JP2012248576A - Pin-like fin integrated-type heat sink - Google Patents

Pin-like fin integrated-type heat sink Download PDF

Info

Publication number
JP2012248576A
JP2012248576A JP2011117183A JP2011117183A JP2012248576A JP 2012248576 A JP2012248576 A JP 2012248576A JP 2011117183 A JP2011117183 A JP 2011117183A JP 2011117183 A JP2011117183 A JP 2011117183A JP 2012248576 A JP2012248576 A JP 2012248576A
Authority
JP
Japan
Prior art keywords
pin
heat sink
fin
central portion
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011117183A
Other languages
Japanese (ja)
Inventor
Shin Oikawa
伸 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011117183A priority Critical patent/JP2012248576A/en
Publication of JP2012248576A publication Critical patent/JP2012248576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles

Abstract

PROBLEM TO BE SOLVED: To provide a pin-like fin integrated-type heat sink which is excellent in heat dissipation and is capable of supporting a ceramic substrate without causing it to crack.SOLUTION: A pin-like fin integrated-type heat sink 1 is configured such that a planar upper surface 21 on which an electronic component having a ceramic substrate is mounted is formed on one surface side of a plate-like part 2 made of a metal material, and a lower surface 22 on which a number of pin-like fins 3 stand is formed on a surface opposite to the upper surface 21. The lower surface 22 includes: a mounting part 7 located in a peripheral portion of the lower surface 22; a central portion 5 which is so formed that its thickness gradually increases from an inner edge of the mounting part 7 toward the center; and the number of pin-like fins 3 which stand on the central portion 5.

Description

本発明は、大規模集積回路(LSI)等の発熱を伴う電子部品の冷却に用いられるヒートシンクに関し、特に詳しくは、放熱のためのピン状フィンを一体に形成したピン状フィン一体型ヒートシンクに関する。   The present invention relates to a heat sink used for cooling electronic components that generate heat such as a large-scale integrated circuit (LSI), and more particularly to a pin-shaped fin integrated heat sink in which pin-shaped fins for heat dissipation are integrally formed.

大規模集積回路(LSI)等の発熱を伴う電子部品においては、電子部品を正常に動作させるために、熱を外部に放散させるヒートシンク或いはヒートスプレッダが取り付けられる。これらの素材としては、熱伝導率が高く、軽量で加工性の良いアルミニウムや銅が用いられる。
特許文献1にはヒートスプレッダ(ヒートシンク)用銅合金として、0.2%耐力が100〜200N/mm、熱伝導率が350W/m・K以上、加工硬化指数が0.14〜0.18、圧延表面板の幅方向の結晶粒径が25μm以下であるCu基合金が開示されている。また、Fe、Ni、Coのうち少なくとも1種類以上とPを合計で0.05〜0.3wt%含有し、残部がCuと不可避成分からなり、断面減少率40%以下の冷間鍛造後に600℃で30分間熱処理した後の結晶粒径が25μm以下であり、断面減少率40%以下の冷間鍛造後に600℃で30分間熱処理した後のビッカース硬さがHV60〜170であるのが好ましいと記載されている。
また、このようなヒートシンクとして、放熱のためのフィンをピン状に形成し、ベースとなる板状部に多数のピン状フィンを立設状態に設けたものがあり、その製造方法として、例えば特許文献2及び特許文献3に記載の方法が知られている。
In an electronic component that generates heat, such as a large-scale integrated circuit (LSI), a heat sink or a heat spreader that dissipates heat is attached to operate the electronic component normally. As these materials, aluminum or copper having high thermal conductivity, light weight and good workability is used.
In Patent Document 1, as a copper alloy for heat spreader (heat sink), 0.2% proof stress is 100 to 200 N / mm 2 , thermal conductivity is 350 W / m · K or more, work hardening index is 0.14 to 0.18, A Cu-based alloy having a grain size in the width direction of the rolled surface plate of 25 μm or less is disclosed. Further, at least one of Fe, Ni, Co and P and 0.05 to 0.3 wt% in total are contained, the balance is made of Cu and inevitable components, and 600% after cold forging with a cross-sectional reduction rate of 40% or less. When the crystal grain size after heat treatment at 30 ° C. for 30 minutes is 25 μm or less and the Vickers hardness after heat treatment at 600 ° C. for 30 minutes after cold forging with a cross-section reduction rate of 40% or less is preferably HV 60-170 Have been described.
In addition, as such a heat sink, there is one in which fins for heat dissipation are formed in a pin shape, and a large number of pin-shaped fins are provided in an upright state on a plate-like portion serving as a base. Methods described in Document 2 and Patent Document 3 are known.

特許文献2には、金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を金型を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料をエジェクターピンで金型の外方に押し出す押出工程とを備え、金型の内側に、鍛造工程時の圧力により金属材料を平板状に成形する凹部を設け、該凹部下面に鍛造工程時の圧力で金属材料を搾伸してピン状に成形する孔部を多数穿設し、加熱した金属材料を凹部内で鍛造することにより板状部と多数のピン状フィンとを一体に成形する製造方法が開示されている。   Patent Document 2 discloses a heating process in which heat treatment is performed on a metal material, a forging process in which the metal material after the heat treatment is forged using a mold into a desired shape, and the metal material after the molding is ejector pins. And an extrusion process for extruding the mold outward, and a concave portion for forming a metal material into a flat plate shape by pressure during the forging process is provided inside the mold, and the metal material is formed at the lower surface of the concave section by the pressure during the forging process. A manufacturing method is disclosed in which a large number of hole portions that are formed into a pin shape by squeezing are formed, and a plate-like portion and a large number of pin-like fins are integrally formed by forging a heated metal material in a recess. ing.

この製造方法によれば、常温では変形抵抗が大きい金属材料であっても、その変形抵抗を小さくして鍛造することができるので、ピン状フィンの立設ピッチを細かくすることや、大型のヒートシンクを製造することも可能となる。   According to this manufacturing method, even a metal material having a large deformation resistance at room temperature can be forged with a small deformation resistance. Can also be manufactured.

一方、特許文献3にも、成形ダイスとパンチとにより多数のピン状フィンを鍛造成形する技術が開示されており、この場合も、平板状の板状部に、所定のピッチで多数のピン状フィンが立設されている。   On the other hand, Patent Document 3 discloses a technique for forging a large number of pin-shaped fins with a forming die and a punch. In this case as well, a large number of pin-shaped fins are formed on a flat plate-shaped portion at a predetermined pitch. Fins are erected.

特開2003−277853号公報JP 2003-277853 A 特開2010−129774号公報JP 2010-129774 A 特許第2828234号公報Japanese Patent No. 28828234

このようなピン状フィン一体型ヒートシンクは、各種機器の構造部材にねじ止め等により固定され、水冷の場合にはピン状フィンの立設側から水流の圧力が作用する。また、板状部にはピン状フィンと反対面である板状部の中央部分に電子部品がはんだ付け等により接合される。この電子部品は、セラミックス基板に回路層を介して半導体チップ等が搭載されている。このため、ヒートシンクは、優れた放熱性とともに、熱応力や水流からの圧力等の機械的応力により、脆性材料であるセラミックス基板に割れが生じないように支持する機能も併せ有することが求められる。
しかしながら、従来のヒートシンクでは、多数のフィン状ピンにより放熱性には優れるものの、これらの応力に対するセラミックス基板の割れ防止対策という点では不十分であった。
Such a pin-shaped fin-integrated heat sink is fixed to a structural member of various devices by screwing or the like, and in the case of water cooling, water pressure acts from the standing side of the pin-shaped fin. In addition, an electronic component is joined to the plate-like portion by soldering or the like at the central portion of the plate-like portion opposite to the pin-like fin. In this electronic component, a semiconductor chip or the like is mounted on a ceramic substrate via a circuit layer. For this reason, the heat sink is required to have not only excellent heat dissipation but also a function of supporting the ceramic substrate, which is a brittle material, so as not to be cracked by a mechanical stress such as a thermal stress or a pressure from a water flow.
However, the conventional heat sink is excellent in heat dissipation due to the large number of fin-like pins, but is insufficient in terms of preventing cracking of the ceramic substrate against these stresses.

本発明は、前述の事情に鑑みてなされたものであり、放熱性に優れ、セラミックス基板の割れを生じさせないように支持することができるピン状フィン一体型ヒートシンクを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a pin-shaped fin integrated heat sink that is excellent in heat dissipation and can be supported so as not to cause cracking of a ceramic substrate.

電子部品のセラミックス基板に生じる応力には、はんだ接合時の熱応力に起因した反りによる曲げ応力、ヒートシンクとの熱伸縮差に伴う面内方向圧縮荷重による圧縮応力、使用時の水圧による曲げ応力、温度分布による圧縮応力等が存在する。このうち、反りによる曲げ応力、水圧による曲げ応力および温度分布による圧縮応力に対するヒートシンクの剛性を高めるには、ヒートシンク自体の板厚を厚くすれば良いが、ヒートシンク全体を厚くすると、熱伸縮差に伴う面内方向圧縮荷重による圧縮応力が大きくなり、また、重量増、材料費増を招く。
本発明は、このような知見の下、以下の解決手段とした。
The stress generated in the ceramic substrate of the electronic component includes bending stress due to warpage due to thermal stress during soldering, compressive stress due to in-plane compressive load due to thermal expansion and contraction with the heat sink, bending stress due to water pressure during use, There is compressive stress due to temperature distribution. Of these, to increase the rigidity of the heat sink against bending stress due to warping, bending stress due to water pressure, and compressive stress due to temperature distribution, it is sufficient to increase the thickness of the heat sink itself. The compressive stress due to the in-plane compressive load increases, and the weight and material cost increase.
Based on such knowledge, the present invention is set as the following solution.

本発明のピン状フィン一体型ヒートシンクは、金属材料からなる板状部の一面側に、セラミックス基板を有する電子部品が搭載される平面状の上表面部が形成されるとともに、該上表面部と反対面側に、多数のピン状フィンが立設された下表面部が形成されてなり、前記下表面部は、その周辺部の取付部と、この取付部の内縁から中心部に向かって厚みが漸次大きくなるように形成された中央部と、該中央部に立設された多数の前記ピン状フィンとにより形成されていることを特徴とする。   The pin-shaped fin-integrated heat sink of the present invention has a planar upper surface portion on which an electronic component having a ceramic substrate is mounted on one surface side of a plate-shaped portion made of a metal material. A lower surface portion in which a large number of pin-like fins are erected is formed on the opposite surface side, and the lower surface portion has a mounting portion in the periphery thereof and a thickness from the inner edge of the mounting portion toward the center portion. Is formed by a central portion formed so as to gradually increase, and a large number of the pin-shaped fins standing on the central portion.

板状部の全体を厚くするのではなく、中央部のみを厚くすることにより、必要な部分のみ曲げ剛性を高めた。接合時の圧縮応力については、中央部では大きくなるが、取付部では小さくなる。これらの総和として、使用時に発生するセラミックス基板上面の引張応力の最大値を小さく抑えることができる。このように、板状部の中心部にかけて厚みを増して設けることにより、接合されるセラミックス基板に割れを生じさせないように支持することができる。また、板状部全体の厚みを一律に増すことなく中央部のみを大きくしたので、製造コストを低減することができる。   Rather than thickening the entire plate-like part, only the central part was thickened to increase the bending rigidity of only the necessary part. About the compressive stress at the time of joining, although it becomes large in a center part, it becomes small in an attachment part. As the sum of these, the maximum value of the tensile stress on the upper surface of the ceramic substrate generated during use can be kept small. In this way, by increasing the thickness toward the central portion of the plate-like portion, it is possible to support the ceramic substrate to be joined so as not to cause a crack. Further, since only the central portion is increased without increasing the thickness of the entire plate-like portion uniformly, the manufacturing cost can be reduced.

本発明のピン状フィン一体型ヒートシンクにおいて、前記中央部は、角錐もしくは円錐状の斜面、または曲面に形成されているとよい。
中央部を斜面または曲面に形成することにより、ヒートシンク使用時の水圧の応力分布を分散させることができるので、板状部に生じる反りを低減させることができる。また、板状部の周辺部から中心部にかけて厚みが徐々に大きくなるように設けられた中央部は、成形時の金属材料の流れを良好に保つことができることから、成形性に優れている。
In the pin-shaped fin-integrated heat sink of the present invention, the central portion may be formed as a pyramid or conical slope or a curved surface.
By forming the central portion on an inclined surface or a curved surface, it is possible to disperse the stress distribution of the water pressure when using the heat sink, and thus it is possible to reduce the warp generated in the plate-like portion. In addition, the central part provided so that the thickness gradually increases from the peripheral part to the central part of the plate-like part is excellent in formability because the flow of the metal material during forming can be kept good.

本発明のピン状フィン一体型ヒートシンクにおいて、前記取付部の厚みをt1、前記中央部の中心部に位置する最大厚みをt2とした場合、t2/t1が1.2以上3.0以下に設定されているとよい。
本発明のピン状フィン一体型ヒートシンクにおいて、前記下表面部の中央部は、前記上表面部の前記セラミックス基板の搭載領域に対応する位置に設けられており、前記セラミックス基板の板幅をw、該板幅wの中心部からの距離をxとした場合、前記中央部の板厚tは、以下の(1)式を満たすように設けられているとよい。
t=t2−((t2−t1)/(w/2))・x …(1)
このように中央部の板厚tを設定することにより、ヒートシンク使用時に発生するセラミックス基板上面の引張応力を小さく抑えることができる。
In the pin-shaped fin-integrated heat sink of the present invention, when the thickness of the mounting portion is t1, and the maximum thickness located at the center of the central portion is t2, t2 / t1 is set to 1.2 or more and 3.0 or less. It is good to have been.
In the pin-shaped fin-integrated heat sink of the present invention, the central portion of the lower surface portion is provided at a position corresponding to the mounting region of the ceramic substrate on the upper surface portion, and the plate width of the ceramic substrate is w, When the distance from the center portion of the plate width w is x, the plate thickness t of the central portion may be provided so as to satisfy the following expression (1).
t = t2 − ((t2−t1) / (w / 2)) 2 · x 2 (1)
By setting the thickness t at the central portion in this way, the tensile stress on the upper surface of the ceramic substrate that is generated when the heat sink is used can be kept small.

本発明によれば、放熱性に優れ、セラミックス基板の割れを生じないように支持することができるピン状フィン一体型ヒートシンクを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in heat dissipation and can obtain the pin-shaped fin integrated heat sink which can be supported so that the ceramic substrate may not be cracked.

本発明の第1実施形態のピン状フィン一体型ヒートシンクを示す縦断面図である。It is a longitudinal cross-sectional view which shows the pin-shaped fin integrated heat sink of 1st Embodiment of this invention. 図1のヒートシンクを示すもので、(a)が上表面部側から見た斜視図、(b)が下表面部側から見た斜視図である。FIG. 2 shows the heat sink of FIG. 1, (a) is a perspective view seen from the upper surface portion side, and (b) is a perspective view seen from the lower surface portion side. 図1のヒートシンクの水冷ボックスへの取付け例を示す分解斜視図である。It is a disassembled perspective view which shows the example of attachment to the water cooling box of the heat sink of FIG. 本発明の第1実施形態のピン状フィン一体型ヒートシンクを製造するための熱間鍛造工程に用いられるフィン成形金型の縦断面図であり、(a)がフィン成形金型に金属材料を配置した状態を示し、(b)が熱間鍛造をしている状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view of the fin molding die used for the hot forging process for manufacturing the pin-shaped fin integrated heat sink of 1st Embodiment of this invention, (a) arrange | positions a metal material to a fin molding die And (b) shows a state where hot forging is performed. ヒートシンク使用時におけるセラミックス基板上面の応力分布を説明する図である。It is a figure explaining the stress distribution of the ceramic substrate upper surface at the time of heat sink use. 図5に示す各応力分布が足し合わされた状態におけるセラミックス基板上面の応力分布を説明する図である。It is a figure explaining the stress distribution of the ceramic substrate upper surface in the state in which each stress distribution shown in FIG. 5 was added. 本発明の第2実施形態のピン状フィン一体型ヒートシンクを示す縦断面図である。It is a longitudinal cross-sectional view which shows the pin-shaped fin integrated heat sink of 2nd Embodiment of this invention.

以下、本発明の実施形態について説明する。
第1実施形態のピン状フィン一体型ヒートシンク1は、図1及び図2に示すように、金属材料からなる板状部2の一面側に、セラミックス基板を有する電子部品が搭載される平面状の上表面部21が形成されるとともに、その上表面部21と反対面側に、多数のピン状フィン3が立設された下表面部22が一体に形成されてなる。下表面部22は、その周辺部の取付部7と、この取付部7の内縁から中心部に向かって厚みが漸次大きくなるように角錐もしくは円錐面状の斜面、又は曲面に形成された中央部5と、中央部5に立設された多数のピン状フィン3とにより形成されている。
Hereinafter, embodiments of the present invention will be described.
As shown in FIGS. 1 and 2, the pin-shaped fin-integrated heat sink 1 of the first embodiment has a planar shape in which an electronic component having a ceramic substrate is mounted on one surface side of a plate-like portion 2 made of a metal material. An upper surface portion 21 is formed, and a lower surface portion 22 in which a large number of pin-like fins 3 are erected is integrally formed on the side opposite to the upper surface portion 21. The lower surface portion 22 includes a peripheral portion of the attachment portion 7 and a central portion formed in a pyramid or conical slope or a curved surface so that the thickness gradually increases from the inner edge of the attachment portion 7 toward the center portion. 5 and a large number of pin-like fins 3 erected on the central portion 5.

図示例では、下表面部22の中央部5は曲面に形成されており、その中央部5の表面上に、一列に並べたピン状フィン3が列ごとに半ピッチ分だけずれて千鳥配列となるように形成されている。これらの諸寸法は特に限定されるものではないが、例えば板状部2は、外形が長さ133mm、幅77mmに形成され、ピン状フィン3は、外径が1.5mm〜2mm、高さが6mm〜8mm、ピッチが4mm〜5mmに形成される。この場合、各ピン状フィン3の先端位置は、水平面上に揃えられている。また、取付部7の厚みをt1、中央部5の中心部に位置する最大厚みをt2とした場合、t2/t1が1.2以上3.0以下になるように設定される。例えば、取付部7の厚さt1は5mm、中央部5の中心部の最大厚みt2は10mmに設定される。   In the illustrated example, the central portion 5 of the lower surface portion 22 is formed in a curved surface, and the pin-like fins 3 arranged in a row on the surface of the central portion 5 are shifted by a half pitch for each row, It is formed to become. These dimensions are not particularly limited. For example, the plate-like portion 2 has an outer shape with a length of 133 mm and a width of 77 mm, and the pin-like fin 3 has an outer diameter of 1.5 mm to 2 mm and a height. Is formed to 6 mm to 8 mm, and the pitch is 4 mm to 5 mm. In this case, the tip positions of the pin-like fins 3 are aligned on the horizontal plane. Further, when the thickness of the mounting portion 7 is t1, and the maximum thickness located at the center of the central portion 5 is t2, t2 / t1 is set to be 1.2 or more and 3.0 or less. For example, the thickness t1 of the attachment portion 7 is set to 5 mm, and the maximum thickness t2 of the central portion of the central portion 5 is set to 10 mm.

また、下表面部22に形成された中央部5は、上表面部21のセラミックス基板の搭載領域9に対応する位置に設けられており、セラミックス基板の板幅(搭載領域9の幅)をw、その板幅wの中心部からの距離をxとした場合に、中央部5の板厚tは、以下の(1)式を満たすように設けられる。なお、板幅wの中心部Cでは、距離xは0である。
t=t2−((t2−t1)/(w/2))・x …(1)
The central portion 5 formed on the lower surface portion 22 is provided at a position corresponding to the ceramic substrate mounting region 9 on the upper surface portion 21, and the width of the ceramic substrate (the width of the mounting region 9) is set to w. When the distance from the center portion of the plate width w is x, the plate thickness t of the central portion 5 is provided so as to satisfy the following expression (1). Note that the distance x is 0 at the center C of the plate width w.
t = t2 − ((t2−t1) / (w / 2)) 2 · x 2 (1)

金属材料としては、純度が99.90質量%以上の純銅または析出強化型Cu基合金が用いられる。純銅には、不純物として、As、Sb、Bi、Pb、S、Fe、O、Pなどが含まれる場合があるが、特にO、Pは微量で塑性変形能が低下するため、O量は500ppm以下、好ましくは100ppm以下とし、P量は150ppm以下、好ましくは50ppm以下に規制することが望ましい。タフピッチ銅、無酸素銅、リン脱酸銅が好適な素材として挙げられるが、純度99.96質量%以上の無酸素銅、99.99質量%以上の電子管用無酸素銅がより好ましい。
析出強化型Cu基合金としては、Cu−Fe−P系銅合金、Cu−Ni−Si系銅合金、Cu−Co−P系銅合金などを適用することができる。
As the metal material, pure copper having a purity of 99.90% by mass or more or a precipitation strengthening type Cu-based alloy is used. Pure copper may contain As, Sb, Bi, Pb, S, Fe, O, P, and the like as impurities. In particular, O and P are trace amounts and the plastic deformability decreases, so the amount of O is 500 ppm. In the following, it is desirable that the amount is 100 ppm or less, and the P content is 150 ppm or less, preferably 50 ppm or less. Tough pitch copper, oxygen-free copper, and phosphorus deoxidized copper can be cited as suitable materials, but oxygen-free copper having a purity of 99.96% by mass or more and oxygen-free copper for electron tubes having a purity of 99.99% by mass or more are more preferable.
As the precipitation strengthening type Cu-based alloy, a Cu—Fe—P based copper alloy, a Cu—Ni—Si based copper alloy, a Cu—Co—P based copper alloy, or the like can be applied.

また、板状部2の取付部7には、各種機器への取付けの際にねじ止めを行う貫通孔8が形成されている。
板状部2のピン状フィン3が形成されていない他面側の上表面部21の搭載領域9に電子部品(図示略)がはんだ付け等により搭載され、その熱は板状部2を介して各ピン状フィン3に伝達され、これら板状部2及び各ピン状フィン3の外周面から放散される。
Further, a through-hole 8 is formed in the attachment portion 7 of the plate-like portion 2 for screwing when attaching to various devices.
An electronic component (not shown) is mounted by soldering or the like on the mounting region 9 of the upper surface portion 21 on the other surface side where the pin-like fins 3 of the plate-like portion 2 are not formed, and the heat is transmitted through the plate-like portion 2. Is transmitted to each pin-shaped fin 3 and is dissipated from the outer peripheral surface of the plate-shaped portion 2 and each pin-shaped fin 3.

このように構成されたピン状フィン一体型ヒートシンク1は、例えば図3に示すような冷却ボックス31に取り付けられる。この冷却ボックス31は、ヒートシンク1のピン状フィン3を内部に挿入状態として取り付けるために開口部32が形成されるとともに、その開口部32の周囲を囲むようにパッキン収容溝33が形成され、そのさらに外側にねじ穴34が形成されており、鎖線矢印で示すようにヒートシンク1をピン状フィン3が図3において下方を向くように配置して開口部32内に挿入し、板状部2を開口部32の周囲の表面にパッキン35を介して密接させ、ねじ止めにより固定する構成である。図示例では2個のヒートシンクが取り付けられるようになっており、矢印で示すように冷却媒体が流通して、内部に挿入状態のヒートシンク1のピン状フィン3を冷却する。   The pin-like fin-integrated heat sink 1 configured as described above is attached to a cooling box 31 as shown in FIG. 3, for example. The cooling box 31 is formed with an opening 32 for attaching the pin-like fins 3 of the heat sink 1 in an inserted state, and a packing receiving groove 33 is formed so as to surround the opening 32. Further, a screw hole 34 is formed on the outer side, and the heat sink 1 is arranged so that the pin-like fins 3 face downward in FIG. In this configuration, the surface around the opening 32 is brought into close contact with the packing 35 and fixed by screwing. In the illustrated example, two heat sinks are attached, and a cooling medium flows as indicated by arrows to cool the pin-like fins 3 of the heat sink 1 in the inserted state.

このピン状フィン一体型ヒートシンク1を製造するための製造装置は、ピン状フィン3が立設される球面の中央部5及びピン状フィン3を、熱間で鍛造して成形するフィン成形用金型11により構成される。
フィン成形用金型11は、図4に示すように、図示略の鍛造プレスに、ピン状フィン3を形成するための多数の凹状のフィン成形用穴部15を有する成形ダイ16と、この成形ダイ16上に載せた金属材料Mを鍛造するパンチ17と、成形ダイ16に上下移動可能に設けられるエジェクターピン18とが備えられた構成とされている。
The manufacturing apparatus for manufacturing the pin-shaped fin integrated heat sink 1 is a fin-forming gold that is formed by forging hot the central portion 5 of the spherical surface on which the pin-shaped fin 3 is erected and the pin-shaped fin 3. It is constituted by a mold 11.
As shown in FIG. 4, the fin molding die 11 includes a molding die 16 having a number of concave fin molding holes 15 for forming pin-shaped fins 3 in a forging press (not shown), and this molding. A punch 17 for forging the metal material M placed on the die 16 and an ejector pin 18 provided on the forming die 16 so as to be vertically movable are provided.

成形ダイ16は、その上面部に、鍛造時に金属材料Mが配置される凹部19が形成されている。凹部19の周辺部は、取付部7の成形用に平面部191が形成されており、その平面部191の内縁から中心部にかけては、中央部5の成形用に曲面状に掘られた曲面部192が形成されている。そして、その曲面部192に連通して各フィン成形用穴部15が曲面部192の底面に形成されている。
パンチ17は、成形ダイ16の上方から図示略の油圧機構により上下動され、成形ダイ16の凹部19内で金属材料Mを叩くように押圧する。エジェクターピン18は、図示略の油圧機構等により、鍛造後の取付部7を下方から押し上げる構成である。
The forming die 16 has a concave portion 19 on the upper surface portion where the metal material M is disposed during forging. A flat portion 191 is formed in the peripheral portion of the concave portion 19 for forming the mounting portion 7, and a curved surface portion dug into a curved shape for forming the central portion 5 from the inner edge to the central portion of the flat portion 191. 192 is formed. The fin forming holes 15 are formed on the bottom surface of the curved surface portion 192 so as to communicate with the curved surface portion 192.
The punch 17 is moved up and down from above the forming die 16 by a hydraulic mechanism (not shown) and presses the metal material M in the recess 19 of the forming die 16. The ejector pin 18 is configured to push up the forged mounting portion 7 from below by a hydraulic mechanism (not shown) or the like.

このように構成されたフィン成形用金型11を用いてピン状フィン一体型ヒートシンク1を製造する方法について説明する。
この製造方法においては、金属材料Mを加熱する加熱工程と、加熱後の金属材料Mをフィン成形用金型11により鍛造して、成形ダイ16の成形用穴部15内に金属材料Mの一部を押し込むことにより、主に板状部2のピン状フィン3と中央部5とを成形する熱間鍛造工程とを備えている。以下、工程順に説明する。
A method for manufacturing the pin-shaped fin-integrated heat sink 1 using the fin-molding die 11 configured as described above will be described.
In this manufacturing method, a heating step of heating the metal material M, and the heated metal material M is forged by the fin molding die 11, and one of the metal materials M is placed in the molding hole 15 of the molding die 16. It comprises a hot forging step in which the pin-like fins 3 and the central part 5 of the plate-like part 2 are mainly formed by pushing the part. Hereinafter, it demonstrates in order of a process.

<加熱工程>
加熱工程では、金属材料Mの変形抵抗を減少させるため、金属材料の再結晶温度以上の温度まで加熱する。
<Heating process>
In the heating process, in order to reduce the deformation resistance of the metal material M, the metal material M is heated to a temperature equal to or higher than the recrystallization temperature of the metal material.

<熱間鍛造工程>
図4(a)に示すように、加熱された金属材料Mをフィン成形用金型11の成形ダイ16の凹部19に設置し、パンチ17により叩くように押圧すると、図4(b)に示すように、金属材料Mは成形ダイ16とパンチ17とにより押しつぶされて、凹部19内に広がりながら板状部2の中央部5が曲面に成形されるとともに、その一部がフィン成形用穴部15内に圧入されピン状フィン3の外形が成形される。この鍛造工程は、熱間で行われるため、金属材料Mの流動性が良く、細い径のピン状フィン3も精密に成形することができる。さらに、中央部5は、板状部2の周辺部から中心部にかけて厚みが徐々に大きくなるように設けられていることから、成形時の金属材料の流れを良好に保つことができる。
次いで、パンチ17を上方に退避させ、エジェクターピン18を上昇させて、製品を成形ダイ16から押し上げる。
<Hot forging process>
As shown in FIG. 4A, when the heated metal material M is placed in the concave portion 19 of the forming die 16 of the fin forming die 11 and pressed so as to be struck by the punch 17, it is shown in FIG. 4B. As described above, the metal material M is crushed by the forming die 16 and the punch 17, and the central portion 5 of the plate-like portion 2 is formed into a curved surface while spreading in the concave portion 19, and a part thereof is a fin forming hole portion. The outer shape of the pin-shaped fin 3 is formed by press-fitting into the pin 15. Since this forging process is performed hot, the fluidity of the metal material M is good, and the pin-shaped fins 3 having a small diameter can be accurately formed. Furthermore, since the center part 5 is provided so that thickness may become large gradually from the peripheral part of the plate-shaped part 2 to the center part, the flow of the metal material at the time of shaping | molding can be kept favorable.
Next, the punch 17 is retracted upward, the ejector pin 18 is raised, and the product is pushed up from the molding die 16.

このようにして製造されたピン状フィン一体型ヒートシンク1は、ピン状フィン3が立設されている面とは反対面である板状部2の中央部分の搭載領域9に電子部品が搭載され、水冷ボックス31内にピン状フィン3を挿入した状態となるように、板状部2の取付部7がパッキン35を介して水冷ボックス31にねじ止め等により固定される。電子部品は、半導体チップ、回路基板等により構成される部品であり、水冷ボックス31は、内部に水等の冷却媒体が流通しており、その冷却媒体にピン状フィン3が浸漬して放熱を促進する。   The pin-shaped fin-integrated heat sink 1 manufactured in this way has electronic components mounted on the mounting area 9 in the central portion of the plate-shaped portion 2 that is the surface opposite to the surface on which the pin-shaped fins 3 are erected. The mounting portion 7 of the plate-like portion 2 is fixed to the water-cooling box 31 via screws 35 or the like so that the pin-like fins 3 are inserted into the water-cooling box 31. The electronic component is a component composed of a semiconductor chip, a circuit board, etc., and the water cooling box 31 has a cooling medium such as water circulating therein, and the pin-like fins 3 are immersed in the cooling medium to dissipate heat. Facilitate.

その際、電子部品のセラミックス基板には、その接合時及び使用時の熱応力や水圧等が作用する。そのセラミックス基板上面に作用する各種応力分布は、図5(a)〜(d)に示すようになる。図5(a)は接合時の熱応力に起因した反りによる曲げ応力分布、図5(b)は接合時のヒートシンク1との熱伸縮差に伴う面内方向圧縮荷重による圧縮応力分布、図5(c)は使用時の水圧による曲げ応力分布、図5(d)は使用時の温度分布による圧縮応力分布を示しており、これらの応力分布の総和を図6に示す。
参考までに、従来の平坦な板状部の場合の応力分布を破線で各図に示した。
At that time, thermal stress, water pressure, and the like are applied to the ceramic substrate of the electronic component during bonding and use. Various stress distributions acting on the upper surface of the ceramic substrate are as shown in FIGS. FIG. 5A is a bending stress distribution due to warpage caused by thermal stress at the time of joining, FIG. 5B is a compressive stress distribution due to in-plane direction compressive load accompanying a thermal expansion / contraction difference with the heat sink 1 at the time of joining, FIG. (C) shows the bending stress distribution due to water pressure at the time of use, and FIG. 5 (d) shows the compressive stress distribution due to the temperature distribution at the time of use, and FIG. 6 shows the sum of these stress distributions.
For reference, the stress distribution in the case of a conventional flat plate-like portion is shown in each figure by a broken line.

この図5及び図6に示すように、本発明の構造とすることにより、セラミックス基板上面の引張応力の最大値を小さく抑えることができる。
これにより、ヒートシンク1は、優れた放熱性を有するとともに、熱応力や水流からの圧力等の機械的応力により、脆性材料であるセラミックス基板6に割れが生じないように支持することができる。また、板状部2全体の厚みを一律に増すことなく、ヒートシンク1の反りを低減できるので、製造コストを低減することができる。
As shown in FIG. 5 and FIG. 6, the maximum value of the tensile stress on the upper surface of the ceramic substrate can be kept small by adopting the structure of the present invention.
As a result, the heat sink 1 has excellent heat dissipation and can be supported so that cracking does not occur in the ceramic substrate 6, which is a brittle material, due to mechanical stress such as thermal stress or pressure from a water flow. Moreover, since the curvature of the heat sink 1 can be reduced without increasing the thickness of the whole plate-shaped part 2 uniformly, manufacturing cost can be reduced.

次に、本発明の第2実施形態を説明する。第2実施形態では、図7に示すように、ピン状フィン一体型ヒートシンク10に、複数個の電子部品を搭載して構成される。
ヒートシンク10は、電子部品のセラミックス基板6が接合される各々の搭載領域に対応するように板状部2が肉厚に設けられており、その部分の剛性が高められている。これにより、第1実施形態と同様に、接合されるセラミックス基板に割れを生じさせないように支持することができる。
Next, a second embodiment of the present invention will be described. In the second embodiment, as shown in FIG. 7, a plurality of electronic components are mounted on a pin-shaped fin integrated heat sink 10.
The heat sink 10 is provided with a thick plate-like portion 2 so as to correspond to each mounting region to which the ceramic substrate 6 of the electronic component is joined, and the rigidity of that portion is enhanced. Thereby, similarly to 1st Embodiment, it can support so that a crack may not be produced in the ceramic substrate joined.

金属材料として無酸素銅(純度99.99質量%以上)を用い、この無酸素銅の鋳塊を700℃に加熱した後、フィン成形用金型により熱間鍛造してフィン立設部の中央部5及びピン状フィン3ならびに取付部7を成形し、フィン立設部分である中央部5の形状を変えて試料1〜5のヒートシンクを作製した。なお、熱間鍛造時の圧力は100MPa〜150MPaとした。
試料1においては、中央部5の表面を、前述した(1)式を満たす曲面となるように形成した。試料2は(1)式は満たさないが、中央部5の表面が緩やかな曲面となるように形成した。また、試料3は、中央部5の表面を円錐面で形成し、試料4は、中央部5の表面を四角錐面で形成した。試料5は、中央部5及び取付部7の厚みを一律に形成した。
また、各ヒートシンクは、板状部2の外形を長さ133mm、幅77mm、取付部2の厚みt1を3mm、ピン状フィン3は、外径が1.5mm、高さ8mm、ピッチが4mmで、一列に並べたピン状フィン3が列ごとに半ピッチ分だけずれて千鳥配列としたものを成形した。各試料の取付部7の厚みt1と、中央部5の中心部に位置する最大厚みt2との比率t2/t1は表1に示す通りである。
Using oxygen-free copper (purity 99.99% by mass or more) as a metal material, the oxygen-free copper ingot is heated to 700 ° C., and then hot forged with a fin-molding die to the center of the fin standing portion. The heat sinks of Samples 1 to 5 were manufactured by forming the portion 5, the pin-shaped fin 3 and the attachment portion 7, and changing the shape of the central portion 5, which is the fin standing portion. The pressure during hot forging was set to 100 MPa to 150 MPa.
In the sample 1, the surface of the central portion 5 was formed to be a curved surface satisfying the above-described formula (1). The sample 2 was formed so that the surface of the central portion 5 was a gently curved surface, although the equation (1) was not satisfied. Moreover, the sample 3 formed the surface of the center part 5 with the conical surface, and the sample 4 formed the surface of the center part 5 with the quadrangular pyramid surface. In Sample 5, the thickness of the central portion 5 and the attachment portion 7 was uniformly formed.
Each heat sink has an outer shape of the plate-like portion 2 having a length of 133 mm, a width of 77 mm, a thickness t1 of the mounting portion 2 of 3 mm, and the pin-like fin 3 has an outer diameter of 1.5 mm, a height of 8 mm, and a pitch of 4 mm. The pin-like fins 3 arranged in a row were shifted from each other by a half pitch to form a staggered arrangement. Table 1 shows the ratio t2 / t1 between the thickness t1 of the mounting portion 7 of each sample and the maximum thickness t2 located at the central portion of the central portion 5.

このようにして作製した試料1〜5のヒートシンクについて、熱サイクル性を評価した。熱サイクル性は、ヒートシンクの板状部2の上表面部にセラミックス基板を有する電子部品をはんだ付けし、JISC0025に準拠し、−65℃〜125℃の温度変化を500サイクル繰り返し、はんだ接合部の剥がれやクラック等を観察した。剥がれやクラック等の「接合部欠陥」が認められなかったものを「○」、これらが認められたものを「×」とした。また、ヒートシンクに「反り」が認められなかったもの及び30mm長さ当たりの反りが150μm以下であったものを「○」、150μmを超えていたが200μm以下であったものを「△」、200μmを超えていたものを「×」とした。
また、試料1〜5のヒートシンクを冷却ボックスに取り付けて冷却を行い、セラミックス基板に生じる割れを観察した。冷却ボックスに冷媒を封入し、水圧1MPaを負荷した際に「セラミックス基板の割れ」が認められなかったものを「○」、割れが認められたものを「×」とした。これらの結果を表1に示す。
The heat cycle performance of the heat sinks of Samples 1 to 5 thus manufactured was evaluated. The heat cycle property is such that an electronic component having a ceramic substrate is soldered to the upper surface portion of the plate-like portion 2 of the heat sink, and the temperature change from −65 ° C. to 125 ° C. is repeated 500 cycles in accordance with JISC0025. Peeling and cracks were observed. The case where “joint defects” such as peeling and cracking were not recognized was indicated as “◯”, and the case where these were recognized was indicated as “x”. In addition, “◯” indicates that no “warp” was observed in the heat sink and the warp per 30 mm length was 150 μm or less, and “△” indicates that the warp was greater than 150 μm but was 200 μm or less, and 200 μm. Those that exceeded the value were marked with “x”.
Moreover, the heat sink of samples 1-5 was attached to the cooling box, it cooled, and the crack which arises in a ceramic substrate was observed. When a refrigerant was sealed in the cooling box and a water pressure of 1 MPa was applied, “o” was given when “cracking of the ceramic substrate” was not observed, and “x” was given when cracking was observed. These results are shown in Table 1.

Figure 2012248576
Figure 2012248576

表1に示される結果から明らかなように、試料1〜4の本発明のピン状フィン一体型ヒートシンクは、セラミックス基板の割れを生じないように支持できることがわかる。   As is clear from the results shown in Table 1, it can be seen that the pin-shaped fin integrated heat sinks of Samples 1 to 4 of the present invention can be supported without causing cracks in the ceramic substrate.

以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、板状部を各種機器に取り付ける場合、ねじ止めに限らず、クランプ等の他の固定手段によってもよい。
また、図4においては、エジェクターピンにより鍛造品の外周部を押し上げるように構成したが、各ピン状フィンの下端を押し上げる構成としてもよい。また、鍛造時にバリを出していないが、鍛造機の能力に応じてバリを出して高い圧力で成形してもよい。また、加工前の初期の金属材料Mは、単純な板状の素材としているが、ピン状フィンの寸法等から、予め適切な形状に成形しておいてもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this description and can be appropriately changed without departing from the technical idea of the present invention.
For example, when the plate-like portion is attached to various devices, it is not limited to screwing but may be other fixing means such as a clamp.
Moreover, in FIG. 4, although it comprised so that the outer peripheral part of a forged product might be pushed up with an ejector pin, it is good also as a structure which pushes up the lower end of each pin-shaped fin. Moreover, although the burr | flash is not taken out at the time of forging, according to the capability of a forging machine, a burr | flash may be taken out and it may shape | mold at a high pressure. Further, the initial metal material M before processing is a simple plate-like material, but it may be formed into an appropriate shape in advance from the dimensions of the pin-shaped fins.

1 ピン状フィン一体型ヒートシンク
2 板状部
3 ピン状フィン
5 中央部
6 セラミックス基板
7 取付部
8 貫通孔
9 搭載領域
11 フィン成形用金型
15 フィン成形用穴部
16 成形ダイ
17 パンチ
17a パンチ面
18 エジェクターピン
19 凹部
21 上表面部
22 下表面部
31 水冷ボックス
32 開口部
33 パッキン収容溝
34 ねじ穴
35 パッキン
191 平面部
192 曲面部
DESCRIPTION OF SYMBOLS 1 Pin-shaped fin integrated heat sink 2 Plate-shaped part 3 Pin-shaped fin 5 Center part 6 Ceramic substrate 7 Mounting part 8 Through-hole 9 Mounting area 11 Fin molding die 15 Fin molding hole 16 Molding die 17 Punch 17a Punch surface 18 Ejector pin 19 Recess 21 Upper surface portion 22 Lower surface portion 31 Water cooling box 32 Opening portion 33 Packing receiving groove 34 Screw hole 35 Packing 191 Flat surface portion 192 Curved surface portion

Claims (4)

金属材料からなる板状部の一面側に、セラミックス基板を有する電子部品が搭載される平面状の上表面部が形成されるとともに、該上表面部と反対面側に、多数のピン状フィンが立設された下表面部が形成されてなり、前記下表面部は、その周辺部の取付部と、この取付部の内縁から中心部に向かって厚みが漸次大きくなるように形成された中央部と、該中央部に立設された多数の前記ピン状フィンとにより形成されていることを特徴とするピン状フィン一体型ヒートシンク。   A planar upper surface portion on which an electronic component having a ceramic substrate is mounted is formed on one surface side of a plate-shaped portion made of a metal material, and a number of pin-shaped fins are formed on the opposite surface side of the upper surface portion. A standing lower surface portion is formed, and the lower surface portion includes a peripheral mounting portion and a central portion formed such that the thickness gradually increases from the inner edge of the mounting portion toward the central portion. And a pin-shaped fin integrated heat sink, wherein the pin-shaped fin-integrated heat sink is formed by a large number of the pin-shaped fins provided upright at the center. 前記中央部は、角錐もしくは円錐状の斜面、または曲面に形成されていることを特徴とする請求項1記載のピン状フィン一体型ヒートシンク。   The pin-shaped fin-integrated heat sink according to claim 1, wherein the central portion is formed into a pyramid or conical slope, or a curved surface. 前記取付部の厚みをt1、前記中央部の中心部に位置する最大厚みをt2とした場合、t2/t1が1.2以上3.0以下に設定されていることを特徴とする請求項1又は2記載のピン状フィン一体型ヒートシンク。   2. The thickness t2 / t1 is set to 1.2 or more and 3.0 or less, where t1 is the thickness of the mounting portion and t2 is the maximum thickness located at the center of the central portion. Or the pin-shaped fin integrated heat sink according to 2; 前記下表面部の中央部は、前記上表面部の前記セラミックス基板の搭載領域に対応する位置に設けられており、前記セラミックス基板の板幅をw、該板幅wの中心部からの距離をxとした場合、前記中央部の板厚tは、以下の(1)式を満たすように設けられていることを特徴とする請求項1から3のいずれか一項記載のピン状フィン一体型ヒートシンク。
t=t2−((t2−t1)/(w/2))・x …(1)
The center portion of the lower surface portion is provided at a position corresponding to the mounting area of the ceramic substrate on the upper surface portion, and the plate width of the ceramic substrate is w, and the distance from the center portion of the plate width w is 4. The pin-like fin integrated type according to claim 1, wherein the thickness t of the central portion is provided so as to satisfy the following expression (1): heatsink.
t = t2 − ((t2−t1) / (w / 2)) 2 · x 2 (1)
JP2011117183A 2011-05-25 2011-05-25 Pin-like fin integrated-type heat sink Pending JP2012248576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117183A JP2012248576A (en) 2011-05-25 2011-05-25 Pin-like fin integrated-type heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117183A JP2012248576A (en) 2011-05-25 2011-05-25 Pin-like fin integrated-type heat sink

Publications (1)

Publication Number Publication Date
JP2012248576A true JP2012248576A (en) 2012-12-13

Family

ID=47468799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117183A Pending JP2012248576A (en) 2011-05-25 2011-05-25 Pin-like fin integrated-type heat sink

Country Status (1)

Country Link
JP (1) JP2012248576A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120182A1 (en) 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Liquid cooling
JP2014154772A (en) * 2013-02-12 2014-08-25 Aru Techno:Kk Method of manufacturing heat sink and heat sink
WO2018117962A1 (en) * 2016-12-19 2018-06-28 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
JP2020013915A (en) * 2018-07-19 2020-01-23 三菱マテリアル株式会社 Manufacturing method of insulation circuit board with heat sink and insulation circuit board with heat sink
US10571206B2 (en) 2012-09-28 2020-02-25 Hewlett Packard Enterprise Development Lp Cooling assembly
WO2023218903A1 (en) * 2022-05-12 2023-11-16 三菱電機株式会社 Semiconductor module, electric power converter, and method for manufacturing semiconductor module
JP7453389B2 (en) 2020-11-06 2024-03-19 ジョンハイ グループ カンパニー、リミテッド Heat dissipation structure of power semiconductor module cooling plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160150A (en) * 1981-03-27 1982-10-02 Toshiba Corp Heat dissipating board for hybrid ic
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2003068949A (en) * 2001-08-23 2003-03-07 Dowa Mining Co Ltd Heat sink, power semiconductor module, and ic package
JP2003086744A (en) * 2000-08-09 2003-03-20 Mitsubishi Materials Corp Power module and power module with heat sink
JP2004022964A (en) * 2002-06-19 2004-01-22 Hitachi Metals Ltd Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2004047619A (en) * 2002-07-10 2004-02-12 Denki Kagaku Kogyo Kk Manufacturing method of heat dissipating component
JP2004200333A (en) * 2002-12-18 2004-07-15 Hitachi Ltd Packaging structure of water cooling power semiconductor module
WO2008078788A1 (en) * 2006-12-26 2008-07-03 Kyocera Corporation Heat dissipating substrate and electronic device using the same
JP2009206191A (en) * 2008-02-26 2009-09-10 Sumitomo Electric Ind Ltd Power module
JP2010129774A (en) * 2008-11-27 2010-06-10 Tekku Suzino Kk Method for manufacturing integrated pin-fin heat sink

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160150A (en) * 1981-03-27 1982-10-02 Toshiba Corp Heat dissipating board for hybrid ic
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2003086744A (en) * 2000-08-09 2003-03-20 Mitsubishi Materials Corp Power module and power module with heat sink
JP2003068949A (en) * 2001-08-23 2003-03-07 Dowa Mining Co Ltd Heat sink, power semiconductor module, and ic package
JP2004022964A (en) * 2002-06-19 2004-01-22 Hitachi Metals Ltd Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2004047619A (en) * 2002-07-10 2004-02-12 Denki Kagaku Kogyo Kk Manufacturing method of heat dissipating component
JP2004200333A (en) * 2002-12-18 2004-07-15 Hitachi Ltd Packaging structure of water cooling power semiconductor module
WO2008078788A1 (en) * 2006-12-26 2008-07-03 Kyocera Corporation Heat dissipating substrate and electronic device using the same
JP2009206191A (en) * 2008-02-26 2009-09-10 Sumitomo Electric Ind Ltd Power module
JP2010129774A (en) * 2008-11-27 2010-06-10 Tekku Suzino Kk Method for manufacturing integrated pin-fin heat sink

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
US10571206B2 (en) 2012-09-28 2020-02-25 Hewlett Packard Enterprise Development Lp Cooling assembly
US10330395B2 (en) 2013-01-31 2019-06-25 Hewlett Packard Enterprise Development Lp Liquid cooling
US9803937B2 (en) 2013-01-31 2017-10-31 Hewlett Packard Enterprise Development Lp Liquid cooling
JP2016508674A (en) * 2013-01-31 2016-03-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Liquid cooling
WO2014120182A1 (en) 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Liquid cooling
US10458724B2 (en) 2013-01-31 2019-10-29 Hewlett Packard Enterprise Development Lp Liquid cooling
EP2952076B1 (en) * 2013-01-31 2019-10-30 Hewlett-Packard Enterprise Development LP Liquid cooling
JP2014154772A (en) * 2013-02-12 2014-08-25 Aru Techno:Kk Method of manufacturing heat sink and heat sink
WO2018117962A1 (en) * 2016-12-19 2018-06-28 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
US11101194B2 (en) 2016-12-19 2021-08-24 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
JP2020013915A (en) * 2018-07-19 2020-01-23 三菱マテリアル株式会社 Manufacturing method of insulation circuit board with heat sink and insulation circuit board with heat sink
JP7119689B2 (en) 2018-07-19 2022-08-17 三菱マテリアル株式会社 Manufacturing method of insulated circuit board with heat sink and insulated circuit board with heat sink
JP7453389B2 (en) 2020-11-06 2024-03-19 ジョンハイ グループ カンパニー、リミテッド Heat dissipation structure of power semiconductor module cooling plate
WO2023218903A1 (en) * 2022-05-12 2023-11-16 三菱電機株式会社 Semiconductor module, electric power converter, and method for manufacturing semiconductor module

Similar Documents

Publication Publication Date Title
JP2012248576A (en) Pin-like fin integrated-type heat sink
US9837363B2 (en) Power-module substrate unit and power module
JP6044097B2 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
JP5912282B2 (en) Pin-shaped fin integrated heat sink and manufacturing method thereof
WO2011087028A1 (en) Substrate with integrated fins and method of manufacturing substrate with integrated fins
US10366938B2 (en) Silicon nitride circuit board and electronic component module using the same
WO2011024377A1 (en) Semiconductor module and heat radiation member
JP6151813B1 (en) Vapor chamber manufacturing method
JP6031549B2 (en) Copper alloy plate for heat dissipation parts
WO2011087027A1 (en) Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
US10160690B2 (en) Silicon nitride circuit board and semiconductor module using the same
JP2010129774A (en) Method for manufacturing integrated pin-fin heat sink
JP2022177207A (en) Ceramic metal circuit board and semiconductor device using same
JP2007088045A (en) Heat dissipation plate for mounting plurality of semiconductor substrates, and semiconductor substrate junction using it
WO2016111206A1 (en) Heat dissipation substrate
JP2018053310A (en) Copper alloy sheet for heat radiation component
JP2012169318A (en) Insulating circuit board, base for power module, and method for manufacturing the same
JP6331867B2 (en) Power module substrate with heat sink and manufacturing method thereof
CN106062949A (en) Semiconductor module
JP2018168470A (en) Copper alloy sheet for vapor chamber
JP2008124187A6 (en) Power module base
JP6360722B2 (en) Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member
JP4560644B2 (en) Semiconductor substrate heatsink with improved soldering
JP2004063898A (en) Heat radiating material and its manufacturing method
JP2007116080A (en) Heat radiation plate for semiconductor substrate having projection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510