JP2010129774A - Method for manufacturing integrated pin-fin heat sink - Google Patents

Method for manufacturing integrated pin-fin heat sink Download PDF

Info

Publication number
JP2010129774A
JP2010129774A JP2008302844A JP2008302844A JP2010129774A JP 2010129774 A JP2010129774 A JP 2010129774A JP 2008302844 A JP2008302844 A JP 2008302844A JP 2008302844 A JP2008302844 A JP 2008302844A JP 2010129774 A JP2010129774 A JP 2010129774A
Authority
JP
Japan
Prior art keywords
metal material
mold
pin
heat sink
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008302844A
Other languages
Japanese (ja)
Inventor
Ryoji Moroi
良治 諸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEKKU SUZINO KK
Original Assignee
TEKKU SUZINO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEKKU SUZINO KK filed Critical TEKKU SUZINO KK
Priority to JP2008302844A priority Critical patent/JP2010129774A/en
Publication of JP2010129774A publication Critical patent/JP2010129774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of manufacturing an integrated pin-fin heat sink by surely and integrally forming a base section and a pin-like fin section even when a metal material having large deformation resistance at an ordinary temperature such as copper or a copper alloy is used. <P>SOLUTION: The method is provided with: a heating step of performing heat treatment to a metal material; a forging step of forging the metal material after the heat treatment by using a die to form the metal material into a desired shape; and an extruding step of extruding the metal material after the forming by ejector pins to an outside of the die. A recessed portion for forming the metal material into a flat plate-like shape by pressure in the forging step is provided on the inside of the die, and many holes for drawing the metal material by pressure in the forging step to form pin-like shapes are drilled on a lower surface of the recessed portion. In the forging step, the ejector pins are inserted in all holes of the die from an outside of the die, and an outer diameter of the ejector pins is made smaller than an inner diameter of the holes of the die so that a space is formed between an outer peripheral surface of each of the ejector pins and an inner peripheral surface of each of the holes of the die. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、自動車の高出力モーター制御装置用の半導体素子等に使用される半導体に生じる熱を放出するヒートシンクの製造方法に関するものである。   The present invention relates to a method of manufacturing a heat sink that releases heat generated in a semiconductor used for a semiconductor element for a high-power motor control device of an automobile, for example.

従来のこの種ヒートシンクは、具体的には図示しないが、金属材料で成形されて、裏面側で半導体に接する基盤部と、該基盤部の表面側に立設されるフィン部とを有し、フィン部によりヒートシンク全体の表面積を広げて、半導体で発生した熱を効率良く放出する構成となっている。   Although this kind of conventional heat sink is not specifically shown, it has a base part that is formed of a metal material and comes into contact with the semiconductor on the back side, and a fin part that stands on the front side of the base part, The fin portion expands the surface area of the entire heat sink and efficiently releases heat generated in the semiconductor.

そして、ヒートシンクに用いる金属材料として、従来から、熱伝導率が比較的高く、軽量で、且つ、加工性の良いアルミニウムが用いられている。しかし、近年は、半導体素子の高集積化・大容量化に伴い、半導体の発熱量が増大しており、アルミニウムではヒートシンク全体に熱が伝わり難く効率が悪いので、アルミニウムより熱伝導率が高い材料が求められている。アルミニウムより熱伝導率が高い金属材料として、金・銀及び銅が挙げられるが、金及び銀は、単価が高いため、比較的単価の安い銅が利用されてきている。   Conventionally, aluminum having a relatively high thermal conductivity, light weight, and good workability has been used as a metal material for the heat sink. However, in recent years, the amount of heat generated by semiconductors has increased with the increase in integration and capacity of semiconductor elements, and since heat is not easily transmitted to the entire heat sink and its efficiency is poor, aluminum has a higher thermal conductivity than aluminum. Is required. Gold / silver and copper are listed as metal materials having higher thermal conductivity than aluminum. However, since gold and silver have a high unit price, copper having a relatively low unit price has been used.

又、フィン部の形状としては、プレート状のもの(プレートフィン)とピン状のもの(ピンフィン)とが存在するが、ピンフィンの方が容積の割に表面積を広くとることができるので、より効率良く熱を放出することができる。   In addition, there are plate-shaped (plate fins) and pin-shaped (pin fins) as the shape of the fin part, but the pin fin can take a larger surface area for its volume, so it is more efficient Can release heat well.

従って、近年においては、半導体の発熱量の増大に対応するために、銅や銅を主成分とする銅合金を金属材料とするヒートシンクであって、フィン部がピンフィンのもの(ピンフィンヒートシンク)が望まれているが、銅は、アルミニウムに比べて、変形抵抗が大きいため加工性が悪い関係で、基盤部とフィン部を一体成形することが困難なので、基盤部とフィン部を別体に成形して、かしめ工法によって基盤部とフィン部とを一体化する製造方法が提案されている(例えば、特許文献1参照)。   Therefore, in recent years, in order to cope with an increase in the amount of heat generated by a semiconductor, a heat sink that uses copper or a copper alloy mainly composed of copper as a metal material and has a fin portion (pin fin heat sink) is desired. However, copper has a higher deformation resistance than aluminum and its workability is poor, so it is difficult to integrally form the base and fins, so the base and fins are molded separately. And the manufacturing method which integrates a base part and a fin part by a caulking method is proposed (for example, refer to patent documents 1).

又、この他にも、基盤部とフィン部を別体に成形して、基盤部側にフィン部をロウ付けしたり、基盤部側にフィン部を接着剤で接着したりする製造方法もあるが、これらの製造方法によると、基盤部とフィン部を別体に成形している関係で、基盤部とフィン部を一体成形した場合に比べて、基盤部からフィン部に効率良く熱を伝えることができないという問題点がある。又、特に、水冷式のヒートシンクとして使用する場合には、基盤部からフィン部が抜け外れてしまう恐れがある。   In addition, there is a manufacturing method in which the base part and the fin part are formed separately and the fin part is brazed to the base part side, or the fin part is bonded to the base part side with an adhesive. However, according to these manufacturing methods, since the base part and the fin part are formed separately, heat is transferred from the base part to the fin part more efficiently than when the base part and the fin part are integrally formed. There is a problem that can not be. In particular, when used as a water-cooled heat sink, the fin part may come off from the base part.

更に、基盤部とフィン部を一体成形する製造方法として、銅又は銅合金をコンフォーム押出しにより、ヒートシンク形状の孔が形成された押出ダイスを通過させて、基盤部とフィン部を一体成形する製造方法も提案されている(例えば、特許文献2参照)。しかし、この製造方法によると、一次的に成形されるフィン部は、プレート状に成形することしかできない関係で、フィン部をピン状にするためには、更に、切削する工程が必要となるので、徒に製造工程が複雑となるという問題点があった。   Furthermore, as a manufacturing method for integrally forming the base portion and the fin portion, the base portion and the fin portion are integrally formed by passing an extrusion die in which a heat sink-shaped hole is formed by conform extrusion of copper or a copper alloy. A method has also been proposed (see, for example, Patent Document 2). However, according to this manufacturing method, the fin portion that is primarily formed can only be formed into a plate shape, and therefore, a further cutting step is required to make the fin portion into a pin shape. However, there was a problem that the manufacturing process became complicated.

そこで、ピンフィンヒートシンクを一体成形する製造方法として、金属材料の塑性を利用した鍛造工法を用いる製造方法が注目されてきている。鍛造工法には、金属材料に加熱処理を行わないで常温で鍛造するいわゆる冷間鍛造工法と、金属材料に加熱処理を行って鍛造するいわゆる熱間鍛造工法とがあり、いずれの工法も、大量生産の場合には、金型を用いて鍛造することにより、金属材料を複雑な形状に成形することが可能となる。
特許第3453612号公報 特開2005−72180号公報
Accordingly, a manufacturing method using a forging method utilizing the plasticity of a metal material has attracted attention as a manufacturing method for integrally forming a pin fin heat sink. Forging methods include a so-called cold forging method in which metal material is forged at room temperature without heat treatment, and a so-called hot forging method in which metal material is forged by heat treatment. In the case of production, a metal material can be formed into a complicated shape by forging using a mold.
Japanese Patent No. 3453612 JP-A-2005-72180

従って、鍛造工法を用いる製造方法においては、容易に基盤部とフィン部とを一体成形したピンフィンヒートシンクを製造することが可能となるが、一般的な冷間鍛造工法においては、常温で金属材料を鍛造する関係で、金属材料の硬度が高いままで、変形抵抗が大きいので、特に、銅や銅合金を鍛造する場合には、金属材料の大きさに比して大きな成形圧力を必要とすると共に、金型と金属材料との摩擦抵抗を小さくするために、金属材料に潤滑処理を行わなければならない。   Therefore, in the manufacturing method using the forging method, it is possible to easily manufacture a pin fin heat sink in which the base portion and the fin portion are integrally formed. However, in a general cold forging method, a metal material is used at room temperature. In relation to forging, since the hardness of the metal material remains high and the deformation resistance is large, particularly when forging copper or copper alloy, a large molding pressure is required compared to the size of the metal material. In order to reduce the frictional resistance between the mold and the metal material, the metal material must be lubricated.

そのため、大きな成形圧力を得るために、製造装置を大型化しなければならないことに加えて、潤滑処理のラインも必要となるので、徒に、製造工程に必要な設備が増大してしまうという問題点がある。   Therefore, in order to obtain a large molding pressure, in addition to having to increase the size of the manufacturing apparatus, a lubrication processing line is also required, so the problem that the equipment necessary for the manufacturing process increases. There is.

又、金属材料の変形抵抗が大きいために、金型の破損や金属材料の割れの危険がある関係で、一度に与える変形量を小さくしなければならないので、目的の形状を得るために何度も鍛造工程を繰り返さなければならないという問題点もある。   In addition, since the deformation resistance of the metal material is large, there is a risk of damage to the mold or cracking of the metal material, so the amount of deformation given at a time must be reduced. However, there is a problem that the forging process must be repeated.

他方、熱間鍛造工法においては、金属材料に加熱処理を行っている関係で、銅や銅合金のように常温では変形抵抗が大きい金属材料であっても、その変形抵抗を小さくして鍛造することができるので、前述した冷間鍛造工法における問題点を解消することが可能となると共に、フィン部のピッチを細かくすることや、大型の一体型ピンフィンヒートシンクを製造することも可能となる。   On the other hand, in the hot forging method, the metal material is heat-treated, so that even a metal material having a large deformation resistance at room temperature such as copper or copper alloy is forged with a small deformation resistance. Therefore, it is possible to solve the problems in the cold forging method described above, and it is also possible to reduce the pitch of the fin portions and to manufacture a large-sized integrated pin fin heat sink.

しかし、一般的な熱間鍛造工法においては、鍛造工程で金属材料の外周に発生したバリをエジェクターピンで押して、金型の外方に当該金属材料を押し出すこととなるが、鍛造工程後に金属材料が冷えて収縮することにより、各フィン部の位置が対応する金型の孔部の位置とずれるので、特に、フィン部の数が多い場合には、金型から金属材料を押し出すことが不可能となる恐れや、金型から金属材料を押し出せたとしても、目的の形状に成形した金属材料が歪んでしまう恐れがあった。   However, in a general hot forging method, burrs generated on the outer periphery of the metal material in the forging process are pushed with an ejector pin, and the metal material is pushed out of the mold. Since the position of each fin part shifts from the position of the corresponding mold hole by cooling and shrinking, it is impossible to extrude metal material from the mold, especially when the number of fins is large Even if the metal material can be extruded from the mold, the metal material molded into the target shape may be distorted.

本発明は、斯かる従来の一体型ピンフィンヒートシンクの製造方法が抱える課題を有効に解決するために開発されたもので、請求項1記載の発明は、平板状を呈する基盤部と、該基盤部の一面側に立設されたピン状を呈する多数のフィン部を有する一体型ピンフィンヒートシンクを金属材料で一体に成形して製造する製造方法であって、金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を金型を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料をエジェクターピンで金型の外方に押し出す押出工程とを備え、金型の内側に、鍛造工程時の圧力により金属材料を平板状に成形する凹部を設け、該凹部下面に鍛造工程時の圧力で金属材料を搾伸してピン状に成形する孔部を多数穿設し、鍛造工程時には、金型のすべての孔部に金型の外側からエジェクターピンを挿入し、当該エジェクターピンの外径を金型の孔部の内径よりも小さくして、エジェクターピンの外周面と金型の孔部の内周面との間に隙間を画成することを特徴とする。   The present invention was developed in order to effectively solve the problems of such a conventional method for manufacturing an integrated pin fin heat sink. The invention according to claim 1 comprises a base portion having a flat plate shape, and the base portion. A manufacturing method for manufacturing an integrated pin fin heat sink having a large number of fin portions erected on one surface side of a metal material, and heating the metal material; A forging process in which a metal material after heat treatment is forged using a mold and formed into a target shape, and an extrusion process in which the metal material after molding is pushed out of the mold with an ejector pin are provided. On the inside, there is a recess that molds the metal material into a flat plate shape by the pressure during the forging process, and a number of holes are formed on the bottom surface of the recess to squeeze the metal material and mold into a pin shape at the pressure during the forging process. During the forging process, Insert the ejector pin into the hole from the outside of the mold, make the outer diameter of the ejector pin smaller than the inner diameter of the hole of the mold, and the outer periphery of the ejector pin and the inner periphery of the hole of the mold. A gap is defined between the surface and the surface.

請求項2記載の発明は、請求項1を前提として、エジェクターピンの外径を金型の孔部の内径よりも0.05mm小さくしたことを特徴とする。   The invention described in claim 2 is characterized in that, based on claim 1, the outer diameter of the ejector pin is made 0.05 mm smaller than the inner diameter of the hole of the mold.

請求項3記載の発明は、請求項1乃至請求項2を前提として、金型の各孔部の孔縁を面取り形状としたことを特徴とする。   According to a third aspect of the present invention, on the premise of the first or second aspect, the hole edge of each hole portion of the mold is chamfered.

依って、請求項1記載の発明にあっては、鍛造工程前に加熱工程を経る関係で、特に、銅や銅合金のように常温では変形抵抗が大きい金属材料であっても、その変形抵抗を小さくして鍛造することができるので、冷間鍛造工法における問題点は解消することが可能となると共に、フィン部のピッチを細かくすることや、大型の一体型ピンフィンヒートシンクを製造することも可能となるのは言うまでもないが、これに加えて、鍛造工程時には、金型のすべての孔部に金型の外側からエジェクターピンを挿入している関係で、鍛造の圧力により金型が撓むのを抑止するので、金型の繰り返し使用による破損を効果的に防止できると共に、鍛造工程後の押出工程時には、エジェクターピンによって、成形されたすべてのフィン部の外端面に均一な押し出し圧力を加えることができるので、目的の形状に成形された金属材料が歪む恐れが全くない。   Therefore, in the invention described in claim 1, since the heating process is performed before the forging process, even if it is a metal material having a large deformation resistance at room temperature, such as copper or a copper alloy, the deformation resistance. Forging can be performed with a small size, so that problems in the cold forging method can be eliminated, and the pitch of the fins can be made finer, and large integrated pin fin heat sinks can be manufactured. Needless to say, in addition to this, during the forging process, the ejector pins are inserted from the outside of the mold into all the holes of the mold, so that the mold is bent by the forging pressure. Therefore, it is possible to effectively prevent breakage due to repeated use of the mold, and at the time of extrusion after the forging process, the ejector pin ensures uniform distribution on the outer end surfaces of all the formed fins. It is possible to apply pressure started to, there is no probability distorted metallic material molded into the shape of interest.

又、エジェクターピンの外周面と金型の孔部の内周面との間に隙間が画成されているので、鍛造工程時には、金型が熱により歪んでも、当該歪みを吸収することが可能となると共に、鍛造工程後の押出工程時には、エジェクターピンの円滑な可動を許容することが可能となる。   In addition, since a gap is defined between the outer peripheral surface of the ejector pin and the inner peripheral surface of the hole of the mold, it is possible to absorb the distortion even if the mold is distorted by heat during the forging process. In addition, during the extrusion process after the forging process, the ejector pin can be allowed to move smoothly.

請求項2記載の発明にあっては、エジェクターピンの外径を金型の孔部の内径よりも0.05mm小さくして、エジェクターピンの外周面と金型の孔部の内周面との間に隙間を画成する関係で、当該隙間により、鍛造工程時の金型の熱による歪みを吸収することや押出工程時のエジェクターピンの円滑な可動を許容することを可能としつつも、当該隙間に流れ込む金属材料を非常に少なくすることできるので、成形されたフィン部の外端面に大きなバリが発生する恐れがない。   In the invention of claim 2, the outer diameter of the ejector pin is made 0.05 mm smaller than the inner diameter of the hole of the mold, and the outer peripheral surface of the ejector pin and the inner peripheral surface of the hole of the mold In the relationship that defines a gap between them, the gap can absorb the distortion caused by the heat of the mold during the forging process and allow the ejector pin to move smoothly during the extrusion process. Since the metal material flowing into the gap can be extremely reduced, there is no possibility that a large burr is generated on the outer end surface of the formed fin portion.

請求項3記載の発明にあっては、金型の各孔部の孔縁を面取り形状とした関係で、鍛造工程時の圧力で金属材料を搾伸してピン状に成形する際に、金属材料の変形抵抗を抑えることできるので、金型の破損を効果的に防止することが可能となる。   In the invention according to claim 3, when the hole edge of each hole portion of the mold is chamfered, the metal material is squeezed by the pressure during the forging process and formed into a pin shape. Since the deformation resistance of the material can be suppressed, it is possible to effectively prevent the mold from being damaged.

本発明は、平板状を呈する基盤部と、該基盤部の一面側に立設されたピン状を呈する多数のフィン部を有する一体型ピンフィンヒートシンクを金属材料で一体に成形して製造する製造方法であって、金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を金型を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料をエジェクターピンで金型の外方に押し出す押出工程とを備え、金型の内側に、鍛造工程時の圧力により金属材料を平板状に成形する凹部を設け、該凹部下面に鍛造工程時の圧力で金属材料を搾伸してピン状に成形する孔部を多数穿設し、鍛造工程時には、金型のすべての孔部に金型の外側からエジェクターピンを挿入し、当該エジェクターピンの外径を金型の孔部の内径よりも小さくして、エジェクターピンの外周面と金型の孔部の内周面との間に隙間を画成することにより、銅や銅合金のように常温では変形抵抗が大きい金属材料であっても、確実に基盤部とピン状のフィン部とを一体成形して、一体型ピンフィンヒートシンクを製造できる製造方法を提供せんとするものである。   The present invention relates to a manufacturing method in which an integrated pin fin heat sink having a flat plate-like base portion and a large number of fin portions standing on one surface side of the base portion is integrally formed of a metal material. A heating process for heat-treating the metal material, a forging process for forging the heat-treated metal material into a desired shape by using a mold, and the metal material after the molding with the ejector pin An extrusion process for extruding the mold outward, and a recess for forming a metal material into a flat plate shape by pressure during the forging process is provided inside the mold, and the metal material is squeezed on the lower surface of the recess by the pressure during the forging process. A large number of holes to be stretched and formed into a pin shape are drilled. During the forging process, ejector pins are inserted into all the holes of the mold from the outside of the mold, and the outer diameter of the ejector pins is set to the hole of the mold. Make the ejector smaller than the inner diameter of the By defining a gap between the outer peripheral surface of the pin and the inner peripheral surface of the hole of the mold, it is possible to ensure that even a metal material having a large deformation resistance at room temperature such as copper or copper alloy can reliably And a pin-shaped fin portion are integrally formed to provide a manufacturing method capable of manufacturing an integrated pin fin heat sink.

以下、本発明を図示する好適な実施例に基づいて詳述するが、まず、該実施例に係る製造方法により製造された一体型ピンフィンヒートシンクの一例について説明すると、該一体型ピンフィンヒートシンクHは、図1・図2に示す如く、例えば、銅又は銅合金等の金属材料で一体成形されて、裏面側で半導体に接する平板状を呈する基盤部Bと、該基盤部Bの表面側に立設された円柱ピン状を呈する多数のフィン部Fを有し、フィン部Fによりヒートシンク全体の表面積を広げて、半導体で発生した熱を効率良く放出する構成となっており、特に、各フィン部Fを円柱ピン状のピンフィンとしているので、プレートフィンよりも容積の割に表面積を広くとることができる。又、基盤部Bと各フィン部Fが一体成形されているので、基盤部Bから各フィン部Fに効率良く熱を伝えることができると共に、水冷式のヒートシンクとして利用する場合にも、各フィン部Fが基盤部Bから抜け外れる恐れが全くない。尚、金属材料としては、前述した銅又は銅合金に限定されることはなく、アルミニウム又はアルミニウム合金や、複合材等を用いることも実施に応じ任意である。   Hereinafter, the present invention will be described in detail based on a preferred embodiment shown in the drawings. First, an example of an integrated pin fin heat sink manufactured by the manufacturing method according to the embodiment will be described. As shown in FIG. 1 and FIG. 2, for example, a base part B that is integrally formed of a metal material such as copper or copper alloy and has a flat plate shape in contact with the semiconductor on the back side, and stands on the front side of the base part B It has a structure in which a large number of fin portions F having a cylindrical pin shape are formed, and the surface area of the entire heat sink is widened by the fin portions F to efficiently release heat generated in the semiconductor. Since the pin fins are cylindrical pin-shaped, the surface area can be made larger for the volume than the plate fins. Further, since the base portion B and the fin portions F are integrally formed, heat can be efficiently transferred from the base portion B to the fin portions F, and each fin is also used when used as a water-cooled heat sink. There is no possibility that the part F comes off the base part B. In addition, as a metal material, it is not limited to the copper or copper alloy mentioned above, It is arbitrary according to implementation to use aluminum, an aluminum alloy, a composite material, etc.

ここで、基盤部Bは、長さ133mm、幅77mm、厚さ5mmの寸法を呈し、フィン部Fは、外径1.5mm、高さ8mmの寸法を呈し、フィン部FのピッチPを4mmとして一列に並べたフィン部Fを列ごとに半ピッチ分だけ変位させて、千鳥配列となるように配置されている。尚、斯かる一体型ピンフィンヒートシンクHにおいては、フィン部Fの外径とピッチPの寸法は、これに限定されるものではないが、フィン部Fの外径は1.5〜2mmが望ましく、フィン部FのピッチPは4〜5mmが望ましく、この範囲を越えると、全体が必要以上に大型化すると共に、表面積を広くするためにフィン部Fの数を増やすこともできなくなるので、放熱効果が不十分となる。   Here, the base portion B has a length of 133 mm, a width of 77 mm, and a thickness of 5 mm, the fin portion F has an outer diameter of 1.5 mm and a height of 8 mm, and the pitch P of the fin portion F is 4 mm. The fin portions F arranged in a row are displaced by a half pitch for each row and are arranged in a staggered arrangement. In such an integrated pin fin heat sink H, the outer diameter of the fin portion F and the dimension of the pitch P are not limited to this, but the outer diameter of the fin portion F is preferably 1.5 to 2 mm, The pitch P of the fin portion F is desirably 4 to 5 mm. If this range is exceeded, the entire structure becomes unnecessarily large, and the number of fin portions F cannot be increased to increase the surface area. Is insufficient.

又、基盤部Bの厚さは、5mmが望ましく、5mm以下となると、後述する鍛造工程時の金属材料の搾伸が不十分となり、フィン部Fを基盤部Bと一体に成形することが困難となる。更に、フィン部Fの高さは、6〜8mmが望ましく、8mm以上となると、基盤部Bの厚さを増大させなければならないと共に、やはり、鍛造工程時の金属材料の搾伸が不十分となり、フィン部Fの外端面の成形が困難となる。   Further, the thickness of the base portion B is desirably 5 mm, and if it is 5 mm or less, the metal material is not sufficiently expanded during the forging process described later, and it is difficult to form the fin portion F integrally with the base portion B. It becomes. Furthermore, the height of the fin portion F is desirably 6 to 8 mm. When the height is 8 mm or more, the thickness of the base portion B has to be increased, and the metal material is not sufficiently expanded during the forging process. It becomes difficult to mold the outer end surface of the fin portion F.

次に、本実施例に係る製造方法について説明すると、本実施例に係る製造方法は、基本的には、必要に応じて切断した金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を後述する金型1を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料を後述するエジェクターピン2で金型1の外方に押し出す押出工程とを備えるもので、鍛造工程前に加熱工程を経る関係で、特に、銅や銅合金のように常温では変形抵抗が大きい金属材料であっても、その変形抵抗を小さくして鍛造することができるので、冷間鍛造工法における問題点は解消することが可能となると共に、フィン部FのピッチPを細かくすることや、大型の一体型ピンフィンヒートシンクを製造することも可能となるものであるが、特徴とするところは、鍛造工程と押出工程で使用する金型1及びエジェクターピン2に対して、以下の構成を採用した点にある。   Next, the manufacturing method according to the present embodiment will be described. The manufacturing method according to the present embodiment basically includes a heating process in which heat treatment is performed on a metal material cut as necessary, and a metal after the heat treatment. It includes a forging process in which a material is forged using a mold 1 to be described later and formed into a desired shape, and an extrusion process in which the molded metal material is pushed out of the mold 1 by an ejector pin 2 to be described later. Because of the heating process before the forging process, especially metal materials with large deformation resistance at room temperature, such as copper and copper alloys, can be forged with a small deformation resistance. The problem in the forging method can be solved, the pitch P of the fin portion F can be made fine, and a large integrated pin fin heat sink can be manufactured. Is Relative to the mold 1 and the ejector pin 2 used in forming process and the extrusion process, it lies in employing the following configuration.

即ち、まず、金型1から説明すると、本実施例においては、図3・図4に示す如く、金型1の内側に、鍛造工程時の圧力により金属材料を前述した基盤部Bの形状に成形する凹部1aを設け、該凹部1a下面に鍛造工程時の圧力により金属材料を搾伸して前述したフィン部Fの形状に成形する孔部1bを同フィン部Fの配列に沿って多数穿設し、該各孔部1bの孔縁1cは、図5に示す如く、面取り形状とする構成となっている。尚、本実施例においては、各孔部1bは、円柱ピン状のフィン部Fを得るために、その断面が円形状となっているが、角柱ピン状のフィン部Fを得るために、同断面を矩形状や三角形状等の角形状とすることも実施に応じ任意である。又、前述した寸法の一体型ピンフィンヒートシンクHを製造するためには、各孔部1bの孔縁1cは、R0.5mmの丸みを持つ面取り形状とすることが望ましい。   That is, first, the mold 1 will be described. In the present embodiment, as shown in FIGS. 3 and 4, the metal material is formed into the shape of the above-described base portion B inside the mold 1 by the pressure during the forging process. A concave portion 1a to be formed is provided, and a plurality of hole portions 1b are formed along the arrangement of the fin portions F by squeezing a metal material by the pressure during the forging process on the lower surface of the concave portion 1a to form the shape of the fin portion F described above. The hole edge 1c of each hole 1b is configured to be chamfered as shown in FIG. In this embodiment, each hole 1b has a circular cross section in order to obtain a cylindrical pin-shaped fin portion F. It is optional depending on the implementation to make the cross section rectangular such as rectangular or triangular. Further, in order to manufacture the integrated pin fin heat sink H having the above-described dimensions, it is desirable that the hole edge 1c of each hole 1b has a chamfered shape having a roundness of R0.5 mm.

次に、エジェクターピン2について説明すると、本実施例においては、上記金型1の孔部1bの断面形状と相似形状の断面を持つ柱状に形成されたもので、図3・図6に示す如く、その下端側をノックアウト3に固定されて、鍛造工程時には、金型1のすべての孔部1bに金型1の外側から挿入されて、金型1の孔部1bにより搾伸された金属材料を前述したフィン部Fの長さ寸法に応じて塞き止める構成となっている。又、図7に示す如く、エジェクターピン2の外径を金型1の孔部1bの内径よりも0.05mm小さくして、エジェクターピン2の外周面と金型1の孔部1bの内周面との間に隙間4を画成する構成となっている。   Next, the ejector pin 2 will be described. In this embodiment, the ejector pin 2 is formed in a columnar shape having a cross section similar to the cross sectional shape of the hole 1b of the mold 1, as shown in FIGS. The lower end side of the metal material is fixed to the knockout 3 and inserted into all the holes 1b of the mold 1 from the outside of the mold 1 during the forging process, and is expanded by the holes 1b of the mold 1. Is closed according to the length dimension of the fin portion F described above. Further, as shown in FIG. 7, the outer diameter of the ejector pin 2 is made 0.05 mm smaller than the inner diameter of the hole 1b of the mold 1 so that the outer periphery of the ejector pin 2 and the inner periphery of the hole 1b of the mold 1 It is the structure which defines the clearance gap 4 between surfaces.

従って、鍛造工程時には、図6に示す如く、斯かる金型1内に金属材料Mを入れて、上方からフレクションプレス(図示せず)により1ショットで圧力を加えると、図8に示す如く、金属材料Mが金型1とエジェクターピン2によって画成された空間の通りに成形されることとなるが、この際には、金型1の各孔部1bの孔縁1cを面取り形状とした関係で、金属材料Mを搾伸してピン状に成形する際に、金属材料Mの変形抵抗を抑えることができるので、金型1の破損を効果的に防止することが可能となる。尚、鍛造工程前に加熱工程を経ているので、フレクションプレスにより1ショットで圧力を加えるだけで金属材料Mを目的の形状に成形することができ、何度も圧力を加える必要は全くない。   Therefore, during the forging process, as shown in FIG. 6, when the metal material M is put into the mold 1 and pressure is applied in one shot by a flexure press (not shown) from above, as shown in FIG. In this case, the metal material M is molded in the space defined by the mold 1 and the ejector pin 2. In this case, the hole edge 1 c of each hole 1 b of the mold 1 is chamfered. Therefore, when the metal material M is expanded and molded into a pin shape, the deformation resistance of the metal material M can be suppressed, so that the mold 1 can be effectively prevented from being damaged. Since the heating process is performed before the forging process, the metal material M can be formed into a target shape by simply applying a pressure with one shot by a flexion press, and there is no need to apply pressure many times.

又、金型1のすべての孔部1bに金型1の外側からエジェクターピン2が挿入されている関係で、フレクションプレスの圧力により金型1が撓むのを抑止するので、金型1の繰り返し使用による破損を効果的に防止することが可能となる。   In addition, since the ejector pins 2 are inserted into all the holes 1b of the mold 1 from the outside of the mold 1, the mold 1 is prevented from being bent by the pressure of the flexure press. It is possible to effectively prevent damage due to repeated use.

更に、エジェクターピン2の外径を金型1の孔部1bの内径よりも0.05mm小さくして、エジェクターピン2の外周面と金型1の孔部1bの内周面との間に隙間4を画成する関係で、当該隙間4により、金型1が熱により歪んでも、当該歪みを吸収することが可能となると共に、金型1の熱による歪みを吸収することや後述する押出工程時のエジェクターピン2の円滑な可動を許容することを可能としつつも、上記隙間4に流れ込む金属材料Mを非常に少なくすることできるので、成形されたフィン部Fの外端面に大きなバリが発生する恐れがなく、きれいな外端面を得ることが可能となる。   Further, the outer diameter of the ejector pin 2 is made 0.05 mm smaller than the inner diameter of the hole 1b of the mold 1, and a gap is formed between the outer peripheral surface of the ejector pin 2 and the inner peripheral surface of the hole 1b of the mold 1. 4, the gap 4 allows the mold 1 to absorb the distortion even if the mold 1 is distorted by heat, absorbs the distortion caused by the heat of the mold 1, and an extrusion process described later. The metal material M flowing into the gap 4 can be extremely reduced while allowing the ejector pin 2 to be smoothly moved at the time, so that a large burr is generated on the outer end surface of the formed fin portion F. This makes it possible to obtain a clean outer end surface.

そして、鍛造工程後の押出工程時には、図9に示す如く、成形された金属材料Mをノックアウト3により押し上げられるエジェクターピン2で金型1の外方に押し出すこととなるが、この際には、金型1のすべての孔部1bに金型1の外側からエジェクターピン2が挿入されている関係で、エジェクターピン2によって、成形されたすべてのフィン部Fの外端面に均一な押し出し圧力を加えることができるので、目的の形状に成形された金属材料Mが歪む恐れが全くない。又、エジェクターピン2の外周面と金型1の孔部1bの内周面との間に隙間4が画成されているので、エジェクターピン2の円滑な可動を許容することが可能となる。   At the time of the extrusion process after the forging process, as shown in FIG. 9, the molded metal material M is pushed out of the mold 1 by the ejector pins 2 pushed up by the knockout 3. Since the ejector pins 2 are inserted into all the holes 1b of the mold 1 from the outside of the mold 1, the ejector pins 2 apply a uniform extrusion pressure to the outer end surfaces of all the formed fin portions F. Therefore, there is no possibility that the metal material M molded into the target shape is distorted. In addition, since the gap 4 is defined between the outer peripheral surface of the ejector pin 2 and the inner peripheral surface of the hole 1b of the mold 1, the ejector pin 2 can be allowed to move smoothly.

従って、あとは、押し出された成形後の金属材料Mに化学研磨処理や、トリミング処理を行えば、最終的に、前述した図1・図2に示す一体型ピンフィンヒートシンクHを製造することができる。   Therefore, the integrated pin fin heat sink H shown in FIGS. 1 and 2 can be finally manufactured by performing chemical polishing or trimming on the extruded metal material M after molding. .

本発明に係る一体型ピンフィンヒートシンクの製造方法は、今後需要増大が見込まれるハイブリットカーや電気自動車の分野において、これらの自動車の複雑なシステムを制御するために高集積化・大容量化された高出力モーター制御装置用の半導体素子等に使用される半導体に生じる熱を放出するヒートシンクの製造に利用すれば、頗る好都合なものとなる。   The manufacturing method of an integrated pin fin heat sink according to the present invention is a highly integrated and large-capacity high-capacity system for controlling complex systems of these vehicles in the field of hybrid cars and electric vehicles, where demand is expected to increase in the future. When used for manufacturing a heat sink that releases heat generated in a semiconductor used for a semiconductor element or the like for an output motor control device, it is very convenient.

本発明の製造方法により製造される一体型ピンフィンヒートシンクの一例を示す斜視図である。It is a perspective view which shows an example of the integrated pin fin heat sink manufactured by the manufacturing method of this invention. 本発明の製造方法により製造される一体型ピンフィンヒートシンクの一例を示す平面図である。It is a top view which shows an example of the integrated pin fin heat sink manufactured by the manufacturing method of this invention. 本発明の実施例に係る製造方法に用いる金型とエジェクターピンとの関係を示す斜視図である。It is a perspective view which shows the relationship between the metal mold | die used for the manufacturing method which concerns on the Example of this invention, and an ejector pin. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 金型の孔部の孔縁を示す拡大断面図である。It is an expanded sectional view which shows the hole edge of the hole part of a metal mold | die. 本発明の実施例に係る製造方法の鍛造工程時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the forge process of the manufacturing method which concerns on the Example of this invention. エジェクターピンの外周面と金型の孔部の内周面との間に画成される隙間を示す説明図である。It is explanatory drawing which shows the clearance gap defined between the outer peripheral surface of an ejector pin, and the internal peripheral surface of the hole of a metal mold | die. 本発明の実施例に係る製造方法の鍛造工程直後の状態を示す説明図である。It is explanatory drawing which shows the state immediately after the forge process of the manufacturing method which concerns on the Example of this invention. 本発明の実施例に係る製造方法の押出工程時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the extrusion process of the manufacturing method which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 金型
1a 凹部
1b 孔部
1c 孔縁
2 エジェクターピン
3 ノックアウト
4 隙間
M 金属材料
H 一体型ピンフィンヒートシンク
B 基盤部
F フィン部
P ピッチ
DESCRIPTION OF SYMBOLS 1 Mold 1a Concave part 1b Hole part 1c Hole edge 2 Ejector pin 3 Knockout 4 Crevice M Metal material H Integrated type pin fin heat sink B Base part F Fin part P Pitch

Claims (3)

平板状を呈する基盤部と、該基盤部の一面側に立設されたピン状を呈する多数のフィン部を有する一体型ピンフィンヒートシンクを金属材料で一体に成形して製造する製造方法であって、金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を金型を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料をエジェクターピンで金型の外方に押し出す押出工程とを備え、金型の内側に、鍛造工程時の圧力により金属材料を平板状に成形する凹部を設け、該凹部下面に鍛造工程時の圧力で金属材料を搾伸してピン状に成形する孔部を多数穿設し、鍛造工程時には、金型のすべての孔部に金型の外側からエジェクターピンを挿入し、当該エジェクターピンの外径を金型の孔部の内径よりも小さくして、エジェクターピンの外周面と金型の孔部の内周面との間に隙間を画成することを特徴とする一体型ピンフィンヒートシンクの製造方法。   A manufacturing method in which an integrated pin fin heat sink having a flat plate-like base portion and a large number of fin portions standing on one side of the base portion is integrally formed of a metal material, and manufactured. Heating process to heat-treat the metal material, forging process to forge the heat-treated metal material to the desired shape using a mold, and the metal material after molding to the outside of the mold with an ejector pin An extrusion process that extrudes the metal material, and a recess is formed on the inner side of the mold to form the metal material into a flat plate shape by the pressure during the forging process. A large number of holes to be molded are drilled, and during the forging process, ejector pins are inserted into all the holes of the mold from the outside of the mold, and the outer diameter of the ejector pins is made larger than the inner diameter of the mold hole. And make it smaller outside the ejector pin Method of manufacturing integral pin fin heat sink, characterized in that to define a gap between the surface and the inner surface of the mold hole. エジェクターピンの外径を金型の孔部の内径よりも0.05mm小さくしたことを特徴とする請求項1記載の一体型ピンフィンヒートシンクの製造方法。   2. The method of manufacturing an integrated pin fin heat sink according to claim 1, wherein an outer diameter of the ejector pin is made 0.05 mm smaller than an inner diameter of the hole of the mold. 金型の孔部の孔縁を面取り形状としたことを特徴とする請求項1乃至請求項2のいずれかに記載の一体型ピンフィンヒートシンクの製造方法。   3. The method of manufacturing an integrated pin fin heat sink according to claim 1, wherein a hole edge of the hole portion of the mold has a chamfered shape.
JP2008302844A 2008-11-27 2008-11-27 Method for manufacturing integrated pin-fin heat sink Pending JP2010129774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302844A JP2010129774A (en) 2008-11-27 2008-11-27 Method for manufacturing integrated pin-fin heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302844A JP2010129774A (en) 2008-11-27 2008-11-27 Method for manufacturing integrated pin-fin heat sink

Publications (1)

Publication Number Publication Date
JP2010129774A true JP2010129774A (en) 2010-06-10

Family

ID=42329966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302844A Pending JP2010129774A (en) 2008-11-27 2008-11-27 Method for manufacturing integrated pin-fin heat sink

Country Status (1)

Country Link
JP (1) JP2010129774A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392806A1 (en) 2010-06-07 2011-12-07 JATCO Ltd Torque down control apparatus and method for automotive vehicle
JP2012199324A (en) * 2011-03-18 2012-10-18 Mitsubishi Shindoh Co Ltd Manufacturing method and manufacturing device of pin-shaped fin integrated type heat sink
JP2012227365A (en) * 2011-04-20 2012-11-15 Mitsubishi Shindoh Co Ltd Pin-like fin integrated type heat sink, and manufacturing method thereof
JP2012248576A (en) * 2011-05-25 2012-12-13 Mitsubishi Shindoh Co Ltd Pin-like fin integrated-type heat sink
JP2013239675A (en) * 2012-05-17 2013-11-28 Toyota Industries Corp Cooler
CN105665573A (en) * 2014-12-05 2016-06-15 丰田自动车株式会社 Pin fin forming method
CN106345928A (en) * 2015-07-13 2017-01-25 丰田自动车株式会社 Surface roughening apparatus for metal stock and surface roughening method for metal stock
JP2017119290A (en) * 2015-12-28 2017-07-06 昭和電工株式会社 Heat sink forging raw material, manufacturing method of heat sink forging raw material and manufacturing method of heat sink
JP2018006582A (en) * 2016-07-01 2018-01-11 かがつう株式会社 Heat sink, manufacturing method of heat sink, and electronic component package using heat sink
WO2019007547A1 (en) * 2017-07-07 2019-01-10 Holzhauer Gmbh & Co. Kg Method for producing a cooling plate
CN115156863A (en) * 2022-08-19 2022-10-11 昆山固特杰散热产品有限公司 Forming method of dense-fin radiating plate with side wall

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112370A (en) * 1974-07-22 1976-01-30 Myamoto Kogyo Kk HANDOTAIREIKYAKUYOHONETSUKINO SEIZOHOHO
JPH05190711A (en) * 1992-01-10 1993-07-30 Sumitomo Metal Ind Ltd Pin fin type heat sink and manufacture thereof
JP2005072180A (en) * 2003-08-22 2005-03-17 Hitachi Cable Ltd Method for manufacture integral heatsink with copper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112370A (en) * 1974-07-22 1976-01-30 Myamoto Kogyo Kk HANDOTAIREIKYAKUYOHONETSUKINO SEIZOHOHO
JPH05190711A (en) * 1992-01-10 1993-07-30 Sumitomo Metal Ind Ltd Pin fin type heat sink and manufacture thereof
JP2005072180A (en) * 2003-08-22 2005-03-17 Hitachi Cable Ltd Method for manufacture integral heatsink with copper

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392806A1 (en) 2010-06-07 2011-12-07 JATCO Ltd Torque down control apparatus and method for automotive vehicle
JP2012199324A (en) * 2011-03-18 2012-10-18 Mitsubishi Shindoh Co Ltd Manufacturing method and manufacturing device of pin-shaped fin integrated type heat sink
JP2012227365A (en) * 2011-04-20 2012-11-15 Mitsubishi Shindoh Co Ltd Pin-like fin integrated type heat sink, and manufacturing method thereof
JP2012248576A (en) * 2011-05-25 2012-12-13 Mitsubishi Shindoh Co Ltd Pin-like fin integrated-type heat sink
JP2013239675A (en) * 2012-05-17 2013-11-28 Toyota Industries Corp Cooler
US10099271B2 (en) 2014-12-05 2018-10-16 Toyota Jidosha Kabushiki Kaisha Pin fin forming method
CN105665573A (en) * 2014-12-05 2016-06-15 丰田自动车株式会社 Pin fin forming method
JP2016107300A (en) * 2014-12-05 2016-06-20 トヨタ自動車株式会社 Forming method of pin-shaped fin
CN106345928A (en) * 2015-07-13 2017-01-25 丰田自动车株式会社 Surface roughening apparatus for metal stock and surface roughening method for metal stock
JP2017119290A (en) * 2015-12-28 2017-07-06 昭和電工株式会社 Heat sink forging raw material, manufacturing method of heat sink forging raw material and manufacturing method of heat sink
JP2018006582A (en) * 2016-07-01 2018-01-11 かがつう株式会社 Heat sink, manufacturing method of heat sink, and electronic component package using heat sink
WO2019007547A1 (en) * 2017-07-07 2019-01-10 Holzhauer Gmbh & Co. Kg Method for producing a cooling plate
CN111132774A (en) * 2017-07-07 2020-05-08 霍尔茨豪厄有限责任两合公司 Method for producing a cooling plate
CN111132774B (en) * 2017-07-07 2022-06-10 霍尔茨豪厄有限责任两合公司 Method for producing a cooling plate
US11766708B2 (en) 2017-07-07 2023-09-26 Holzhauer Gmbh & Co. Kg Method for the production of a cooling plate
CN115156863A (en) * 2022-08-19 2022-10-11 昆山固特杰散热产品有限公司 Forming method of dense-fin radiating plate with side wall
CN115156863B (en) * 2022-08-19 2024-05-07 昆山固特杰散热产品有限公司 Forming method of heat dissipation plate with dense fins and side walls

Similar Documents

Publication Publication Date Title
JP2010129774A (en) Method for manufacturing integrated pin-fin heat sink
US8387247B2 (en) Method for manufacturing heat radiator having plate-shaped fins
US20090178796A1 (en) Base plate for a dual base plate heatsink
EP2220674A2 (en) Cooling fin and manufacturing method of the cooling fin
TW201238676A (en) Extrusion molding die for aluminum base of heat sink and manufacturing method thereof
EP2944395A1 (en) Method for producing cooling device and heat-dissipating member
JP5912282B2 (en) Pin-shaped fin integrated heat sink and manufacturing method thereof
JP2012248576A (en) Pin-like fin integrated-type heat sink
JP5808554B2 (en) Manufacturing method and manufacturing apparatus for pin-shaped fin integrated heat sink
EP3379908B1 (en) Method for manufacturing a fluid-based cooling element and fluid-based cooling element
CN111180399A (en) Cooling plate and manufacturing method thereof
JP2005026642A (en) Heat exchanger
JP3885197B2 (en) Heat exchange component having long hole in substrate and method for manufacturing the same
WO2017033603A1 (en) Method for manufacturing heat dissipating substrate
JP7033470B2 (en) How to make a heat sink
TW201837418A (en) Heat sink and manufacturing method thereof for achieving the purposes of optimizing heat dissipation performance, facilitating mass production and customized manufacture, reducing cost and improving applicability
US10328482B2 (en) Method for manufacturing metal compact and apparatus for manufacturing metal compact
JP6566566B2 (en) Heat sink forging material, heat sink forging material manufacturing method, and heat sink manufacturing method
JP4015146B2 (en) Heat sink with fins and method for manufacturing the same
JP6045381B2 (en) Heat sink manufacturing method and heat sink
JP2006132850A (en) Cooling unit and its manufacturing method
JP6606650B2 (en) Manufacturing method of heat sink integrated with plate fin
KR100590377B1 (en) method of molding fin for oil cooler
JPH08181259A (en) Manufacture of pin fin heat sink
JP2005072180A (en) Method for manufacture integral heatsink with copper

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510