JP3792180B2 - Manufacturing method of heat dissipation parts - Google Patents

Manufacturing method of heat dissipation parts Download PDF

Info

Publication number
JP3792180B2
JP3792180B2 JP2002201323A JP2002201323A JP3792180B2 JP 3792180 B2 JP3792180 B2 JP 3792180B2 JP 2002201323 A JP2002201323 A JP 2002201323A JP 2002201323 A JP2002201323 A JP 2002201323A JP 3792180 B2 JP3792180 B2 JP 3792180B2
Authority
JP
Japan
Prior art keywords
base plate
warpage
heat dissipation
aluminum
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002201323A
Other languages
Japanese (ja)
Other versions
JP2004047619A (en
Inventor
和幸 蛭田
拓也 岡田
秀樹 廣津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002201323A priority Critical patent/JP3792180B2/en
Publication of JP2004047619A publication Critical patent/JP2004047619A/en
Application granted granted Critical
Publication of JP3792180B2 publication Critical patent/JP3792180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

【0001】
【発明が属する技術分野】
本発明は、高い熱伝導性を有しかつ熱膨張係数も小さいことから、近年、大電力モジュールの放熱板に使用されているアルミニウム−炭化けい素質複合体からなる放熱部品に関する。
【0002】
【従来の技術】
半導体素子の高集積化、大型化に伴い、半導体素子からの発熱量は増加の一途をたどっているが、半導体素子からの熱の放散を十分に行うために、近年、高絶縁性でしかも高放熱性を有するセラミックス基板が使用されている。
【0003】
このなかにあって、窒化アルミニウム基板は100W/mK以上の高熱伝導率を有し、しかも熱膨張率がシリコンに近いことから、とくに大電力用途には多用されている。図2は、セラミックス基板として窒化アルミニウム基板を使用した通常の放熱構造を示すものであり、半導体素子(1)が活性金属法またはDBC法により接合された銅回路を有するセラミックス基板(2)(セラミックス回路基板ともいう)に、半田を介して接合されており、さらに前記回路基板(2)は、半田を介して銅からなるベ−ス板(3)に接合されている。これらの接合構造は樹脂(4)封止等のパッケージ化の後、最終的に放熱フィンにネジ止めされる。
【0004】
しかしながら、従来から使用されてきた銅製のベ−ス板と窒化アルミニウム等からなるセラミックス回路基板を接合させた構造においては、両者を接合する半田層にクラックが発生する、いわゆる半田クラックの問題があった。半田層は使用環境下で熱膨張係数の大きな銅ベ−ス板(17ppm/K)とセラミックス基板の熱膨張係数差により発生する応力を吸収、緩和させる機能を果たしているが、高温低温を繰り返すサイクルが増加していくと疲労のためクラックが発生、進展し破壊してしまい信頼性が劣るという問題である。
【0005】
このため、高熱伝導性を有し、かつ熱膨張係数が銅のそれに比べて小さいベ−ス板材の開発が望まれてきたが、最近アルミニウムと炭化けい素からなる複合体が開発された。
【0006】
アルミニウムと炭化けい素からなる複合体は、熱膨張係数が8ppm/K程度と従来の銅の17ppm/Kよりかなり小さく、上記半田クラックの問題点を解決し、信頼性ある放熱部品として使用されはじめている。
【0007】
しかしながら、最近の半導体素子の大電力化に伴うさらなる熱放散性向上の要望に対して、上述した技術では対応しきれない状況になりつつあり、アルミニウム−炭化けい素複合体からなる放熱部品においては以下の検討がなされている。
【0008】
まず、第1にアルミニウム−炭化けい素質複合体の熱伝導率を向上させる試みであり、従来のものは銅のそれの半分程度ではあったが、200W/mK を越す熱伝導率を有するものも開発されている。
【0009】
第2の試みは、半導体素子から放熱フィンに至る一連の構造において、いかに熱を放散しやすい構造にするかであり、これまでにも様々な構造が提案されている。このなかにあって、前記アルミニウム−炭化けい素質複合体からなる放熱部品にあらかじめ反りを付けることが注目されている。
【0010】
図2に代表される放熱構造を作製するにあたっては、放熱フィンより上の構造部分が予め接合されたのち、前記構造部分が放熱フィンにグリースを介してネジ止めにより固定されるが、得られる構造体(以下モジュール構造体という)の高放熱性を維持するためには、放熱フィンとアルミニウム−炭化けい素質複合体からなる放熱部品(以下、単にベ−ス板と呼ぶことがある)とがグリースを介して十分に密着しいていることが必要である。
【0011】
従来の方法で作られる平坦なベ−ス板を用いる場合、前記ベ−ス板とセラミックス回路基板との熱膨張差から両者の接合時に発生する応力やその後の樹脂封止等によるパッケージ化の際発生する応力のため、ベ−ス板の放熱フィンと密着させる側の面が凹型に反ってしまい、放熱フィンをベ−ス板に固定する際、十分な接触面積が取れず、満足な放熱性を得るには至っていないという問題がある。
【0012】
この問題を解決する手段として、ベ−ス板の放熱フィンと密着させる側の面を予め凸型に反らしておき、セラミックス回路基板の接合及び樹脂封止等のパッケージ化後も、放熱フィンと密着させる側の面を凸型の反りのまま維持させておき、これを放熱フィンにネジ止めにより固定し十分な接触面積を確保しつつ放熱を図ることが行われている。
【0013】
反りを有するアルミニウム−炭化けい素質ベース板の作製方法については、様々な提案がなされており、作製後の前記ベース板に機械加工を施し反りを付与する方法、ベース板の表裏にアルミニウムを被覆したベース板においては、ベース板作製時表裏のアルミニウム厚みを変え、表裏のアルミニウム厚み差から生じる応力により反りを付与する方法及び前記ベース板の分散相となっている炭化けい素質プリフォームの密度や組成をあらかじめ傾斜させたのちベース板を作製、組成差、密度差から反りを付与する方法、さらにはベース板に応力を掛けつつ加熱処理し、塑性変形により反りを付ける方法等があげられる。
【0014】
【発明が解決しようとする課題】
しかしながら、以上のような方法のうち、機械加工にて反りを付ける方法は、反り量及び形状の精度がよい反面、生産性に劣るという欠点がある。また、表裏のアルミニウム厚みに差を付け反りを付与する方法は、ヒートサイクル等の環境下では、表裏のアルミニウム厚み差により発生する熱応力のため、ベース板の反りが変動するという問題点がある。また、プリフォームに組成差、密度差から反りを付与する方法は、プリフォーム自体の作製が複雑であり、生産性が著しく低いものとなる。
【0015】
一方、ベース板に応力を掛けつつ加熱処理して反りを付与する方法は、その応力の掛け方により所望の反り量が得られることや方法が簡便なことから有効な方法である。しかしながら、この反り付け法において得られるベース板は、たとえ反り付与後において、放熱フィンを密着させる側の面が凸型形状であったとしても、前記セラミックス基板とベース板との半田接合及び樹脂封止等のパッケージ化後には反り形状が、本来目的とする放熱フィンと密着させる側の面が凸型ではなく凹型となるケース、いわゆる反りの戻りがしばしばみとめられ、著しく生産性等を害するものであった。
【0016】
【課題を解決するための手段】
本発明者らは、応力負荷方法及び加熱処理条件をかえて反り付けを行い、これを一般的な半田付け温度下におき、反りの戻りについて検討を重ねた結果、単にベース板の平板表面の一部もしくは特定の面積の領域に応力を付与し加熱処理しただけでは、目的の反り量は得られるものの、平板面内に存在する歪みの不均一が原因で、半田付け温度に相当する温度にベース板を加熱すると、反りが大きく戻ってしまう場合が多いこと、この反りの戻り量の小さいベース板は、特定以上の応力を特定時間、できる限り全面に付与する方法、すなわち、型間で挟み加圧する方法をとり、かつ特定温度以上に加熱して反りが付与されたベース板であること、さらに反りの形状としては、回転面形状、しかもできる限り球面形状に近い方がよく、そのためには型面が回転面形状、しかも球面形状を有することが有効であるという知見を得て、本発明を完成したものである。
【0017】
すなわち、本発明は炭化けい素とアルミニウムを主成分とした反りを有する平板状の放熱部品の製造方法であって、該放熱部品を450℃以上の表面温度を有する1対の対向する回転面状の凹凸型で挟み、10KPa以上の応力で、該放熱部品の温度が実質的に450℃以上の温度で30秒以上プレスすることにより、反りを付与することを特徴とする放熱部品の製造方法である。
【0018】
さらに、本発明は、反り付与前の反り量をX、これに反りを付与した後の反り量を(X+Y)とし、前記の反り付与後の放熱部品を320℃以下の温度で1時間以上加熱処理した後の反り量が(X+Z)のとき、YとZとの間に(Y−Z)<0.5Yなる関係を満たすことを特徴とする前記の放熱部品の製造方法である。
【0019】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0020】
本発明は、炭化けい素とアルミニウムを主成分とした反りを有する平板状の放熱部品を450℃以上の表面温度を有する1対の対向する回転面状の凹凸型で挟み、10KPa以上の応力で、該放熱部品の温度が実質的に450℃以上の温度で30秒以上プレスすることにより、反りを付与することを特徴としている。
【0021】
本発明者は、炭化けい素とアルミニウムを主成分とする複合体からなる放熱部品を用いたモジュール構造体について、いろいろ検討を重ねた結果、パッケージ化された後に放熱部品の回路を接合していない方の面が凹面となり、のちの放熱フィンの取り付けに支障をきたす問題が生じること、そして、その原因のひとつが放熱部品自体の半田付け時の加熱による反りの戻りにあること、更に、半田付けは一般的に320℃以下の温度域で行われるため、その温度間での反りの戻りをできる限り小さくすることが重要であることを見い出し、本発明に至ったものである。
【0022】
また、本発明者は、前記モジュール構造体に関する検討を通じて、放熱部品の反り形状によっては、回路基板接合後、放熱部品の一部で凹面領域が発生してしまう問題があること、とくに放熱部品の反り形状が直線的な、いわゆるV字形状のもので、その問題が顕著であることを見い出すとともに、放熱部品に回転面状、ことに球面に近い形状を付与するときに前記問題を解決できることを見い出し、本発明に至ったものである。ここで、前記回転面については、型面の中央部に垂直な軸を回転させたときに滑らかな曲面を示すものであればどのようなものでも構わないが、典型的にものとしては、前記した球面以外に、回転楕円体面、回転放物体面が挙げられる。
【0023】
更に、本発明者は、様々な方法にてアルミニウムと炭化けい素複合体からなる放熱部品に反りを付け、それを半田付け温度及びその近傍温度まで加熱し、反りの戻りを観察した結果、特定の方法でかつ特定加熱温度、時間及び応力下で反りを付与された放熱部品のみ、半田付け温度、具体的には320℃以下の温度域でたとえ1時間以上保持したとしても反りの戻りが小さいことを見い出し、本発明に至ったものである。
【0024】
即ち、本発明は、炭化けい素とアルミニウムを主成分とした反りを有する平板状の放熱部品について、これを450℃以上の表面温度を有する1対の対向する回転面状の凹凸型で挟み、10KPa以上の応力で、該放熱部品の温度が実質的に450℃以上の温度で30秒以上プレスすることにより反りを付与することを特徴としており、前記構成を採用することで、反りの戻りが小さく、放熱フィン等に接したときに密着性に優れ、その結果、半導体素子等を実装して高信頼性のモジュールを安定して得ることができる放熱部品を提供できる効果を奏するものである。
【0025】
尚、一般に、反りとはベース板表面上に任意の2点をとったとき、この2点を結ぶ表面線上の1点から、2点を結ぶ線分におろした垂線の長さで定義されるが、本発明においては、図1に示す通りに、2点間に存在する垂線中、最大の値を示すもの、すなわち最大反り量をもって反り量と定義する。
【0026】
また、反りの付与については、仮に付与前の反り量がXμmであって、付与後の反り量が(X+Y)μmとなった場合には、付与した反り量はYμmとなる。また、反り量の戻りについては、前記の反り量が(X+Y)μmであったものを320℃以下の温度で1時間以上加熱処理し、反り量が(X+Z)μmとなった場合には、(Y−Z)μmと定義される。本発明では、理由は不明であるが、本発明の効果を一層達成するために反り量の戻り(Y−Z)について、(Y−Z)<0.5Yとなる関係を満足することが好ましい。
【0027】
以下、本発明の放熱部品の反り付け方法について詳述する。
【0028】
本発明では、ベース板表面全面に応力を付与するに際し、回転面、例えば球面形状を有する凹型と前記球面と同じ曲率半径を有する凸型の2個からなる型(以下、この一対の型を凹凸型と呼ぶ)を用いる。凹凸型の前記球面の間にベース板を挟み、ベース板が挟まれる方向に応力を付与しながら(いわゆるプレスを行いながら)加熱する方法が採用される。
【0029】
前記の方法については、予めベース板を挟み込んだ1対の型を加熱しておき、プレス機にてプレスする方法、若しくは荷重をかける方法や予め所定温度に加熱した1対の型にベース板を投入し、プレスする方法、さらにはこの際、予めベース板を加熱しておく方法等が採用される。
【0030】
本発明者らは、上記方法にて加熱温度、負荷応力、及び応力負荷時間とベース板厚み及び反り付け量、形状との関係、さらには反り付け後のベース板の半田付け温度に相当する320℃までの各温度下における反りの戻り量等につき、詳細に検討を重ねた結果、本発明の条件を満足しない場合には、反りの戻り量が大きくなり、さらには球面に近い形状の反りが得られないこと、また、1時間以上半田付け温度で加熱すると、付与した反り量の半分を越えて反りが戻ってしまうことが多いことが判った。これに対し、本発明の前記条件を満たすとき、付与した反り量の50%以上が維持でき、そのためセラミックス回路基板等を実際に半田付けし、さらに樹脂封止等のパッケージした後も、放熱部品の放熱フィン固定側が凸面の状態に維持され、放熱性に優れたモジュールを得ることができることを見出した。
【0031】
前記の特定条件下での反り付与処理により反り量の戻りの小さい放熱部品が得られる理由については未だ明らかではないが、一般に、反りはマトリックスとなるAl合金相の転位が移動して起こること、転位を移動させるには、反り付与に際し、特定温度以上に温度を上げ、移動のための活性化エネルギーを下げる必要があること、さらに移動自体の駆動力は負荷する応力によることを考慮し、本発明者は、前記条件が歪の小さな状況下で転位が移動するのに好適なためと考えている。
【0032】
更に、回路基板接合時には、その熱膨張係数差により、放熱部品には凸面が凹面に向かうような力が一般的には働き、そのため放熱部品の形状によっては、一部で凹型の領域が発生しやすくなるが、回転面に近い形状の反りとすることによって、前記した力が作用しても、一部の領域が凹型となるまでには変形しないので、モジュールとしたときに放熱フィン等の接合が十分に維持され、高信頼性のモジュールを得ることができると考えている。
【0033】
本発明において、アルミニウムと炭化けい素を主成分とする複合体であることから反りの付与にあたっては、そのマトリックスとなるアルミニウム或いはアルミニウム合金部が溶融しない範囲内の温度で、できるだけ高い温度を採用することが好ましく、具体的には500℃〜570℃程度の温度域で処理することが好適である。また、応力は10KPa以上でよく、好ましくは30KPa以上であるが、ベース板の板厚や反り付与時の温度等に応じて最適応力を実験的に決めればよい。
【0034】
本発明では、放熱部品が加熱された対向する回転面型間に挟まれることにより加熱されるのが一般的である。したがって、複合体自体が450℃以上の温度になるには、複合体の厚み、面積等により影響を受けるが、放熱部品自体の温度が実質的に450℃以上の温度下で30秒以上、プレスされれば、本発明の特性を有する放熱部品が得られる。
【0035】
なお、本発明に使用される1対の凹凸型の材質としては、本発明の加熱処理温度で特定時間その形状を維持できるものであれば材質を問わないが、カーボン、窒化ほう素等のセラミックスや超硬、ステンレス鋼といった金属材料が好ましく使用される。
【0036】
本発明で用いられるアルミニウム−炭化けい素複合体としては、主成分がアルミニウムと炭化けい素から構成されていればどのようなものでも構わないが、アルミニウム、炭化けい素の両者が三次元的に網目構造を有する複合体が好ましく適用でき、中でも、炭化けい素粉粒を成形体とし前記成形体中の空隙部にアルミニウム又はアルミニウムを主成分とする合金を含浸させて得られる複合体は高熱伝導率でしかも低膨張率を有することから一層好ましい。
【0037】
以下、本発明を高圧鍛造法によるアルミニウムー炭化けい素複合体の例を通して、より具体的に説明する。なお、本発明は以下の方法に限定されないことはいうまでもない。
【0038】
高圧鍛造法においては、後述するアルミニウム又はアルミニウム合金(以下、単にアルミニウムという)を含浸する工程での割れ等の異常発生を防止したり、得られる複合体が高熱伝導率、低膨張率、高強度等の特性を満足することを目的に、炭化けい素を予め成形体(プリフォーム)とし、これにアルミニウムを含浸させることが一般的である。
【0039】
炭化けい素のプリフォームを作製する方法としては、炭化けい素粉末と有機バインダー及び焼成後の強度を維持するために無機バインダー等を混合した混合粉末をプレス成形後、空気中もしくは不活性雰囲気中で焼成しプリフォーム化する方法、前記混合粉末にさらに水や溶剤及び可塑剤、分散剤等を添加し混練後、押し出し成形、焼成する方法、前記混合物を低粘度のスラリーとし、型に注入成形し、焼成するインジェクション法、さらにはスラリーを所定の吸水性を有する型に充填し、加圧成形する湿式加圧成形法等の公知の方法が採用できる。
【0040】
本発明に利用する場合、炭化けい素含有率は、その用途に応じて適宜選択できるが、高い熱伝導率を有し、かつ熱膨張係数が6〜9ppm/K程度のアルミニウム−炭化けい素質ベース板を得るには、いずれの方法でプリフォームを作製するにしても、プリフォームの相対密度を50%以上、より好ましくは60%以上とすることが望ましい。そのために、炭化けい素原料として異なった粒径を有する2種以上の原料粉末を適宜混合することが効果的である。
【0041】
次に、炭化けい素質プリフォームを金型にセットしたのち、金型に溶融したアルミニウムを投入、溶融アルミニウムをプレスすることによりプリフォームの空隙内にアルミニウムが含浸され、冷却を通してアルミニウム−炭化けい素質複合体が作製される。この際、含浸を円滑に行うため、プリフォームは予め予熱される。また、含浸するアルミニウム原料としては、低溶融温度化、含浸のしやすさ及び含浸後の機械特性の向上等を目的に、けい素を6〜18質量%含有するアルミニウム−けい素系合金やさらにプリフォームとの濡れ性向上を目的としてマグネシウムを3質量%まで添加したアルミニウム−けい素−マグネシウム系合金等が使用される。いずれの合金を使用するかは任意に選択できるが、一般には800℃〜900℃で溶融したアルミニウム合金が含浸される。上記方法で作製されたアルミニウム−炭化けい素質複合体は、そのままの状態、もしくはその後所定の形状にその表面及び外周を加工され、更に必要に応じてメッキ等の表面処理を施され、放熱部品となる。
【0042】
以上の工程により得られた放熱部品は、前述した通りに、平坦であったり、制御されていない反りが存在するが、本発明の方法により、回転面、好ましい実施態様においては球状の反り量が制御された放熱部品となる。より具体的な一例としては、前記放熱部品の寸法より面積の大きな所定の曲率半径を有する球面部を有する1対の凹凸型を装着したプレス機に、前記放熱部品を挿入後、50KPaの圧力で数分間プレスし、冷却後取り出す方法が挙げられる。尚、前記操作において、凹凸型の表面は450℃以上に加熱保持されている。この操作を経て得られる放熱部品は、前述した通りに、反りの戻りが小さく、放熱フィン等に接したときに密着性に優れ、その結果、半導体素子等を実装して高信頼性のモジュールを安定して得ることができる放熱部品を提供できる。
【0043】
以下、実施例、比較例に基づき、本発明を一層詳しく説明する。
【0044】
【実施例】
(実施例1)
相対密度が65%の炭化けい素からなる厚みが3.9mmで寸法が179mm×129mmのプリフォ−ムを、182mm×132mmの寸法で深さが4.0mmのキャビティーを有する湯口付きの金型内にセットした。これを600℃で1時間加熱後、すぐに12質量%のけい素と0.7%のマグネシウムを含有する溶融アルミニウムを注入し、高圧プレスすることにより、プリフォ−ム内の空隙にアルミニウム合金を含浸し、冷却後、金型から脱型してアルミニウム−炭化けい素質複合体を得た。得られた複合体の外周を加工することにより、寸法が180mm(長手と呼ぶ)×130mm(短手と呼ぶ)で厚みが4mmのベ−ス板とした。なお、このときの表面はアルミニウム合金で覆われていた。
【0045】
前記ベース板について反りを測定した。反り測定は面粗さ計で行い、測定スパンは長手方向で170mm、短手方向で110mmとした。なお、長手方向、短手方向とも測定位置はベ−ス板の中心を通るラインとした。反りを測定した結果、片面が長手方向、短手方向ともに凸状、反対面が凹状の反り形状を示すとともに、凸面について、両端をゼロに換算した際のライン中の最高高さ、すなわち反り量を調べたところ長手方向で50μm、短手方向で30μmであった。
【0046】
前記ベース板に反りを付与するため、SUS製で曲率半径が10000mmの球面を設けた凹凸型を準備した。この凹凸型を熱プレス機に装着し、加熱して型の表面温度を560℃とした。この凹凸型の間に前記ベ−ス板を配置し40KPaでプレスした。この際、ベース板の側面に熱電対を接触させ測温した。ベース板の温度が550℃になった時点から3分間保持後、急冷し、加圧を解除した。得られたベース板の凸面側の反りを測定した結果、長手方向が341μm、短手方向は122μmであった。
【0047】
前記ベース板をさらに320℃で2時間加熱後、反りを測定した結果、長手方向が310μm、短手方向は111μmであった。これらの結果を表1に示した。
【0048】
【表1】

Figure 0003792180
【0049】
(実施例2)
型の表面温度を465℃にしたこと、プレス圧力を10KPaにしたこと、ベース板の温度が450℃になった時点から30秒保持したこと、さらに反り付与後の加熱処理を320℃、1時間としたこと以外は、すべて実施例1と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0050】
(実施例3)
型の表面温度を525℃にしたこと、プレス圧力を30KPaにしたこと、ベース板の温度が520℃になった時点から4分保持したこと、さらに反り付与後の加熱処理を320℃、1時間としたこと以外は、すべて実施例1と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0051】
(実施例4)
曲率半径が15000mmの型を使用したこと、プレス圧力を10KPaにしたこと及び保持時間を30秒としたこと、さらに反り付与後の加熱処理を270℃、3時間としたこと以外は、すべて実施例1と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0052】
(実施例5)
曲率半径が15000mmの型を使用したこと、プレス圧力を40KPaにしたこと及び保持時間を4分としたこと、さらに反り付与後の加熱処理を270℃、3時間としたこと以外は、すべて実施例2と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0053】
(実施例6)
曲率半径が15000mmの型を使用したこと、保持時間を3分としたこと、さらに反り付与後の加熱処理を270℃、3時間としたこと以外は、すべて実施例3と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0054】
(比較例1)
プレス圧力を5KPaとした以外は、すべて実施例1と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0055】
(比較例2)
型の温度を435℃としたこと、ベース板温度を430℃にしたこと以外は、すべて実施例2と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0056】
(比較例3)
保持時間を15秒とした以外は、すべて 実施例3と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0057】
(比較例4)
保持時間を15秒とした以外は、すべて 実施例4と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0058】
(比較例5)
プレス圧力を8KPaとした以外は、すべて実施例5と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0059】
(比較例6)
型の温度を411℃としたこと、ベース板温度を400℃にしたこと以外は、すべて実施例6と同じ方法でベース板を処理した。各段階での反り量を表1に示した。
【0060】
(比較例7)
実施例1の含浸方法及び外周加工で得られた、予め反りを測定したベース板を、160mm×120mmで深さが5mmのキャビティー上に置き、ベース板のセンターをネジで締め込んでキャビティーの縁を支点として撓ませた。この状態のまま、炉に投入し、550℃で30分間加熱後、冷却した。この後、ネジ締めを解放し、付与された反りを測定したのち、320℃、2時間加熱処理を施し、再度反りを測定した。結果を表1に示した。
【0061】
(比較例8)
ネジで締め込んだままでの状態の加熱を450℃、30分で行ったこと、ネジ締め解放後の加熱処理を320℃、1時間としたこと以外は、すべて比較例7と同じ条件で処理した。結果を表1に示した。
【0062】
【発明の効果】
本発明の方法によれば、回路基板接合時等で、反りの戻りが小さくかつ、その後のパッケージ化を通じて、放熱フィン側に凸な安定した形状を有する放熱部品を製造でき、その結果、熱放散性に優れ、長期に渡って信頼性の高いモジュールを安定して提供できる効果があり、産業上非常に有用である。
【図面の簡単な説明】
【図1】反り量を説明する図。
【図2】本発明に係る放熱部品並びに従来公知の放熱部品を用いたモジュールの一例を示す図。
【符号の説明】
1 半導体素子
2 セラミックス回路基板
3 ベース板
4 樹脂[0001]
[Technical field to which the invention belongs]
The present invention relates to a heat radiating component made of an aluminum-silicon carbide composite material used in recent years for a heat radiating plate of a high power module because it has high thermal conductivity and a small coefficient of thermal expansion.
[0002]
[Prior art]
The amount of heat generated from semiconductor elements continues to increase as semiconductor elements become highly integrated and larger, but in order to sufficiently dissipate heat from the semiconductor elements, in recent years, it has become highly insulating and highly insulating. A ceramic substrate having heat dissipation is used.
[0003]
Among these, the aluminum nitride substrate has a high thermal conductivity of 100 W / mK or more, and has a thermal expansion coefficient close to that of silicon, so that it is frequently used especially for high power applications. FIG. 2 shows a normal heat dissipation structure using an aluminum nitride substrate as a ceramic substrate. A ceramic substrate (2) (ceramics) having a copper circuit in which a semiconductor element (1) is bonded by an active metal method or a DBC method. The circuit board (2) is joined to a base plate (3) made of copper via solder. These bonding structures are finally screwed to the radiation fins after packaging such as resin (4) sealing.
[0004]
However, the conventional structure in which a copper base plate and a ceramic circuit board made of aluminum nitride or the like are joined has a problem of so-called solder cracks, in which cracks are generated in the solder layer joining the two. It was. The solder layer functions to absorb and relieve the stress generated by the difference in thermal expansion coefficient between the copper base plate (17ppm / K) and the ceramic substrate having a large thermal expansion coefficient under the usage environment. As this increases, there is a problem that cracks are generated due to fatigue, progress and break down, resulting in poor reliability.
[0005]
For this reason, it has been desired to develop a base plate having high thermal conductivity and a thermal expansion coefficient smaller than that of copper. Recently, a composite made of aluminum and silicon carbide has been developed.
[0006]
A composite composed of aluminum and silicon carbide has a thermal expansion coefficient of about 8 ppm / K, which is much smaller than 17 ppm / K of conventional copper, and has been used as a reliable heat dissipation component, solving the problem of solder cracks. Yes.
[0007]
However, in response to the demand for further improvement in heat dissipation due to the recent increase in power of semiconductor elements, the technology described above is becoming impossible to cope with, and in heat dissipation parts made of aluminum-silicon carbide composites, The following considerations have been made.
[0008]
First, it is an attempt to improve the thermal conductivity of the aluminum-silicon carbide composite. The conventional one is about half that of copper, but the one having a thermal conductivity exceeding 200 W / mK. Has been developed.
[0009]
The second attempt is to make a structure that easily dissipates heat in a series of structures from the semiconductor element to the heat radiation fins, and various structures have been proposed so far. In this, attention is paid to pre-warping the heat dissipating component made of the aluminum-silicon carbide composite.
[0010]
In producing the heat dissipation structure represented by FIG. 2, after the structure portion above the heat dissipation fin is joined in advance, the structure portion is fixed to the heat dissipation fin by screwing via grease. In order to maintain high heat dissipation of the body (hereinafter referred to as a module structure), a heat dissipation component (hereinafter sometimes simply referred to as a base plate) composed of a heat dissipation fin and an aluminum-silicon carbide composite is used as grease. It is necessary to be in close contact with each other.
[0011]
When using a flat base plate made by a conventional method, due to the difference in thermal expansion between the base plate and the ceramic circuit board, when packaging is performed due to stress generated at the time of joining the two or subsequent resin sealing, etc. Due to the generated stress, the surface of the base plate that is in close contact with the heat dissipating fin warps in a concave shape, and when the heat dissipating fin is fixed to the base plate, a sufficient contact area cannot be obtained and satisfactory heat dissipation is achieved. There is a problem that it has not reached.
[0012]
As a means to solve this problem, the surface of the base plate that is to be in close contact with the heat dissipating fin is warped in a convex shape in advance, and it is in close contact with the heat dissipating fin even after packaging of the ceramic circuit board and resin sealing. The surface to be made is maintained as a convex warp, and is fixed to the radiating fin by screwing to ensure a sufficient contact area and to radiate heat.
[0013]
Various proposals have been made for a method for producing a warped aluminum-silicon carbide base plate, a method of machining the base plate after the production to provide warpage, and coating the front and back of the base plate with aluminum. In the base plate, the thickness of the silicon carbide preform that is the dispersed phase of the base plate and the method of changing the aluminum thickness of the front and back surfaces when producing the base plate and imparting warp due to the stress resulting from the difference in the aluminum thickness between the front and back surfaces And a method of applying warp from a difference in composition and density, a method of applying a warp by applying stress to the base plate and applying a warp by plastic deformation, and the like.
[0014]
[Problems to be solved by the invention]
However, among the methods described above, the method of warping by machining has a drawback that the amount of warpage and the accuracy of the shape are good, but the productivity is inferior. In addition, the method of giving a warp by making a difference in the thickness of the front and back aluminum has a problem that the warp of the base plate fluctuates due to the thermal stress generated by the difference in the aluminum thickness of the front and back in an environment such as a heat cycle. . Further, the method of imparting warp to the preform from the difference in composition and density makes the preparation of the preform itself complicated and the productivity is extremely low.
[0015]
On the other hand, a method of applying a warp by applying a heat treatment while applying stress to the base plate is an effective method because a desired amount of warp can be obtained depending on how the stress is applied and the method is simple. However, the base plate obtained by this warping method has a solder joint and a resin seal between the ceramic substrate and the base plate even if the surface on the side where the radiating fins are closely attached has a convex shape after warping. After packaging, such as a stop, the warped shape is the case where the surface to be in close contact with the intended radiating fin is not a convex shape but a concave shape, so-called warping is often observed, which significantly impairs productivity, etc. there were.
[0016]
[Means for Solving the Problems]
The present inventors changed the stress loading method and the heat treatment conditions, performed warping, placed this at a general soldering temperature, and as a result of repeatedly examining the return of the warping, the result was simply that the surface of the base plate was flat. The target warp amount can be obtained only by applying a stress to a part or a specific area, but the temperature is equivalent to the soldering temperature due to non-uniform strain existing in the flat plate surface. When the base plate is heated, the warpage often returns greatly, and the base plate with a small amount of return of warpage is a method of applying stress more than a specific amount to the entire surface for a specific time, that is, sandwiching between molds. It is a base plate that takes a method of applying pressure and is heated to a specified temperature or higher to give warpage. Furthermore, the shape of the warp should be as close as possible to the rotating surface, and spherical as much as possible. Has die surface rotating surface shape, yet give a finding that it is effective to have a spherical shape, and completed the present invention.
[0017]
That is, the present invention is a method for manufacturing a flat plate-like heat dissipation component having warpage mainly composed of silicon carbide and aluminum, and the heat dissipation component is formed into a pair of opposed rotating surface shapes having a surface temperature of 450 ° C. or more. A method of manufacturing a heat radiating component characterized in that a warp is imparted by pressing at a temperature of 450 ° C. or higher for 30 seconds or more at a stress of 10 KPa or higher with a stress of 10 KPa or higher. is there.
[0018]
Further, in the present invention, the amount of warping before warping is X, the amount of warping after warping is (X + Y), and the heat dissipating part after warping is heated at a temperature of 320 ° C. or less for 1 hour or more. When the amount of warpage after processing is (X + Z), the relationship of (Y−Z) <0.5Y is satisfied between Y and Z.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0020]
In the present invention, a flat plate-like heat dissipation component having warpage mainly composed of silicon carbide and aluminum is sandwiched between a pair of opposed rotating surface rugged molds having a surface temperature of 450 ° C. or higher, and a stress of 10 KPa or higher. The heat dissipation component is warped by being pressed at a temperature of 450 ° C. or higher for 30 seconds or longer.
[0021]
The present inventor has conducted various studies on a module structure using a heat dissipation component made of a composite mainly composed of silicon carbide and aluminum, and as a result, after packaging, the circuit of the heat dissipation component has not been joined. The surface becomes concave, causing problems that hinder the installation of the heat dissipating fins later, and one of the causes is the return of warpage due to heating when soldering the heat dissipating parts themselves. Since it is generally performed in a temperature range of 320 ° C. or lower, it has been found that it is important to minimize the return of warpage between the temperatures, and the present invention has been achieved.
[0022]
Further, the present inventor has examined the module structure, and there is a problem that a concave surface area is generated in a part of the heat dissipation component after joining the circuit board depending on the warped shape of the heat dissipation component. The warpage shape is linear, so-called V-shaped, and it is found that the problem is remarkable, and that the above problem can be solved when a heat radiating part is provided with a rotating surface, particularly a shape close to a spherical surface. The present invention has been found and led to the present invention. Here, the rotating surface may be anything as long as it exhibits a smooth curved surface when an axis perpendicular to the center of the mold surface is rotated. In addition to the spherical surface, a spheroid surface and a rotating paraboloid surface may be mentioned.
[0023]
Furthermore, the present inventors warped a heat-radiating component made of aluminum and a silicon carbide composite by various methods, heated it to the soldering temperature and its vicinity, and observed the return of the warping. Only for heat-dissipating parts that have been warped under the specified heating temperature, time, and stress, the return of warping is small even if the soldering temperature, specifically, a temperature range of 320 ° C. or lower is held for 1 hour or longer. As a result, the present invention has been achieved.
[0024]
That is, the present invention sandwiches a plate-shaped heat dissipation component having a warp mainly composed of silicon carbide and aluminum with a pair of opposed rotating surface concavo-convex molds having a surface temperature of 450 ° C. or higher, Warping is imparted by pressing at a stress of 10 KPa or more at a temperature of the heat radiating component of substantially 450 ° C. or more for 30 seconds or more. By adopting the above configuration, the warping can be returned. As a result, it is possible to provide a heat dissipating component that is small and has excellent adhesion when in contact with a heat dissipating fin and the like, and can stably obtain a highly reliable module by mounting a semiconductor element or the like.
[0025]
In general, warpage is defined by the length of a perpendicular line drawn from a point on the surface line connecting the two points to a line segment connecting the two points when any two points are taken on the surface of the base plate. However, in the present invention, as shown in FIG. 1, the maximum value among the perpendiculars existing between two points, that is, the maximum warpage amount is defined as the warpage amount.
[0026]
As for the warping, if the warping amount before giving is X μm and the warping amount after giving is (X + Y) μm, the given warping amount becomes Y μm. As for the return of the warpage amount, when the warpage amount was (X + Y) μm and heat-treated at a temperature of 320 ° C. or less for 1 hour or longer, and the warpage amount was (X + Z) μm, It is defined as (YZ) μm. In the present invention, the reason is unknown, but in order to further achieve the effects of the present invention, it is preferable to satisfy the relationship of (YZ) <0.5Y with respect to the return of warpage (YZ). .
[0027]
Hereinafter, the method for warping a heat dissipation component of the present invention will be described in detail.
[0028]
In the present invention, when applying stress to the entire surface of the base plate, a rotary surface, for example, a concave mold having a spherical shape and a convex mold having the same radius of curvature as the spherical surface (hereinafter, this pair of molds are uneven) Type). A method is adopted in which a base plate is sandwiched between the spherical surfaces of the concave and convex molds, and heating is performed while applying stress (so-called pressing) in the direction in which the base plate is sandwiched.
[0029]
As for the above-described method, a pair of molds sandwiching a base plate is heated in advance, and a method of pressing with a press machine, a method of applying a load, or a pair of molds heated to a predetermined temperature in advance is attached to the base plate. A method of charging and pressing, and a method of heating the base plate in advance at this time are employed.
[0030]
The inventors of the present invention have 320, which corresponds to the relationship between the heating temperature, the load stress, the stress load time, the thickness of the base plate, the amount of warping, and the shape, and the soldering temperature of the base plate after warping. As a result of repeated examination in detail about the amount of return of warpage at each temperature up to ℃, when the conditions of the present invention are not satisfied, the amount of return of warpage becomes large, and further warpage of a shape close to a spherical surface occurs. It was found that, when heated at the soldering temperature for 1 hour or more, the warpage often returns more than half of the applied warpage. On the other hand, when the above-mentioned conditions of the present invention are satisfied, 50% or more of the applied warpage can be maintained. Therefore, even after the ceramic circuit board or the like is actually soldered and further packaged with resin sealing or the like, the heat dissipation component It has been found that a module having excellent heat dissipation can be obtained by maintaining the radiating fin fixing side in a convex state.
[0031]
Although it is not yet clear why the heat dissipation component with a small return of warpage is obtained by the warp application treatment under the specific conditions described above, in general, warpage is caused by the movement of dislocations in the Al alloy phase as a matrix, In order to move dislocations, it is necessary to raise the temperature above a specific temperature and lower the activation energy for movement when applying warpage, and further consider that the driving force of the movement itself depends on the stress applied. The inventor believes that the above condition is suitable for dislocations to move under the condition of small distortion.
[0032]
Furthermore, when the circuit boards are joined, due to the difference in thermal expansion coefficient, a force that causes the convex surface to go to the concave surface generally acts on the heat radiating component. Therefore, depending on the shape of the heat radiating component, a concave region is generated in part. Although it becomes easy, even if the above-mentioned force is applied by making the warpage close to the rotating surface, it does not deform until a part of the area becomes concave. Is sufficiently maintained, and a highly reliable module can be obtained.
[0033]
In the present invention, since it is a composite mainly composed of aluminum and silicon carbide, when applying the warp, a temperature as high as possible is adopted within a range in which the aluminum or aluminum alloy part serving as the matrix does not melt. Specifically, it is preferable to perform the treatment in a temperature range of about 500 ° C. to 570 ° C. Further, the stress may be 10 KPa or more, and preferably 30 KPa or more. However, the optimum stress may be experimentally determined according to the thickness of the base plate, the temperature at the time of applying warp, or the like.
[0034]
In the present invention, the heat radiation component is generally heated by being sandwiched between heated rotating surface molds. Therefore, in order for the composite itself to reach a temperature of 450 ° C. or more, it is affected by the thickness, area, etc. of the composite, but the temperature of the heat dissipating component itself is substantially pressed for 30 seconds or more at a temperature of 450 ° C. or more. Thus, a heat radiating component having the characteristics of the present invention can be obtained.
[0035]
The material of the pair of concave and convex molds used in the present invention is not limited as long as the shape can be maintained for a specific time at the heat treatment temperature of the present invention, but ceramics such as carbon and boron nitride. Metal materials such as carbide, stainless steel, and stainless steel are preferably used.
[0036]
The aluminum-silicon carbide composite used in the present invention may be any material as long as the main component is composed of aluminum and silicon carbide, but both aluminum and silicon carbide are three-dimensionally used. A composite having a network structure can be preferably applied. Among them, a composite obtained by impregnating silicon carbide powder particles as a molded body and impregnating the voids in the molded body with aluminum or an alloy containing aluminum as a main component is highly conductive. Further, it is more preferable because it has a low expansion coefficient.
[0037]
Hereinafter, the present invention will be described in more detail through an example of an aluminum-silicon carbide composite by a high pressure forging method. Needless to say, the present invention is not limited to the following method.
[0038]
In the high-pressure forging method, the occurrence of abnormalities such as cracks in the process of impregnating aluminum or aluminum alloy (hereinafter simply referred to as aluminum) described later is prevented, and the resulting composite has high thermal conductivity, low expansion coefficient, and high strength. For the purpose of satisfying these characteristics, it is common to form silicon carbide in advance as a molded body (preform) and impregnate it with aluminum.
[0039]
As a method of preparing a silicon carbide preform, a mixed powder in which silicon carbide powder, an organic binder, and an inorganic binder are mixed to maintain the strength after firing is press-molded, and then in the air or in an inert atmosphere. A method of baking and preforming, a method of adding water, solvent, plasticizer, dispersing agent, etc. to the mixed powder and kneading, extruding and baking, and making the mixture into a low-viscosity slurry and injection molding into a mold In addition, a known method such as an injection method for firing, or a wet pressure molding method in which a slurry is filled in a mold having a predetermined water-absorbing property and pressure-molded can be employed.
[0040]
When used in the present invention, the silicon carbide content can be appropriately selected according to the application, but it has a high thermal conductivity and an aluminum-silicon carbide base having a thermal expansion coefficient of about 6 to 9 ppm / K. In order to obtain a plate, it is desirable that the relative density of the preform is 50% or more, more preferably 60% or more, regardless of which method is used to prepare the preform. Therefore, it is effective to appropriately mix two or more kinds of raw material powders having different particle sizes as the silicon carbide raw material.
[0041]
Next, after setting the silicon carbide preform in the mold, the molten aluminum is charged into the mold, and the molten aluminum is pressed to impregnate the aluminum in the voids of the preform. Through cooling, the aluminum-silicon carbide is cooled. A composite is made. At this time, the preform is preheated in advance for smooth impregnation. The aluminum material to be impregnated includes an aluminum-silicon alloy containing 6 to 18% by mass of silicon for the purpose of lowering the melting temperature, easiness of impregnation and improving mechanical properties after impregnation, and the like. For the purpose of improving the wettability with the preform, an aluminum-silicon-magnesium alloy to which magnesium is added up to 3% by mass is used. Which alloy is used can be arbitrarily selected, but is generally impregnated with an aluminum alloy melted at 800 ° C to 900 ° C. The aluminum-silicon carbide composite produced by the above method is processed as it is, or after that, the surface and outer periphery thereof are processed into a predetermined shape, and further subjected to surface treatment such as plating, if necessary. Become.
[0042]
As described above, the heat dissipating part obtained by the above steps is flat or has uncontrolled warping. However, according to the method of the present invention, the rotating surface, in a preferred embodiment, has a spherical warping amount. It becomes a controlled heat dissipation component. As a more specific example, after inserting the heat dissipating part into a press equipped with a pair of concavo-convex molds having a spherical surface having a predetermined radius of curvature larger than the size of the heat dissipating part, the pressure is 50 KPa. The method of pressing for several minutes and taking out after cooling is mentioned. In the above operation, the surface of the concavo-convex mold is heated and held at 450 ° C. or higher. As described above, the heat dissipating parts obtained through this operation have small warpage return and excellent adhesion when in contact with heat dissipating fins, etc. A heat dissipating component that can be obtained stably can be provided.
[0043]
Hereinafter, based on an Example and a comparative example, this invention is demonstrated in more detail.
[0044]
【Example】
Example 1
Mold with a gate having a 3.9 mm thick and 179 mm x 129 mm preform made of silicon carbide having a relative density of 65% and a cavity having a dimension of 182 mm x 132 mm and a depth of 4.0 mm Set inside. After heating this at 600 ° C. for 1 hour, immediately after injecting molten aluminum containing 12% by mass of silicon and 0.7% of magnesium and pressing it at high pressure, an aluminum alloy was formed in the voids in the preform. After impregnation and cooling, the mold was removed from the mold to obtain an aluminum-silicon carbide composite. By processing the outer periphery of the obtained composite, a base plate having dimensions of 180 mm (referred to as the long side) × 130 mm (referred to as the short side) and a thickness of 4 mm was obtained. The surface at this time was covered with an aluminum alloy.
[0045]
The warpage of the base plate was measured. The warpage was measured with a surface roughness meter, and the measurement span was 170 mm in the longitudinal direction and 110 mm in the lateral direction. The measurement position in both the longitudinal direction and the short direction was a line passing through the center of the base plate. As a result of measuring the warpage, one side has a convex shape in both the longitudinal direction and the short direction, and the opposite surface has a concave warped shape, and the convex surface has the maximum height in the line when both ends are converted to zero, that is, the amount of warpage As a result, it was 50 μm in the longitudinal direction and 30 μm in the lateral direction.
[0046]
In order to give a warp to the base plate, a concavo-convex mold made of SUS and provided with a spherical surface having a curvature radius of 10,000 mm was prepared. This concavo-convex mold was mounted on a hot press and heated to bring the mold surface temperature to 560 ° C. The base plate was placed between the concave and convex molds and pressed at 40 KPa. At this time, the temperature was measured by bringing a thermocouple into contact with the side surface of the base plate. After maintaining the temperature of the base plate at 550 ° C. for 3 minutes, the base plate was rapidly cooled to release the pressure. As a result of measuring the warp on the convex surface side of the obtained base plate, the longitudinal direction was 341 μm and the lateral direction was 122 μm.
[0047]
The base plate was further heated at 320 ° C. for 2 hours and then warped. As a result, the longitudinal direction was 310 μm and the lateral direction was 111 μm. These results are shown in Table 1.
[0048]
[Table 1]
Figure 0003792180
[0049]
(Example 2)
The mold surface temperature was set to 465 ° C., the press pressure was set to 10 KPa, the base plate was held for 30 seconds from the time when the temperature reached 450 ° C., and the heat treatment after warping was applied at 320 ° C. for 1 hour. Except for the above, the base plate was processed in the same manner as in Example 1. Table 1 shows the amount of warpage at each stage.
[0050]
Example 3
The mold surface temperature was set to 525 ° C., the press pressure was set to 30 KPa, the base plate was held for 4 minutes from the time when the temperature reached 520 ° C., and the heat treatment after warping was applied at 320 ° C. for 1 hour. Except for the above, the base plate was processed in the same manner as in Example 1. Table 1 shows the amount of warpage at each stage.
[0051]
(Example 4)
All examples except that a mold having a radius of curvature of 15000 mm was used, that the press pressure was 10 KPa, that the holding time was 30 seconds, and that the heat treatment after warping was 270 ° C. and 3 hours. The base plate was treated in the same way as 1. Table 1 shows the amount of warpage at each stage.
[0052]
(Example 5)
All examples except that a mold having a radius of curvature of 15000 mm was used, that the press pressure was 40 KPa, that the holding time was 4 minutes, and that the heat treatment after warping was 270 ° C. for 3 hours. The base plate was treated in the same way as 2. Table 1 shows the amount of warpage at each stage.
[0053]
(Example 6)
The base plate was prepared in the same manner as in Example 3 except that a mold having a radius of curvature of 15000 mm was used, that the holding time was 3 minutes, and that the heat treatment after warping was 270 ° C. for 3 hours. Processed. Table 1 shows the amount of warpage at each stage.
[0054]
(Comparative Example 1)
The base plate was processed in the same manner as in Example 1 except that the press pressure was 5 KPa. Table 1 shows the amount of warpage at each stage.
[0055]
(Comparative Example 2)
The base plate was treated in the same manner as in Example 2 except that the mold temperature was 435 ° C. and the base plate temperature was 430 ° C. Table 1 shows the amount of warpage at each stage.
[0056]
(Comparative Example 3)
The base plate was processed in the same manner as in Example 3 except that the holding time was 15 seconds. Table 1 shows the amount of warpage at each stage.
[0057]
(Comparative Example 4)
The base plate was processed in the same manner as in Example 4 except that the holding time was 15 seconds. Table 1 shows the amount of warpage at each stage.
[0058]
(Comparative Example 5)
The base plate was processed in the same manner as in Example 5 except that the press pressure was 8 KPa. Table 1 shows the amount of warpage at each stage.
[0059]
(Comparative Example 6)
The base plate was treated in the same manner as in Example 6 except that the mold temperature was 411 ° C. and the base plate temperature was 400 ° C. Table 1 shows the amount of warpage at each stage.
[0060]
(Comparative Example 7)
The base plate obtained by measuring the warpage in advance obtained by the impregnation method and the outer periphery processing of Example 1 was placed on a cavity of 160 mm × 120 mm and a depth of 5 mm, and the center of the base plate was tightened with a screw to form a cavity. Was bent using the edge of the fulcrum. In this state, it was put into a furnace, heated at 550 ° C. for 30 minutes, and then cooled. After this, the screw tightening was released and the applied warpage was measured, followed by heat treatment at 320 ° C. for 2 hours, and the warpage was measured again. The results are shown in Table 1.
[0061]
(Comparative Example 8)
All the treatments were performed under the same conditions as in Comparative Example 7, except that the heating in the state of being tightened with screws was performed at 450 ° C. for 30 minutes, and the heat treatment after releasing the screw tightening was 320 ° C. for 1 hour. . The results are shown in Table 1.
[0062]
【The invention's effect】
According to the method of the present invention, it is possible to manufacture a heat radiating component having a stable shape convex to the heat radiating fin side through subsequent packaging, such as when circuit boards are joined, and as a result, heat dissipation. This has the effect of being able to stably provide highly reliable modules over a long period of time and is extremely useful in the industry.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a warpage amount;
FIG. 2 is a view showing an example of a module using a heat dissipation component according to the present invention and a conventionally known heat dissipation component.
[Explanation of symbols]
1 Semiconductor device
2 Ceramic circuit board
3 Base plate
4 Resin

Claims (2)

炭化けい素とアルミニウムを主成分とした反りを有する平板状の放熱部品の製造方法であって、該放熱部品を450℃以上の表面温度を有する1対の対向する回転面を有する凹凸型で挟み、10KPa以上の応力で、該放熱部品の温度が実質的に450℃以上の温度で30秒以上プレスすることにより、反りを付与することを特徴とする放熱部品の製造方法。A method of manufacturing a flat plate heat dissipation component having warpage mainly composed of silicon carbide and aluminum, the heat dissipation component being sandwiched between concave and convex molds having a pair of opposed rotating surfaces having a surface temperature of 450 ° C. or higher. A method of manufacturing a heat dissipation component, characterized by applying warpage by pressing the heat dissipation component at a temperature of 450 ° C or higher for 30 seconds or more with a stress of 10 KPa or higher. 反り付与前の反り量をX、これに反りを付与した後の反り量を(X+Y)とし、前記の反り付与後の放熱部品を320℃以下の温度で1時間以上加熱処理した後の反り量が(X+Z)のとき、YとZとの間に(Y−Z)<0.5Yなる関係を満たすことを特徴とする請求項1記載の放熱部品の製造方法。The amount of warpage after heat treatment at a temperature of 320 ° C. or less for 1 hour or longer is assumed, where X is the amount of warp before warping, and (X + Y) is the amount of warp after warping. The method of manufacturing a heat dissipation component according to claim 1, wherein when X is (X + Z), a relationship of (Y−Z) <0.5Y is satisfied between Y and Z.
JP2002201323A 2002-07-10 2002-07-10 Manufacturing method of heat dissipation parts Expired - Lifetime JP3792180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201323A JP3792180B2 (en) 2002-07-10 2002-07-10 Manufacturing method of heat dissipation parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201323A JP3792180B2 (en) 2002-07-10 2002-07-10 Manufacturing method of heat dissipation parts

Publications (2)

Publication Number Publication Date
JP2004047619A JP2004047619A (en) 2004-02-12
JP3792180B2 true JP3792180B2 (en) 2006-07-05

Family

ID=31707893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201323A Expired - Lifetime JP3792180B2 (en) 2002-07-10 2002-07-10 Manufacturing method of heat dissipation parts

Country Status (1)

Country Link
JP (1) JP3792180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021450B1 (en) * 2004-09-14 2011-03-15 덴끼 가가꾸 고교 가부시키가이샤 Aluminum-silicon carbide composite
JP2012197496A (en) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd Composite member
JP2012248576A (en) * 2011-05-25 2012-12-13 Mitsubishi Shindoh Co Ltd Pin-like fin integrated-type heat sink
KR102232098B1 (en) 2013-10-10 2021-03-24 미쓰비시 마테리알 가부시키가이샤 Substrate for heat sink-equipped power module, and production method for same
JP6011552B2 (en) * 2014-01-08 2016-10-19 三菱マテリアル株式会社 Power module substrate with heat sink and manufacturing method thereof
JP6201827B2 (en) * 2014-03-10 2017-09-27 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6645966B2 (en) * 2014-08-06 2020-02-14 デンカ株式会社 Heat radiating component and method of manufacturing the same
CN110036473B (en) * 2016-12-06 2023-09-05 联合材料公司 Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JP7063559B2 (en) * 2017-08-04 2022-05-09 デンカ株式会社 Base plate and power module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077323A (en) * 2010-09-30 2012-04-19 Taiheiyo Cement Corp Aluminum-silicon-carbide composite and heat transfer member

Also Published As

Publication number Publication date
JP2004047619A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3468358B2 (en) Silicon carbide composite, method for producing the same, and heat radiation component using the same
KR101344152B1 (en) - aluminum/silicon carbide composite and radiating part comprising the same
JP5144279B2 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
US11682604B2 (en) Heat dissipation component and method for manufacturing same
JP4761157B2 (en) Aluminum-silicon carbide composite
JP3792180B2 (en) Manufacturing method of heat dissipation parts
WO2015115649A1 (en) Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
KR100883661B1 (en) Heat dissipating member and method for manufacture thereof
JP2010024077A (en) Aluminum-silicon carbide composite and method for producing the same
JP7050978B1 (en) Molded body and its manufacturing method
JP2010042945A (en) Aluminum-silicon carbide-based composite body and method for producing the same
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP5284704B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2001291809A (en) Heat radiating component
JP5662834B2 (en) Method for producing aluminum-silicon carbide composite
CN1979826A (en) Radiating apparatus and high-heat-conductive composite material used therefor
JP2003073756A (en) Composite material and manufacturing method therefor
JP3626695B2 (en) Manufacturing method of heat dissipation member for electronic equipment
JP2004168561A (en) Aluminum-ceramic composite
JP2003073712A (en) Method for manufacturing composite material
JP2006140340A (en) Manufacturing method of case for electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Ref document number: 3792180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term