JP2000143350A - Abrasion resistant member - Google Patents

Abrasion resistant member

Info

Publication number
JP2000143350A
JP2000143350A JP10311441A JP31144198A JP2000143350A JP 2000143350 A JP2000143350 A JP 2000143350A JP 10311441 A JP10311441 A JP 10311441A JP 31144198 A JP31144198 A JP 31144198A JP 2000143350 A JP2000143350 A JP 2000143350A
Authority
JP
Japan
Prior art keywords
wear
less
silicon nitride
sintered body
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311441A
Other languages
Japanese (ja)
Inventor
Masashi Sakagami
勝伺 坂上
Masahiro Sato
政宏 佐藤
Takeo Fukutome
武郎 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10311441A priority Critical patent/JP2000143350A/en
Publication of JP2000143350A publication Critical patent/JP2000143350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an abrasion resistant member having excellent abrasion resistance and excellent impact resistance. SOLUTION: This abrasion resistant member contains a β-silicon nitride crystal phase as a main component, Y and/or a rare earth element in an amount of 1-15 wt.% expressed in terms of an oxide, aluminum in an amount of 0.01-5 wt.% expressed in terms of an oxide and impure oxygen in an amount of <=10 wt.% expressed in terms of silicon oxide and has a higher peak intensity ratio represented by H1/H2 in the interior of the sintered compact than that on the surface of the sintered compact when the peak intensity of Si indicated at 521 cm-1 is H1 and the peak intensity of silicon nitride indicated at 206 cm-1 is H2 in a Raman spectrochemical analytical chart and >=3.20 g/cm2 density and more specifically has <=0.1 peak intensity ratio represented by H1/H2 on the surface of the sintered compact and >0.1 and <=3 peak intensity ratio in the interior of the sintered compact. Furthermore, the silicon nitride-based sintered compact contains at least one kind of compound of Mg, W, Mo, Mn, Cu and Fe in an amount of <=8 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性が要求さ
れる工具、摺動部剤及び容器、内張材、粉砕用メデイア
等の耐摩耗性部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant member such as a tool, a sliding agent, a container, a lining material, a crushing media, etc., which require wear resistance.

【0002】[0002]

【従来の技術】従来、耐摩耗性部材は耐衝撃性に優れた
金属製の耐摩耗用部材により構成されていたが、被粉砕
物の高純度化、ならびに耐摩耗部材の軽量化という近年
の要求に対しては、満足し得るものではなかった。
2. Description of the Related Art Conventionally, wear-resistant members have been constituted by metal wear-resistant members having excellent impact resistance. However, in recent years, wear-resistant members have been highly purified and the wear-resistant members have been reduced in weight. The request was not satisfactory.

【0003】すなわち、金属製耐摩耗部材は耐衝撃性に
優れるが、その反面、耐摩耗性が不十分であって、金属
成分であるFe摩耗粉が混入される場合があり、粉砕物
の高純度化は望めなかった。そこで金属体にコーティン
グを施した部材が使用されているが、金属は密度が高い
ため、粉砕機および粉砕機用部材の重量が大きくなり、
これにより、摩耗部材の容量に対して、大きなウエイト
を占めていた。
[0003] That is, a metal wear-resistant member is excellent in impact resistance, but on the other hand, the wear resistance is insufficient, and there is a case where Fe wear powder which is a metal component is mixed, resulting in a high pulverized material. Purification could not be expected. Therefore, a member coated with a metal body is used, but since the metal has a high density, the weight of the crusher and the crusher member increases,
This occupies a large weight with respect to the capacity of the wear member.

【0004】かかる問題点を解決するために、アルミナ
およびジルコニア、窒化珪素等のセラミックスを用いて
耐摩耗性と軽量化を達成した耐摩耗性部材が提案されて
いる。
In order to solve such problems, there has been proposed a wear-resistant member which achieves wear resistance and weight reduction by using ceramics such as alumina, zirconia, and silicon nitride.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、アルミ
ナセラミックスからなる耐摩耗性部材は、強度や破壊靱
性が不十分であり、製品の割れ、剥離等が生じるという
問題があった。また、ジルコニアセラミックスからなる
耐摩耗性部材は、強度や破壊靱性がアルミナセラミック
スよりも高いものの、温度上昇によって耐熱衝撃性が不
十分でチッピングが発生しやすいという問題があった。
However, the wear-resistant member made of alumina ceramics has a problem that the strength and the fracture toughness are insufficient and the product is cracked or peeled off. Further, although the wear-resistant member made of zirconia ceramics has higher strength and fracture toughness than alumina ceramics, there has been a problem that thermal shock resistance is insufficient due to a rise in temperature and chipping is likely to occur.

【0006】そこで、これらのセラミックス表面に金属
コーテイングを施した耐摩耗部材も提案されているが、
このようなコーティング技術においてはコーティング層
の摩耗や剥離により、急激な摩耗が生じ、安定性に欠け
るものであった。
Accordingly, wear-resistant members having a metal coating on the surface of these ceramics have been proposed.
In such a coating technique, abrasion or abrasion of the coating layer causes rapid abrasion and lacks stability.

【0007】また、窒化ケイ素質焼結体からなる耐摩耗
性部材も特開平5−301775号にて提案されている
が、優れた耐衝撃性を有する反面、耐摩耗特性の点で実
用上十分に満足できるものではない。
A wear-resistant member made of a silicon nitride-based sintered body has also been proposed in Japanese Patent Application Laid-Open No. 5-301775. However, while having excellent impact resistance, it is practically sufficient in terms of wear resistance. Is not satisfactory.

【0008】よって、本発明は、優れた耐摩耗性と優れ
た耐衝撃性を有する耐摩耗性部材を提供することを目的
とするものである。
Therefore, an object of the present invention is to provide a wear-resistant member having excellent wear resistance and excellent impact resistance.

【0009】[0009]

【課題を解決するための手段】本発明者らは、耐摩耗性
部材に窒化ケイ素質焼結体を採用する場合、その焼結体
における成分組成を所定範囲に制御するとともに、焼結
体中に微細なラマン分光分析によって検出されるレベル
の微小なSiを含有させ、焼結体の表面および内部のS
i量を細かく制御することにより、摩耗の少ない優れた
耐摩耗性部材が得られることを見いだし、本発明に至っ
た。
The present inventors, when employing a silicon nitride sintered body as a wear-resistant member, control the component composition in the sintered body within a predetermined range, and at the same time, Contains fine Si at a level detected by fine Raman spectroscopy, and S and S on the surface and inside of the sintered body are contained.
It has been found that by controlling the amount of i finely, an excellent wear-resistant member with little wear can be obtained, and the present invention has been achieved.

【0010】即ち、本発明の耐摩耗性部材は、β−窒化
ケイ素結晶相を主成分とし、Yおよび/または希土類元
素を酸化物換算量で1〜15重量%、アルミニウムを酸
化物換算量0.01〜5重量%、不純物的酸素を酸化ケ
イ素換算量で10重量%以下の割合で含み、ラマン分光
分析チャートにおいて、521cm-1に示すSiのピー
ク強度をH1 、窒化ケイ素の206cm-1のピーク強度
をH2 とした時、H1/H2 で表されるピーク強度比が
焼結体表面よりも焼結体内部が大きく、且つ密度が3.
20g/cm2 以上であることを特徴とするものであ
る。
That is, the wear-resistant member of the present invention comprises a β-silicon nitride crystal phase as a main component, contains Y and / or a rare earth element in an amount of 1 to 15% by weight in terms of oxide, and contains aluminum in an amount of 0 to 0% in terms of oxide. .01~5 wt%, the impurity oxygen comprises in a proportion of 10 wt% or less of silicon oxide in terms of weight, in a Raman spectroscopic analysis chart, H 1 peak intensity of Si shown in 521 cm -1, the silicon nitride 206cm -1 when the peak intensity was H 2, H 1 / H 2 in the peak intensity ratio represented sintered body interior is greater than the sintered body surface and density 3.
It is characterized by being at least 20 g / cm 2 .

【0011】より具体的には、前記H1 /H2 で表され
るピーク強度比が焼結体表面が0.1以下であり、焼結
体内部が0.1よりも大きく、3以下であること、前記
焼結体の気孔率が3%以下、平均ボイド径が5μm以下
であり、且つボイド径5〜30μmが30%以下、ボイ
ド径30μm以上が5%以下、残部がボイド径5μm以
下のボイド径分布を有すること、さらに前記窒化ケイ素
質焼結体に、Mg、W、Mo、Mn、CuおよびFeの
少なくとも1種を、酸化物、窒化物、酸窒化物もしくは
ケイ化物として8重量%以下の割合で含むことが望まし
い。
More specifically, the peak intensity ratio represented by H 1 / H 2 is 0.1 or less on the surface of the sintered body, and is larger than 0.1 and 3 or less on the inside of the sintered body. That the sintered body has a porosity of 3% or less, an average void diameter of 5 μm or less, and a void diameter of 5 to 30 μm of 30% or less; a void diameter of 30 μm or more of 5% or less; In addition, the silicon nitride-based sintered body contains at least one of Mg, W, Mo, Mn, Cu and Fe in an amount of 8% by weight as oxide, nitride, oxynitride or silicide. % Is desirable.

【0012】[0012]

【発明の実施の形態】本発明の耐摩耗性部材は、β−窒
化ケイ素結晶相と、ケイ素、Yおよび/または希土類元
素、アルミニウム、酸素および窒素を含む粒界相とから
なる窒化ケイ素質焼結体から構成される。上記β−窒化
ケイ素結晶相は、平均アスペクト比が3以上、平均短軸
径が0.5〜2μmの柱状結晶として存在するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A wear-resistant member of the present invention comprises a silicon nitride-based sintered body comprising a β-silicon nitride crystal phase and a grain boundary phase containing silicon, Y and / or a rare earth element, aluminum, oxygen and nitrogen. It is composed of union. The β-silicon nitride crystal phase exists as a columnar crystal having an average aspect ratio of 3 or more and an average minor axis diameter of 0.5 to 2 μm.

【0013】また、組成上では、窒化ケイ素を75〜9
5重量%、好適には80〜90重量%含む。また、窒化
ケイ素結晶相は、針状β−窒化ケイ素粒子であり、それ
が絡み合った構造となることで、破壊靱性および強度が
向上し、粉砕特性の向上にも寄与する。窒化ケイ素量が
75重量%よりも少ないと、硬度や耐摩耗性が劣化し、
95重量%よりも多いと、焼結性が低下し、耐摩耗特性
が劣化するためである。
Further, in terms of composition, silicon nitride is used in an amount of 75 to 9%.
It contains 5% by weight, preferably 80-90% by weight. Further, the silicon nitride crystal phase is needle-like β-silicon nitride particles, and by having a structure in which they are entangled, the fracture toughness and the strength are improved, and the pulverization characteristics are also improved. If the amount of silicon nitride is less than 75% by weight, hardness and wear resistance deteriorate,
If the content is more than 95% by weight, the sinterability is reduced and the wear resistance is deteriorated.

【0014】さらに、上記窒化ケイ素質焼結体には、Y
および/または希土類元素を酸化物換算量で1〜15重
量%、好適には3〜10重量%含み、また、アルミニウ
ムを酸化物換算量0.01〜5重量%、好適には1〜3
重量%含み、さらに不純物的酸素を酸化ケイ素換算量で
10重量%以下、好適には8重量%以下含み、これらの
範囲内において、高耐摩耗性が得られる。また、Yおよ
び/または希土類元素、アルミニウムは、粒界相におい
てはガラス相を形成するか、またはYおよび/または希
土類元素−Si3 4 −SiO2 系の結晶相として存在
してもよい。なお、アルミニウムは、β−窒化ケイ素結
晶相中に一部固溶していてもよい。
Further, the silicon nitride-based sintered body includes
And / or contains a rare earth element in an amount of 1 to 15% by weight, preferably 3 to 10% by weight in terms of oxide, and contains aluminum in an amount of 0.01 to 5% by weight as oxide, preferably 1 to 3%.
% By weight, and further contains 10% by weight or less, preferably 8% by weight or less of impurity oxygen in terms of silicon oxide. Within these ranges, high wear resistance is obtained. Further, Y and / or rare earth elements, aluminum may exist as to form a glass phase, or Y and / or rare earth elements -Si 3 N 4 -SiO 2 based crystal phase in the grain boundary phase. Note that aluminum may be partially dissolved in the β-silicon nitride crystal phase.

【0015】Yおよび/または希土類元素量が1重量%
よりも少ないと、焼結中のガラス生成量が不足し、密度
3.20g/cm2 以上の緻密質が得られず、15重量
%よりも多いと、ガラス生成量が過剰となり、窒化珪素
の粒界相が多くなり、耐摩耗性を劣化させてしまう。ま
た、アルミニウム量が0.01重量%よりも少ないと、
緻密化不足となり、5重量%よりも多いと、耐熱衝撃性
が低下するためである。さらに、不純物的酸素量が10
重量%よりも多いと粒界相の軟化や耐熱衝撃性の低下に
よる耐摩耗性の劣化が生じる。
The amount of Y and / or the rare earth element is 1% by weight
If it is less than this, the amount of glass produced during sintering will be insufficient, and denseness with a density of 3.20 g / cm 2 or more will not be obtained. If it is more than 15% by weight, the amount of glass produced will be excessive, and The grain boundary phase increases, and the wear resistance deteriorates. If the aluminum content is less than 0.01% by weight,
This is because densification is insufficient, and when it is more than 5% by weight, thermal shock resistance is reduced. Furthermore, the amount of impurity oxygen is 10
If the content is more than 10% by weight, abrasion resistance is degraded due to softening of the grain boundary phase and a decrease in thermal shock resistance.

【0016】上記Yおよび/または希土類元素として
は、特にY、Er、Yb、LuおよびSmの群から選ば
れる少なくとも1種が好適に使用される。
As the Y and / or rare earth element, at least one selected from the group consisting of Y, Er, Yb, Lu and Sm is particularly preferably used.

【0017】ここで、上記不純物的酸素とは、焼結体中
の全酸素量から焼結体中のYおよび/または希土類元素
(RE)およびAlに対して化学量論組成(RE2 3
およびAl2 3 )で結合していると仮定される酸素量
を差し引いた残りの酸素量であり、そのほとんどは窒化
ケイ素粉末中の不可避的酸素または意図的に添加された
SiO2 成分より構成される。
Here, the above-mentioned impurity oxygen refers to the stoichiometric composition (RE 2 O 3 ) of Y and / or rare earth element (RE) and Al in the sintered body based on the total oxygen amount in the sintered body.
And the amount of oxygen remaining after subtracting the amount of oxygen assumed to be bound by Al 2 O 3 ), most of which is composed of unavoidable oxygen in the silicon nitride powder or SiO 2 components intentionally added. Is done.

【0018】また、上記窒化ケイ素質焼結体には、上記
成分に加え、Mg、W、Mo、Mn、CuおよびFeの
少なくとも1種を、酸化物、窒化物、酸窒化物もしくは
珪化物として8重量%以下の割合で含有させることによ
り、焼結性を高め、緻密化を促進し、さらに特性の改善
を図ることができる。なお、これらの量が8重量%より
も多いと、過剰の偏在物により強度を低下させ耐摩耗性
が劣化する場合がある。
Further, in addition to the above components, at least one of Mg, W, Mo, Mn, Cu and Fe is added to the silicon nitride sintered body as an oxide, nitride, oxynitride or silicide. By containing it at a ratio of 8% by weight or less, sinterability can be enhanced, densification can be promoted, and characteristics can be further improved. If the amount is more than 8% by weight, the strength may be reduced due to excessive uneven distribution, and the wear resistance may be deteriorated.

【0019】さらに、本発明によれば、かかる焼結体を
ラマン分光分析法によって分析した時に、微小のSiが
検出されるものである。このSiは、ごく微量で存在す
ることが必要である。このSiは、走査型電子顕微鏡
(SEM)においても観察することができないレベルの
ものであり、ラマン分光分析法によって検出されるもの
である。このSiはおそらく粒界中もしくは窒化ケイ素
粒内に分散しているものと推察される。
Further, according to the present invention, when such a sintered body is analyzed by Raman spectroscopy, minute Si is detected. This Si needs to be present in a very small amount. This Si is at a level that cannot be observed even with a scanning electron microscope (SEM), and is detected by Raman spectroscopy. This Si is presumed to be probably dispersed in the grain boundaries or in the silicon nitride grains.

【0020】例えば、このSiがX線回折測定法によっ
て検出されるレベルで存在すると、そのSiが摩耗を誘
発し、焼結体の耐摩耗性を劣化させてしまう。この微量
のSiの存在によって、耐摩耗性を維持し、異常摩耗を
抑制することができる。この理由は定かではないが、お
そらく粒界に分散するSiがクラックの進展を妨げる作
用をなして、耐衝撃性を向上させ、異常摩耗を誘発する
チッピングや欠損、剥離摩耗を抑制すると推察される。
For example, if this Si is present at a level detected by the X-ray diffraction measurement method, the Si induces abrasion and deteriorates the abrasion resistance of the sintered body. Due to the presence of this minute amount of Si, wear resistance can be maintained and abnormal wear can be suppressed. The reason for this is not clear, but it is presumed that Si dispersed at the grain boundaries probably acts to hinder the propagation of cracks, improves impact resistance, and suppresses chipping, chipping, and delamination wear that induce abnormal wear. .

【0021】また、本発明によれば、具体的にはβ−窒
化ケイ素の206cm-1付近に存在するピークの強度を
2 、Siの521cm-1付近のピークの強度をH1
したとき、H1 /H2 で表されるピーク比が焼結体表面
よりも焼結体内部が大きいことが大きな特徴である。こ
のように、上記ピーク比が内部の方が大きいことによ
り、欠損、チッピング、剥離等の異常摩耗を抑制する効
果により、耐摩耗性を安定化させることができる。
Further, when according to the present invention, the intensity of the peak near 521 cm -1 specific to the beta-H 2 the intensity of a peak existing near 206cm -1 of silicon nitride, Si was H 1 , H 1 / H 2 is a big feature that the inside of the sintered body is larger than the surface of the sintered body. As described above, when the peak ratio is larger inside, the wear resistance can be stabilized by the effect of suppressing abnormal wear such as chipping, chipping, and peeling.

【0022】ここで示す表面部とは、焼成後の焼結体の
焼き肌面から200μmまでの深さ部分を示し、内部と
は、焼結体の焼き肌面から200μmよりも深い部分を
いう。具体的には、表面部のピーク比が0.1以下、好
ましくは0.05以下とすることにより、表面部で通常
摩耗の進行を抑えることができる。さらに内部のピーク
の強度は0.1よりも大きく、3以下、好ましくは0.
2〜2.5であることが望ましい。この内部におけるピ
ーク比が0.1以下では、異常摩耗を抑制する効果が低
く、所望の特性が得られず、3を越えると、析出したS
i自体が摩耗源となり耐摩耗性を劣化させてしまうため
である。
Here, the surface portion indicates a portion having a depth of 200 μm from the burning surface of the sintered body after firing, and the inside means a portion deeper than 200 μm from the burning surface of the sintered body. . Specifically, by setting the peak ratio of the surface portion to 0.1 or less, preferably 0.05 or less, the progress of normal wear on the surface portion can be suppressed. Further, the intensity of the internal peaks is greater than 0.1 and 3 or less, preferably 0.
Desirably, it is 2 to 2.5. If the peak ratio in the inside is 0.1 or less, the effect of suppressing abnormal wear is low, and desired characteristics cannot be obtained.
This is because i itself becomes a wear source and deteriorates wear resistance.

【0023】また、本発明における窒化ケイ素質焼結体
は、密度が3.20g/cm3 以上、好適には3.23
g/cm3 以上であること、さらに、気孔率が3%以
下、好適には1.5%以下であることが、優れた耐摩耗
性を達成する上で望ましい。
The silicon nitride sintered body of the present invention has a density of 3.20 g / cm 3 or more, preferably 3.23 g / cm 3 or more.
g / cm 3 or more and a porosity of 3% or less, and preferably 1.5% or less, in order to achieve excellent wear resistance.

【0024】また、窒化ケイ素質焼結体内には、所定の
範囲でボイドを均一に点在させることで、破壊源である
クラックが発生した場合において、クラックの進展によ
り破損や欠損および割損が生じても、クラックの進展を
防止することができる。このボイドの分布状態について
は、平均ボイド径5μm以下であり、さらに、直径5〜
30μmのボイドが全ボイド数の30%以下、ボイド径
30μm以上が5%以下、残部がボイド径5μm以下の
ボイド径分布からなることが望ましい。
Further, by uniformly dispersing voids within a predetermined range in the silicon nitride sintered body, when a crack which is a fracture source occurs, breakage, chipping, and breakage are caused by the progress of the crack. Even if it occurs, it is possible to prevent the crack from developing. Regarding the distribution state of the voids, the average void diameter was 5 μm or less, and the diameter was 5 to 5 μm.
It is desirable that the voids of 30 μm have a void diameter distribution of 30% or less of the total number of voids, the void diameter of 30 μm or more 5% or less, and the remainder having a void diameter of 5 μm or less.

【0025】これは、平均ボイド径が5μmを越える
と、小さなボイドが均一に点在してクラックが結晶粒界
に選択的に進展し、これによって微小な脱粒摩耗やチッ
ピングを併発し、その結果、粉砕メデイア中に混入し
て、粉砕物の高純度化が望めなくなる。また、ボイド径
分布において、ボイド径30μm以上が5%を越える
と、局所的な欠けや脱粒が生じて摩耗を促進し、5〜3
0μmのボイド数が30%を越えると微小な欠け、脱粒
が増加し、摩耗が増加するためである。
This is because, when the average void diameter exceeds 5 μm, small voids are uniformly scattered and cracks selectively propagate to the crystal grain boundaries, thereby causing minute shedding wear and chipping. , Mixed into the pulverized media, making it difficult to purify the pulverized material. In the void diameter distribution, if the void diameter is 30 μm or more and exceeds 5%, local chipping or shedding occurs to promote abrasion.
If the number of voids of 0 μm exceeds 30%, minute chipping, grain shedding increases, and wear increases.

【0026】このようなボイドを均一に点在させるに
は、窒化ケイ素原料を混合粉砕し、造粒なしに、成形、
焼成したり、混合粉末を一旦造粒した後、この造粒した
粉体を成形時に成形圧力を十分に上げて造粒粉体をつぶ
すことにより、均一に点在させることができる。なお、
ボイド径分布は、用いる原料粉末と成形時の圧力、さら
には焼成条件による緻密化の程度によって制御できる。
In order to uniformly disperse such voids, a silicon nitride raw material is mixed and pulverized, and formed without granulation.
After firing or once granulating the mixed powder, the granulated powder can be evenly scattered by sufficiently increasing the molding pressure during molding to crush the granulated powder. In addition,
The void diameter distribution can be controlled by the raw material powder used, the pressure during molding, and the degree of densification by firing conditions.

【0027】具体的に、本発明の耐摩耗性部材を製造す
るには、窒化ケイ素原料として、平均粒径が0.4〜
1.2μm、不純物酸素量が0.5〜1.5重量%の窒
化ケイ素粉末、特にα化率が90%以上の粉末を用いる
か、あるいは窒化ケイ素原料の0〜80重量%相当量を
ケイ素粉末に置き換え、ケイ素粉末を低温で窒化すると
α−Si3 4 が生成されやすくなり、窒化後の成形体
のα−Si3 4 の含有量を高めることができる。この
ようなα−Si3 4 の含有量の大きい成形体を焼成す
ると、針状のβ−窒化ケイ素結晶相の生成を増加させる
ことができ、焼結体の強度および靱性を高くさせること
ができる。
Specifically, in order to produce the wear-resistant member of the present invention, the silicon nitride raw material having an average particle size of 0.4 to
Use a silicon nitride powder having a thickness of 1.2 μm and an impurity oxygen amount of 0.5 to 1.5% by weight, in particular, a powder having an α conversion of 90% or more. If the silicon powder is replaced with a powder and the silicon powder is nitrided at a low temperature, α-Si 3 N 4 is likely to be generated, and the α-Si 3 N 4 content of the compact after nitriding can be increased. By firing such a compact having a large content of α-Si 3 N 4 , the generation of needle-like β-silicon nitride crystal phase can be increased, and the strength and toughness of the sintered compact can be increased. it can.

【0028】次に、このような窒化ケイ素粉末に対し
て、Y2 3 粉末および/または希土類元素酸化物粉
末、Al2 3 粉末、場合によってはSiO2 粉末を、
焼成前の成形体組成が、Yおよび/または希土類元素の
酸化物換算量が1〜15重量%、特に3〜8重量%、A
2 3 を0.01〜5モル%、特に1〜3重量%であ
ること、さらには、成形体中の全酸素量からY2 3
るいは希土類元素酸化物粉末、Al2 3 粉末中の酸素
分を差し引いた残りの酸素量が、SiO2 換算で10重
量%以下、特に8重量%以下となるように添加する。
Next, a Y 2 O 3 powder and / or a rare earth element oxide powder, an Al 2 O 3 powder, and in some cases, a SiO 2 powder,
The composition of the molded body before firing is such that the amount of oxides of Y and / or rare earth elements is 1 to 15% by weight, particularly 3 to 8% by weight,
l 2 O 3 is 0.01 to 5 mol%, particularly 1 to 3 wt%, and further, based on the total oxygen content in the compact, Y 2 O 3 or rare earth oxide powder, Al 2 O 3 powder It is added so that the amount of oxygen remaining after subtracting the oxygen content therein is 10% by weight or less, especially 8% by weight or less in terms of SiO 2 .

【0029】これらの焼結助剤成分の含有量を上記のよ
うに限定したのは、各成分が上記の値より低いと焼成過
程で液相が不足し緻密体が得られず強度は低下し、各成
分が上記の値より多いと焼成中の液相が増加する結果、
窒化ケイ素が異常な粒成長を引き起こしやすくなり、そ
の異常粒が破壊源となり強度を低下させてしまい、また
表層では窒化ケイ素の分解が激しくなり強度低下してし
まうためである。
The content of these sintering aid components is limited as described above. If each component is lower than the above-mentioned values, the liquid phase becomes insufficient during the firing process, a dense body cannot be obtained, and the strength decreases. As a result, if each component is more than the above value, the liquid phase during firing increases,
This is because silicon nitride tends to cause abnormal grain growth, and the abnormal grains serve as a fracture source to lower the strength. In addition, silicon nitride is strongly decomposed in the surface layer and the strength is reduced.

【0030】そして、上記に加え、さらに、Mg、W、
Mo、Mn、CuおよびFeの少なくとも1種の酸化
物、窒化物、酸窒化物もしくはケイ物粉末を8重量%以
下の割合で添加混合する。
Further, in addition to the above, Mg, W,
At least one oxide, nitride, oxynitride or silicate powder of Mo, Mn, Cu and Fe is added and mixed at a ratio of 8% by weight or less.

【0031】得られた混合粉末をメッシュパス造粒、ス
プレー造粒、乾式造粒等により30〜300μmの大き
さの造粒体を形成した後に、公知の成形法、たとえばプ
レス成形、鋳込み成形、押し出し成形、射出成形、冷間
静水圧成形などにより所望の形状に成形する。
After the obtained mixed powder is formed into a granule having a size of 30 to 300 μm by mesh pass granulation, spray granulation, dry granulation or the like, a known molding method such as press molding, cast molding, It is formed into a desired shape by extrusion molding, injection molding, cold isostatic pressing or the like.

【0032】つぎに、この成形体を1650〜1950
℃の窒素雰囲気中で公知の焼成により、焼結体密度が
3.20g/cm3 以上となる条件で焼成緻密化する。
焼成方法としては、次に、得られた成形体をSiOを含
む窒素雰囲気下で1700〜1800℃、特に1750
〜1800℃の温度で常圧焼成する。SiOの雰囲気
は、SiO2 +Si、もしくはSiO2 +Si3 4
混合粉末を成形体が収納される焼成鉢内に一緒に入れて
焼成することにより形成することができる。
Next, this molded product was used for 1650 to 1950
By a known sintering in a nitrogen atmosphere at ℃, the sintered body is densified under the condition that the sintered body density becomes 3.20 g / cm 3 or more.
Next, as a sintering method, the obtained molded body is heated in a nitrogen atmosphere containing SiO at 1700 to 1800 ° C., particularly 1750 ° C.
Normal pressure firing at a temperature of 11800 ° C. Atmosphere SiO can be formed by baking SiO 2 + Si, or a mixed powder of SiO 2 + Si 3 N 4 put together in a baking pot shaped body is housed.

【0033】より具体的には、この時の焼成温度を、窒
化ケイ素が常圧にてSi3 4 がケイ素と窒素ガスに分
解する平衡温度から約30℃低い温度範囲内で焼成し
て、ごく微量のSi3 4 を分解させる。この分解によ
って、生成されたSiが粒界中に粒子として存在するこ
とになる。なお、Si量は、上記温度範囲での保持時間
などにより任意に制御することが可能である。
More specifically [0033] The baking temperature at this, silicon nitride and fired in a Si 3 N 4 silicon and nitrogen gas at about 30 ° C. lower temperature range decomposes equilibrium temperature under normal pressure, A very small amount of Si 3 N 4 is decomposed. This decomposition causes the generated Si to exist as particles in the grain boundaries. The amount of Si can be arbitrarily controlled by, for example, the holding time in the above temperature range.

【0034】この時、焼結体表面と内部とで、ラマン分
光分析によって検出されるSi量が内部よりも表面が少
なくなるようにするためには、焼成雰囲気中のSiOガ
ス濃度を焼結体中に含まれるSiO濃度より低く抑制さ
せることにより形成できる。なお、焼成雰囲気中にSi
Oを含まない場合、もしくは1800℃を越える焼成温
度では、窒化ケイ素の分解が激しく、微量の窒化ケイ素
のみを分解させるような細かな制御が難しい。また17
00℃よりも低いと、焼結性が低下するとともに、Si
の析出が望めず、強度、靱性の向上が望めない。
At this time, in order to reduce the amount of Si detected by Raman spectroscopy between the surface of the sintered body and the inside of the sintered body to be smaller than that of the inside, the SiO gas concentration in the sintering atmosphere must be adjusted. It can be formed by suppressing the concentration of SiO contained therein to be lower. In addition, Si
When O is not contained, or at a sintering temperature exceeding 1800 ° C., the decomposition of silicon nitride is intense, and it is difficult to perform detailed control to decompose only a small amount of silicon nitride. Also 17
When the temperature is lower than 00 ° C., the sinterability is reduced and Si
Cannot be expected, and improvement in strength and toughness cannot be expected.

【0035】[0035]

【実施例】平均粒径が0.7μm、酸素量が1.2重量
%、α率が98%の窒化ケイ素(Si3 4 )粉末、各
種の希土類元素酸化物(RE2 3 )、酸化アルミニウ
ム(Al2 3 )および酸化ケイ素(SiO2 )の各粉
末を用いて、各成分が表1および表2に示す組成になる
ように調合し、スプレードライによって粒径が40〜2
00μmの造粒体を作製した。その後、1〜3トン/c
2 の圧力でもってラバープレス(アイソスタテイック
プレス)成形をおこなった。なお、SiO2量はSi3
4 粉末中の不純物酸素をSiO2 換算したものも含
む。各成形体を炭化ケイ素質の匣鉢に入れ、カーボンヒ
ータを用いて、成形体重量の5%のSiO2 +Si(重
量比で1:1)混合粉末を配置し、表1、2の条件で5
時間、常圧焼成した。なお、試料No.24については、
SiO2 +Si混合粉末を配置せずに焼成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon nitride (Si 3 N 4 ) powder having an average particle size of 0.7 μm, an oxygen content of 1.2% by weight and an α rate of 98%, various rare earth element oxides (RE 2 O 3 ), Using each powder of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ), each component was blended so as to have the composition shown in Tables 1 and 2, and the particle size was 40 to 2 by spray drying.
A granule of 00 μm was produced. After that, 1-3 tons / c
Rubber press (isostatic press) molding was performed at a pressure of m 2 . The amount of SiO 2 is Si 3
It also includes those obtained by converting impurity oxygen in N 4 powder into SiO 2 . Each compact was placed in a silicon carbide sagger, and 5% of the weight of the compact was mixed with SiO 2 + Si (1: 1 by weight) using a carbon heater under the conditions shown in Tables 1 and 2. 5
Firing was carried out at normal pressure for a time. For sample No. 24,
It was fired without disposing the SiO 2 + Si mixed powder.

【0036】かくして得られた各焼結体に対して、密
度、気孔率、強度、靭性、硬度、ボイド分布状態を以下
の方法で測定し、その結果を表3および表4に示した。
密度および気孔率は、JISR1601にて規定された
条件の形状にまで加工し、アルキメデス法に基づく比重
測定から求めた。強度は、JISR1601に基づき室
温の4点曲げ抗折強度試験をおこなって求めた。靭性は
鏡面仕上げをおこなった試料に対して、JIS−R16
07に基づく室温での破壊靱性を測定することで求め
た。
For each of the thus obtained sintered bodies, the density, porosity, strength, toughness, hardness and void distribution were measured by the following methods, and the results are shown in Tables 3 and 4.
The density and the porosity were obtained by processing to a shape under the conditions specified by JISR1601, and measuring the specific gravity based on the Archimedes method. The strength was determined by performing a four-point bending strength test at room temperature based on JISR1601. The toughness is determined by JIS-R16
It was determined by measuring the fracture toughness at room temperature based on No. 07.

【0037】さらにボイドの状態はSEMや実体顕微鏡
を用いてボイドの分布状態を調べた。得られた焼結体に
対して、ラマン分光分析法により窒化ケイ素の206c
-1のピーク強度H2 と、Siの521cm-1のピーク
強度H1 とのH1 /H2 比を求めた。なお、表面部のピ
ーク強度は焼成後の焼き肌面から100ミクロン深さの
ピーク強度比を測定し、内部は焼き肌面から300ミク
ロン深さのピーク強度比を測定した。試料No. につい
てそのラマン分光分析チャートを図1に示した。
Further, regarding the state of the voids, the distribution state of the voids was examined using an SEM or a stereomicroscope. The obtained sintered body was subjected to Raman spectroscopy to obtain 206c of silicon nitride.
a peak intensity of H 2 m -1, was determined H 1 / H 2 ratio of the peak intensity H 1 of Si 521 cm -1. In addition, the peak intensity of the surface part measured the peak intensity ratio of 100 micrometer depth from the baked surface after baking, and measured the peak intensity ratio of 300 micrometer depth from the baked surface inside. FIG. 1 shows a Raman spectroscopic analysis chart of the sample No.

【0038】摩耗試験として下記のとおり摩耗率を求め
る試験をおこなった。摩耗率については、60mm×3
0mm×6mmの試料板を作製し、表面を平滑に仕上げ
て評価面となし、この面に対してメデイアとして水を含
んだSiC製GC#240番(80〜130μm)を噴
射圧力2.5kg/cm2 で、3分間、試料板に直角
(90°)にあてることで、試料板の重量変化を測定
し、これを摩耗率とした。なお、上記噴射のノズル径は
φ7.6mmとし、衝突距離は10mmとした。
As a wear test, a test for determining a wear rate was performed as follows. For the wear rate, 60 mm x 3
A sample plate of 0 mm × 6 mm was prepared, and the surface was smoothed and used as an evaluation surface. A SiC GC # 240 (80 to 130 μm) containing water was used as a medium against the surface, and the injection pressure was 2.5 kg / The sample was placed at a right angle (90 °) to the sample plate for 3 minutes in cm 2 , and the change in weight of the sample plate was measured, and this was defined as the wear rate. In addition, the nozzle diameter of the above injection was 7.6 mm, and the collision distance was 10 mm.

【0039】又、工具の摩耗試験として下記のとおりの
摩耗量を求める試験をおこなった。 試料形状 CNGN120408 被削材 FC−25 切削速度 500m/min 切り込み 2mm 送り 0.5mm/rev 切削時間 30min
As a tool wear test, a test for obtaining the following wear amount was performed. Sample shape CNGN120408 Work material FC-25 Cutting speed 500m / min Cutting depth 2mm Feeding 0.5mm / rev Cutting time 30min

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】表1〜4の結果から明らかなとおり、本発
明の試料については、強度600MPa以上、靭性6.
0MPa・m1/2 以上、硬度13.0GPa以上の機械
的特性を、また摩耗率1.0%以下、工具摩耗率1.0
mm以下の摩耗特性が達成できた。
As is clear from the results in Tables 1 to 4, the sample of the present invention had a strength of 600 MPa or more and a toughness of 6.
Mechanical properties of 0 MPa · m 1/2 or more, hardness of 13.0 GPa or more, wear rate of 1.0% or less, tool wear rate of 1.0
mm was achieved.

【0045】これに対して、組成範囲が本発明の範囲か
ら逸脱する試料No.13〜No.17では摩耗率が著しく
増加し、メデイア摩耗率も増大している。密度が3.0
9g/cm3 の試料No.18、また密度が3.20g/
cm2 以下の試料No.19では摩耗率、メデイア摩耗率
ともに著しく増大している。また、表面部より中心部の
ラマンピーク強度が同等以下の試料No.22、24はい
ずれも摩耗率およびメディア摩耗が不十分で満足できる
ものではなかった。
On the other hand, in the samples No. 13 to No. 17 whose composition ranges deviate from the range of the present invention, the wear rate is remarkably increased, and the media wear rate is also increased. 3.0 density
Sample No. 18 of 9 g / cm 3 and density of 3.20 g / cm 3
In the sample No. 19 of cm 2 or less, both the wear rate and the media wear rate were significantly increased. Samples Nos. 22 and 24 having Raman peak intensities equal to or less than the central part from the surface part were not satisfactory because of insufficient wear rate and medium wear.

【0046】[0046]

【発明の効果】以上のとおり、本発明の耐摩耗性部材に
よれば、特定の組成に制御するとともに、焼結体中に微
量のSiを適宜に析出させ、その量を表面より中心部を
高くすることで耐摩耗を高め、さらに密度を制御するこ
とにより、優れた機械的特性を具備するとともに、耐摩
耗性部材としての耐摩耗性を向上させることができ、常
圧焼成により耐摩耗性部材の実用化と長寿命化を達成す
ることができる。
As described above, according to the wear-resistant member of the present invention, while controlling to a specific composition, a small amount of Si is appropriately precipitated in the sintered body, and the amount is adjusted from the surface to the central portion from the surface. By increasing the wear resistance, and by controlling the density, it is possible to have excellent mechanical properties and to improve the wear resistance as a wear-resistant member. Practical use and long life of the member can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における窒化ケイ素質焼結体(試料No.
9)の表面におけるラマン分光分析チャートの一例を示
す。
FIG. 1 shows a silicon nitride sintered body (sample No.
9 shows an example of a Raman spectroscopic analysis chart on the surface of 9).

【図2】本発明における窒化ケイ素質焼結体(試料No.
9)の内部におけるラマン分光分析チャートの一例を示
す。
FIG. 2 shows a silicon nitride sintered body (Sample No.
9 shows an example of a Raman spectroscopic analysis chart inside 9).

フロントページの続き Fターム(参考) 4G001 BA01 BA03 BA04 BA06 BA08 BA09 BA12 BA31 BA32 BA37 BA48 BA49 BA51 BA53 BB01 BB03 BB06 BB08 BB09 BB12 BB31 BB32 BB37 BB48 BB49 BB51 BB53 BB62 BB73 BC12 BC13 BC56 BD12 BD14 BD16 BD18 BE03 BE15 BE34 Continued on the front page F-term (reference) 4G001 BA01 BA03 BA04 BA06 BA08 BA09 BA12 BA31 BA32 BA37 BA48 BA49 BA51 BA53 BB01 BB03 BB06 BB08 BB09 BB12 BB31 BB32 BB37 BB48 BB49 BB51 BB53 BB62 BB73 BC12 BE16 BD18 BD14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】β−窒化ケイ素結晶相を主成分とし、Yお
よび/または希土類元素を酸化物換算量で1〜15重量
%、アルミニウムを酸化物換算量0.01〜5重量%、
不純物的酸素を酸化ケイ素換算量で10重量%以下の割
合で含み、ラマン分光分析チャートにおいて、521c
-1に示すSiのピーク強度をH1 、窒化ケイ素の20
6cm-1のピーク強度をH2 とした時、H1 /H2 で表
されるピーク強度比が焼結体表面よりも焼結体内部が大
きく、且つ密度が3.20g/cm2 以上であることを
特徴とする耐摩耗性部材。
1. A composition comprising a β-silicon nitride crystal phase as a main component, Y and / or a rare earth element in an amount of 1 to 15% by weight in terms of oxide, and aluminum in an amount of 0.01 to 5% by weight in terms of oxide.
It contains impurity oxygen in a proportion of 10% by weight or less in terms of silicon oxide, and in the Raman spectroscopic analysis chart, 521c
The peak intensity of Si shown in m -1 is H 1 , and the peak intensity of silicon nitride is 20
When the peak intensity of 6 cm -1 was H 2, the peak intensity ratio represented by H 1 / H 2 is a sintered body interior is greater than the sintered body surface and density of 3.20 g / cm 2 or more A wear-resistant member characterized by the following.
【請求項2】前記H1 /H2 で表されるピーク強度比が
焼結体表面が0.1以下であり、焼結体内部が0.1よ
りも大きく、3以下であることを特徴とする請求項1記
載の耐摩耗性部材。
2. The sintered product according to claim 1, wherein the peak intensity ratio represented by H 1 / H 2 is 0.1 or less on the surface of the sintered body and 3 or less on the inside of the sintered body. The wear-resistant member according to claim 1, wherein
【請求項3】前記焼結体の気孔率が3%以下、平均ボイ
ド径が5μm以下であり、且つボイド径5〜30μmが
30%以下、ボイド径30μm以上が5%以下、残部が
ボイド径5μm以下のボイド径分布を有することを特徴
とする請求項1記載の耐摩耗性部材。
3. The sintered body has a porosity of 3% or less, an average void diameter of 5 μm or less, a void diameter of 5 to 30 μm of 30% or less, a void diameter of 30 μm or more of 5% or less, and a remainder of void diameter. 2. The wear-resistant member according to claim 1, having a void diameter distribution of 5 [mu] m or less.
【請求項4】前記窒化ケイ素質焼結体に、Mg、W、M
o、Mn、CuおよびFeの少なくとも1種を、酸化
物、窒化物、酸窒化物もしくはケイ化物として8重量%
以下の割合で含むことを特徴とする請求項1記載の耐摩
耗性部材。
4. The method according to claim 1, wherein the silicon nitride sintered body includes Mg, W, M
8% by weight of at least one of o, Mn, Cu and Fe as oxide, nitride, oxynitride or silicide
The wear-resistant member according to claim 1, wherein the wear-resistant member is contained in the following ratio.
JP10311441A 1998-10-30 1998-10-30 Abrasion resistant member Pending JP2000143350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311441A JP2000143350A (en) 1998-10-30 1998-10-30 Abrasion resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311441A JP2000143350A (en) 1998-10-30 1998-10-30 Abrasion resistant member

Publications (1)

Publication Number Publication Date
JP2000143350A true JP2000143350A (en) 2000-05-23

Family

ID=18017261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311441A Pending JP2000143350A (en) 1998-10-30 1998-10-30 Abrasion resistant member

Country Status (1)

Country Link
JP (1) JP2000143350A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179176A (en) * 2003-08-26 2005-07-07 Kyocera Corp Molten-metal-resistant member and method for manufacturing the same
WO2014104112A1 (en) * 2012-12-25 2014-07-03 京セラ株式会社 Silicon nitride-based sintered object and cutting tool
JP2017030988A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Silicon nitride ceramic and impact wear resistant member using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179176A (en) * 2003-08-26 2005-07-07 Kyocera Corp Molten-metal-resistant member and method for manufacturing the same
WO2014104112A1 (en) * 2012-12-25 2014-07-03 京セラ株式会社 Silicon nitride-based sintered object and cutting tool
JPWO2014104112A1 (en) * 2012-12-25 2017-01-12 京セラ株式会社 Silicon nitride sintered body and cutting tool
JP2017030988A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Silicon nitride ceramic and impact wear resistant member using the same

Similar Documents

Publication Publication Date Title
Van Dijen et al. Liquid phase sintering of silicon carbide
Kim et al. Densification and mechanical properties of B4C with Al2O3 as a sintering aid
JP4744704B2 (en) Method for manufacturing wear-resistant member
JP2009234826A (en) Silicon nitride sintered compact
JP5692845B2 (en) Highly rigid ceramic material and manufacturing method thereof
EP1892227B1 (en) Process for producing a boron carbide based sintered body
JP2719941B2 (en) Silicon nitride sintered body
JP2010264574A (en) Cutting tool
RU2424212C2 (en) Boron suboxide-based composite material
JP2855243B2 (en) Silicon nitride sintered body with excellent wear resistance
CA2199394A1 (en) Reaction-bonded silicon carbide refractory product
JP2000143350A (en) Abrasion resistant member
Lee et al. Effect of β–Si3N4 seed crystal on the microstructure and mechanical properties of sintered reaction-bonded silicon nitride
JP2011132126A (en) Wear-resistant member
US6156238A (en) Liquid phase-sintered, electrically conductive and oxidation-resistant ceramic material, a process for producing it and its use
JP3694583B2 (en) Crusher parts
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
JPH08323509A (en) Boron nitride cutting-tool and its manufacture
JP4126447B2 (en) Crusher parts
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP2000072553A (en) Silicon nitride wear resistance member and its production
JP3554125B2 (en) Crusher components
JP4268440B2 (en) Method for producing aluminum nitride sintered body
JP3051603B2 (en) Titanium compound sintered body
JP3580660B2 (en) Crusher components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070119