請求項1
記載の窒化珪素質焼結体。
3. A method according to claim 1, wherein said transition metal is 0.01% in terms of metal, with 100% by weight of all components other than said Ti compound.
2. The composition according to claim 1, which is contained in a proportion of about 8% by weight.
The silicon nitride based sintered body according to the above.
【請求項4】ラマン分光分析法により検出される窒化珪
素の206cm-1のピーク強度X1 と、Siの521c
-1のピーク強度X2 との比(X2 /X1 )が0.2〜
3である請求項1記載の窒化珪素質焼結体。
4. A peak intensity X 1 at 206 cm −1 of silicon nitride detected by Raman spectroscopy, and 521c of Si.
The ratio (X 2 / X 1 ) to the peak intensity X 2 at m −1 is 0.2 to 0.2
3. The silicon nitride sintered body according to claim 1, wherein
【請求項5】前記マトリックス相が、Ti化合物以外の
全成分を100重量%として、窒化珪素を70〜95重
量%、周期律表第3a族元素を酸化物換算で1〜15重
量%、アルミニウムを酸化物換算量で7重量%以下、不
純物的酸素を酸化珪素換算量で10重量%以下の割合で
含む請求項1記載の窒化珪素質焼結体。
5. The matrix phase comprises 70 to 95% by weight of silicon nitride, 1 to 15% by weight of a Group 3a element of the periodic table in terms of oxide, and 100% by weight of all components other than the Ti compound. The silicon nitride-based sintered body according to claim 1, wherein the silicon nitride-based sintered body contains 7% by weight or less in terms of oxide and 10% by weight or less in terms of silicon oxide in terms of silicon oxide.
【請求項6】相対密度95%以上、気孔率3%以下、平
均ボイド径が5μm以下であることを特徴とする請求項
1記載の窒化珪素質焼結体。
6. The silicon nitride sintered body according to claim 1, wherein the relative density is 95% or more, the porosity is 3% or less, and the average void diameter is 5 μm or less.
【請求項7】請求項1乃至請求項6のうちのいずれかに
記載の窒化珪素質焼結体からなる切削工具。
7. A cutting tool comprising the silicon nitride-based sintered body according to any one of claims 1 to 6.
JP04397798A 1998-02-25 1998-02-25 Silicon nitride sintered body and cutting tool using the same Expired - Fee Related JP3762090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04397798A JP3762090B2 (en) 1998-02-25 1998-02-25 Silicon nitride sintered body and cutting tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04397798A JP3762090B2 (en) 1998-02-25 1998-02-25 Silicon nitride sintered body and cutting tool using the same

Publications (2)

Publication Number Publication Date
JPH11236269A true JPH11236269A (en) 1999-08-31
JP3762090B2 JP3762090B2 (en) 2006-03-29

Family

ID=12678786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04397798A Expired - Fee Related JP3762090B2 (en) 1998-02-25 1998-02-25 Silicon nitride sintered body and cutting tool using the same

Country Status (1)

Country Link
JP (1) JP3762090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206774A (en) * 2000-01-24 2001-07-31 Kyocera Corp Silicon nitride sintered compact
JP2001261446A (en) * 2000-03-21 2001-09-26 Ngk Spark Plug Co Ltd Silicon nitrdie-based sintered compact, method for producing the same and method for producing silicon nitride-based parts
JP2005213081A (en) * 2004-01-28 2005-08-11 Kyocera Corp Silicon nitride sintered body and member for molten metal using the same
CN110256085A (en) * 2019-07-01 2019-09-20 中国科学院兰州化学物理研究所 A kind of preparation method of tough wear-resisting silicon nitride-based composite ceramic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206774A (en) * 2000-01-24 2001-07-31 Kyocera Corp Silicon nitride sintered compact
JP4651144B2 (en) * 2000-01-24 2011-03-16 京セラ株式会社 Silicon nitride sintered body
JP2001261446A (en) * 2000-03-21 2001-09-26 Ngk Spark Plug Co Ltd Silicon nitrdie-based sintered compact, method for producing the same and method for producing silicon nitride-based parts
JP2005213081A (en) * 2004-01-28 2005-08-11 Kyocera Corp Silicon nitride sintered body and member for molten metal using the same
CN110256085A (en) * 2019-07-01 2019-09-20 中国科学院兰州化学物理研究所 A kind of preparation method of tough wear-resisting silicon nitride-based composite ceramic

Also Published As

Publication number Publication date
JP3762090B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
Alhosseini et al. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review
Kim et al. Densification and mechanical properties of B4C with Al2O3 as a sintering aid
Herrmann et al. Silicon nitride/silicon carbide nanocomposite materials: I, fabrication and mechanical properties at room temperature
PH26608A (en) Process for preparing self-supporting bodies and products produced thereby
Zhang et al. In situ reaction synthesis of silicon carbide–boron nitride composites
US6139791A (en) Method of making in-situ toughened alpha prime SiAlon-based ceramics
JPH0782031A (en) Cubic boron nitride-containing sintered compact and its production
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US20110203187A1 (en) Boron Suboxide Composite Material
US5648028A (en) Method of manufacturing a sintered composite body of silicon nitride and silicon carbide
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
Lee et al. Effect of β–Si3N4 seed crystal on the microstructure and mechanical properties of sintered reaction-bonded silicon nitride
Lin et al. Pressureless sintering of B4C whisker reinforced Al2O3 matrix composites
JP3694583B2 (en) Crusher parts
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP3051603B2 (en) Titanium compound sintered body
JPH07172924A (en) Highly tough sintered compact for tool and its production
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP4126447B2 (en) Crusher parts
JP2000143350A (en) Abrasion resistant member
JP3580660B2 (en) Crusher components
JPH04305064A (en) Ceramic composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees