JP2003073756A - Composite material and manufacturing method therefor - Google Patents

Composite material and manufacturing method therefor

Info

Publication number
JP2003073756A
JP2003073756A JP2001256292A JP2001256292A JP2003073756A JP 2003073756 A JP2003073756 A JP 2003073756A JP 2001256292 A JP2001256292 A JP 2001256292A JP 2001256292 A JP2001256292 A JP 2001256292A JP 2003073756 A JP2003073756 A JP 2003073756A
Authority
JP
Japan
Prior art keywords
temperature
composite material
sic
molten metal
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001256292A
Other languages
Japanese (ja)
Inventor
Katsuaki Tanaka
勝章 田中
Kyoichi Kinoshita
恭一 木下
Tomohei Sugiyama
知平 杉山
Takashi Yoshida
貴司 吉田
Eiji Kono
栄次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2001256292A priority Critical patent/JP2003073756A/en
Publication of JP2003073756A publication Critical patent/JP2003073756A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1057Reactive infiltration

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite material having excellent low thermal expansibility. SOLUTION: The method for manufacturing the composite material is characterized by having a filling step of filling a SiC powder in dies as a dispersion material, a preheating step of preheating the dies to a reaction initiation temperature or higher, at which a molten metal of a matrix metal containing Al as a main component and SiC particles start the reaction, and a teeming process of teeming the molten metal of the matrix metal having a temperature equal to or higher than the reaction initiation temperature, into the dies after the filling process and the preheating process, pressurizing it, and impregnating the molten metal among the SiC powders. The molten metal temperature and the preheating temperature, both of which are made to be equal to or higher than the reaction initiation temperature, make the substance with low thermal expansibility crystallize or generate, to provide the composite material with low thermal expansibility, without greatly reducing thermal conductivity. The composite material is particularly suitable for a heat sink member for electronic instruments.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Alを主成分とす
るマトリックス金属中にSiC粒子が分散した複合材料
の製造方法に関するものである。特に、半導体チップ等
からなる電子機器の熱を外部に放熱する電子機器用放熱
部材に適した複合材料の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a composite material in which SiC particles are dispersed in a matrix metal containing Al as a main component. In particular, the present invention relates to a method of manufacturing a composite material suitable for a heat dissipation member for electronic devices that radiates heat of electronic devices such as semiconductor chips to the outside.

【0002】[0002]

【従来の技術】各種機器の制御に、高集積半導体チップ
やそれらを基板上に高密度に配設したモジュール等が用
いられる。半導体チップ等のデバイスは、通常、その使
用温度範囲が定められており、その範囲を超えると誤作
動を起すため、半導体チップ等からの発熱は、適宜放熱
する必要がある。そのために、従来から半導体チップや
基板の下面にヒートシンク等の放熱部材が設けられてき
た。従って、このような放熱部材は、優れた高熱伝導性
を必要とする。
2. Description of the Related Art Highly integrated semiconductor chips and modules in which they are densely arranged on a substrate are used for controlling various devices. A device such as a semiconductor chip or the like usually has a specified operating temperature range, and malfunctions occur when the temperature exceeds the range, so heat generated from the semiconductor chip or the like needs to be appropriately radiated. Therefore, conventionally, a heat dissipation member such as a heat sink has been provided on the lower surface of the semiconductor chip or the substrate. Therefore, such a heat dissipation member needs to have high thermal conductivity.

【0003】さらに、放熱部材は、その高熱伝導性に加
え、低熱膨張性を有することが求められる。放熱部材自
体の熱歪みや、放熱部材と半導体チップまたは基板との
剥離(例えば、はんだの剥離)等を抑制するためであ
る。
Further, the heat dissipating member is required to have low thermal expansion in addition to its high thermal conductivity. This is for suppressing thermal distortion of the heat dissipation member itself, separation of the heat dissipation member from the semiconductor chip or the substrate (for example, separation of solder), and the like.

【0004】放熱部材としてアルミニウム(Al)等の
金属を単体で用いた場合、高熱伝導性と低熱膨張性とを
両立させることは困難である。SiC等のSi系セラミ
ックス材料を用いた場合、両特性を高次元でバランスさ
せることができるが、セラミックス単体では、靱性に乏
しく衝撃に対して弱い。特に、加工時、組付時、使用時
等に放熱部材へ加わる衝撃により、放熱部材の割れ、破
損等を生じ兼ねない。
When a single metal such as aluminum (Al) is used as the heat dissipation member, it is difficult to achieve both high thermal conductivity and low thermal expansion. When a Si-based ceramic material such as SiC is used, both characteristics can be balanced in a high dimension, but the ceramic alone has poor toughness and is weak against impact. In particular, the heat radiation member may be cracked or damaged by an impact applied to the heat radiation member during processing, assembly, use, or the like.

【0005】そこで、高熱伝導性、低熱膨張性、高信頼
性等をバランス良く満足させるために、金属−セラミッ
クス複合材料が放熱部材に用いられる。例えば、特開平
11−228261号公報、特開平11−116363
号公報または特開平11−140560号公報にそのよ
うな複合材料の開示がある。これらの複合材料はいずれ
も、バインダーを混合したセラミックス粉末を成形、焼
成した予備成形体(プリフォーム)に、マトリックス金
属の溶湯を高圧で含浸させて製造されたものである。
Therefore, a metal-ceramic composite material is used for a heat dissipation member in order to satisfy a good balance of high thermal conductivity, low thermal expansion property, high reliability and the like. For example, JP-A-11-228261 and JP-A-11-116363.
Japanese Patent Laid-Open No. 11-140560 or Japanese Patent Laid-Open No. 11-140560 discloses such a composite material. Each of these composite materials is manufactured by impregnating a preformed body (preform) obtained by molding and firing a ceramic powder mixed with a binder with a molten metal of a matrix metal under high pressure.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の複合
材料の場合、プリフォームに含浸させるマトリックス金
属の溶湯温度等は、その含浸性や溶湯の取扱性等を考慮
して選択されるに過ぎなかった。そして、得られた複合
材料の熱伝導率や線膨張係数は、溶湯の含浸の程度等に
より影響を受け、使用材料である金属とセラミックスと
の割合、つまり複合則にほぼ従う程度のものであった。
By the way, in the case of the conventional composite material, the melt temperature of the matrix metal to be impregnated into the preform is merely selected in consideration of its impregnating property and the handleability of the melt. It was The thermal conductivity and coefficient of linear expansion of the obtained composite material are affected by the degree of impregnation of the molten metal, etc., and are the ratios of the metal and ceramics used, that is, those that substantially comply with the composite rules. It was

【0007】しかし、本発明者は、種々の実験を繰返し
た結果、複合材料の線膨張係数等が単なる複合則以外
に、金属マトリックスの溶湯温度やセラミック粒子を充
填した金型の予熱温度に影響されることを新たに見出し
た。
However, as a result of repeating various experiments, the inventor of the present invention has found that the linear expansion coefficient of the composite material has an influence on the melt temperature of the metal matrix and the preheating temperature of the mold filled with the ceramic particles, in addition to the simple composite rule. I found that it will be done.

【0008】本発明は、このような事情に鑑みてなされ
たものである。つまり、この知見を利用して、熱伝導性
および熱膨張性を従来以上に高次元で両立できる金属−
セラミックス複合材料からなる複合材料の製造方法を提
供することを目的とする。
The present invention has been made in view of such circumstances. That is, by utilizing this knowledge, a metal that can achieve both higher thermal conductivity and higher thermal expansibility than ever before.
An object of the present invention is to provide a method for producing a composite material made of a ceramic composite material.

【0009】[0009]

【課題を解決するための手段】本発明者は、前記知見に
基づいてさらなる研究を行った。その結果、マトリック
ス金属(Al)とセラミックス粒子(SiC)とが所定
の温度以上で接触した場合、低熱膨張性の物質(以下、
「低熱膨張性物質」と称する。)が晶出または生成さ
れ、高熱伝導性が維持されつつ、複合材料全体の熱膨張
性が低下することを確認し、本発明を完成させた。 (複合材料の製造方法)すなわち、本発明の複合材料の
製造方法は、Alを主成分とするマトリックス金属中に
SiC粒子が分散した複合材料の製造方法において、S
iC粉末を金型に充填する充填工程と、該金型の予熱温
度を前記マトリックス金属の溶湯と該SiC粉末中のS
iC粒子とが反応を開始する反応開始温度以上とする予
熱工程と、該充填工程および該予熱工程後の金型に溶湯
温度が該反応開始温度以上である該マトリックス金属の
溶湯を注湯し加圧して該SiC粉末に該溶湯を含浸させ
る注湯工程と、を備えることを特徴とする。
The present inventor has conducted further research based on the above findings. As a result, when the matrix metal (Al) and the ceramic particles (SiC) come into contact with each other at a predetermined temperature or higher, a low thermal expansion material (hereinafter,
It is called a "low thermal expansion material". ) Was crystallized or generated, high thermal conductivity was maintained, and the thermal expansion property of the entire composite material was confirmed to be reduced, and the present invention was completed. (Method for producing composite material) That is, the method for producing a composite material of the present invention is the method for producing a composite material in which SiC particles are dispersed in a matrix metal containing Al as a main component.
The filling step of filling the mold with iC powder and the preheating temperature of the mold are controlled by the melt of the matrix metal and the S in the SiC powder.
A preheating step at which the temperature of the iC particles starts the reaction or higher, and a mold after the filling step and the preheating step are poured with the molten metal of the matrix metal having the molten temperature of the reaction starting temperature or higher. A pouring step of pressing the SiC powder to impregnate the molten metal with the molten metal.

【0010】本発明の製造方法では、予熱工程における
予熱温度と注湯工程における溶湯温度とを、マトリック
ス金属の溶湯とSiC粉末中のSiC粒子とが反応を開
始する反応開始温度以上にした。その結果、複合材料の
熱伝導率を大きく低下させることなく、その膨張率を低
下させることに成功した。このメカニズムの詳細は必ず
しも定かではないが、SiC粒子とマトリックス金属と
の界面等に、低熱膨張性物質(SiやAl43)が新た
に晶出、生成等されためであると考えられる。従って、
本発明でいう「反応」とは、注湯工程またはそれに続く
冷却、凝固工程で、低熱膨張性物質の有効な出現を可能
とする状態を意味する。つまり、化学的反応に限らず、
SiCの金属マトリックス中への溶出等もここでいう反
応に含まれる。
In the manufacturing method of the present invention, the preheating temperature in the preheating step and the molten metal temperature in the pouring step are set to be equal to or higher than the reaction start temperature at which the molten metal of the matrix metal and the SiC particles in the SiC powder start the reaction. As a result, we succeeded in lowering the expansion coefficient of the composite material without significantly lowering its thermal conductivity. Although the details of this mechanism are not always clear, it is considered that low thermal expansion substances (Si and Al 4 C 3 ) are newly crystallized and generated at the interface between the SiC particles and the matrix metal. Therefore,
The "reaction" in the present invention means a state that enables the low thermal expansion material to effectively appear in the pouring step or the subsequent cooling and solidifying steps. In other words, not only chemical reactions,
Elution into the metal matrix of SiC is included in the reaction here.

【0011】反応開始温度は、金属マトリックスの組成
にも依存するが、概ね800℃以上である。そこで、例
えば、予熱温度または溶湯温度を、それぞれ独立に、8
00℃、850℃、875℃、900℃、925℃、9
50℃等から選択することができる。より具体的には、
前記マトリックス金属が、Alを90質量%以上含有し
た純AlまたはAl合金である場合、前記予熱温度およ
び前記溶湯温度を、850〜1000℃とすると、より
好適である。予熱温度の上限を1000℃としたのは、
それが1000℃を超えると、金型の強度が低下し、そ
の変形量も大きくなり好ましくないからである。また、
溶湯温度の上限に特別な制限はないが、それが1000
℃を超えて維持するのは経済的ではない。
The reaction initiation temperature is generally 800 ° C. or higher, although it depends on the composition of the metal matrix. Therefore, for example, the preheating temperature or the molten metal temperature is set to 8
00 ° C, 850 ° C, 875 ° C, 900 ° C, 925 ° C, 9
It can be selected from 50 ° C and the like. More specifically,
When the matrix metal is pure Al or Al alloy containing 90 mass% or more of Al, it is more preferable to set the preheating temperature and the molten metal temperature to 850 to 1000 ° C. The upper limit of the preheating temperature is 1000 ° C,
If it exceeds 1000 ° C., the strength of the mold is lowered and the amount of deformation thereof is increased, which is not preferable. Also,
There is no special upper limit on the melt temperature, but it is 1000.
It is not economical to maintain above ℃.

【0012】なお、本発明に係る予熱工程は、注湯工程
の開始前に、金型およびSiC粉末を所定温度以上に加
熱しているものであれば良い。従って、充填工程終了後
に限らず、充填工程中または充填工程の開始前から、予
熱工程が開始されても良い。
The preheating step according to the present invention may be one in which the mold and SiC powder are heated to a predetermined temperature or higher before the start of the pouring step. Therefore, the preheating step may be started not only after the completion of the filling step but also during the filling step or before the start of the filling step.

【0013】ところで、本発明では、金型およびSiC
粉末の予熱温度と溶湯温度とが十分に高いため、注湯工
程において、マトリックス金属の溶湯が金型やSiC粉
末に接触しても、その溶湯が容易に凝固せず、溶湯のS
iC粉末への十分な含浸が可能となる。つまり、複合材
料の熱伝導率低下の原因となる未含浸部の発生が抑制、
防止される。
By the way, in the present invention, the mold and the SiC
Since the preheating temperature of the powder and the temperature of the molten metal are sufficiently high, even if the molten metal of the matrix metal comes into contact with the mold or the SiC powder during the pouring process, the molten metal does not easily solidify and the S
It becomes possible to sufficiently impregnate the iC powder. In other words, the generation of unimpregnated parts that causes a decrease in the thermal conductivity of the composite material is suppressed,
To be prevented.

【0014】また、本発明の製造方法では、充填工程に
おいて、金型のキャビティに直接SiC粉末を充填し、
予備成形体(プリフォーム)の成形、焼成工程等を必要
としない。このため、高性能な複合材料が低コストで効
率的に得られる。また、プリフォームの製作を省略でき
るため、低熱伝導性または高熱膨張性のバインダー等が
複合材料内に混入することが防止される。
Further, in the manufacturing method of the present invention, in the filling step, the cavity of the mold is directly filled with SiC powder,
There is no need for molding and firing steps of preforms. Therefore, a high-performance composite material can be efficiently obtained at low cost. Further, since the production of the preform can be omitted, it is possible to prevent a binder or the like having low thermal conductivity or high thermal expansion from being mixed into the composite material.

【0015】[0015]

【発明の実施の形態】次に、実施形態を挙げ、本発明を
より詳細に説明する。 (1)充填工程およびSiC粉末 充填工程において、金型へ充填するSiC粉末は、一種
類の粉末でも、複数種の粉末を混合したものでも良い。
SiCはAl等のマトリックス金属と比較して遙かに線
膨張係数が小さく、熱伝導率が大きい。そこで、SiC
粉末をマトリックス金属中へ多く充填する程(充填率を
大きくする程)、複合材料の低熱膨張性と高熱伝導性と
を両立させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to embodiments. (1) In the filling step and the SiC powder filling step, the SiC powder filled in the mold may be one kind of powder or a mixture of plural kinds of powder.
SiC has a much smaller linear expansion coefficient and a larger thermal conductivity than matrix metals such as Al. Therefore, SiC
The more the powder is filled into the matrix metal (the larger the filling rate is), the more the low thermal expansion property and the high thermal conductivity of the composite material can be compatible with each other.

【0016】但し、その熱伝導性(熱伝導率)は、その
充填率のみならず、マトリックス金属とSiC粒子との
間に形成される界面の面積にも影響される。従って、充
填率を上げる一方で界面の面積を低下させることが、複
合材料の高熱伝導性を得る上で好ましい。単に、平均粒
径の大きなSiC粒子を分散させると、界面の面積は小
さくなるが、充填率も低下して所望の線膨張係数が得ら
れない。一方、平均粒径の小さなSiC粒子を分散させ
ると、充填率を大きくできたとしても、界面の面積が大
きくなり、熱伝導率が低下する。また、平均粒径があま
り小さいSiC粒子は凝集し易く、かえって充填率を低
下させる。
However, the thermal conductivity (thermal conductivity) is affected not only by the filling rate but also by the area of the interface formed between the matrix metal and the SiC particles. Therefore, it is preferable to increase the filling rate and reduce the area of the interface in order to obtain high thermal conductivity of the composite material. If the SiC particles having a large average particle size are simply dispersed, the area of the interface is reduced, but the filling rate is also decreased and the desired linear expansion coefficient cannot be obtained. On the other hand, when SiC particles having a small average particle size are dispersed, even if the packing rate can be increased, the area of the interface increases and the thermal conductivity decreases. Further, SiC particles having an average particle size that is too small tend to agglomerate and rather reduce the filling rate.

【0017】そこで、本発明者は、前述の製造方法に加
えて、さらなる低熱膨張性と高熱伝導性とを高次元でバ
ランスさせることができるSiC粉末も開発した。すな
わち、SiC粉末を、平均粒径の大きいSiC粗粒子と
平均粒径の小さいSiC微粒子とで構成し、そのSiC
粗粒子のSiC微粒子に対する体積比を1.5〜4、S
iC粗粒子のSiC微粒子に対する平均粒径比を10〜
15とすると、より好ましいことを見出した。そして、
このときの充填率(複合材料全体を100体積%とした
ときのSiC粉末の割合)を65〜75体積%とすると
良いことも解った。より望ましくは、平均粒径比を11
〜14、体積比を2〜3、充填率を68〜72体積%と
するとより好適である。
Therefore, the present inventor has developed, in addition to the above-described manufacturing method, a SiC powder capable of further balancing low thermal expansion and high thermal conductivity in a high dimension. That is, the SiC powder is composed of SiC coarse particles having a large average particle diameter and SiC fine particles having a small average particle diameter.
The volume ratio of coarse particles to SiC fine particles is 1.5 to 4, S
The average particle size ratio of the iC coarse particles to the SiC fine particles is 10 to
It was found that a value of 15 is more preferable. And
It was also found that the filling rate (the ratio of the SiC powder when the entire composite material is 100% by volume) at this time is preferably 65 to 75% by volume. More preferably, the average particle size ratio is 11
-14, the volume ratio is 2-3, and the filling rate is 68-72% by volume, which is more preferable.

【0018】また、SiC粒子の平均粒径を具体的に言
うなら、SiC粗粒子の平均粒径を50〜300μmと
し、SiC微粒子の平均粒径を5〜30μmとすると、
好適である。SiC粗粒子の平均粒径を50〜200μ
m、75〜150μmさらには75〜125μmとする
と、より好ましい。また、SiC微粒子の平均粒径を5
〜20μm、5〜15μmさらには7〜10μmとする
と、より好ましい。
If the average particle size of the SiC particles is specifically described, if the average particle size of the SiC coarse particles is 50 to 300 μm and the average particle size of the SiC fine particles is 5 to 30 μm,
It is suitable. The average particle size of the SiC coarse particles is 50 to 200 μ.
m, 75 to 150 μm, and more preferably 75 to 125 μm. In addition, the average particle size of the SiC particles is 5
More preferably, it is set to -20 μm, 5 to 15 μm, and further 7 to 10 μm.

【0019】ここで、平均粒径とは、ふるい分け試験
法、電気抵抗法(JIS R6002)を用いて測定し
た粒径の平均である。
Here, the average particle size is an average of particle sizes measured by a sieving test method and an electric resistance method (JIS R6002).

【0020】なお、このようなSiC粉末は、SiC粗
粒子とSiC微粒子とが混在したものであれば良く、そ
の生成方法までは問わない。SiCを機械的または化学
的に粉砕して生成しても良いし、平均粒径の異なる市販
のSiC粉末を混合しても良い。また、本発明の趣旨を
逸脱しない範囲で、この複合材料またはSiC粉末が、
SiC微粒子とSiC粗粒子以外の第3粒子(粒径の異
なるSiC粒子や別のセラミックス粒子等)を含んでも
良い。 (2)注湯工程 金属マトリックスの溶湯温度は、前述した通りである。
本発明の場合、溶湯温度が十分に高いため、SiC粉末
間への溶湯の含浸性は良好である。しかし、溶湯を加圧
しないと、SiC粉末間に溶湯は十分に含浸されない。
そこで、溶湯に50〜150MPa程度の圧力を加え
る。例えば、前記純Alの溶湯を用いた場合なら、その
圧力を70〜120MPaとすると好ましい。
It should be noted that such a SiC powder may be any one in which coarse SiC particles and fine SiC particles are mixed, and the method for producing the same is not limited. SiC may be mechanically or chemically pulverized to be produced, or commercially available SiC powders having different average particle sizes may be mixed. Further, within a range not departing from the gist of the present invention, the composite material or SiC powder is
Third particles (SiC particles having different particle diameters, other ceramic particles, etc.) other than the SiC fine particles and the SiC coarse particles may be included. (2) Pouring Process The molten metal temperature of the metal matrix is as described above.
In the case of the present invention, since the temperature of the molten metal is sufficiently high, the impregnability of the molten metal between the SiC powders is good. However, unless the molten metal is pressed, the molten metal is not sufficiently impregnated between the SiC powders.
Therefore, a pressure of about 50 to 150 MPa is applied to the molten metal. For example, when the pure Al melt is used, the pressure is preferably 70 to 120 MPa.

【0021】マトリックス金属は、SiCとの反応後や
凝固後にも、低熱膨張性、高熱伝導性であるものが好ま
しい。そのようなものである限り、合金元素等は特に拘
らないが、SiCとの反応を考慮すると、例えば、純A
l(純度98%以上)が好適である。
The matrix metal preferably has low thermal expansion and high thermal conductivity even after the reaction with SiC or after solidification. As long as it is such, alloy elements and the like are not particularly concerned, but in consideration of the reaction with SiC, for example, pure A
1 (purity of 98% or more) is preferable.

【0022】なお、この注湯工程後に冷却、凝固工程、
離型工程、加工工程等が適宜為されることは言うまでも
ない。 (3)電子機器用放熱部材 本発明の製造方法により得られる複合材料は、電子機器
用放熱部材に用いられるものであると、好適である。こ
の電子機器用放熱部材は、電子機器の放熱のために、そ
こから生じた熱を外部に伝達するものである。もっと
も、それは、いわゆるヒートシンクに限られない。例え
ば、それは、Al合金等の金属製ヒートシンクとセラミ
ックス基板との間に介在して熱伝達を行う熱膨張整合用
部材や電子機器の収納ケース等であっても良い。
After the pouring process, cooling, solidifying process,
It goes without saying that the mold release step, the processing step and the like are appropriately performed. (3) Heat Dissipating Member for Electronic Equipment The composite material obtained by the manufacturing method of the present invention is preferably used for a heat radiating member for electronic equipment. This heat dissipation member for electronic devices transfers heat generated from the heat dissipation members to the outside in order to dissipate the heat from the electronic devices. However, it is not limited to so-called heat sinks. For example, it may be a member for thermal expansion matching that intervenes between a heat sink made of a metal such as an Al alloy and a ceramic substrate to transfer heat, a housing case for electronic equipment, and the like.

【0023】[0023]

【実施例】次に、実施例を挙げて、本発明をより具体的
に説明する。 (複合材料の製造方法)上述した本発明に係る製造方法
を用いて、3×50×80mmの板状のAl−SiC複
合材料を製作した。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. (Manufacturing Method of Composite Material) A plate-like Al—SiC composite material of 3 × 50 × 80 mm was manufactured by using the above-described manufacturing method according to the present invention.

【0024】SiC粒子の平均粒径が異なる2種のSi
C粉末(昭和電工社製)を混合したSiC混合粉末を用
意した(本発明でいう「SiC粉末」)。つまり、平均
粒径が100μmのSiC粗粒子からなるSiC粉末
と、平均粒径が8μmのSiC微粒子からなるSiC粉
末とを、それぞれ体積比で7:3の割合で混合して(混
合工程)、SiC混合粉末を調製した。なお、このSi
C混合粉末は、平均粒径比が12.5、体積比が2.3
に相当する。
Two types of Si having different average particle diameters of SiC particles
A SiC mixed powder prepared by mixing C powder (manufactured by Showa Denko KK) was prepared (“SiC powder” in the present invention). That is, SiC powder composed of coarse SiC particles having an average particle size of 100 μm and SiC powder composed of SiC fine particles having an average particle size of 8 μm were mixed at a volume ratio of 7: 3 (mixing step), A SiC mixed powder was prepared. In addition, this Si
The C mixed powder has an average particle size ratio of 12.5 and a volume ratio of 2.3.
Equivalent to.

【0025】次に、このSiC混合粉末を、前記複合材
料の形状に沿った凹状のキャビティをもつ金型へ充填し
た(充填工程)。この充填の際、特に加圧はせず、バイ
ンダー等も混合しなかった。もっとも、その充填工程を
金型に振動を加えつつ行うと、キャビティ内で各SiC
粒子の移動が促進され、各粒子が相互に隙間を埋めるよ
うに配置されて、嵩密度や複合材料の充填率をより向上
させ得る。
Next, this SiC mixed powder was filled into a mold having a concave cavity along the shape of the composite material (filling step). At the time of this filling, no particular pressure was applied and neither binder nor the like was mixed. However, if the filling process is performed while applying vibration to the mold, each SiC in the cavity is
The movement of the particles is promoted, and the particles are arranged so as to fill the gaps with each other, so that the bulk density and the filling rate of the composite material can be further improved.

【0026】次に、マトリックス金属である純Al(J
IS A1050:融点660℃)を溶解した溶湯を用
意した。この溶湯を、700〜950℃の範囲内で50
℃ごとに変化させ、各温度に保持した溶湯を金型の注口
から注湯し、加圧した(注湯工程)。このときの加圧力
は、各溶湯共通で、100〜140MPaとした。
Next, pure Al (J
A molten metal in which IS A1050: melting point 660 ° C.) was dissolved was prepared. This molten metal is heated in the range of 700 to 950 ° C. to 50
It was changed at each temperature of ℃, and the melt held at each temperature was poured from the pouring port of the mold and pressurized (pouring process). The pressure applied at this time was 100 to 140 MPa, which was common to all the melts.

【0027】なお、この注湯工程前に、金型を予め90
0℃に加熱しておいた(予熱工程)。また、金型(の予
熱)温度を700℃とした場合についても、同様な注湯
工程を行った。本実施例では、金型を電気ヒータで加熱
し、その金型の温度を予熱温度とした。
Before this pouring step, the mold is pre-set to 90
It was heated to 0 ° C. (preheating step). The same pouring process was performed also when the mold (preheating) temperature was 700 ° C. In this example, the mold was heated by an electric heater, and the temperature of the mold was set as the preheating temperature.

【0028】これらの注湯工程後、金型を空冷して、溶
湯を凝固させた後(凝固工程)、金型から鋳造品を取出
し(離型工程)、Al−SiC複合材料を得た。
After these pouring steps, the mold was air-cooled to solidify the molten metal (solidification step), and then the cast product was taken out from the mold (mold release step) to obtain an Al-SiC composite material.

【0029】本実施例では行わなかったが、必要に応じ
て得られた複合材料を切削加工して、電子機器と接触す
る面の面粗度や平面度等を確保し、電子機器用放熱部材
とすることもできる。 (複合材料の測定)各種溶湯温度から得られた複合材料
について、熱伝導率および線膨張係数を測定した。図1
に、溶湯温度(℃)を横軸に、熱伝導率(W/m・K)
および線膨張係数(×10−6/℃)を縦軸にとって、
それらの関係をプロットしたグラフを示す。
Although not carried out in the present embodiment, the composite material obtained is cut if necessary to secure the surface roughness and flatness of the surface in contact with the electronic device, and the heat dissipation member for the electronic device. Can also be (Measurement of Composite Material) The thermal conductivity and the coefficient of linear expansion of the composite material obtained from various molten metal temperatures were measured. Figure 1
And the melt temperature (° C) on the horizontal axis, thermal conductivity (W / mK)
And the linear expansion coefficient (× 10 −6 / ° C.) as the vertical axis,
The graph which plotted those relationships is shown.

【0030】なお、この熱伝導率は、レーザフラッシュ
法熱定数測定装置(真空理工社製、TC−7000)を
用いて、JIS R1611により求めた。線膨張係数
は、機械分析 TMA120C (セイコーインストゥ
ルメント)により求めた。
The thermal conductivity was determined according to JIS R1611 using a laser flash method thermal constant measuring device (manufactured by Vacuum Riko Co., Ltd., TC-7000). The linear expansion coefficient was determined by mechanical analysis TMA120C (Seiko Instruments).

【0031】また、各複合材料のSiC混合粉末の充填
率をアルキメデス法により求めたところ、全体に対して
約70%であった。 (評価)図1から、予熱温度を900℃として、溶湯温
度を850℃(本実施例の反応開始温度)以上、特に、
900℃以上としたときに得られた複合材料は、その線
膨張係数が著しく低いことが解る。しかも、このとき、
熱伝導率はほぼ210W/m・K以上であり、高熱伝導
性が確保されていることも確認できた。
Further, when the filling rate of the SiC mixed powder of each composite material was determined by the Archimedes method, it was about 70% with respect to the whole. (Evaluation) From FIG. 1, the preheating temperature was set to 900 ° C., the molten metal temperature was set to 850 ° C. (reaction start temperature in this example) or more,
It can be seen that the linear expansion coefficient of the composite material obtained when the temperature is 900 ° C. or higher is extremely low. Moreover, at this time,
The thermal conductivity was about 210 W / mK or more, and it was confirmed that high thermal conductivity was secured.

【0032】一方、予熱温度を700℃とした場合、そ
の線膨張係数は、溶湯温度が高くなっても殆ど変化せ
ず、高い値を維持した。これは、線膨張係数を低減させ
る低熱膨張性物質の晶出または生成がなかったためと考
えられる。 (複合材料の組織)次に、予熱温度および溶湯温度を9
00℃として製造した、上記実施例の複合材料の組織写
真を図2(a)および同図(b)に示す。図2(a)
は、金属顕微鏡により観察した倍率50倍の組織写真で
ある。白い樹枝状(デンドライト状)のものがSiの晶
出物(晶出Si)である。図2(b)は、金属顕微鏡に
より観察した倍率1000倍の組織写真である。大小の
粒径を有するSiC粒子の界面にSiが単独で晶出して
いることが分る。
On the other hand, when the preheating temperature was 700 ° C., the coefficient of linear expansion hardly changed even when the temperature of the molten metal increased, and maintained a high value. It is considered that this is because there was no crystallization or formation of the low thermal expansion material that reduces the linear expansion coefficient. (Composition of composite material) Next, the preheating temperature and the melt temperature are set to 9
Structure photographs of the composite materials of the above-mentioned examples manufactured at 00 ° C. are shown in FIGS. 2 (a) and 2 (b). Figure 2 (a)
[Fig. 3] is a microstructure photograph observed at a magnification of 50 with a metallurgical microscope. White dendritic (dendritic) substances are Si crystallized substances (crystallized Si). FIG. 2 (b) is a micrograph of a structure at a magnification of 1000 times observed with a metallurgical microscope. It can be seen that Si alone crystallizes at the interface of SiC particles having large and small particle sizes.

【0033】[0033]

【発明の効果】本発明の製造方法によれば、高熱伝導性
を維持しつつ、低熱膨張性物質の晶出または生成によ
り、より低い熱膨張性を発揮する複合材料が得られた。
According to the manufacturing method of the present invention, a composite material exhibiting a lower thermal expansion property is obtained by crystallizing or generating a low thermal expansion material while maintaining a high thermal conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る溶湯温度と、熱伝導率および線
膨張係数との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a molten metal temperature, a thermal conductivity and a linear expansion coefficient according to this example.

【図2】本実施例の複合材料の組織写真である。同図
(a)は、50倍率の金属顕微鏡写真であり、同図
(b)は、1000倍率の金属顕微鏡である。
FIG. 2 is a microstructure photograph of the composite material of this example. The figure (a) is a metallurgical microscope photograph of 50 times, and the figure (b) is a metallurgical microscope of 1000 times.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 知平 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 (72)発明者 吉田 貴司 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 (72)発明者 河野 栄次 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 Fターム(参考) 4K020 AA22 AC01 BB26    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Chihei Sugiyama             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries (72) Inventor Takashi Yoshida             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries (72) Inventor Eiji Kono             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries F term (reference) 4K020 AA22 AC01 BB26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Alを主成分とするマトリックス金属中に
SiC粒子が分散した複合材料の製造方法において、 SiC粉末を金型に充填する充填工程と、 該金型の予熱温度を、前記マトリックス金属の溶湯と該
SiC粉末中のSiC粒子とが反応を開始する反応開始
温度以上とする予熱工程と、 該充填工程および該予熱工程後の金型に溶湯温度が該反
応開始温度以上である該マトリックス金属の溶湯を注湯
し加圧して該SiC粉末に該溶湯を含浸させる注湯工程
と、 を備えることを特徴とする複合材料の製造方法。
1. A method of manufacturing a composite material in which SiC particles are dispersed in a matrix metal containing Al as a main component, wherein a step of filling a mold with SiC powder and a preheating temperature of the mold are the same as those of the matrix metal. Of the molten metal and the SiC particles in the SiC powder start the reaction at a temperature higher than the reaction start temperature, and the mold after the filling step and the preheating step has a temperature of the melt higher than the reaction start temperature. A pouring step of pouring a molten metal and pressurizing it to impregnate the SiC powder with the molten metal.
【請求項2】前記マトリックス金属はAlを90質量%
以上含有した純AlまたはAl合金であり、 前記予熱温度および前記溶湯温度は、850〜1000
℃である請求項1記載の複合材料の製造方法。
2. The matrix metal is 90 mass% of Al.
It is pure Al or Al alloy contained above, and the preheating temperature and the molten metal temperature are 850 to 1000.
The method for producing a composite material according to claim 1, wherein the temperature is ° C.
【請求項3】前記複合材料は、電子機器用放熱部材に用
いられるものである請求項1記載の複合材料の製造方
法。
3. The method for producing a composite material according to claim 1, wherein the composite material is used for a heat dissipation member for electronic equipment.
JP2001256292A 2001-08-27 2001-08-27 Composite material and manufacturing method therefor Withdrawn JP2003073756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256292A JP2003073756A (en) 2001-08-27 2001-08-27 Composite material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256292A JP2003073756A (en) 2001-08-27 2001-08-27 Composite material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003073756A true JP2003073756A (en) 2003-03-12

Family

ID=19084122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256292A Withdrawn JP2003073756A (en) 2001-08-27 2001-08-27 Composite material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003073756A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666505B2 (en) 2002-08-23 2010-02-23 James Hardie Technology Limited Synthetic microspheres comprising aluminosilicate and methods of making same
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US7666505B2 (en) 2002-08-23 2010-02-23 James Hardie Technology Limited Synthetic microspheres comprising aluminosilicate and methods of making same
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Similar Documents

Publication Publication Date Title
US6447894B1 (en) Silicon carbide composite, method for producing it and heat dissipation device employing it
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JP2007518875A (en) High thermal conductivity metal matrix composite
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
JP6940997B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JP2003073756A (en) Composite material and manufacturing method therefor
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP3812321B2 (en) Heat sink and manufacturing method thereof
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP3626695B2 (en) Manufacturing method of heat dissipation member for electronic equipment
JP3737072B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
JP3999989B2 (en) Copper-tungsten carbide composite material
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
JP2003306730A (en) Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT
JP2002047545A (en) Manufacturing method of composite material
JP2003013168A (en) High thermal-conductivity material and manufacturing method therefor
JP2003073712A (en) Method for manufacturing composite material
JP2002226925A (en) Method for manufacturing composite material
JP2003268478A (en) Al-SiC COMPOSITE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090323