JP2012227365A - Pin-like fin integrated type heat sink, and manufacturing method thereof - Google Patents

Pin-like fin integrated type heat sink, and manufacturing method thereof Download PDF

Info

Publication number
JP2012227365A
JP2012227365A JP2011093819A JP2011093819A JP2012227365A JP 2012227365 A JP2012227365 A JP 2012227365A JP 2011093819 A JP2011093819 A JP 2011093819A JP 2011093819 A JP2011093819 A JP 2011093819A JP 2012227365 A JP2012227365 A JP 2012227365A
Authority
JP
Japan
Prior art keywords
pin
plate
fin
heat sink
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011093819A
Other languages
Japanese (ja)
Other versions
JP5912282B2 (en
Inventor
Shin Oikawa
伸 及川
Ryohei Yakushi
良平 薬師
Hideo Takizawa
英男 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011093819A priority Critical patent/JP5912282B2/en
Publication of JP2012227365A publication Critical patent/JP2012227365A/en
Application granted granted Critical
Publication of JP5912282B2 publication Critical patent/JP5912282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles

Abstract

PROBLEM TO BE SOLVED: To provide a pin-like fin integrated type heat sink having satisfactory moldability of pin-like fins, securing mounting strength and proof stress, and having a plate-like part easily plastic-deformable to the thermal expansion and contraction of electric components, and a method for manufacturing the same.SOLUTION: A pin-like fin integrated type heat sink is made of pure copper having a copper purity of not less than 99.90 mass%, and has a plate-like part 2 of which one surface side is provided with a number of erected pin-like fins 3, and at least a part of the peripheral part 7 of the plate-like part 2 has a 0.2% proof stress which is twice to five times of that of the center part of the plate-like part. The pin-like fin integrated type heat sink is manufactured by: a heating step for heat treatment of metallic material; a hot forging step for forging the metallic material after heat treatment on a molding die having a number of holes to make at least a part of the peripheral part of the plate-like part thick-walled and to mold pin-like fins 3 in a part except the thick-walled part and a thin-walled fin erecting part 5 where the pin-like fins are erected; and a cold forging step for forging the thick-walled part in a cold condition to mold the peripheral part of the plate-like part.

Description

本発明は、大規模集積回路(LSI)等の発熱を伴う電子部品の冷却に用いられるヒートシンクに関し、特に詳しくは、放熱のためのピン状フィンを一体に形成したピン状フィン一体型ヒートシンク及びその製造方法に関する。   The present invention relates to a heat sink used for cooling electronic components that generate heat, such as a large-scale integrated circuit (LSI), and more specifically, a pin-shaped fin integrated heat sink in which pin-shaped fins for heat dissipation are integrally formed, and the heat sink It relates to a manufacturing method.

大規模集積回路(LSI)等の発熱を伴う電子部品においては、電子部品を正常に動作させるために、熱を外部に放散させるヒートシンク或いはヒートスプレッダが取り付けられる。これらの素材としては、熱伝導率が高く、軽量で加工性の良いアルミニウムや銅が用いられる。
特許文献1にはヒートスプレッダ(ヒートシンク)用銅合金として、0.2%耐力が100〜200N/mm、熱伝導率が350W/m・K以上、加工硬化指数が0.14〜0.18、圧延表面板の幅方向の結晶粒径が25μm以下であるCu基合金が開示されている。また、Fe、Ni、Coのうち少なくとも1種類以上とPを合計で0.05〜0.3wt%含有し、残部がCuと不可避成分からなり、断面減少率40%以下の冷間鍛造後に600℃で30分間熱処理した後の結晶粒径が25μm以下であり、断面減少率40%以下の冷間鍛造後に600℃で30分間熱処理した後のビッカース硬さがHV60〜170であるのが好ましいと記載されている。
また、このようなヒートシンクとして、放熱のためのフィンをピン状に形成し、ベースとなる板状部に多数のピン状フィンを立設状態に設けたものがあり、その製造方法として、例えば特許文献2及び特許文献3に記載の方法が知られている。
In an electronic component that generates heat, such as a large-scale integrated circuit (LSI), a heat sink or a heat spreader that dissipates heat is attached to operate the electronic component normally. As these materials, aluminum or copper having high thermal conductivity, light weight and good workability is used.
In Patent Document 1, as a copper alloy for heat spreader (heat sink), 0.2% proof stress is 100 to 200 N / mm 2 , thermal conductivity is 350 W / m · K or more, work hardening index is 0.14 to 0.18, A Cu-based alloy having a grain size in the width direction of the rolled surface plate of 25 μm or less is disclosed. Further, at least one of Fe, Ni, Co and P and 0.05 to 0.3 wt% in total are contained, the balance is made of Cu and inevitable components, and 600% after cold forging with a cross-sectional reduction rate of 40% or less. When the crystal grain size after heat treatment at 30 ° C. for 30 minutes is 25 μm or less and the Vickers hardness after heat treatment at 600 ° C. for 30 minutes after cold forging with a cross-section reduction rate of 40% or less is preferably HV 60-170 Have been described.
In addition, as such a heat sink, there is one in which fins for heat dissipation are formed in a pin shape, and a large number of pin-shaped fins are provided in an upright state on a plate-like portion serving as a base. Methods described in Document 2 and Patent Document 3 are known.

特許文献2には、金属材料に加熱処理を行う加熱工程と、加熱処理後の金属材料を金型を用いて鍛造して目的の形状に成形する鍛造工程と、成形後の金属材料をエジェクターピンで金型の外方に押し出す押出工程とを備え、金型の内側に、鍛造工程時の圧力により金属材料を平板状に成形する凹部を設け、該凹部下面に鍛造工程時の圧力で金属材料を搾伸してピン状に成形する孔部を多数穿設し、鍛造工程時には、金型のすべての孔部に金型の外側からエジェクターピンを挿入し、当該エジェクターピンの外径を金型の孔部の内径よりも0.05mm小さくして、エジェクターピンの外周面と金型の孔部の内周面との間に隙間を画成する製造方法が開示されている。   Patent Document 2 discloses a heating process in which heat treatment is performed on a metal material, a forging process in which the metal material after the heat treatment is forged using a mold into a desired shape, and the metal material after the molding is ejector pins. And an extrusion process for extruding the mold outward, and a concave portion for forming a metal material into a flat plate shape by pressure during the forging process is provided inside the mold, and the metal material is formed at the lower surface of the concave section by the pressure during the forging process. A number of holes are formed to form a pin shape by stretching the ejector pin, and at the time of the forging process, ejector pins are inserted into all the holes of the mold from the outside of the mold, and the outer diameter of the ejector pin is set to the mold. A manufacturing method is disclosed in which a gap is defined between the outer peripheral surface of the ejector pin and the inner peripheral surface of the hole portion of the mold by making it 0.05 mm smaller than the inner diameter of the hole portion.

この製造方法によれば、常温では変形抵抗が大きい金属材料であっても、その変形抵抗を小さくして鍛造することができるので、フィンピッチを細かくすることや、大型のヒートシンクを製造することも可能となる。   According to this manufacturing method, even a metal material having a large deformation resistance at room temperature can be forged with a small deformation resistance. Therefore, it is possible to make the fin pitch fine or to manufacture a large heat sink. It becomes possible.

一方、特許文献3にも、成形ダイスとパンチとにより多数のピンを鍛造成形する技術が開示されており、この場合も成形ダイスの各孔内にノックアウトピン(エジェクターピン)が挿入されている。また、ダイス孔詰まりとピン高さの不揃いの対策として、成形ダイスのベアリング部の表面粗度を0.05μm以下となし、かつダイスの出側部分に「逃がし」を与えてダイス内壁とピン材料の摩擦を極力ゼロに近づけるようにしている。   On the other hand, Patent Document 3 discloses a technique for forging a large number of pins with a forming die and a punch, and in this case, a knockout pin (ejector pin) is inserted into each hole of the forming die. In addition, as a countermeasure against die hole clogging and uneven pin height, the surface roughness of the bearing part of the forming die is 0.05 μm or less, and the die exit wall is given “relief” to provide a die inner wall and pin material. The friction is made as close to zero as possible.

特開2003−277853号公報JP 2003-277853 A 特開2010−129774号公報JP 2010-129774 A 特許第2828234号公報Japanese Patent No. 28828234

このようなピン状フィン一体型ヒートシンクは、各種機器の構造部材にねじ止め等により固定され、また、水冷の場合にはフィンに作用する水流の圧力をねじ止め部により支持する必要がある。このため、取付けのための強度と外力に対する耐力が必要であるが、特許文献1記載のような高強度材を用いると、鍛造時にも大きな圧力が必要になり、成形性を低下させる。また、板状部にはフィンと反対面である板状部の中央部分に電子部品が接合され、この電子部品が熱伸縮することから、熱応力発生を緩和するために、電子部品の熱伸縮に対して,板状部の中央部分が容易に塑性変形することで,電子部品に過大な応力を生じさせない程度に軟質であることが求められる。   Such a pin-shaped fin-integrated heat sink is fixed to structural members of various devices by screws or the like, and in the case of water cooling, it is necessary to support the pressure of the water flow acting on the fins by the screws. For this reason, strength for mounting and resistance to external force are required. However, when a high-strength material such as that described in Patent Document 1 is used, a large pressure is required even during forging, and formability is reduced. In addition, an electronic component is joined to the plate-shaped portion at the center of the plate-shaped portion opposite to the fin, and the electronic component thermally expands and contracts. On the other hand, the central part of the plate-like part is required to be soft enough not to cause an excessive stress on the electronic component by being easily plastically deformed.

本発明は、前述の事情に鑑みてなされたものであり、ピン状フィンの良好な成形性を有しつつ、取付け強度を確保し、また、電子部品の熱伸縮に対して、板状部の中央部分が容易に塑性変形することができるピン状フィン一体型ヒートシンク及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and has a good moldability of the pin-shaped fins, ensures the mounting strength, and prevents the plate-like portion from being thermally expanded and contracted by the electronic component. An object of the present invention is to provide a pin-like fin-integrated heat sink in which a central portion can be easily plastically deformed and a method for manufacturing the same.

本発明のピン状フィン一体型ヒートシンクは、純度が99.90質量%以上の純銅からなり、板状部の一面側に多数のピン状フィンが立設されるとともに、前記板状部の周縁部の少なくとも一部は、0.2%耐力が、電子部品が接合される前記板状部の中央部分の2倍〜5倍とされていることを特徴とする。   The pin-shaped fin-integrated heat sink of the present invention is made of pure copper having a purity of 99.90% by mass or more, and a large number of pin-shaped fins are erected on one surface side of the plate-shaped portion, and the peripheral portion of the plate-shaped portion At least a part of is characterized in that the 0.2% proof stress is 2 to 5 times that of the central part of the plate-like part to which the electronic component is joined.

純度が99.90質量%以上の純銅は、熱伝導率が高く、軟質で塑性変形が容易であるので、鍛造によりピン状フィンを高精度に成形することができる。また、電子部品が接合された後には、電子部品の熱伸縮に対して、電子部品が接合される板状部の中央部分が容易に塑性変形することで,電子部品に過大な応力を生じさせないことができる。一方、板状部の周縁部で0.2%耐力が板状部の中央部分の2倍〜5倍とした部分は、各種機器の構造材への取付け部として利用することができ、部材としての強度を向上させることができる。純銅のなかでも、純度99.96質量%以上の無酸素銅、99.99質量%以上の電子管用無酸素銅がより好ましい。
純度99.90質量%未満の銅基合金は、析出硬化あるいは固溶強化により、全体として機械的強度は大きくなるが、電子部品の熱伸縮に対して、板状部の中央部分が塑性変形し難くなるので好ましくない。
Pure copper having a purity of 99.90% by mass or higher has high thermal conductivity, is soft, and is easily plastically deformed. Therefore, pin-shaped fins can be formed with high accuracy by forging. In addition, after the electronic component is joined, the central portion of the plate-like portion to which the electronic component is joined is easily plastically deformed against thermal expansion and contraction of the electronic component, so that no excessive stress is generated in the electronic component. be able to. On the other hand, the portion where the 0.2% proof stress at the peripheral part of the plate-like part is 2 to 5 times that of the central part of the plate-like part can be used as an attachment part to the structural material of various devices, and as a member The strength of can be improved. Among pure copper, oxygen-free copper having a purity of 99.96% by mass or more and oxygen-free copper for electron tubes having a purity of 99.99% by mass or more are more preferable.
A copper-based alloy with a purity of less than 99.90% by mass has an increased mechanical strength as a whole due to precipitation hardening or solid solution strengthening, but the central portion of the plate-like portion undergoes plastic deformation due to thermal expansion and contraction of electronic components. Since it becomes difficult, it is not preferable.

更に、本発明のピン状フィン一体型ヒートシンクは、前記板状部の周縁部の表面粗さが算術平均粗さRaで0.1μm〜6.3μmであることを特徴とする。
算術平均粗さRaが0.1μm〜6.3μmであることにより、ピン状フィン一体型ヒートシンクが収納される水冷ボックス側に取り付けられたパッキンを介して各種機器に液密に取り付けられ、水冷による冷媒に対する密封性に特に優れたものとなる。
算術平均粗さRaが6.3μmを超えると、密封性が低下する傾向が見られ、算術平均粗さRaが0.1μm未満では、効果が飽和して無駄となる。
Furthermore, the pin-like fin-integrated heat sink of the present invention is characterized in that the surface roughness of the peripheral portion of the plate-like portion is an arithmetic average roughness Ra of 0.1 μm to 6.3 μm.
When the arithmetic average roughness Ra is 0.1 μm to 6.3 μm, it is liquid-tightly attached to various devices via a packing attached to the water-cooled box side in which the pin-shaped fin-integrated heat sink is accommodated. The sealing property against the refrigerant is particularly excellent.
When the arithmetic average roughness Ra exceeds 6.3 μm, the sealing property tends to be lowered, and when the arithmetic average roughness Ra is less than 0.1 μm, the effect is saturated and wasted.

本発明のピン状フィン一体型ヒートシンクの製造方法は、金属材料を加熱処理する加熱工程と、多数のフィン成形用穴部を有する成形ダイ上で加熱処理後の前記金属材料を鍛造することにより、前記板状部の周縁部の少なくとも一部を厚肉部にするとともに、該厚肉部を除く部分に前記ピン状フィン及び該ピン状フィンを立設した薄肉のフィン立設部を成形する熱間鍛造工程と、前記厚肉部を冷間で鍛造することにより前記板状部の周縁部を成形する冷間鍛造工程とを有することを特徴とする。   The manufacturing method of the pin-shaped fin-integrated heat sink of the present invention includes a heating step of heat-treating a metal material, and forging the metal material after heat treatment on a forming die having a large number of fin-forming holes. Heat for forming at least a part of the peripheral part of the plate-like part into a thick part, and forming the pin-like fin and the thin-walled fin standing part in the part excluding the thick part. It has a cold forging process and the cold forging process which shape | molds the peripheral part of the said plate-shaped part by forging the said thick part cold.

すなわち、金属材料を加熱し、ピン状フィンと、板状部のうち周縁部の少なくとも一部を除くピン状フィンを立設するフィン立設部とを熱間で鍛造して成形し、その後に冷間で板状部の周縁部の少なくとも一部を鍛造して成形する。熱間で金属材料を塑性変形し易い状態にしておいて、ピン状フィン等を精密に成形し、製品としてねじ止め等されるため機械的強度が必要な部位は冷間にて成形することにより加工硬化させ、必要な強度と耐力を得る。更に、冷間にて成形することにより、容易に前記板状部の周縁部の表面粗さを小さくすることができ、ピン状フィン一体型ヒートシンクが収納される水冷ボックス側に取り付けられたパッキンを介して各種機器に液密に取り付けられ、水冷による冷媒に対する密封性に優れるものとなる。   That is, the metal material is heated, and the pin-shaped fin and the fin standing portion for standing the pin-shaped fin excluding at least a part of the peripheral portion of the plate-shaped portion are hot forged and formed, and then At least a part of the peripheral part of the plate-like part is forged and formed cold. By keeping the metal material in a state where it can be easily plastically deformed hot, pin-shaped fins, etc. are precisely formed, and the parts that require mechanical strength because they are screwed etc. as a product Work and harden to obtain the required strength and yield strength. Further, by molding in the cold, the surface roughness of the peripheral portion of the plate-like portion can be easily reduced, and the packing attached to the water-cooled box side in which the pin-like fin integrated heat sink is accommodated It is liquid-tightly attached to various devices, and has excellent sealing properties against coolant by water cooling.

本発明によれば、ピン状フィンの良好な成形性を有しつつ、各種機器に取り付けられる周縁部に強度や耐力を確保し、また、電子部品の熱伸縮に対して、板状部の中央部分が容易に塑性変形することが可能なピン状フィン一体型ヒートシンクを得ることができる。   According to the present invention, while having good moldability of pin-shaped fins, the strength and proof strength are ensured at the peripheral portion attached to various devices, and the center of the plate-like portion against thermal expansion and contraction of electronic components It is possible to obtain a pin-shaped fin-integrated heat sink in which a portion can be easily plastically deformed.

本発明の一実施形態のピン状フィン一体型ヒートシンクを示すもので、(a)がピン状フィンの側から見た斜視図、(b)が板状部の平坦面側から見た斜視図である。The pin-shaped fin integrated heat sink of one embodiment of the present invention is shown, (a) is a perspective view seen from the pin-shaped fin side, (b) is a perspective view seen from the flat surface side of the plate-like part. is there. 図1のヒートシンクの水冷ボックスへの取付け例を示す分解斜視図である。It is a disassembled perspective view which shows the example of attachment to the water cooling box of the heat sink of FIG. 本発明の一実施形態のピン状フィン一体型ヒートシンクを製造するための熱間鍛造工程に用いられるフィン成形金型の縦断面図であり、(a)がフィン成形金型に金属材料を配置した状態を示し、(b)が熱間鍛造している状態を示す。It is a longitudinal cross-sectional view of the fin molding die used for the hot forging process for manufacturing the pin-shaped fin integrated heat sink of one Embodiment of this invention, (a) has arrange | positioned the metal material to the fin molding die The state is shown, and (b) shows the state of hot forging. 図3の熱間鍛造工程により得られた中間成形体に対する冷間鍛造工程に用いられる周縁部成形金型を示す縦断面図であり、(a)が周縁部成形金型に中間成形体を配置した状態を示し、(b)が冷間鍛造している状態を示す。It is a longitudinal cross-sectional view which shows the peripheral part shaping | molding die used for the cold forging process with respect to the intermediate molded object obtained by the hot forging process of FIG. 3, (a) arrange | positions an intermediate molded object to a peripheral part shaping | molding die (B) shows a state where cold forging is performed.

以下に、本発明の実施形態について説明する。
ピン状フィン一体型ヒートシンク1は、図1に示すように、板状部2の一面側に多数のピン状フィン3が立設されている。図示例では、一列に並べたピン状フィン3が列ごとに半ピッチ分だけずれて千鳥配列となるように形成されている。これらの諸寸法は特に限定されるものではないが、板状部2は、例えば長さ133mm、幅77mm、厚さ5mmに形成され、ピン状フィン3は、外径が1.5mm〜2mm、高さが6mm〜8mm、ピッチが4mm〜5mmに形成される。
Hereinafter, embodiments of the present invention will be described.
As shown in FIG. 1, the pin-shaped fin-integrated heat sink 1 has a large number of pin-shaped fins 3 erected on one surface side of the plate-like portion 2. In the illustrated example, the pin-like fins 3 arranged in a row are formed so as to be shifted by a half pitch for each row to form a staggered arrangement. These dimensions are not particularly limited, but the plate-like portion 2 is formed to have a length of 133 mm, a width of 77 mm, and a thickness of 5 mm, for example, and the pin-like fin 3 has an outer diameter of 1.5 mm to 2 mm, The height is 6 mm to 8 mm and the pitch is 4 mm to 5 mm.

材料としては、純度が99.90質量%以上の純銅が用いられる。不純物として、As、Sb、Bi、Pb、S、Fe、O、Pなどが含まれる場合があるが、特にO、Pは微量で塑性変形能が低下するため、O量は500ppm以下、好ましくは100ppm以下とし、P量は150ppm以下、好ましくは50ppm以下に規制することが望ましい。タフピッチ銅、無酸素銅、リン脱酸銅が好適な素材として挙げられるが、純度99.96質量%以上の無酸素銅、99.99質量%以上の電子管用無酸素銅がより好ましい。   As the material, pure copper having a purity of 99.90% by mass or more is used. As impurities, there are cases where As, Sb, Bi, Pb, S, Fe, O, P, and the like are included. In particular, since O and P are trace amounts and the plastic deformability is lowered, the amount of O is 500 ppm or less, preferably It is desirable that the amount is 100 ppm or less and the amount of P is regulated to 150 ppm or less, preferably 50 ppm or less. Tough pitch copper, oxygen-free copper, and phosphorus deoxidized copper can be cited as suitable materials, but oxygen-free copper having a purity of 99.96% by mass or more and oxygen-free copper for electron tubes having a purity of 99.99% by mass or more are more preferable.

また、板状部2のピン状フィン3が立設されているフィン立設部5の回りの周縁部7は、その表面粗さが算術平均粗さRaで0.1μm〜6.3μmとされている。
さらに、板状部2の周縁部7には、各種機器への取付け部となるねじ止めのための貫通孔8が形成されている。この貫通孔8が形成されている板状部2の周縁部7は、その内側の板状部2の中央部分9よりも機械的強度が大きく形成されており、0.2%耐力が少なくとも板状部2の中央部分9に比べて2倍〜5倍となっている。例えば、板状部2の中央部分9の0.2%耐力が35N/mm〜70N/mmであるのに対して、板状部2の周縁部7は100N/mm〜200N/mmとされる。また、ビッカース硬さも、板状部2の中央部分9が45Hv〜60Hvであるのに対して、周縁部7は60Hv〜170Hvに形成される。
板状部2の中央部分9は、後述する冷間鍛造において、フィン立設部5のうちの外周部分は冷間鍛造による加工硬化の影響を少なからず受けるので、フィン立設部5の外周部分よりも内側の部分をいう。ピン状フィン3の大きさや板状部3の板厚等にもよるが、図1(b)の鎖線で囲ったように、あるいは図4(b)に示したように、例えばピン状フィン3の最外周の1周分あるいは2周分が立設されている部分よりも内側の部分をいう。
そして、板状部2の中央部分9においてピン状フィン3が形成されていない他面側の平面部に電子部品(図示略)がはんだ付け等により搭載され、その熱は板状部2を介して各ピン状フィン3に伝達され、これら板状部2及び各ピン状フィン3の外周面から放散される。
Further, the peripheral portion 7 around the fin standing portion 5 where the pin-like fins 3 of the plate-like portion 2 are erected is set to have a surface roughness of 0.1 μm to 6.3 μm in terms of arithmetic average roughness Ra. ing.
Furthermore, a through-hole 8 for screwing that is an attachment portion to various devices is formed in the peripheral portion 7 of the plate-like portion 2. The peripheral edge portion 7 of the plate-like portion 2 in which the through-hole 8 is formed has a mechanical strength larger than that of the central portion 9 of the plate-like portion 2 on the inner side, and the 0.2% proof stress is at least a plate. Compared with the central portion 9 of the shape portion 2, the ratio is 2 to 5 times. For example, while the 0.2% proof stress of the central portion 9 of the plate-like portion 2 is 35N / mm 2 ~70N / mm 2 , the peripheral edge 7 of the plate portion 2 is 100N / mm 2 ~200N / mm 2 . Further, the Vickers hardness is formed such that the central portion 9 of the plate-like portion 2 is 45Hv to 60Hv, whereas the peripheral portion 7 is formed to be 60Hv to 170Hv.
The central portion 9 of the plate-like portion 2 is affected by the work hardening caused by cold forging in the cold forging described later. The inside part is said. Although depending on the size of the pin-shaped fin 3 and the plate thickness of the plate-shaped portion 3, as shown by the chain line in FIG. 1B or as shown in FIG. 4B, for example, the pin-shaped fin 3 The innermost part of the outermost part of the outermost part of the outermost part of the inner part of the part.
Then, an electronic component (not shown) is mounted by soldering or the like on a flat portion on the other surface side where the pin-like fins 3 are not formed in the central portion 9 of the plate-like portion 2, and the heat is transmitted through the plate-like portion 2. Is transmitted to each pin-shaped fin 3 and is dissipated from the outer peripheral surface of the plate-shaped portion 2 and each pin-shaped fin 3.

このように構成されたピン状フィン一体型ヒートシンク1は、例えば図2に示すような冷却ボックス31に取り付けられる。この冷却ボックス31は、ヒートシンク1のピン状フィン3を内部に挿入状態として取り付けるために開口部32が形成されるとともに、その開口部32の周囲を囲むようにパッキン収容溝33が形成され、そのさらに外側にねじ穴34が形成されており、鎖線矢印で示すようにヒートシンク1をピン状フィン3が図2において下方を向くように配置して開口部32内に挿入し、板状部2を開口部32の周囲の表面にパッキン35を介して密接させ、ねじ止めにより固定する構成である。図示例では2個のヒートシンクが取り付けられるようになっており、矢印で示すように冷却媒体が流通して、内部に挿入状態のヒートシンク1のピン状フィン3を冷却する。   The pin-like fin-integrated heat sink 1 configured in this way is attached to a cooling box 31 as shown in FIG. 2, for example. The cooling box 31 is formed with an opening 32 for attaching the pin-like fins 3 of the heat sink 1 in an inserted state, and a packing receiving groove 33 is formed so as to surround the opening 32. Further, a screw hole 34 is formed on the outer side, and the heat sink 1 is arranged so that the pin-like fin 3 faces downward in FIG. 2 as shown by a chain line arrow, and the plate-like portion 2 is inserted into the opening 32. In this configuration, the surface around the opening 32 is brought into close contact with the packing 35 and fixed by screwing. In the illustrated example, two heat sinks are attached, and a cooling medium flows as indicated by arrows to cool the pin-like fins 3 of the heat sink 1 in the inserted state.

このピン状フィン一体型ヒートシンク1を製造するための製造装置は、板状部2の周縁部7を除き、その内側のフィン立設部5及びピン状フィン3を熱間で鍛造して成形するフィン成形用金型11と、このフィン成形用金型11により成形した中間成形体12に対して板状部2の周縁部7を冷間で鍛造して成形する周縁部成形用金型14とから構成される。
フィン成形用金型11は、図3に示すように、図示略の鍛造プレスに、ピン状フィン3を形成するための多数の凹状のフィン成形用穴部15を有する成形ダイ16と、この成形ダイ16上に載せた金属材料Mを鍛造するパンチ17と、成形ダイ16に上下移動可能に設けられるエジェクターピン18とが備えられた構成とされている。
The manufacturing apparatus for manufacturing the pin-shaped fin integrated heat sink 1 excluding the peripheral portion 7 of the plate-like portion 2 and hot-forging the inner fin standing portion 5 and the pin-like fin 3 to form them. A fin forming die 11, and a peripheral portion forming die 14 for forging and forming the peripheral portion 7 of the plate-like portion 2 in the cold with respect to the intermediate formed body 12 formed by the fin forming die 11; Consists of
As shown in FIG. 3, the fin molding die 11 includes a molding die 16 having a number of concave fin molding holes 15 for forming the pin-shaped fins 3 in a forging press (not shown), and this molding. A punch 17 for forging the metal material M placed on the die 16 and an ejector pin 18 provided on the forming die 16 so as to be vertically movable are provided.

成形ダイ16は、その上面部に、鍛造時に金属材料Mが配置される凹部19が形成され、その凹部19に連通して各フィン成形用穴部15が凹部19の底面に形成されている。
パンチ17は、成形ダイ16の上方から図示略の油圧機構により上下動され、成形ダイ16の凹部19内で金属材料Mを叩くように押圧する。この場合、パンチ17の下面のパンチ面17aの平面積は成形ダイ16の凹部19よりも小さく、板状部2のうちの周縁部7を除くフィン立設部5を強く押圧し得る大きさに形成されており、そのパンチ面17aの周囲に、上方に窪むように逃がし部20が形成され、周縁部の熱間鍛造後の肉厚を決めている。
エジェクターピン18は、図示略の油圧機構等により、鍛造後の中間成形体12の周縁部分を下方から押し上げる構成である。
The molding die 16 has a concave portion 19 in which the metal material M is disposed at the time of forging on the upper surface portion thereof, and each fin molding hole 15 is formed on the bottom surface of the concave portion 19 in communication with the concave portion 19.
The punch 17 is moved up and down from above the forming die 16 by a hydraulic mechanism (not shown) and presses the metal material M in the recess 19 of the forming die 16. In this case, the plane area of the punch surface 17a on the lower surface of the punch 17 is smaller than the concave portion 19 of the forming die 16, and is large enough to strongly press the fin standing portion 5 excluding the peripheral edge portion 7 of the plate-like portion 2. The relief portion 20 is formed around the punch surface 17a so as to be recessed upward, and determines the thickness of the peripheral portion after hot forging.
The ejector pin 18 is configured to push up the peripheral portion of the intermediate molded body 12 after forging from below by a hydraulic mechanism (not shown) or the like.

一方、周縁部成形用金型14は、図4に示すように、フィン成形用金型11によりピン状フィン3及びフィン立設部5が鍛造された中間成形体12をさらに鍛造するものであり、図示略の鍛造プレスに、各ピン状フィン3を臨ませるための複数の凹状の穴部25を有し、その穴部25に連通するように成形用の凹部26を有する成形ダイ27と、この成形ダイ27の凹部26上で中間成形体12を鍛造するパンチ28と、鍛造後に成形ダイ27から製品を押し上げるエジェクターピン29とを備えている。
成形ダイ27の凹部26は、フィン成形用金型11による鍛造時に形成された板状部2の周縁部7の厚肉部13を鍛造するものであり、この凹部26の内周面が板状部2の外周面を形成する。凹状の穴部25は、鍛造中にピン状フィン3が変位しないように、ピン状フィン3を収容しておくものである。また、この嵌合は冷間鍛造における素材の正確な位置決めとなる。
パンチ28は、下面のパンチ面28aが板状部2の平面積を有する平坦面に形成され、成形ダイ27の凹部26上で中間成形体12を鍛造することにより、板状部2を成形する。
エジェクターピン29は、成形ダイ27に上下スライド自在に挿入され、鍛造後に図示略の油圧機構等により上昇することにより、製品を成形ダイ27から押し上げる。
On the other hand, as shown in FIG. 4, the peripheral portion molding die 14 further forges the intermediate molded body 12 in which the pin-shaped fins 3 and the fin standing portions 5 are forged by the fin molding die 11. A molding die 27 having a plurality of concave hole portions 25 for allowing each pin-shaped fin 3 to face a forging press (not shown), and having a molding concave portion 26 so as to communicate with the hole portions 25; A punch 28 for forging the intermediate molded body 12 on the concave portion 26 of the molding die 27 and an ejector pin 29 for pushing up the product from the molding die 27 after forging are provided.
The concave portion 26 of the forming die 27 forges the thick portion 13 of the peripheral portion 7 of the plate-like portion 2 formed at the time of forging by the fin molding die 11, and the inner peripheral surface of the concave portion 26 is plate-like. The outer peripheral surface of the part 2 is formed. The concave hole 25 accommodates the pin-shaped fin 3 so that the pin-shaped fin 3 is not displaced during forging. Further, this fitting is an accurate positioning of the material in cold forging.
The punch 28 is formed on a flat surface having a lower punch surface 28 a having a flat area of the plate-like portion 2, and the intermediate-shaped body 12 is forged on the concave portion 26 of the forming die 27 to form the plate-like portion 2. .
The ejector pin 29 is inserted into the molding die 27 so as to be vertically slidable, and is lifted by a hydraulic mechanism (not shown) after forging to push the product up from the molding die 27.

このように構成されたフィン成形用金型11及び周縁部成形用金型14を用いてピン状フィン一体型ヒートシンク1を製造する方法について説明する。
この製造方法においては、金属材料Mを加熱する加熱工程と、加熱後の金属材料Mをフィン成形用金型11により鍛造して、成形ダイ16の成形用穴部15内に金属材料Mの一部を押し込むことにより、主に板状部2のピン状フィン3とフィン立設部5とを成形する熱間鍛造工程と、この熱間鍛造工程において厚肉とした周縁部7を周縁部成形用金型14により冷間にて鍛造する冷間鍛造工程とを備えている。以下、工程順に説明する。
A method of manufacturing the pin-shaped fin-integrated heat sink 1 using the fin molding die 11 and the peripheral portion molding die 14 thus configured will be described.
In this manufacturing method, a heating step of heating the metal material M, and the heated metal material M is forged by the fin molding die 11, and one of the metal materials M is placed in the molding hole 15 of the molding die 16. A hot forging process in which mainly the pin-like fins 3 and the fin standing part 5 of the plate-like part 2 are formed by pushing the part, and the peripheral part 7 which is thick in this hot forging process is formed into the peripheral part. And a cold forging process in which the metal mold 14 is forged in the cold. Hereinafter, it demonstrates in order of a process.

<加熱工程>
加熱工程では、金属材料Mの変形抵抗を減少させるため、金属材料の再結晶温度以上の温度まで加熱する。
<Heating process>
In the heating process, in order to reduce the deformation resistance of the metal material M, the metal material M is heated to a temperature equal to or higher than the recrystallization temperature of the metal material.

<熱間鍛造工程>
図3(a)に示すように、加熱された金属材料Mをフィン成形用金型11の成形ダイ16の凹部19に設置し、パンチ17により叩くように押圧すると、図3(b)に示すように、金属材料Mは成形ダイ16とパンチ17とにより押しつぶされて、凹部19内に広がりながら板状部2の中央部分のフィン立設部5が薄肉に成形されるとともに、その一部がフィン成形用穴部15内に圧入されピン状フィン3の外形が成形される。この鍛造工程は、熱間で行われるため、金属材料Mの流動性が良く、細い径のピン状フィン3も精密に成形することができる。
この熱間鍛造工程により、最終製品のうち、板状部2の周縁部7を除くフィン立設部5及びピン状フィン3を有する中間成形体12が成形され、板状部2の周縁部7となる部分はパンチ17の逃がし部20により成形され、厚肉部13となる。
<Hot forging process>
As shown in FIG. 3A, when the heated metal material M is placed in the concave portion 19 of the molding die 16 of the fin molding die 11 and pressed so as to be struck by the punch 17, it is shown in FIG. 3B. As described above, the metal material M is crushed by the forming die 16 and the punch 17, and the fin standing portion 5 at the center portion of the plate-like portion 2 is formed to be thin while spreading in the concave portion 19, and a part of it is formed. The outer shape of the pin-shaped fin 3 is formed by press-fitting into the fin forming hole 15. Since this forging process is performed hot, the fluidity of the metal material M is good, and the pin-shaped fins 3 having a small diameter can be accurately formed.
By this hot forging process, the intermediate molded body 12 having the fin standing part 5 and the pin-like fin 3 excluding the peripheral part 7 of the plate-like part 2 is formed in the final product, and the peripheral part 7 of the plate-like part 2 is formed. The part to be formed is formed by the relief part 20 of the punch 17 to become the thick part 13.

次いで、パンチ17を上方に退避させ、エジェクターピン18を上昇させて、中間成形体12を成形ダイ16から押し上げる。   Next, the punch 17 is retracted upward, the ejector pin 18 is raised, and the intermediate molded body 12 is pushed up from the molding die 16.

<冷間鍛造工程>
熱間鍛造工程により得られた中間成形体12を冷却後、図4(a)に示すように、周縁部成形用金型14の成形ダイ27の穴部25に中間成形体12のピン状フィン3をすべて配置した状態として、凹部26に板状部2を載置する。この状態では、板状部2の周縁部が厚肉部13となっているため、厚肉部13がフィン立設部5よりも上方に膨出している。そして、図4(b)に示すように、その厚肉部13をフィン立設部5と同じ厚さになるように鍛造することにより、パンチ28と成形ダイ27の凹部26との間に厚肉部13が圧縮されて、これらの内周面により板状部2の周縁部7が成形される。このとき、板状部2のフィン立設部5は、先の熱間鍛造工程においてすでに成形されており、そのフィン立設部5の厚さまで厚肉部13を鍛造するものであるから、この冷間鍛造工程においては変形しない。また、この冷間で鍛造することにより、板状部2の周縁部7の表面は、表面粗さが算術平均粗さRaで0.1μm〜6.3μmに形成される。
次いで、パンチ28を上方に退避させ、エジェクターピン29を上昇することにより、製品を成形ダイ27から押し上げる。
<Cold forging process>
After cooling the intermediate molded body 12 obtained by the hot forging process, as shown in FIG. 4A, the pin-shaped fins of the intermediate molded body 12 are inserted into the holes 25 of the molding die 27 of the peripheral portion molding die 14. The plate-like portion 2 is placed in the concave portion 26 in a state where all 3 are arranged. In this state, since the peripheral portion of the plate-like portion 2 is the thick portion 13, the thick portion 13 bulges upward from the fin standing portion 5. Then, as shown in FIG. 4B, the thick portion 13 is forged so as to have the same thickness as the fin standing portion 5, thereby increasing the thickness between the punch 28 and the concave portion 26 of the forming die 27. The meat portion 13 is compressed, and the peripheral portion 7 of the plate-like portion 2 is formed by these inner peripheral surfaces. At this time, the fin standing part 5 of the plate-like part 2 has already been formed in the previous hot forging process, and the thick part 13 is forged up to the thickness of the fin standing part 5. It does not deform in the cold forging process. Further, by forging in the cold, the surface of the peripheral edge portion 7 of the plate-like portion 2 is formed with a surface roughness of 0.1 μm to 6.3 μm in terms of arithmetic average roughness Ra.
Next, the product is pushed up from the molding die 27 by retracting the punch 28 upward and raising the ejector pin 29.

このようにして製造されたピン状フィン一体型ヒートシンク1は、フィン立設部5におけるピン状フィン3が立設されている面とは反対面である板状部2の中央部分9に電子部品が搭載され、水冷ボックス31内にピン状フィン3を挿入した状態となるように、板状部2の周縁部7がパッキン35を介して水冷ボックス31にねじ止め等により固定される。電子部品は、半導体チップ、回路基板等により構成される部品であり、水冷ボックス31は、内部に水等の冷却媒体が流通しており、その冷却媒体にピン状フィン3が浸漬して放熱を促進する。
この取付け状態において、水冷ボックス31に固定される板状部2の周縁部7は、冷間鍛造により加工硬化しており(図4(b)のクロスハッチング部分参照)、0.2%耐力が板状部2の中央部分9の2倍〜5倍に大きく形成されているので、変形等を生じることなく強固に固定することができる。また、水冷ボックス31のパッキン収容溝33に収容したパッキン35に密接されるヒートシンク1の板状部2の周縁部7は、算術平均粗さRaが0,1μm〜6.3μmに形成されているので、水冷ボックス31との間で優れた密封性を確保することができる。
また、長期間の使用に際して、電子部品の発熱、周囲環境の温度変化等により熱伸縮するが、電子部品が固着されている板状部2の中央部分9は熱間鍛造により成形され、その後の冷間鍛造工程では変形されていないことから、比較的軟質に維持され、電子部品との熱伸縮差を緩和するように電子部品の熱伸縮に対して、板状部5の中央部9が容易に塑性変形して、電子部品に生じる熱応力の発生を抑制することができる。
The pin-shaped fin-integrated heat sink 1 manufactured in this way has an electronic component on the central portion 9 of the plate-like portion 2 which is the surface opposite to the surface where the pin-like fins 3 are erected in the fin-raised portion 5. Is mounted, and the peripheral portion 7 of the plate-like portion 2 is fixed to the water-cooled box 31 via the packing 35 by screws or the like so that the pin-like fins 3 are inserted into the water-cooled box 31. The electronic component is a component composed of a semiconductor chip, a circuit board, etc., and the water cooling box 31 has a cooling medium such as water circulating therein, and the pin-like fins 3 are immersed in the cooling medium to dissipate heat. Facilitate.
In this attached state, the peripheral edge portion 7 of the plate-like portion 2 fixed to the water-cooled box 31 is work-hardened by cold forging (see the cross-hatched portion in FIG. 4B) and has a 0.2% proof stress. Since it is formed two to five times as large as the central portion 9 of the plate-like portion 2, it can be firmly fixed without causing deformation or the like. Further, the peripheral edge portion 7 of the plate-like portion 2 of the heat sink 1 that is in close contact with the packing 35 accommodated in the packing accommodation groove 33 of the water-cooled box 31 is formed with an arithmetic average roughness Ra of 0.1 μm to 6.3 μm. Therefore, it is possible to ensure excellent sealing performance with the water cooling box 31.
In addition, when used for a long period of time, heat expansion and contraction occurs due to heat generation of the electronic component, temperature change of the surrounding environment, etc., but the central portion 9 of the plate-like portion 2 to which the electronic component is fixed is formed by hot forging, Since it is not deformed in the cold forging process, the central portion 9 of the plate-like portion 5 is easily maintained against the thermal expansion and contraction of the electronic component so as to be kept relatively soft and reduce the thermal expansion and contraction difference with the electronic component. It is possible to suppress the occurrence of thermal stress generated in the electronic component by plastic deformation.

金属材料として無酸素銅(純度99.99wt%以上)を用い、ヒートシンクとしては、板状部は、長さ133mm、幅77mm、厚さ5mmとし、ピン状フィンは、外径が1.5mm、高さ8mm、ピッチが4mmで、一列に並べたピン状フィンが列ごとに半ピッチ分だけずれて千鳥配列としたものを成形した。
無酸素銅(純度99.99wt%以上)の鋳塊を700℃に加熱した後、フィン成形用金型により熱間鍛造し、フィン立設部及びピン状フィンを成形した。この熱間鍛造時の圧力は100MPa〜150MPaとした。次に、板状周縁部成形用金型により冷間鍛造して、板状部の周縁部を成形し、表面粗さを変えて試料1〜6のヒートシンクを作製した。この冷間鍛造時の圧力は200MPa〜500MPaとした。
比較例として、無酸素銅(純度99.99wt%以上)の鋳塊を700℃に加熱した後、フィン立設部及びピン状フィンと板状周縁部が一体で形成できる金型を使用して、熱間鍛造のみで冷間鍛造なしにこれらを一体形成し、試料7及び試料8のヒートシンクを作製した。表1には、この試料7及び8について、フィン及びフィン立設部と、板状周縁部とをそれぞれ熱間として表記したが、これらを一体に熱間鍛造したことを示す。
このようにして作製した試料1〜8のヒートシンクについて、0.2%耐力比(板状周縁部の0.2%耐力値/板状部の中央部分の0.2%耐力値)、密封性、熱サイクル性を評価した。
0.2%耐力値はJIS Z 2241に準拠して測定した。
密封性は、ヒートシンクを水冷ボックス(パッキン付)に固定し、水冷ボックス内に500kPaの圧力を30分間かけて、漏洩による圧力低下の有無を測定し、漏れが認められなかったものを○、さらに圧力を700kPaに上げて30分間かけても漏れが認められなかったものは◎、500kPaの圧力で30分の間に漏れが認められたものを×とした。
熱サイクル性は、ヒートシンクの板状部の中央部分に電子部品をはんだ付けし、JIS C0025に準拠し、−65℃〜125℃の温度変化を500サイクル繰り返し、はんだ接合部の剥がれやクラック等を観察した。剥がれやクラックが認められなかったものを○、これらが認められたものを×とした。
これらの結果を表1に示す。
Oxygen-free copper (purity 99.99 wt% or more) is used as the metal material, and the heat sink has a plate-like portion with a length of 133 mm, a width of 77 mm, and a thickness of 5 mm. The pin-like fin has an outer diameter of 1.5 mm. A pin-shaped fin with a height of 8 mm and a pitch of 4 mm, with the pin-like fins arranged in a row shifted by a half pitch for each row was molded into a staggered arrangement.
An ingot of oxygen-free copper (purity 99.99 wt% or more) was heated to 700 ° C. and then hot forged by a fin molding die to form a fin standing portion and a pin-shaped fin. The pressure during this hot forging was set to 100 MPa to 150 MPa. Next, cold forging was performed with a plate-shaped peripheral portion molding die, the peripheral portion of the plate-shaped portion was formed, and the surface roughness was changed to prepare heat sinks of Samples 1 to 6. The pressure during this cold forging was set to 200 MPa to 500 MPa.
As a comparative example, after heating an ingot of oxygen-free copper (purity 99.99 wt% or more) to 700 ° C., using a mold in which the fin standing part and the pin-like fin and the plate-like peripheral part can be integrally formed These were integrally formed only by hot forging and not by cold forging, and heat sinks of Sample 7 and Sample 8 were produced. In Table 1, for the samples 7 and 8, the fins, the fin standing portion, and the plate-like peripheral portion are shown as hot, but these are shown to be hot forged integrally.
With respect to the heat sinks of Samples 1 to 8 thus produced, 0.2% yield strength ratio (0.2% yield strength value of the plate-like peripheral portion / 0.2% yield strength value of the central portion of the plate-like portion), sealing property The thermal cycle performance was evaluated.
The 0.2% proof stress value was measured according to JIS Z 2241.
The sealability was determined by fixing the heat sink to a water-cooled box (with packing), measuring 500 kPa in the water-cooled box for 30 minutes, and measuring the presence or absence of pressure drop due to leakage. The case where leakage was not recognized even when the pressure was increased to 700 kPa over 30 minutes was marked as ◎, and the case where leakage was observed at a pressure of 500 kPa for 30 minutes was marked as x.
The heat cycle property is that an electronic component is soldered to the central portion of the plate-like portion of the heat sink, and the temperature change from −65 ° C. to 125 ° C. is repeated 500 cycles in accordance with JIS C0025, and the solder joint is peeled off or cracked. Observed. A sample in which no peeling or cracking was observed was marked with ○, and a sample in which these were recognized was marked with ×.
These results are shown in Table 1.

Figure 2012227365
Figure 2012227365

表1に示される結果から明らかなように、本発明のピン状フィン一体型ヒートシンクは、ピン状フィンの良好な成形性を有しながら、取付け強度を確保し、電子部品の熱伸縮による応力を抑制できることがわかる。   As is clear from the results shown in Table 1, the pin-shaped fin-integrated heat sink of the present invention secures the mounting strength while maintaining the good moldability of the pin-shaped fin, and stresses due to thermal expansion and contraction of the electronic component. It turns out that it can suppress.

以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、板状部を各種機器に取り付ける場合、ねじ止めに限らず、クランプ等の他の固定手段によってもよい。また、図2及び図3のいずれも、エジェクタ−ピンにより鍛造品の外周部を押し上げるように構成したが、各ピン状フィンの下端を押し上げる構成としてもよい。また、図2及び図3のいずれも、鍛造時にバリを出していないが、鍛造機の能力に応じてバリを出して高い圧力で成形してもよい。また、図2における初期の金属材料Mは単純な板状の素材としているが、ピン状フィンの寸法と周縁部へ付与する冷間加工の大きさから、予め適切な形状に成形しておいてもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this description and can be appropriately changed without departing from the technical idea of the present invention.
For example, when the plate-like portion is attached to various devices, it is not limited to screwing but may be other fixing means such as a clamp. 2 and 3 are configured to push up the outer peripheral portion of the forged product by the ejector pin, but may be configured to push up the lower end of each pin-shaped fin. Moreover, although neither FIG.2 nor FIG.3 is producing | generating the burr | flash at the time of forging, you may shape | mold by a high pressure with a burr | flash coming out according to the capability of a forging machine. In addition, the initial metal material M in FIG. 2 is a simple plate-like material, but is formed into an appropriate shape in advance from the dimensions of the pin-shaped fins and the size of the cold work applied to the peripheral portion. Also good.

1 ピン状フィン一体型ヒートシンク
2 板状部
3 ピン状フィン
5 フィン立設部
7 周縁部
8 貫通孔
9 中央部分
11 フィン成形用金型
12 中間成形体
13 厚肉部
14 周縁部成形用金型
15 フィン成形用穴部
16 成形ダイ
17 パンチ
17a パンチ面
18 エジェクターピン
19 凹部
20 逃がし部
25 穴部
26 凹部
27 成形ダイ
28 パンチ
28a パンチ面
29 エジェクターピン
31 水冷ボックス
32 開口部
33 パッキン収容溝
34 ねじ穴
35 パッキン
DESCRIPTION OF SYMBOLS 1 Pin-shaped fin integral type heat sink 2 Plate-shaped part 3 Pin-shaped fin 5 Fin standing part 7 Peripheral part 8 Through-hole 9 Central part 11 Mold for fin molding 12 Intermediate molded object 13 Thick part 14 Mold for peripheral part molding DESCRIPTION OF SYMBOLS 15 Fin forming hole 16 Molding die 17 Punch 17a Punch surface 18 Ejector pin 19 Recess 20 Relief 25 Hole 26 Recess 27 Molding die 28 Punch 28a Punch surface 29 Ejector pin 31 Water cooling box 32 Opening 33 Packing accommodation groove 34 Screw Hole 35 Packing

Claims (3)

純度が99.90質量%以上の純銅からなり、板状部の一面側に多数のピン状フィンが立設されるとともに、前記板状部の周縁部の少なくとも一部は、0.2%耐力が、電子部品が接合される板状部の中央部分の2倍〜5倍とされていることを特徴とするピン状フィン一体型ヒートシンク。   It is made of pure copper having a purity of 99.90% by mass or more, and a large number of pin-like fins are erected on one side of the plate-like portion, and at least a part of the peripheral portion of the plate-like portion has a 0.2% yield strength. Is a pin-shaped fin-integrated heat sink characterized in that it is 2 to 5 times the central portion of the plate-like part to which the electronic component is joined. 前記板状部の周縁部の表面粗さが算術平均粗さRaで0.1μm〜6.3μmであることを特徴とする請求項1記載のピン状フィン一体型ヒートシンク。   2. The pin-shaped fin integrated heat sink according to claim 1, wherein the surface roughness of the peripheral edge portion of the plate-like portion is 0.1 μm to 6.3 μm in arithmetic mean roughness Ra. 請求項1又は2記載のピン状フィン一体型ヒートシンクを製造する方法であって、金属材料を加熱処理する加熱工程と、多数のフィン成形用穴部を有する成形ダイ上で加熱処理後の前記金属材料を鍛造することにより、前記板状部の周縁部の少なくとも一部を厚肉部にするとともに、該厚肉部を除く部分に前記ピン状フィン及び該ピン状フィンを立設した薄肉のフィン立設部を成形する熱間鍛造工程と、前記厚肉部を冷間で鍛造することにより前記板状部の周縁部を成形する冷間鍛造工程とを有することを特徴とするピン状フィン一体型ヒートシンクの製造方法。   3. A method for manufacturing a pin-shaped fin-integrated heat sink according to claim 1 or 2, wherein the metal is subjected to a heat treatment of a metal material, and the metal after the heat treatment on a forming die having a large number of fin forming holes. By forging the material, at least a part of the peripheral portion of the plate-like portion is made a thick-walled portion, and the pin-shaped fin and the thin-walled fin are erected on the portion excluding the thick-walled portion A pin-like fin comprising: a hot forging step for forming a standing portion; and a cold forging step for forming a peripheral portion of the plate-like portion by forging the thick portion cold. Manufacturing method of body heat sink.
JP2011093819A 2011-04-20 2011-04-20 Pin-shaped fin integrated heat sink and manufacturing method thereof Active JP5912282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093819A JP5912282B2 (en) 2011-04-20 2011-04-20 Pin-shaped fin integrated heat sink and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093819A JP5912282B2 (en) 2011-04-20 2011-04-20 Pin-shaped fin integrated heat sink and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012227365A true JP2012227365A (en) 2012-11-15
JP5912282B2 JP5912282B2 (en) 2016-04-27

Family

ID=47277190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093819A Active JP5912282B2 (en) 2011-04-20 2011-04-20 Pin-shaped fin integrated heat sink and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5912282B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104669509A (en) * 2015-02-10 2015-06-03 华南理工大学 Turbulent flow column based on flow field array arrangement as well as preparation method thereof and mold
US10099271B2 (en) 2014-12-05 2018-10-16 Toyota Jidosha Kabushiki Kaisha Pin fin forming method
JP2019107678A (en) * 2017-12-19 2019-07-04 昭和電工株式会社 Forging apparatus
JP2019140276A (en) * 2018-02-13 2019-08-22 昭和電工株式会社 Cooler
DE102019001383A1 (en) * 2019-02-26 2020-08-27 Holzhauer Gmbh & Co. Kg Method of manufacturing a cooling plate
CN113210557A (en) * 2020-01-21 2021-08-06 大众汽车股份公司 Partial shaping for producing a cooling body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129774A (en) * 2008-11-27 2010-06-10 Tekku Suzino Kk Method for manufacturing integrated pin-fin heat sink
JP2010192708A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Semiconductor power module, power converter, and method of manufacturing power module
JP2012156302A (en) * 2011-01-26 2012-08-16 Nikkeikin Aluminium Core Technology Co Ltd Liquid cooled jacket and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129774A (en) * 2008-11-27 2010-06-10 Tekku Suzino Kk Method for manufacturing integrated pin-fin heat sink
JP2010192708A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Semiconductor power module, power converter, and method of manufacturing power module
JP2012156302A (en) * 2011-01-26 2012-08-16 Nikkeikin Aluminium Core Technology Co Ltd Liquid cooled jacket and manufacturing method of the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10099271B2 (en) 2014-12-05 2018-10-16 Toyota Jidosha Kabushiki Kaisha Pin fin forming method
CN104669509A (en) * 2015-02-10 2015-06-03 华南理工大学 Turbulent flow column based on flow field array arrangement as well as preparation method thereof and mold
JP2019107678A (en) * 2017-12-19 2019-07-04 昭和電工株式会社 Forging apparatus
JP2019140276A (en) * 2018-02-13 2019-08-22 昭和電工株式会社 Cooler
JP7049849B2 (en) 2018-02-13 2022-04-07 昭和電工株式会社 Cooling system
KR20210118135A (en) * 2019-02-26 2021-09-29 홀츠하우어 게엠베하 앤드 코,카게 Cold plate manufacturing method
DE102019001383B4 (en) * 2019-02-26 2020-12-17 Holzhauer Gmbh & Co. Kg Method of manufacturing a cold plate
WO2020173599A1 (en) 2019-02-26 2020-09-03 Holzhauer Gmbh & Co. Kg Method for producing a cooling plate
CN113661020A (en) * 2019-02-26 2021-11-16 霍尔茨豪厄有限责任两合公司 Method for producing a cooling plate
JP2022521087A (en) * 2019-02-26 2022-04-05 ホルツハウア ゲーエムベーハ ウント コムパニ ケーゲー Manufacturing method of cooling plate
DE102019001383A1 (en) * 2019-02-26 2020-08-27 Holzhauer Gmbh & Co. Kg Method of manufacturing a cooling plate
JP7291230B2 (en) 2019-02-26 2023-06-14 ホルツハウア ゲーエムベーハ ウント コムパニ ケーゲー Cooling plate manufacturing method
US11679434B2 (en) 2019-02-26 2023-06-20 Holzhauer Gmbh & Co. Kg Method for the production of a cooling plate
KR102605059B1 (en) * 2019-02-26 2023-11-22 홀츠하우어 게엠베하 앤드 코,카게 How to make a cold plate
CN113661020B (en) * 2019-02-26 2024-04-16 霍尔茨豪厄有限责任两合公司 Method for producing a cooling plate
CN113210557A (en) * 2020-01-21 2021-08-06 大众汽车股份公司 Partial shaping for producing a cooling body
CN113210557B (en) * 2020-01-21 2023-11-10 大众汽车股份公司 Partial shaping for producing a cooling body

Also Published As

Publication number Publication date
JP5912282B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5912282B2 (en) Pin-shaped fin integrated heat sink and manufacturing method thereof
JP2012248576A (en) Pin-like fin integrated-type heat sink
JP2010129774A (en) Method for manufacturing integrated pin-fin heat sink
US6819561B2 (en) Finned-tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same
JP5213519B2 (en) Liquid cooling system
CN108885067B (en) Method for manufacturing steam cavity
JPWO2016125635A1 (en) Silicon nitride circuit board and electronic component module using the same
JP5808554B2 (en) Manufacturing method and manufacturing apparatus for pin-shaped fin integrated heat sink
US20200015384A1 (en) Method for manufacturing a fluid-based cooling element and fluid-based cooling element
JP5387342B2 (en) heatsink
US6851186B2 (en) Environmental protection concerned method for manufacturing heat sink
WO2017033603A1 (en) Method for manufacturing heat dissipating substrate
JP7033470B2 (en) How to make a heat sink
JP6566566B2 (en) Heat sink forging material, heat sink forging material manufacturing method, and heat sink manufacturing method
US10328482B2 (en) Method for manufacturing metal compact and apparatus for manufacturing metal compact
JP2012151425A (en) Stacked heat sink
JP6518426B2 (en) Method of manufacturing thermally conductive and conductive member
JP6360722B2 (en) Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member
ES2911264T3 (en) Method for producing a heat sink and heat sink for electrical components
JP2013219125A (en) Heat exchanger
JP5656163B2 (en) Embossed metal plate and manufacturing method thereof
JP2019107679A (en) Forging apparatus
JP6045381B2 (en) Heat sink manufacturing method and heat sink
JP2007116080A (en) Heat radiation plate for semiconductor substrate having projection
JP2015032822A (en) Heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350