JP2002121639A - Heat radiation substrate, and high-power high-frequency transistor package using it - Google Patents

Heat radiation substrate, and high-power high-frequency transistor package using it

Info

Publication number
JP2002121639A
JP2002121639A JP2000317494A JP2000317494A JP2002121639A JP 2002121639 A JP2002121639 A JP 2002121639A JP 2000317494 A JP2000317494 A JP 2000317494A JP 2000317494 A JP2000317494 A JP 2000317494A JP 2002121639 A JP2002121639 A JP 2002121639A
Authority
JP
Japan
Prior art keywords
copper
mass
same
substrate
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000317494A
Other languages
Japanese (ja)
Other versions
JP2002121639A5 (en
Inventor
Akira Fukui
彰 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000317494A priority Critical patent/JP2002121639A/en
Publication of JP2002121639A publication Critical patent/JP2002121639A/en
Publication of JP2002121639A5 publication Critical patent/JP2002121639A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation substrate which is composed of a tungsten/ copper and/or molybdenum/copper composite material and in which the increase of residual thermal stress resultant from the difference in a thermal expansion coefficient between the peripheral members of the substrate and the substrate itself is minimized while maintaining high thermal conductivity and also to provide a high-power high-frequency transistor package having high practical reliability and manufactured by the use of the heat radiation substrate. SOLUTION: The heat radiation substrate is composed of a tungsten/copper and/or molybdenum/copper composite material containing 25-45 mass% copper and having <=250 GPa Young's modulus. The high-power high-frequency transistor package can be manufactured by using the heat radiation substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電気・電子機
器用の高周波トランジスターパッケージ、特に通信基地
局の電気・電子機器用のハイパワーの高周波トランジス
ターパッケージに用いられる放熱基板と、それを用いた
ハイパワー高周波トランジスターパッケージに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency transistor package for various electric and electronic devices, and more particularly to a heat-radiating substrate used for a high-power high-frequency transistor package for electric and electronic devices of a communication base station, and a heat-radiating substrate using the same. The present invention relates to a high-power high-frequency transistor package.

【0002】[0002]

【従来の技術】近年半導体装置(本発明では、半導体素
子を用いた各種デバイスを総称してこう言う。以下同
じ。)の高速演算・高集積化に対する市場の要求は、急
速に高まりつつある。それとともに同装置内の半導体素
子搭載用の放熱基板には、同素子から発生する熱をより
一層効率良く逃がすため、熱伝導率のより一層の向上が
求められてきた。それとともに同放熱基板に隣接配置さ
れる半導体素子ならびに周辺部材との間での熱歪みをよ
り一層小さくするため、それらとの熱膨張係数の差をよ
り一層小さくすることも求められてきた。具体的には、
半導体素子として通常用いられるシリコン(以下Siと
も記述する。)、ガリウム砒素(以下GaAsとも記述
する。)の熱膨張係数が、それぞれ4.2×10-6
℃、6.5×10-6/℃程度であることから、同基板の
熱膨張係数もこれらに近いことが望まれてきた。
2. Description of the Related Art In recent years, market demands for high-speed operation and high integration of semiconductor devices (in the present invention, various devices using semiconductor elements are collectively referred to as the same hereinafter) are rapidly increasing. At the same time, the heat radiation substrate for mounting the semiconductor element in the device has been required to further improve the thermal conductivity in order to more efficiently release the heat generated from the element. At the same time, in order to further reduce the thermal strain between the semiconductor element and the peripheral member disposed adjacent to the heat dissipation substrate, it has been required to further reduce the difference in the thermal expansion coefficient between them. In particular,
The thermal expansion coefficients of silicon (hereinafter also referred to as Si) and gallium arsenide (hereinafter also referred to as GaAs) usually used as semiconductor elements are 4.2 × 10 −6 /.
℃, about 6.5 × 10 -6 / ° C., it has been desired that the thermal expansion coefficient of the substrate is close to these.

【0003】中でも最近の携帯電話等の情報通信網の急
速な拡大につれ、その基地局の各種装置・機器の処理情
報量と処理速度の増加は、急速に進みつつある。したが
ってそれらに内蔵されるハイパワーの高周波トランジス
ターに搭載される半導体素子の集積度も日に日に増加の
一途を辿っている。
[0003] In particular, with the recent rapid expansion of information communication networks such as mobile phones, the amount of processing information and the processing speed of various devices and devices of the base station are rapidly increasing. Accordingly, the degree of integration of the semiconductor elements mounted on the high-power high-frequency transistors built therein has been increasing day by day.

【0004】従来このようなハイパワーの高周波トラン
ジスターに用いられるパッケージにおいては、例えば銅
−タングステン系(以下Cu−W系とも記述する。)ま
たは銅−モリブデン系(以下Cu−Mo系とも記述す
る。)の複合材料が、その放熱基板として広く使われて
きた。図1にこの種のパッケージの構造例を模式的に示
す。同図のaは、バイポーラー型(Bi Polar )
のものを示す。また今後増加して行くと予測されるパッ
ケージの内、bは、Si半導体素子が搭載されるLDM
OS型(Laterally Diffused Met
al OxideSilicon)か、またはGaAs
半導体素子が搭載されるMSFET型(Metal S
emicoductor Eield Effect T
ransistor)のものである。同図において、1
はCu−WまたはCu−Moの複合材料からなる放熱基
板、2は例えばアルミナ(以下Al23とも記述す
る。)、窒化アルミニウム(以下AlNとも記述す
る。)、ベリリア(以下BeOとも記述する。)のよう
な高熱伝導性かつ電気絶縁性のセラミックスからなる基
板である。なおアルミナ、窒化アルミニウム、ベリリア
の熱膨張係数は、10-6/℃単位で順に6.5、4.
5、7.6程度であり、熱伝導率は、W/m・K単位で
順に20、170、280程度である。3は、SiやG
aAsのような半導体材料からなる半導体素子(半導体
集積回路部分)、4はコバール(Fe−Ni−Co合金
であり、商品名)等の高熱電導性金属からなる金属部材
である。
Conventionally, a package used for such a high-power high-frequency transistor is, for example, a copper-tungsten type (hereinafter also referred to as Cu-W type) or a copper-molybdenum type (hereinafter also referred to as Cu-Mo type). The composite material has been widely used as the heat dissipation substrate. FIG. 1 schematically shows a structural example of this type of package. In the figure, a is a bipolar type (Bi Polar).
Here's what. Among packages expected to increase in the future, b is an LDM on which a Si semiconductor element is mounted.
OS type (Laterally Diffused Met)
al Oxide Silicon) or GaAs
MSFET type (Metal S
emicductor Eield Effect T
tranistor). In the figure, 1
The heat dissipation substrate made of a composite material of Cu-W or Cu-Mo, 2 is for example, alumina (hereinafter Al 2 O 3 both describe.), Aluminum nitride (also written as follows AlN.), Also written as beryllia (hereinafter BeO ) Is a substrate made of ceramics having high thermal conductivity and electrical insulation. Note alumina, aluminum nitride, the thermal expansion coefficient of the beryllia is sequentially with 10 -6 / ° C. Unit 6.5,4.
The thermal conductivity is about 20, 170, 280 in W / m · K unit in order. 3 is Si or G
A semiconductor element (semiconductor integrated circuit portion) 4 made of a semiconductor material such as aAs is a metal member made of a high thermal conductive metal such as Kovar (a Fe-Ni-Co alloy, trade name).

【0005】特公平4−65544号公報には、この種
のパッケージが紹介されている。同公報の記載によれ
ば、銅の含有量が30質量%以下の複合材料をその放熱
基板に使うことによって、パッケージの周辺部材である
セラミックスに損傷を与えること無く、また銅の含有量
が25質量%以下のものを用いることによって、これと
セラミックスからなる周辺部材とをロウ材によって直接
接続しても実用上問題は無いとされている。しかしなが
ら本発明者のその後の研究によれば、銅の含有量が25
質量%未満になると、基板自体の剛性が上昇するため、
特に放熱量の大きなパッケージでは、それらの接続部に
かなり厚目のロウ材層または応力緩和層を介挿しない
と、実用時の冷熱サイクルに耐えられない場合もあるこ
とが確認されている。このようなことから材料中の銅の
量を制御するだけでは、必ずしも信頼性の高い放熱基板
が得られないことが分かる。
Japanese Patent Publication No. 4-65544 discloses this type of package. According to the description of the publication, the use of a composite material having a copper content of 30% by mass or less for the heat dissipation substrate does not damage the ceramics as a peripheral member of the package, and the copper content is 25% or less. It is said that there is no practical problem even if this is directly connected to a peripheral member made of ceramics by using a brazing material by using a material having a mass% or less. However, subsequent studies by the present inventors have shown that the copper content is 25%.
When it is less than mass%, the rigidity of the substrate itself increases,
In particular, it has been confirmed that, in a package having a large amount of heat radiation, unless a considerably thick brazing material layer or a stress relaxation layer is interposed between these connection portions, it may not be able to withstand a cooling / heating cycle in practical use. From these facts, it can be seen that merely controlling the amount of copper in the material does not necessarily provide a highly reliable heat dissipation substrate.

【0006】なお特公平4−65544号公報の第1表
および第2表によれば、銅の含有量が30質量%以下の
複合材料の熱膨張係数は、Cu−Wの場合8.3×10
-6/℃以下、Cu−Moの場合8.5×10-6/℃ 以
下である。また熱伝導率は、Cu−Wの場合309W/
m・K(0.74cal/cm・sec・℃)以下、C
u−Moの場合293W/m・K(0.70cal/c
m・sec・℃)以下である。さらに銅の含有量が25
質量%以下の場合の熱膨張係数は、Cu−Wの場合7.
5×10-6/℃以下、Cu−Moの場合7.8×10-6
/℃ 以下である。また熱伝導率は、Cu−Wの場合2
90W/m・K(0.70cal/cm・sec・℃)
以下、Cu−Moの場合280W/m・K(0.67c
al/cm・sec・℃)以下である。
According to Tables 1 and 2 of Japanese Patent Publication No. 4-65544, the thermal expansion coefficient of a composite material having a copper content of 30% by mass or less is 8.3 × in the case of Cu—W. 10
−6 / ° C. or less, and 8.5 × 10 −6 / ° C. or less in the case of Cu—Mo. The thermal conductivity is 309 W / Cu-W.
m · K (0.74 cal / cm · sec · ° C) or less, C
In the case of u-Mo, 293 W / m · K (0.70 cal / c
m · sec · ° C) or less. In addition, the copper content is 25
The thermal expansion coefficient in the case of not more than mass% is in the case of Cu-W.
5 × 10 −6 / ° C. or less, 7.8 × 10 −6 for Cu—Mo
/ ° C or less. The thermal conductivity is 2 for Cu-W.
90W / m · K (0.70 cal / cm · sec · ° C)
Hereinafter, 280 W / m · K (0.67 c
al / cm · sec · ° C.) or less.

【0007】[0007]

【発明の解決すべき課題】しかしながら前述のように、
最近この種のパッケージの半導体素子の高集積化が急速
に進むにつれて、同素子の大型化と発熱量の増加が急速
に進んでいる。このため放熱基板には(1)上記のレベ
ルを越える熱伝導率が要求されるようになってきた。そ
れに加え放熱基板には(2)それに隣接配置される周辺
部材との間で生じる残留熱応力の増加を抑えることも要
求されるようになってきた。このような要求の下で、放
熱基板にCu−W系やCu−Mo系の複合材料を使う場
合、上記特公平4−65544号公報に記載されている
従来の技術の延長上で考えると、(1)の要求に応える
ためには、銅の量を増やす必要がある。しかしそのよう
にすれば、周辺部材が半導体素子と同程度の小さな熱膨
張係数の材料で構成されている場合には、それらと放熱
基板との間の熱膨張係数の差が増加し、その結果両者の
接続界面で生じる熱応力が増大することになる。このた
め上記(2)の要求とはほど遠い結果となってしまう。
However, as described above,
Recently, as the degree of integration of semiconductor elements of this type of package has rapidly increased, the size of the elements and the amount of heat generation have rapidly increased. For this reason, the heat dissipation board has been required to (1) have a thermal conductivity exceeding the above level. In addition, the heat dissipation board has been required to (2) suppress an increase in residual thermal stress generated between the heat dissipation board and a peripheral member disposed adjacent to the heat dissipation board. Under such demands, when using a Cu-W-based or Cu-Mo-based composite material for the heat dissipation substrate, considering an extension of the conventional technology described in Japanese Patent Publication No. 4-65544, In order to meet the requirement (1), it is necessary to increase the amount of copper. However, in such a case, when the peripheral members are made of a material having a thermal expansion coefficient as small as that of the semiconductor element, the difference in thermal expansion coefficient between them and the heat dissipation board increases, and as a result, The thermal stress generated at the interface between the two increases. Therefore, the result is far from the request of the above (2).

【0008】このような場合には、放熱基板と周辺部材
との接続部分に、例えば1mmないし数mmのかなり厚
めの低ヤング率の層を設けるか、またはそれらの中間の
熱膨張係数を有する材料からなる層を介在させて、両者
の界面に発生する熱応力を吸収緩和する手段が、従来か
ら採られてきた。しかしながらこの方法は、手間がかか
り、材料費が嵩むために製造コストが上がる。またパッ
ケージの薄型化が急速に進みつつあり、これに逆行する
ことにもなる。
In such a case, a considerably thick layer having a low Young's modulus of, for example, 1 mm to several mm is provided at a connection portion between the heat radiating substrate and the peripheral member, or a material having a thermal expansion coefficient intermediate between them. Means for absorbing and relaxing the thermal stress generated at the interface between the two layers by interposing a layer made of. However, this method is troublesome and increases production costs due to increased material costs. In addition, the thinning of packages is rapidly progressing, and this is going against the trend.

【0009】接続界面での熱応力緩和作用は、放熱基板
自体のヤング率が小さいほど向上する。この観点から見
ると、Cu−WやCu−Moは、ヤング率の高いWやM
oを主成分としているため、できる限りこれらの量は少
ない方が望ましい。なおこれらのヤング率は、Wが40
7GPa、Moが332GPa程度であり、Cuのそれ
は、130GPa程度である。しかしながらその一方で
WやMoの量を少なくすると、熱膨張係数は増加するた
め、在来のCu−WやCu−Moでは相反するこれら二
つの要求を同時に満たすことは困難であった。
The effect of relaxing the thermal stress at the connection interface is improved as the Young's modulus of the heat radiation substrate itself is smaller. From this point of view, Cu-W and Cu-Mo have high Young's modulus W and M.
Since o is the main component, it is desirable that these amounts be as small as possible. Note that these Young's moduli are such that W is 40
7 GPa and Mo are about 332 GPa, and that of Cu is about 130 GPa. However, on the other hand, when the amount of W or Mo is reduced, the coefficient of thermal expansion increases. Therefore, it is difficult for conventional Cu-W or Cu-Mo to simultaneously satisfy these two contradictory requirements.

【0010】本発明の課題は、放熱基板と周辺部材との
間の接続層の厚みを大きくすることなく以上の課題を克
服し、上記した(1)および(2)の要求を同時に満た
す安価で信頼性の高いCu−W系やCu−Mo系の複合
材料からなる放熱基板を提供すること、ならびにその特
徴を活かしたハイパワーの高周波トランジスターパッケ
ージを提供することである。
The object of the present invention is to overcome the above-mentioned problems without increasing the thickness of the connection layer between the heat-radiating substrate and the peripheral member, and to provide an inexpensive and simultaneously satisfying the above requirements (1) and (2). An object of the present invention is to provide a heat-dissipating substrate made of a highly reliable Cu-W-based or Cu-Mo-based composite material, and to provide a high-power high-frequency transistor package utilizing its features.

【0011】[0011]

【課題を解決するための手段】上記した課題を解決する
ための本発明の放熱基板は、銅を25〜45質量%含
み、ヤング率が250GPa以下の銅−タングステン系
および/または銅−モリブデン系複合材料からなる放熱
基板である。また本発明の放熱基板には、以上の構成に
加え、さらに鉄族金属の含有量が0.2質量%以下に制
御されたものも含まれる。
A heat dissipation board according to the present invention for solving the above-mentioned problems contains a copper-tungsten type and / or a copper-molybdenum type having a copper content of 25 to 45% by mass and a Young's modulus of 250 GPa or less. This is a heat dissipation board made of a composite material. Further, the heat dissipation board of the present invention includes, in addition to the above-described configuration, one in which the content of the iron group metal is controlled to 0.2% by mass or less.

【0012】また本発明には以上の放熱基板を用いたハ
イパワーの高周波トランジスターパッケージ、さらには
それを使った半導体装置も含まれる。
The present invention also includes a high-power high-frequency transistor package using the above-described heat dissipation substrate, and a semiconductor device using the same.

【0013】[0013]

【発明の実施の形態】本発明の放熱基板は、銅を25〜
45質量%含む銅−タングステン系および/または銅−
モリブデン系の複合材料からなる。ここで銅の量が上記
範囲であり、残部がタングステンである場合、この材料
中の銅量は、体積比で42ないし64%に相当する。ま
た残部がモリブデンの場合、27ないし48%に相当す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The heat radiating substrate of the present invention comprises
Copper-tungsten and / or copper containing 45% by mass
It is made of a molybdenum-based composite material. Here, when the amount of copper is within the above range and the balance is tungsten, the amount of copper in this material corresponds to 42 to 64% by volume. When the balance is molybdenum, it corresponds to 27 to 48%.

【0014】ここでこの組成域で単純に複合則を当ては
め、前述のCu、WおよびMoのヤング率の値を使っ
て、そのヤング率の理論値を推計すると、例えば銅量が
25ないし45質量%のCu−Wでは、約230GPa
から約290GPa、同様に同じ組成域のCu−Moで
は、約250GPaから約280GPaとなる。しかし
ながら溶浸法(WまたはMoの多孔体を作製して、その
空孔内にCuを溶浸する方法)によって作製された従来
の材料の対応する組成域でのヤング率は、WやMoの粒
子がお互いに繋がってスケルトンを作っているため、通
常上記理論値より高目であり、Cu−Wでは約240G
Pa(Cu45質量%)から300GPa(Cu25質
量%)、Cu−Moでは約250GPa(Cu45質量
%)から290GPa(Cu25質量%)である。一方
焼結法(CuとWまたはCuとMoの対応組成からなる
混合物の成形体を、Cuの融点以上の温度下で液相焼結
する方法)によって作製された従来の材料では、対応す
る組成域でのヤング率は、WやMoの粒子とCuの混合
物の様な組織であるため、通常上記理論値程度のレベル
である。すなわち銅量が25ないし45質量%のCu−
Wでは、約230GPa(Cu45質量%)から約29
0GPa(Cu25質量%)、同様に同じ組成域のCu
−Moでは、約250GPa(Cu45質量%)から約
280GPa(Cu25質量%)となる。
Here, by simply applying the compound rule in this composition range and estimating the theoretical value of the Young's modulus using the aforementioned values of the Young's modulus of Cu, W and Mo, for example, the copper content is 25 to 45 mass%. % Cu-W, about 230 GPa
From about 290 GPa, and similarly from about 250 GPa to about 280 GPa for Cu-Mo in the same composition range. However, the Young's modulus in the corresponding composition range of the conventional material manufactured by the infiltration method (a method of manufacturing a porous body of W or Mo and infiltrating Cu in the pores) is W or Mo. Since the particles are connected to each other to form a skeleton, they are usually higher than the above theoretical values, and about 240 G
From Pa (Cu 45 mass%) to 300 GPa (Cu 25 mass%), about 250 GPa (Cu 45 mass%) to 290 GPa (Cu 25 mass%) for Cu-Mo. On the other hand, in a conventional material produced by a sintering method (a method of performing liquid phase sintering of a molded body of a mixture composed of Cu and W or a corresponding composition of Cu and Mo at a temperature equal to or higher than the melting point of Cu), Since the Young's modulus in the region is a structure like a mixture of W or Mo particles and Cu, it is usually on the level of the above theoretical value. That is, when the amount of copper is 25 to 45% by mass,
In W, about 230 GPa (Cu 45 mass%) to about 29 GPa
0 GPa (Cu 25% by mass), similarly Cu in the same composition range
In the case of -Mo, the range is from about 250 GPa (Cu 45 mass%) to about 280 GPa (Cu 25 mass%).

【0015】これに対し上記組成からなる本発明の放熱
材料は、銅量が25〜45質量%の範囲で、そのヤング
率が250GPa以下である。なおヤング率は、複合則
に沿って銅量の増加とともに小さくなり、上記銅量の範
囲内では従来の同じ成分組成のものに比べ顕著に小さ
い。例えば銅量が45質量%であれば、そのヤング率
は、210GPa以下となる。本発明の複合材料では、
銅量が25質量%未満になると、Cu−Wでは熱伝導率
が290W/m・K未満、Cu−Moでは280W/m
・K未満となるため、これをハイパワーの高周波トラン
ジスターの放熱基板に用いると、放熱能力が十分ではな
い。その結果上記のようにヤング率が低くても、実用途
上で基板自体の反りが生じたり、周辺部材との接続界面
付近で損傷が生じ易くなり、パッケージの寿命が短くな
る。他方銅量が45質量%を越えると、熱膨張係数がC
u−Wでは9.5×10-6/℃を越えるため、またCu
−Moでは10.0×10-6/℃を越えるため、上記の
ようにヤング率が低くても、実用時の熱サイクルによっ
て周辺部材との接続界面付近での熱応力による損傷が生
じ易くなる。いずれの場合も信頼性が損なわれる可能性
が高くなる。
On the other hand, the heat radiation material of the present invention having the above composition has a Young's modulus of 250 GPa or less when the copper content is in the range of 25 to 45% by mass. Note that the Young's modulus decreases with an increase in the amount of copper according to the compound rule, and is remarkably smaller within the above-mentioned range of the amount of copper as compared with the conventional one having the same component composition. For example, if the amount of copper is 45% by mass, the Young's modulus is 210 GPa or less. In the composite material of the present invention,
When the amount of copper is less than 25% by mass, the thermal conductivity of Cu-W is less than 290 W / m · K, and that of Cu-Mo is 280 W / m.
-Since it is less than K, if this is used for a heat-dissipating substrate of a high-power high-frequency transistor, the heat-dissipating ability is not sufficient. As a result, even if the Young's modulus is low as described above, the substrate itself may be warped in practical use, or may be easily damaged near a connection interface with a peripheral member, thereby shortening the life of the package. On the other hand, when the amount of copper exceeds 45% by mass, the coefficient of thermal expansion becomes C
Since u-W exceeds 9.5 × 10 -6 / ° C.
Since -Mo exceeds 10.0 × 10 −6 / ° C., even if the Young's modulus is low as described above, damage due to thermal stress near the connection interface with the peripheral member is likely to occur due to thermal cycling during practical use. . In either case, there is a high possibility that reliability will be impaired.

【0016】本発明の放熱基板の微細組織は、同じ組
成、つまり材料中の硬質粒子(WやMo)とCuの量比
が同じであっても、従来の同系材料のそれに比べ異なっ
ている。溶浸法で得られる従来のCu−W系やCu−M
o系の材料は、硬質粒子がお互いに連続的に繋がり、三
次元のネットワーク(スケルトン)を形成している。し
かしながら溶浸法によって得られる本発明の材料では、
硬質粒子の繋がりが部分的に切れているか、または同粒
子の繋がり部分の接触面積がより小さくなった状態で、
三次元ネットワークを形成している。すなわち本発明の
ものは、従来の同じ組成のものに比べ硬質粒子の繋がり
がより不完全になっている。その結果、同じ組成の材料
を比較すると、本発明のものの方が従来のものよりヤン
グ率は小さくなる。
The microstructure of the heat radiation substrate of the present invention is different from that of the conventional similar material even if the composition is the same, that is, the hard particles (W or Mo) and the amount ratio of Cu in the material are the same. Conventional Cu-W or Cu-M obtained by the infiltration method
In the o-based material, hard particles are continuously connected to each other to form a three-dimensional network (skeleton). However, in the material of the present invention obtained by the infiltration method,
In the state where the connection of the hard particles is partially cut or the contact area of the connection of the same particles is smaller,
Forming a three-dimensional network. That is, in the case of the present invention, the connection of the hard particles is more imperfect than that of the conventional one having the same composition. As a result, when comparing materials having the same composition, the one of the present invention has a smaller Young's modulus than the conventional one.

【0017】また焼結法や鋳造法で得られるCu−W系
やCu−Mo系の材料は、溶浸法によって得られるもの
とは異なり、硬質粒子または同粒子の団塊がCuのマト
リックス中に島状に分布した状態の組織をなしている。
本発明のものも同様ではあるが、従来の焼結法によって
得られる材料に比べ、同じ組成であっても材料中の硬質
粒子または同粒子の団塊の三次元配置がより疎な状態に
なっている。すなわち硬質粒子または同粒子の団塊の間
の平均距離が大きくなっている。その結果、同じ組成の
材料を比較すると、本発明のものの方が従来のものより
ヤング率は小さくなる。なお鋳造法で得られる材料は、
焼結法や溶浸法で得られるものに比べ、空孔が生じ易い
ため熱伝導率の点で劣る。また鋳造過程で硬質粒子の偏
析が生じ易く、均質なものが得られ難い。
Unlike Cu-W or Cu-Mo materials obtained by sintering or casting, hard particles or aggregates of the same particles are contained in a Cu matrix, unlike those obtained by infiltration. The tissue is distributed in the form of islands.
The same applies to the present invention, but the three-dimensional arrangement of hard particles or aggregates of the same particles in the material becomes more sparse compared to the material obtained by the conventional sintering method, even with the same composition. I have. That is, the average distance between the hard particles or the aggregates of the hard particles is large. As a result, when comparing materials having the same composition, the one of the present invention has a smaller Young's modulus than the conventional one. The material obtained by the casting method is
As compared with those obtained by the sintering method or the infiltration method, vacancies are easily generated, so that they are inferior in thermal conductivity. In addition, segregation of hard particles is likely to occur during the casting process, and it is difficult to obtain a homogeneous product.

【0018】以上のような複合組織形態を実現するため
の本発明の好ましい材料組成として、鉄族金属(鉄、ニ
ッケルおよびコバルト)の含有量を0.2質量%以下に
抑えた組成がある。好ましくは0.05〜0.1質量%
である。Cu−W系やCu−Mo系の複合材料では、従
来より溶融したマトリックス金属(Cuを主成分とした
金属)と硬質粒子との間の濡れ性を高めるために、鉄族
金属を通常は0.5質量%以上添加する場合が多い。本
発明では、その含有量をこれより少ない量とすることに
よって、マトリクス金属と硬質粒子との間の濡れ性を確
保しつつ、硬質粒子間の繋がりを部分的に切った構造
か、または同粒子間の繋がり部分の面積を小さくした構
造を容易に得ることができる。その量が0.2質量%を
越えると、その実現が難しくなるとともに材料の熱伝導
率が低下し易くなる。なお鉄族金属の分布を極めて微細
かつ均一にすると、同じ含有量であっても材料の熱伝導
性の低下を小さくすることができる。
As a preferable material composition of the present invention for realizing the above composite structure, there is a composition in which the content of iron group metals (iron, nickel and cobalt) is suppressed to 0.2% by mass or less. Preferably 0.05 to 0.1% by mass
It is. In a Cu-W-based or Cu-Mo-based composite material, in order to increase the wettability between a conventionally melted matrix metal (a metal having Cu as a main component) and hard particles, an iron group metal is usually added in an amount of 0%. In most cases, it is added in an amount of 0.5% by mass or more. In the present invention, by reducing the content thereof to an amount smaller than this, while ensuring the wettability between the matrix metal and the hard particles, a structure in which the connection between the hard particles is partially cut, or the same particles It is possible to easily obtain a structure in which the area of the connection portion between them is reduced. If the amount exceeds 0.2% by mass, it is difficult to realize the amount, and the thermal conductivity of the material is liable to decrease. If the distribution of the iron group metal is extremely fine and uniform, the decrease in the thermal conductivity of the material can be reduced even with the same content.

【0019】次ぎに本発明の放熱基板(以下単に基板と
も言う。)の製造方法について述べる。本発明の基板
は、従来からの製造方法、すなわち前述の溶浸法、焼結
法および鋳造法に準じた方法で製造される。出発原料で
あるタングステン、モリブデンおよび銅の粉末は、市販
のものでもよいが、硬質粒子を構成するタングステンや
モリブデンの粉末は、その粒度分布幅(最大粒径と最小
粒径との差)の比較的狭いものを用いた方がよい。例え
ば平均粒径に対する同分布幅の比率を30〜50%程度
の範囲に制御するとよい。溶浸法では、複合材料を調製
する場合、予め硬質粒子を主成分とした粉末を成形して
成形体とするか、またはこれをさらに焼成して多孔質の
中間体とする。その際に以上のような硬質粒子の粒度分
布調整を行うと、これら中間体中の硬質粒子間の繋がり
を部分的に切るか、または同粒子間の繋がり部分の面積
を小さくすることが容易になる。焼結法によって、硬質
粒子または同粒子団塊間の平均距離を大きくした本発明
の複合材料を調製する場合も同じようにすればよい。
Next, a method for manufacturing a heat dissipation substrate (hereinafter, also simply referred to as a substrate) of the present invention will be described. The substrate of the present invention is manufactured by a conventional manufacturing method, that is, a method according to the aforementioned infiltration method, sintering method and casting method. Tungsten, molybdenum and copper powders as starting materials may be commercially available, but the tungsten and molybdenum powders constituting the hard particles are compared in the particle size distribution width (difference between the maximum particle size and the minimum particle size). It is better to use a narrow object. For example, the ratio of the distribution width to the average particle size may be controlled in a range of about 30 to 50%. In the infiltration method, when preparing a composite material, a powder containing hard particles as a main component is molded in advance to form a molded body, or further sintered to form a porous intermediate. At that time, when the particle size distribution of the hard particles is adjusted as described above, it is easy to partially cut the connection between the hard particles in these intermediates, or to reduce the area of the connection between the particles. Become. The same applies to the case where the composite material of the present invention in which the average distance between the hard particles or the particle aggregates is increased by the sintering method.

【0020】鉄族金属の粉末を添加する場合は、できる
限り平均粒径の小さいものを用いた方がよい。好ましく
は5μm以下、より好ましくは1μm以下である。添加
する形態は、金属以外にも1000℃以下の温度で金属
に転換する化合物であれば如何なる形態でもよい。例え
ば鉄族元素の有機金属化合物や無機塩の形態で添加する
ことによって、容易に微細(1μm以下)かつ極めて均
一に分布させることができる。添加する量は、前述の理
由で0.2質量%以下が望ましく、特に0.05〜0.
1質量%が望ましい。また鉄族金属またはその化合物を
添加混合する場合には、同じ鉄族金属で作られた混合容
器を用いるのが望ましい。これによって容器の摩耗によ
って、極めて微細な鉄族金属の粒子が混合とともに均一
に混ざり合うからである。
When an iron group metal powder is added, it is preferable to use a powder having an average particle size as small as possible. Preferably it is 5 μm or less, more preferably 1 μm or less. The form to be added may be any form other than metal as long as it is a compound that converts to metal at a temperature of 1000 ° C. or lower. For example, by adding it in the form of an organometallic compound or an inorganic salt of an iron group element, it can be easily finely distributed (1 μm or less) and very uniformly distributed. The amount to be added is desirably 0.2% by mass or less for the above-described reason, and is particularly preferably 0.05 to 0.1% by mass.
1% by mass is desirable. When the iron group metal or a compound thereof is added and mixed, it is desirable to use a mixing vessel made of the same iron group metal. This is because, due to wear of the container, extremely fine particles of the iron group metal are uniformly mixed together with the mixing.

【0021】溶浸法の場合には、まずタングステンおよ
び/またはモリブデンを主成分とした粉末を調製する。
この場合、必要により鉄族金属粉末もしくは高温で同金
属に転換する化合物の粉末を、複合化後、最終的に鉄族
金属単体に換算して上記範囲内の量になるような量で添
加してもよい。焼結法の場合には、まずタングステンお
よび/またはモリブデンを主成分とした粉末に銅を主成
分とする粉末を加えて混合する。
In the case of the infiltration method, first, a powder mainly containing tungsten and / or molybdenum is prepared.
In this case, if necessary, an iron group metal powder or a powder of a compound which converts to the same metal at a high temperature is added after compounding in an amount such that the amount finally falls into the above range in terms of a simple substance of the iron group metal. You may. In the case of the sintering method, first, a powder mainly containing copper is added to a powder mainly containing tungsten and / or molybdenum and mixed.

【0022】次いで粒状、スラリー状または粘土状に調
製された粉末を、所定形状に成形して成形体とする。成
形方法は、乾式成形、押し出し成形、ドクターブレード
成形、射出成形等の粉末冶金法で常用される如何なる成
形法であってもよい。ただしその際の成形密度は、成形
体のハンドリング強度を確保するため、および焼成時の
収縮による変形量を小さく抑えるために、できる限り高
い方が望ましい。このため溶浸法、焼結法のいずれの方
法でも、必要により優れた成形性を付与するため、有機
バインダーを添加し顆粒状に造粒してもよい。これによ
って、成形時の粉末の充填性を高め、成形密度を容易に
上げることができるからである。特に乾式成形の場合に
は、予め粉末を造粒しておくのが望ましい。
Next, the powder prepared in the form of granules, slurry, or clay is formed into a predetermined shape to obtain a formed body. The molding method may be any molding method commonly used in powder metallurgy, such as dry molding, extrusion molding, doctor blade molding, and injection molding. However, the molding density at that time is desirably as high as possible in order to secure the handling strength of the molded body and to suppress the deformation due to shrinkage during firing. For this reason, in any of the infiltration method and the sintering method, an organic binder may be added and granulated into granules in order to impart excellent moldability as necessary. Thereby, the filling property of the powder at the time of molding can be enhanced, and the molding density can be easily increased. Particularly in the case of dry molding, it is desirable to granulate the powder in advance.

【0023】有機バインダーが添加された成形体は、非
酸化性雰囲気(真空、減圧または非酸化性ガス)中で焼
成して同バインダーを除去する。溶浸法の場合には、必
要により同じ雰囲気中で、さらに昇温して成形体の空孔
率を調整する。その後同じ雰囲気中、望ましくは水素雰
囲気中にて、銅を主成分とする金属の融点以上の温度ま
で昇温することによって、同金属の融液を空孔内に溶浸
・充填する。なお成形体中の有機バイダーの体積や成形
密度等から焼成後の空孔率が、予め工程設計できれば、
成形体に銅を主成分とし、その体積に相当する程度の量
の金属塊を溶浸材として接触させておいて、バインダー
除去後引き続き銅の融点以上の温度まで昇温することに
よって、連続して溶浸まで進めることもできる。
The compact to which the organic binder is added is calcined in a non-oxidizing atmosphere (vacuum, reduced pressure or non-oxidizing gas) to remove the binder. In the case of the infiltration method, if necessary, the temperature is further increased in the same atmosphere to adjust the porosity of the molded body. Thereafter, in the same atmosphere, preferably in a hydrogen atmosphere, the temperature of the metal containing copper as a main component is raised to a temperature equal to or higher than the melting point of the metal, so that the melt of the metal is infiltrated and filled in the pores. If the porosity after firing from the volume and the molding density of the organic binder in the molded body can be designed in advance,
The molded body contains copper as a main component, and a metal lump in an amount corresponding to the volume thereof is brought into contact with the infiltration material, and after the binder is removed, the temperature is continuously raised to a temperature equal to or higher than the melting point of copper. To infiltration.

【0024】一方焼結法の場合には、バインダーを除去
した後、同じ雰囲気中、望ましくは水素雰囲気中にて、
銅を主成分とする金属の融点以上の温度まで昇温するこ
とによって、同金属の融液による液相焼結を行う。この
場合もバインダーの除去と燒結の両加熱ステップを分け
て行ってもよいし、連続プログラムで行ってもよい。
On the other hand, in the case of the sintering method, after removing the binder, in the same atmosphere, preferably in a hydrogen atmosphere,
By raising the temperature to a temperature equal to or higher than the melting point of a metal containing copper as a main component, liquid phase sintering with a melt of the metal is performed. Also in this case, both the heating steps of removing the binder and sintering may be performed separately, or may be performed by a continuous program.

【0025】溶浸法で銅量が33〜45質量%と比較的
多い材料を調製する場合には、成形体の形状保持に十分
な空孔率を確保する(通常50体積%未満)ため、必要
により当初の粉末に10質量%以下の量の銅を主成分と
し、空孔内に溶浸される金属を含む粉末を予め加えても
よい(予配合溶浸法)。また溶浸法、焼結法のいずれの
場合も、成形体や中間体の溶浸剤(銅を主成分とする金
属)と接触していない面に、溶融した同金属の面外への
溶出や染み出しを防ぐため、同溶融金属と濡れないセラ
ミックス等(溶出防止剤)の薄い層を付与しておくとよ
い。これによって溶出や染み出部分の形成面積が減り、
ネットシェイプな材料を容易に得ることができる。
When a material having a relatively large copper content of 33 to 45% by mass is prepared by the infiltration method, a porosity sufficient for maintaining the shape of the molded body is secured (usually less than 50% by volume). If necessary, a powder containing 10% by mass or less of copper as a main component and a metal containing metal to be infiltrated into the pores may be added in advance to the initial powder (premixed infiltration method). In either case of the infiltration method or the sintering method, the surface of the molded body or the intermediate body that is not in contact with the infiltrant (metal mainly composed of copper) may be dissolved out of the surface of the molten metal. In order to prevent oozing, a thin layer of a ceramic or the like (elution inhibitor) that does not wet the molten metal may be provided. This reduces the formation area of the elution and oozing parts,
A net-shaped material can be easily obtained.

【0026】このようにして得られた本発明の複合材料
を使ったバイポーラー型のハイパワー高周波トランジス
ターパッケージの断面構造を従来のそれと比較して図2
に示す。なお図の符号は、図1に準ずる。接続部の断面
で本発明のパッケージと従来のそれとを比較すると、両
者は、放熱基板とそれに隣接配置される半導体素子や他
の部材との間でも同様であるが、特に図に示すようにセ
ラミックス部材と放熱基板との間の接続層の構造におい
て、顕著に異なっている。すなわち本発明のヤング率の
低い材料を放熱基板に使うことによって、もし基板の銅
量が多くなり、隣接部材、特にセラミックスからなる部
材との熱膨張係数の差がかなり大きくなったとしても、
従来のものでは実現しなかったロウ材層による直接の接
続やより薄いロウ材層による接続が可能になる。
The cross-sectional structure of the bipolar high-power high-frequency transistor package using the composite material of the present invention thus obtained is shown in FIG.
Shown in Note that the reference numerals in FIG. When the package of the present invention is compared with the conventional package in the cross section of the connection part, the two are the same between the heat radiating substrate and the semiconductor element and other members arranged adjacent thereto. The structure of the connection layer between the member and the heat dissipation board is significantly different. In other words, by using the material having a low Young's modulus of the present invention for the heat dissipation board, if the amount of copper on the board increases, and even if the difference in thermal expansion coefficient between adjacent members, particularly members made of ceramics, becomes considerably large,
A direct connection by a brazing material layer and a connection by a thinner brazing material layer, which were not realized by the conventional device, can be realized.

【0027】また従来の材料では、それを特に大型のパ
ッケージに使う場合、隣接部材との接続部に厚い熱応力
緩和層を追加介在させる必要があった。このような層を
設けると、その配設に手間がかかるとともに接続層の熱
抵抗が上がり、放熱の観点からも良くない。しかしなが
ら本発明の基板を用いることによって、同緩和層が無く
ても、もしくは祖御厚みを薄くしてもその接続は可能と
なる。さらに大型のパッケージでは、従来同接続層の信
頼性を確保するために、基板は銅量が少なく熱膨張係数
の小さな材料を使い、その下にさらに高熱伝導性の金属
や広い放熱面の放熱板を配置して、放熱量の増加に対応
していた。しかしながら本発明の基板を使うことによっ
て、必要な放熱量さえ確保できれば、そのような放熱板
を追加配置する必要は無くなる。以上のように本発明の
基板を使うと、パッケージの接続部の構造が顕著に改善
される。
Further, in the case of using the conventional material for a particularly large package, it is necessary to additionally interpose a thick thermal stress relieving layer at a connection portion with an adjacent member. When such a layer is provided, it takes time to dispose the layer, and the thermal resistance of the connection layer increases, which is not good from the viewpoint of heat radiation. However, by using the substrate of the present invention, the connection can be made even if the relaxation layer is not provided or the thickness is reduced. For larger packages, to ensure the reliability of the connection layer, the board is made of a material with a small amount of copper and a small coefficient of thermal expansion. Was arranged to cope with an increase in the amount of heat radiation. However, by using the substrate of the present invention, it is not necessary to additionally dispose such a heat radiating plate as long as a necessary heat radiation amount can be secured. As described above, when the substrate of the present invention is used, the structure of the connection portion of the package is significantly improved.

【0028】[0028]

【実施例】実施例1(焼結法) いずれも純度が99.5%以上のタングステン、モリブ
デン、電解銅および鉄の粉末を準備した。 タングステ
ンおよびモリブデン粉末中の鉄族元素の含有量は、それ
らの合計量でいずれも0.05質量%以下であった。タ
ングステン、モリブデン、電解銅および鉄の粉末の平均
粒径は、μm単位で順にそれぞれ8、9、10および
0.8であった。またタングステン、モリブデンの粉末
の粒径の分布幅(最大粒径と最小粒径の差)は、いずれ
も3μmであった。電解銅粉末中の鉄族元素の含有量
は、それらの合計量で0.01質量%以下であった。
EXAMPLES Example 1 (Sintering Method) Powders of tungsten, molybdenum, electrolytic copper and iron each having a purity of 99.5% or more were prepared. The total content of iron group elements in the tungsten and molybdenum powders was 0.05% by mass or less. The average particle diameters of the tungsten, molybdenum, electrolytic copper and iron powders were 8, 9, 10 and 0.8, respectively, in μm units. The distribution width of the particle size of the tungsten and molybdenum powders (the difference between the maximum particle size and the minimum particle size) was 3 μm. The content of the iron group element in the electrolytic copper powder was 0.01% by mass or less in total thereof.

【0029】これらの原料粉末を表1の「配合組成」欄
に記載された割合で秤取し、これに有機質バインダーと
してパラフィンを、質量比で粉末100に対し1の割合
で添加した。なお添加された鉄の量は、主成分(Cu、
Wおよび/またはMo)の総量100に対する質量比で
表1に示す。その後これらをエタノールならびにステン
レススティール製のボールとともに、同じステンレスス
ティール製の内張りからなるポット内に投入し、同ボー
ルミル装置にて表1に記載の時間それぞれ混合した。
These raw material powders were weighed at the ratio described in the column of "composition" in Table 1, and paraffin as an organic binder was added to the powder at a ratio of 1 to 100 by mass. The amount of iron added depends on the main components (Cu,
Table 1 shows the mass ratio of the total amount of W and / or Mo) to 100. Thereafter, these were put into a pot made of the same stainless steel lining together with ethanol and stainless steel balls, and mixed with the same ball mill for the time shown in Table 1.

【0030】混合後のスラリーの粉末中の主成分および
鉄族元素金属(Fe、NiおよびCo)の含有量は、ス
ラリーを減圧下400℃まで加熱して、バインダーなら
びに揮発成分を除き、固形分(ほぼCu、Wおよび/ま
たはMoからなる金属混合物)とした後、これを化学分
析することによって確認した。その結果を表1の「混合
物組成」欄に示す。なおこの欄の鉄族金属の量は、粉末
粒子全体に対する質量比であり、主成分質量比は、Cu
量/硬質粒子量の値である。
The contents of the main component and the iron group metal elements (Fe, Ni and Co) in the powder of the mixed slurry can be determined by heating the slurry to 400 ° C. under reduced pressure to remove the binder and volatile components, (Metal mixture consisting essentially of Cu, W and / or Mo), which was confirmed by chemical analysis. The results are shown in the "mixture composition" column of Table 1. The amount of iron group metal in this column is a mass ratio to the whole powder particles, and the main component mass ratio is Cu
Value / amount of hard particles.

【0031】また上記の固形分を酸処理してW、Mo粒
子のみを抽出し、これを走査型電子顕微鏡で観察し、平
均粒径ならびに粒径の分布幅を確認した。酸処理後の粉
末を試料台上にエタノールで分散した後、3000倍の
矩形視野写真を撮り、同矩形視野の2本の対角線で切ら
れる各粒子の長さの総和と粒子数とを確認し、前者を後
者で割った値を硬質粒子の平均粒径とした。またその際
の最大の粒子長さと最小の粒子長さの差を硬質粒子の粒
径分布幅の値とした。
The solid content was acid-treated to extract only W and Mo particles, which were observed with a scanning electron microscope to confirm the average particle diameter and the distribution width of the particle diameter. After the acid-treated powder was dispersed on a sample stage with ethanol, a 3000-fold rectangular field photograph was taken, and the total length and number of particles cut by two diagonal lines in the rectangular field were confirmed. The value obtained by dividing the former by the latter was defined as the average particle size of the hard particles. The difference between the maximum particle length and the minimum particle length at that time was defined as the value of the particle size distribution width of the hard particles.

【0032】[0032]

【表1】 [Table 1]

【0033】スラリー本体は、スプレードライヤーによ
って造粒し、顆粒状粉末とした。その後乾式プレスによ
って成形し、直径25mm、厚み5mmの円板状の成形
体とした。これらの成形体を真空炉内に置き、減圧下4
00℃まで加熱してパラフィンならびに揮発成分を取り
除いた後、アルミナ質耐火物板上に載せ、水素炉にて水
素気流中、最高温度1200℃で2時間保持して燒結し
た。なお銅の液相焼結時に溶融した銅が成形体の周囲に
染み出すのを防ぎ、ネットシェイプな焼結体を得るた
め、同耐火物板上に載せる前に、耐火物板と接触する一
方の円形面以外の全面に炭素粉末(溶出防止剤)の薄い
層を形成した。
The slurry body was granulated by a spray drier to obtain a granular powder. Then, it was formed by a dry press to obtain a disk-shaped formed body having a diameter of 25 mm and a thickness of 5 mm. These compacts are placed in a vacuum furnace, and
After heating to 00 ° C. to remove paraffin and volatile components, the sample was placed on an alumina refractory plate and sintered in a hydrogen furnace at a maximum temperature of 1200 ° C. for 2 hours in a hydrogen stream. In addition, in order to prevent the copper melted during the liquid phase sintering of copper from seeping out around the compact and obtain a net-shaped sintered body, before placing it on the same refractory board, A thin layer of carbon powder (elution inhibitor) was formed on the entire surface except for the circular surface.

【0034】各焼結体は、ブラスト仕上げして表面の溶
出防止剤の層を除き、簡単に研削仕上げを行い、直径2
3mm、厚み4mmの円板形状にした。その後各試料中
のCu、W、Moおよび鉄族金属の量を化学分析によっ
て確認した。また研削仕上げされた試片の表面を、前述
の混合物の場合と同様、走査型電子顕微鏡で観察して硬
質粒子の平均粒径とその粒径の分布幅を確認した。その
結果、主成分の質量比、すなわちCuと硬質粒子(Wお
よび/またはMoの粒子)との質量比、および鉄族金属
の量(質量%)は、前記した混合物の状態で確認された
レベルとほぼ同じであった。また硬質粒子の平均粒径と
その粒径の分布幅も、前記した混合物の状態で確認され
たレベルとほぼ同じであった。さらに別途熱伝導率、熱
膨張係数およびヤング率もそれぞれ確認し、その結果を
表2の「焼結体」欄に示す。表2には載せていないが、
焼結体の相対密度(水中法で測った実測密度を、成分量
から試算した理論密度で割った値)は、全て99%以上
であった。なお熱伝導率は、レーザーフラッシュ法によ
って、熱膨張係数は、別途準備した円柱形状の試片を使
い差動トランス法によって、またヤング率は、別途準備
した引張試験片を引っ張り試験器にかけて、荷重・歪み
曲線を描き、これより算出した。
Each sintered body was blast-finished to remove the layer of the elution preventive agent on the surface, and was easily ground to finish.
It was made into a disk shape of 3 mm and thickness of 4 mm. Thereafter, the amounts of Cu, W, Mo and the iron group metal in each sample were confirmed by chemical analysis. The surface of the ground specimen was observed with a scanning electron microscope in the same manner as in the case of the above-mentioned mixture, and the average particle size of the hard particles and the distribution width of the particle size were confirmed. As a result, the mass ratio of the main component, that is, the mass ratio of Cu to hard particles (W and / or Mo particles), and the amount (% by mass) of the iron group metal were at the levels confirmed in the state of the mixture described above. Was almost the same as Also, the average particle size of the hard particles and the distribution width of the particle size were almost the same as the levels confirmed in the state of the mixture. Further, the thermal conductivity, the coefficient of thermal expansion, and the Young's modulus were separately confirmed, and the results are shown in the “sintered body” column of Table 2. Although not listed in Table 2,
The relative densities of the sintered bodies (the values obtained by dividing the measured densities measured by the underwater method by the theoretical densities calculated from the component amounts) were all 99% or more. The thermal conductivity was determined by the laser flash method, the coefficient of thermal expansion was determined by the differential transformer method using a separately prepared cylindrical specimen, and the Young's modulus was measured by applying a separately prepared tensile test piece to a tensile tester.・ Draw a strain curve and calculate from this.

【0035】なお試料番号25ものは、鉄粉末に代えて
平均粒径0.1μmのステアリン酸鉄(上記焼結の昇温
過程で平均粒径0.1μm以下の鉄粒子に変わる。)の
粉末を用いた以外は、試料番号4と同じ手順にて作製し
たものである。さらに試料番号26〜28のものは、上
記のタングステン粉末に代えてほぼ同じ平均粒径(8μ
m)を有し、粒径の分布幅を変えたタングステン粉末を
用いた以外は、試料番号4と同じ手順にて作製したもの
である。この場合表1に記載のように混合物中のタング
ステン粒子の分布幅が変わっている。さらに試料番号2
9のものは、上記のタングステン粉末に代えて平均粒径
が4μm、粒径分布幅が1μmと、粒径の小さいタング
ステン粉末を用いた以外は、試料番号4と同じ手順にて
作製したものである。この場合表1に記載のように混合
物中のタングステン粒子の平均粒径、分布幅ともかなり
小さくなっている。
Sample No. 25 was powdered of iron stearate having an average particle size of 0.1 μm instead of iron powder (changed to iron particles having an average particle size of 0.1 μm or less during the above-mentioned sintering process). The sample was prepared in the same procedure as in Sample No. 4 except that Sample No. 4 was used. Samples 26 to 28 had substantially the same average particle size (8 μm) in place of the tungsten powder.
m), and was prepared in the same procedure as Sample No. 4 except that tungsten powder having a different particle size distribution width was used. In this case, the distribution width of the tungsten particles in the mixture is changed as shown in Table 1. Sample No. 2
Sample No. 9 was prepared in the same procedure as Sample No. 4 except that tungsten powder having an average particle size of 4 μm and a particle size distribution width of 1 μm and a small particle size was used instead of the above tungsten powder. is there. In this case, as shown in Table 1, the average particle size and distribution width of the tungsten particles in the mixture are considerably small.

【0036】[0036]

【表2】 [Table 2]

【0037】以上の結果から(1)焼結法によって得ら
れる本発明のCu−W系、Cu−Mo系の複合材料は、
銅量25質量%で、そのヤング率が250GPa以下で
ある。これは前述した従来の同じ組成の材料の通常レベ
ルであるCu−W系の290GPa、Cu−Mo系の2
80GPaに比べて顕著に低いことが分かる。Cu−W
−Mo系の複合材料についても同じことが言える。また
このヤング率のレベルは、銅の量が25〜45質量%の
範囲内で、前述した複合則からの同じ組成での推計値な
らびに従来のもののそれよりも顕著に小さいことも分か
る。特に(2)鉄族金属の含有量を0.2質量%以下に
抑えることにより、その効果が大きくなることが分か
る。
From the above results, (1) the Cu-W-based and Cu-Mo-based composite materials of the present invention obtained by the sintering method are as follows:
The copper content is 25% by mass, and the Young's modulus is 250 GPa or less. This is the same as the usual level of the conventional material having the same composition as described above, ie, 290 GPa of Cu-W type and 2% of Cu-Mo type.
It can be seen that it is significantly lower than 80 GPa. Cu-W
The same can be said for the Mo-based composite material. It can also be seen that this level of Young's modulus is significantly lower than that of the conventional one, as well as the estimated value for the same composition from the compound rule described above, when the amount of copper is in the range of 25-45% by mass. In particular, it can be seen that the effect is enhanced by suppressing the content of (2) the iron group metal to 0.2% by mass or less.

【0038】実施例2(溶浸法) 実施例1と同じタングステン、モリブデン、電解銅およ
び鉄の粉末を準備した。これらの原料粉末を表3の「配
合組成」欄に記載された割合で秤取し、これに有機質バ
インダーとしてパラフィンを、質量比で粉末100に対
し2の割合で添加した。複合化後の最終の銅の体積量
(溶浸前の多孔体の空孔体積)が、50体積%以上と予
想される試料番号5〜9、18の混合粉末には、予め表
3に記載される量の電解銅の粉末を配合(予配合)し
た。なお添加された鉄の量は、主成分(Cu、Wおよび
/またはMo)の総量100に対する質量比で表3に示
す。その後実施例1と同様のボールミル装置にて表3に
記載の時間それぞれ混合した。混合後のスラリーの粉末
中の主成分および鉄族元素金属(Fe、NiおよびC
o)の含有量、硬質粒子の平均粒径とその粒径分布幅を
実施例1と同様にして確認した。
Example 2 (Infiltration method) The same powders of tungsten, molybdenum, electrolytic copper and iron as in Example 1 were prepared. These raw material powders were weighed at the ratio described in the column of "composition" in Table 3, and paraffin as an organic binder was added to the powder at a ratio of 2 to 100 by mass. Table 3 shows in advance the mixed powders of Sample Nos. 5 to 9 and 18 in which the final volume of copper after compounding (the pore volume of the porous body before infiltration) is expected to be 50% by volume or more. A predetermined amount of electrolytic copper powder was blended (pre-blended). The amount of iron added is shown in Table 3 as a mass ratio to the total amount 100 of the main components (Cu, W and / or Mo). Thereafter, mixing was carried out for each of the times shown in Table 3 using the same ball mill as in Example 1. The main components and the iron group element metals (Fe, Ni and C) in the powder of the slurry after mixing.
The content of o), the average particle size of the hard particles, and the particle size distribution width were confirmed in the same manner as in Example 1.

【0039】スラリー本体は、スプレードライヤーによ
って造粒し、顆粒状粉末とした。その後乾式プレスによ
って成形し、直径25mm、厚み5mmの円板状の成形
体とした。これらの成形体を真空炉内に置き、減圧下4
00℃まで加熱してパラフィンならびに揮発成分を取り
除き多孔体(スケルトン)とした。なお成形に当たり5
0〜500MPaの範囲で成形圧力を変えて個々の試料
の成形密度を変化させ、表3に記載された空孔率レベル
の多孔体を調整した。なお空孔率は、配合された混合物
組成での理論密度ρt(g/cm3単位、タングステン、
モリブデンおよび銅の密度をg/cm3単位で、それぞ
れ順に19.3、10.2および8.9として算出)、
多孔体の実測直径、厚みから算定されたその実測体積V
(cm3)および多孔体の実測質量W(g)を用いて、
計算式(1−W/ρtV)×100(%)によって算出
した。
The slurry body was granulated by a spray drier to obtain a granular powder. Then, it was formed by a dry press to obtain a disk-shaped formed body having a diameter of 25 mm and a thickness of 5 mm. These compacts are placed in a vacuum furnace, and
The mixture was heated to 00 ° C. to remove paraffin and volatile components to form a porous body (skeleton). In addition, 5
The molding density of each sample was changed by changing the molding pressure in the range of 0 to 500 MPa, and the porosity of the porosity level described in Table 3 was adjusted. The porosity is calculated based on the theoretical density ρ t (g / cm 3 unit, tungsten,
The densities of molybdenum and copper are calculated in g / cm 3 as 19.3, 10.2 and 8.9, respectively),
The measured volume V calculated from the measured diameter and thickness of the porous body
(Cm 3 ) and the measured mass W (g) of the porous body,
It was calculated by the calculation formula (1−W / ρ t V) × 100 (%).

【0040】[0040]

【表3】 [Table 3]

【0041】これらの多孔体の全ての空孔を充填するに
足りる銅の質量を算出し、その量よりも若干多めの質量
の実施例1の電解銅粉と同じ材質の銅板を準備した。次
いでこれらの銅板をアルミナ質耐火物板上に載せ、その
上に対応する空孔量の多孔体試片を載せ、水素炉にて水
素気流中、最高温度1200℃で2時間保持して、多孔
体の空孔内に溶融させた銅を溶浸した。なお溶融した銅
が成形体の周囲に染み出すのを防ぎ、ネットシェイプな
溶浸体を得るため、多孔体試片を銅板上に載せる前に、
銅板と接触する一方の円形面以外の全面に炭素粉末(溶
出防止剤)の薄い層を形成した。
The mass of copper sufficient to fill all the pores of these porous bodies was calculated, and a copper plate of the same material as the electrolytic copper powder of Example 1 having a slightly larger mass than that was prepared. Next, these copper plates were placed on an alumina-based refractory plate, and a porous specimen having a corresponding amount of porosity was placed thereon, and was held at a maximum temperature of 1200 ° C. for 2 hours in a hydrogen stream in a hydrogen furnace to obtain a porous plate. The molten copper was infiltrated into the pores of the body. In addition, in order to prevent molten copper from seeping out around the molded body and obtain a net-shaped infiltrated body, before placing the porous sample on the copper plate,
A thin layer of carbon powder (anti-elution agent) was formed on the entire surface other than the one circular surface in contact with the copper plate.

【0042】各溶浸体は、実施例1と同様にして仕上げ
加工し、直径23mm、厚み4mmの円板形状にした。
その後実施例1と同様にして、各試料中のCuと硬質粒
子との質量比、鉄族金属の量、熱伝導率、熱膨張係数お
よびヤング率をそれぞれ確認した。それらの結果を表4
の「焼結体」欄に示す。表4には載せていないが、焼結
体の相対密度は、全て99.5%以上であった。その結
果、主成分の質量比、すなわちCuと硬質粒子(Wおよ
び/またはMoの粒子)の質量比、および鉄族金属の量
(質量%)は、前記した混合物の状態で確認されたレベ
ルとほぼ同じであった。また硬質粒子の平均粒径とその
粒径の分布幅も、前記した混合物の状態で確認されたレ
ベルとほぼ同じであった。
Each infiltrated body was finished in the same manner as in Example 1 to form a disk having a diameter of 23 mm and a thickness of 4 mm.
Thereafter, in the same manner as in Example 1, the mass ratio between Cu and hard particles, the amount of iron group metal, thermal conductivity, thermal expansion coefficient, and Young's modulus in each sample were confirmed. Table 4 shows the results.
In the “Sintered Body” column. Although not listed in Table 4, the relative densities of the sintered bodies were all 99.5% or more. As a result, the mass ratio of the main component, that is, the mass ratio of Cu to hard particles (W and / or Mo particles), and the amount (% by mass) of the iron group metal are determined by the level confirmed in the state of the mixture described above. It was almost the same. Also, the average particle size of the hard particles and the distribution width of the particle size were almost the same as the levels confirmed in the state of the mixture.

【0043】なお試料番号25のものは、鉄粉末に代え
て平均粒径0.1μmのステアリン酸鉄の粉末を用いた
以外は、試料番号4と同じ手順にて作製したものであ
る。さらに試料番号26〜28のものは、上記のタング
ステン粉末に代えてほぼ同じ平均粒径(8μm)を有
し、粒径の分布幅が10μmのタングステン粉末を用い
た以外は、試料番号4と同じ手順にて作製したものであ
る。さらに試料番号29のものは、上記のタングステン
粉末に代えて平均粒径が4μm、粒径分布幅が1μm
と、粒径の小さいタングステン粉末を用いた以外は、試
料番号4と同じ手順にて作製したものである。この場合
表4に記載のように混合物中のタングステン粒子の平均
粒径、分布幅ともかなり小さくなっている。
Sample No. 25 was prepared by the same procedure as Sample No. 4 except that iron stearate powder having an average particle size of 0.1 μm was used instead of iron powder. Samples Nos. 26 to 28 had substantially the same average particle size (8 μm) in place of the above tungsten powder, and were the same as Sample No. 4 except that a tungsten powder having a particle size distribution width of 10 μm was used. It was produced by the procedure. Sample No. 29 has an average particle size of 4 μm and a particle size distribution width of 1 μm instead of the tungsten powder.
Except that a tungsten powder having a small particle size was used. In this case, as shown in Table 4, both the average particle size and the distribution width of the tungsten particles in the mixture are considerably small.

【0044】[0044]

【表4】 [Table 4]

【0045】以上の結果から(1)溶浸法によって得ら
れる本発明のCu−W系、Cu−Mo系の複合材料は、
銅量25質量%で、そのヤング率が250GPa以下で
ある。これは前述した従来の同じ組成の材料の通常レベ
ルであるCu−W系の300GPa、Cu−Mo系の2
90GPaに比べて顕著に低いことが分かる。Cu−W
−Mo系の複合材料についても同じことが言える。また
このヤング率のレベルは、銅の量が25〜45質量%の
範囲内で、前述した複合則からの同じ組成での推計値な
らびに従来のもののそれよりも顕著に低いことも分か
る。特に(2)鉄族金属の含有量を0.2質量%以下に
抑えることにより、その効果が大きくなることが分か
る。
From the above results, (1) the Cu-W-based and Cu-Mo-based composite materials of the present invention obtained by the infiltration method
The copper content is 25% by mass, and the Young's modulus is 250 GPa or less. This is 300 GPa of Cu-W type and 2 levels of Cu-Mo type which are the usual levels of the same material of the same composition as the conventional one described above.
It can be seen that it is significantly lower than 90 GPa. Cu-W
The same can be said for the Mo-based composite material. It can also be seen that the level of this Young's modulus is significantly lower than that of the conventional one as well as the estimated value for the same composition from the above-mentioned compound rule when the amount of copper is in the range of 25-45% by mass. In particular, it can be seen that the effect is enhanced by suppressing the content of (2) the iron group metal to 0.2% by mass or less.

【0046】実施例3(鋳造法) 実施例1と同じタングステン、モリブデン、鉄の粉末
と、実施例1の電解銅粉末と純度および材質がほぼ同じ
銅板を準備した。表5の配合組成欄に記載された質量割
合にてタングステン、モリブデン、銅および鉄の粉末を
秤取し、実施例1と同じボールミル装置を使って2時間
混合し、表5のb〜fおよびhの混合物を得た。ただし
表5のaおよびgは、以上の混合処理を行っていない上
記したタングステンおよびモリブデンの粉末である。混
合物中の鉄族金属の量、硬質粒子の平均粒径とその粒径
分布幅は、実施例1と同じ手順で確認し、その結果を表
5に記載した。
Example 3 (Casting Method) The same tungsten, molybdenum, and iron powders as in Example 1 and a copper plate having substantially the same purity and material as the electrolytic copper powder of Example 1 were prepared. Tungsten, molybdenum, copper and iron powders were weighed at the mass ratios described in the composition column of Table 5 and mixed for 2 hours using the same ball mill apparatus as in Example 1, and b to f and h was obtained. However, a and g in Table 5 are the above-mentioned tungsten and molybdenum powders not subjected to the above-mentioned mixing treatment. The amount of the iron group metal in the mixture, the average particle size of the hard particles, and the particle size distribution width were confirmed by the same procedure as in Example 1, and the results are shown in Table 5.

【0047】[0047]

【表5】 [Table 5]

【0048】表5のa〜hの粉末と電解銅板とを表6の
主成分質量比(なお同表の質量比の分子は電解銅板の質
量割合、分母は硬質粒子の質量割合である。)で秤取し
た。その後幅と長さが32mm、深さが5mmの内寸を
有する黒鉛坩堝中に、まず秤取された電解銅板を投入し
て、これを窒素中1200℃で加熱して溶湯を形成し
た。次いでこの溶湯を攪拌しながら、これに秤取した硬
質粒子の粉末を投入した後徐冷して、表6に記載の主成
分質量比のそれぞれの鋳造体を作製した。その後鋳造体
を切削加工し、幅30mm、厚み3mmの鋳造体の試片
を得た。この形状以外の試片も用意し、実施例1と同様
の手順で表6に記載された鋳造体の諸特性を確認した。
なお表6には載せてはいないが、焼結体の相対密度は、
98〜98.5%の範囲内であった。
The powders (a) to (h) in Table 5 and the electrolytic copper plate were compared with the main component mass ratio in Table 6 (note that the numerator of the mass ratio in the table is the mass ratio of the electrolytic copper plate, and the denominator is the mass ratio of the hard particles). Was weighed. Thereafter, the weighed electrolytic copper plate was first put into a graphite crucible having an inner size of 32 mm in width and length and 5 mm in depth, and this was heated at 1200 ° C. in nitrogen to form a molten metal. Then, while stirring the molten metal, powder of the weighed hard particles was put into the molten metal, and the molten metal was gradually cooled to produce respective casts having the main component mass ratios shown in Table 6. Thereafter, the cast body was cut to obtain a specimen of the cast body having a width of 30 mm and a thickness of 3 mm. Specimens other than this shape were also prepared, and various properties of the cast body described in Table 6 were confirmed in the same procedure as in Example 1.
Although not shown in Table 6, the relative density of the sintered body is
It was in the range of 98-98.5%.

【0049】[0049]

【表6】 [Table 6]

【0050】以上の結果から(1)鋳造法によって得ら
れる本発明のCu−W系、Cu−Mo系の複合材料は、
銅量25質量%で、そのヤング率が250GPa以下で
ある。これは前述した従来の同じ組成の材料の通常レベ
ルであるCu−W系の300GPa、Cu−Mo系の2
90GPaに比べて顕著に低いことが分かる。Cu−W
−Mo系の複合材料についても同じことが言える。また
このヤング率のレベルは、銅の量が25〜45質量%の
範囲内で、前述した複合則からの同じ組成での推計値な
らびに従来のもののそれよりも顕著に低いことも分か
る。特に(2)鉄族金属の含有量を0.2質量%以下に
抑えることにより、その効果が大きくなることが分か
る。
From the above results, (1) the Cu-W-based and Cu-Mo-based composite materials of the present invention obtained by the casting method are:
The copper content is 25% by mass, and the Young's modulus is 250 GPa or less. This is 300 GPa of Cu-W type and 2 levels of Cu-Mo type which are the usual levels of the same material of the same composition as the conventional one described above.
It can be seen that it is significantly lower than 90 GPa. Cu-W
The same can be said for the Mo-based composite material. It can also be seen that the level of this Young's modulus is significantly lower than that of the conventional one as well as the estimated value for the same composition from the above-mentioned compound rule when the amount of copper is in the range of 25-45% by mass. In particular, it can be seen that the effect is enhanced by suppressing the content of (2) the iron group metal to 0.2% by mass or less.

【0051】実施例4(圧延法) 実施例1〜3それぞれの試料4と同じ手順で得られ、こ
れら各試料と同じ組成を有する幅15mm、厚み3m
m、長さ200mmの複合材料からなる素材を準備し
た。これらの素材を窒素中で900℃に予備加熱した
後、直ちにロールで圧延加工して幅20mm、厚み1.
5mm、長さがほぼ300mmのフープ状素材を得た。
これらの素材から幅および長さが20mmで厚みが1.
5mmの形状の試片を切り出した後、材料の組織および
実施例1と同じ項目の評価を行った。その結果を表7に
示す。なお表7の「アスペクト比」は、複合材料中に分
布している硬質粒子の平均値であり、その確認手順は以
下の通りである。実施例1での硬質粒子の粒径観察と同
じ手順で撮影した矩形視野の写真を使い、同視野内にそ
の全体が含まれる硬質粒子全ての最大寸法部分の長さD
maxと、最小寸法部分の長さDminを計量し、個々
の粒子のアスペクト比Dmax/Dminの総和を計量
された粒子の数で割って算定した。また出発素材である
当初の材料中の硬質粒子のアスペクト比も同様の手順で
確認した結果、いずれもほぼ1であった。
Example 4 (Rolling method) A sample having a width of 15 mm and a thickness of 3 m having the same composition as that of each of the samples 4 obtained in each of the examples 1 to 3 was obtained.
A material made of a composite material having a length of 200 mm and a length of 200 mm was prepared. After preheating these materials to 900 ° C. in nitrogen, they are immediately rolled with a roll to have a width of 20 mm and a thickness of 1.
A hoop-shaped material having a length of 5 mm and a length of approximately 300 mm was obtained.
From these materials, the width and length are 20 mm and the thickness is 1.
After cutting out a test piece having a shape of 5 mm, the structure of the material and the same items as in Example 1 were evaluated. Table 7 shows the results. The “aspect ratio” in Table 7 is the average value of the hard particles distributed in the composite material, and the confirmation procedure is as follows. Using a photograph of a rectangular visual field taken in the same procedure as the particle size observation of the hard particles in Example 1, the length D of the largest dimension portion of all the hard particles included in the whole visual field in the same visual field
The maximum and the length Dmin of the minimum dimension portion were measured, and the sum was calculated by dividing the sum of the aspect ratios Dmax / Dmin of the individual particles by the number of the measured particles. Further, as a result of confirming the aspect ratio of the hard particles in the starting material as the starting material by the same procedure, all were almost 1.

【0052】[0052]

【表7】 [Table 7]

【0053】以上の結果から、圧延後の素材は、組織に
方向性があるため、熱伝導率、熱膨張係数に幾分方向性
が出るものの、その熱膨張係数は圧延前とほぼ同じであ
り、高い熱伝導率を維持するとともに、そのヤング率
は、さらに1〜2%程度小さくなることが分かる。
From the above results, although the material after rolling has a directional structure, the thermal conductivity and the coefficient of thermal expansion show some directionality, but the coefficient of thermal expansion is almost the same as before rolling. It can be seen that the high thermal conductivity is maintained and the Young's modulus is further reduced by about 1 to 2%.

【0054】実施例5 表9の「ヒートシンク」欄に記載された実施例1〜4そ
れぞれの資料と同じ方法で作製された素材を放熱基板と
して用い、表8に記載された三種類の型式にて各種材質
・外形サイズからなる部材とを併用した高周波トランジ
スターパッケージ用試片を作製した。作製した三種類の
パッケージの構造を、LMDMOS型については図3
に、バイポーラー型については図4に、MSFET型に
ついては図5にそれぞれ模式的に示す。それぞれの図に
おいて、上の図はパッケージを上面から見た図であり、
下はそのA−A′断面で切った図である。なお用いたセ
ラミック部材2のアルミナ、半導体素子3のSi、Ga
As、およびコバール製の金属部材4熱伝導率は、W/
m・K単位で順に20、140、54、および17であ
り、熱膨張係数は、10-6/℃単位で順に6.5、4.
2、6.5および5.3であった。
Example 5 The materials prepared in the same manner as in the materials of Examples 1 to 4 described in the column of “Heat sink” in Table 9 were used as heat dissipation boards, and the three types shown in Table 8 were used. Thus, test pieces for a high-frequency transistor package using members made of various materials and external sizes were manufactured. The structure of the three types of packages manufactured is shown in FIG. 3 for the LMDMOS type.
FIG. 4 schematically shows the bipolar type and FIG. 5 shows the MSFET type. In each figure, the upper figure is a view of the package from the top,
The bottom is a view cut along the AA 'section. The alumina used for the ceramic member 2 and the Si and Ga for the semiconductor element 3 were used.
The thermal conductivity of the metal member 4 made of As and Kovar is W /
They are 20, 140, 54, and 17 in the order of m · K, and the thermal expansion coefficients are 6.5, 4 in the order of 10 −6 / ° C.
2, 6.5 and 5.3.

【0055】[0055]

【表8】 [Table 8]

【0056】パッケージの部材間の接続は、以下のよう
に行った。本発明の放熱基板とセラミック(アルミナ)
基板との間は、お互いのメタライズ層を介して厚みが9
0μmのAg−Cuロウ層を800〜900℃で形成す
ることによって、セラミック(アルミナ)基材と金属部
材(コバール)との間は、お互いのメタライズ層を介し
て厚みが200μmのAg−Snロウ層を350〜40
0℃で形成することによって、さらに半導体素子(Si
またはGaAs)とセラミック(アルミナ)基材との間
は、お互いのメタライズ層を介して厚み約10μmのA
u−Si半田層を400〜500℃で形成することによ
って、それぞれ接続した。以上のような手順で本発明の
前記放熱基板の種類毎に10個ずつパッケージを作製し
た。
The connection between the members of the package was performed as follows. Heat radiation board of the present invention and ceramic (alumina)
The thickness between the substrate and the substrate is 9 through the metallized layers.
By forming a 0 μm Ag-Cu brazing layer at 800 to 900 ° C., a 200 μm thick Ag—Sn brazing layer is formed between the ceramic (alumina) base material and the metal member (Kovar) via the metallized layers. 350-40 layers
By forming at 0 ° C., the semiconductor device (Si
Alternatively, between the GaAs) and the ceramic (alumina) base material, A
Each connection was made by forming a u-Si solder layer at 400 to 500 ° C. According to the above procedure, ten packages were produced for each type of the heat dissipation board of the present invention.

【0057】以上のようにして組み上げられたパッケー
ジ試片を、各パッケージ型毎に3個ずつ選び、それぞれ
−60℃で15分間保持後、150℃で15分間保持す
る温度プログラムを1サイクルとし、これを3000サ
イクル繰り返す冷熱試験を行った。表9に代表的な例と
してLDMOS型パッケージ試片での試験結果をしま
す。なお表9には記載しないが、図4に示すバイポーラ
ー型および図5に示すMSFET型のものについても同
じ試験を行ったが、その結果は、LDMOS型とほぼ同
じであった。この試験ではパッケージ試片の反り量を当
初ならびにその後500サイクル毎に確認した。試片の
反り量が、3個中1個でも実用上問題となる0.5μm
/mm以上(本発明ではこれを仮にそりの臨界値と言
う)が確認された時点で、その試料番号の試験を打ち切
った。打ち切った試料番号の3個の試片は、その時点で
表9に示す最終の反り量を確認するとともに、その時点
ならびに試験前での出力の比E/E0(ただし当初の出
力がE0、その時点での出力をEとする)を確認した。
表9には冷熱サイクルでの以上のパッケージ性能の持続
性の評価結果を500サイクル毎に○×で示す。ただし
○および×は、その時点で反りがそれぞれ臨界値未満、
臨界値以上であることを示す。なお表9中の「ヒートシ
ンク」欄の番号は、用いたヒートシンク材料の番号であ
り、最初の数値が実施例番号であり、後の数値が試料番
号である。例えば表9の試料2の場合、用いたヒートシ
ンク材料が、実施例1の試料3であることを示す。また
「持続性評価結果」欄の数値は、持続サイクルを「キロ
サイクル」単位で示している。
The package program assembled as described above was selected three by three for each package type, and each cycle was held at -60 ° C for 15 minutes, and then held at 150 ° C for 15 minutes. A cooling test was repeated 3000 times. Table 9 shows test results of LDMOS type package specimens as a typical example. Although not described in Table 9, the same test was performed on the bipolar type shown in FIG. 4 and the MSFET type shown in FIG. 5, and the results were almost the same as those of the LDMOS type. In this test, the amount of warpage of the package specimen was confirmed initially and every 500 cycles thereafter. Even if one of the three specimens has a warpage of 0.5 μm, which is a practical problem
/ Mm or more (in the present invention, this is referred to as a critical value of warpage), the test of the sample number was terminated. The three specimens of the censored sample numbers were checked for the final warpage amount shown in Table 9 at that time, and the output ratio E / E 0 at that time and before the test (however, the initial output was E 0 , And the output at that time is E).
In Table 9, the evaluation results of the above-mentioned sustainability of the package performance in the thermal cycle are indicated by × every 500 cycles. However, ○ and × indicate that the warpage is less than the critical value at that time,
Indicates that it is above the critical value. The numbers in the “heat sink” column in Table 9 are the numbers of the heat sink materials used. The first numerical value is the example number, and the latter numerical value is the sample number. For example, in the case of Sample 2 in Table 9, the heat sink material used is Sample 3 of Example 1. The numerical value in the column of “Result of sustainability evaluation” indicates the sustaining cycle in “kilocycle” unit.

【0058】試片の反り量は、以下のようにして確認し
た。図6に模式的に示すように、放熱基板1の裏側(半
導体素子が搭載された面とは反対側)が上になるように
定盤5に載せ、定盤面から等距離を保ちつつ、上方から
同裏面四角形の二つの対角線方向にレーザー光源6を走
査して、基板裏面までの最大距離Lmaxと最小距離L
minを確認し、その差Lmax−Lmin(μm)を
算定し、これを対角線方向の走査距離(mm)で割っ
て、反り量(μm/mm)とする。また上記の出力比E
/E0は、予め簡単な動作回路を備えた出力計量治具を
用意し、これにパッケージと試片を接続することによっ
て確認した。
The amount of warpage of the test piece was confirmed as follows. As schematically shown in FIG. 6, the heat radiation substrate 1 is placed on the surface plate 5 so that the back side (the side opposite to the surface on which the semiconductor element is mounted) is facing upward, and while maintaining the same distance from the surface of the surface plate, , The laser light source 6 is scanned in two diagonal directions of the same square on the back side, and the maximum distance Lmax and the minimum distance L
After confirming min, the difference Lmax−Lmin (μm) is calculated, and this difference is divided by the scanning distance (mm) in the diagonal direction to obtain the amount of warpage (μm / mm). In addition, the above output ratio E
/ E 0 was confirmed by preparing an output measuring jig provided with a simple operation circuit in advance and connecting a package and a test piece thereto.

【0059】この反り量の大きさは、この種のパッケー
ジではセラミック基材と放熱基板との界面での残留応力
の大きさに左右されるが、それは主に両者の熱膨張係数
の差、熱伝導率および放熱基板のヤング率の影響を受け
る。特に放熱基板の熱伝導率が大きいほど、またそのヤ
ング率が小さいほど、熱膨張係数の差で生じた応力の緩
和効果が大きい。したがって放熱基板の熱伝導率が低い
と接続界面での熱の滞留が生じるため、またヤング率が
大きいほど冷熱サイクルでの熱応力の緩和が不十分とな
るため、より一層反りが助長される。これによってトラ
ンジスターの出力が低下する。またさらに脆いセラミッ
ク基材側に損傷が生じる状況になると、動作不能にな
る。
The magnitude of the amount of warpage depends on the magnitude of the residual stress at the interface between the ceramic substrate and the heat dissipation board in this type of package. It is affected by the conductivity and the Young's modulus of the heat dissipation board. In particular, the greater the thermal conductivity of the heat dissipation substrate and the smaller its Young's modulus, the greater the effect of alleviating the stress caused by the difference in the coefficient of thermal expansion. Therefore, if the thermal conductivity of the heat radiating substrate is low, heat stays at the connection interface, and if the Young's modulus is large, the relaxation of thermal stress in the cooling / heating cycle becomes insufficient, so that the warpage is further promoted. This reduces the output of the transistor. Further, if the brittle ceramic substrate side is damaged, the operation becomes inoperable.

【0060】[0060]

【表9】 [Table 9]

【表10】 [Table 10]

【0061】表9の結果から明らかなように、本発明の
放熱基板を用いたパッケージ試片では、セラミック基材
との熱膨張係数の差が比較的大きくても、反りの臨界値
に至るまでのサイクル数が顕著に増加しており、実用上
長寿命であり高い実用信頼性を有していることが分か
る。これは本発明の放熱基板が、従来の同じ成分組成の
同種材に比べ顕著に低いヤング率を有しているからであ
る。なおこのパッケージを各種半導体装置に組み込んだ
ところ、従来の同じ材料系の放熱基板では不可能であっ
た高い出力の半導体装置にも十分適用可能であることが
分かった。
As is evident from the results in Table 9, in the package specimen using the heat radiation board of the present invention, even if the difference in the coefficient of thermal expansion from the ceramic substrate is relatively large, the warpage reaches the critical value. It can be seen that the number of cycles is markedly increased, and that it has a long service life and high practical reliability. This is because the heat radiating substrate of the present invention has a significantly lower Young's modulus than conventional materials of the same component composition. When this package was incorporated into various semiconductor devices, it was found that the package was sufficiently applicable to a high-output semiconductor device, which was impossible with a conventional heat radiation board of the same material.

【0062】[0062]

【発明の効果】以上詳述したように、本発明のCu−W
系、Cu−Mo系およびCu−W−Mo系の複合材料か
らなる放熱基板は、そのヤング率が従来の同じ成分組成
のそれよりも顕著に小さいため、特にハイパワーの高周
波トランジスター用の放熱基板として用いると、長寿命
かつ高い実用信頼性を有する。したがって高い実用信頼
性のハイパワーの高周波トランジスターパッケージおよ
び同パッケージを用いた半導体装置を容易に提供するこ
とができる。
As described in detail above, the Cu-W of the present invention
, Heat-dissipating substrates made of Cu-Mo-based and Cu-W-Mo-based composite materials have a significantly smaller Young's modulus than that of the conventional composition having the same component composition. When used as, it has a long life and high practical reliability. Therefore, a high-power high-frequency transistor package with high practical reliability and a semiconductor device using the package can be easily provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高周波トランジスターパッケージの構造例を模
式的に示す図である。
FIG. 1 is a diagram schematically illustrating a structural example of a high-frequency transistor package.

【図2】本発明ならびに従来の高周波トランジスターパ
ッケージの断面構造を模式的に説明する図である。
FIG. 2 is a diagram schematically illustrating a cross-sectional structure of the present invention and a conventional high-frequency transistor package.

【図3】本発明の実施例のLDMOS型高周波トランジ
スターパッケージの構造を模式的に説明する図である。
FIG. 3 is a diagram schematically illustrating the structure of an LDMOS high-frequency transistor package according to an embodiment of the present invention.

【図4】本発明の実施例のバイポーラー型高周波トラン
ジスターパッケージの構造を模式的に説明する図であ
る。
FIG. 4 is a diagram schematically illustrating a structure of a bipolar high-frequency transistor package according to an example of the present invention.

【図5】本発明の実施例のMSFET型高周波トランジ
スターパッケージの構造を模式的に説明する図である。
FIG. 5 is a diagram schematically illustrating the structure of an MSFET-type high-frequency transistor package according to an example of the present invention.

【図6】本発明のパッケージの反り量の計量方法を説明
する図である。
FIG. 6 is a diagram illustrating a method for measuring the amount of warpage of a package according to the present invention.

【符号の説明】[Explanation of symbols]

1、放熱基板 2、セラミック基板 3、半導体素子 4、金属部材 1, heat dissipation substrate 2, ceramic substrate 3, semiconductor element 4, metal member

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/373 H01L 23/36 M Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 23/373 H01L 23/36 M

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】銅を25〜45質量%含み、ヤング率が2
50GPa以下の銅−タングステン系および/または銅
−モリブデン系複合材料からなる放熱基板。
(1) containing 25 to 45% by mass of copper and having a Young's modulus of 2
A heat dissipation substrate made of a copper-tungsten-based and / or copper-molybdenum-based composite material of 50 GPa or less.
【請求項2】鉄族金属の含有量が、0.2質量%以下で
ある請求項1に記載の放熱基板。
2. The heat dissipation board according to claim 1, wherein the content of the iron group metal is 0.2% by mass or less.
【請求項3】請求項1または2に記載の放熱基板を用い
たハイパワー高周波トランジスターパッケージ。
3. A high-power high-frequency transistor package using the heat dissipation substrate according to claim 1.
【請求項4】請求項3のパッケージを用いた半導体装
置。
4. A semiconductor device using the package according to claim 3.
JP2000317494A 2000-10-18 2000-10-18 Heat radiation substrate, and high-power high-frequency transistor package using it Pending JP2002121639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000317494A JP2002121639A (en) 2000-10-18 2000-10-18 Heat radiation substrate, and high-power high-frequency transistor package using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000317494A JP2002121639A (en) 2000-10-18 2000-10-18 Heat radiation substrate, and high-power high-frequency transistor package using it

Publications (2)

Publication Number Publication Date
JP2002121639A true JP2002121639A (en) 2002-04-26
JP2002121639A5 JP2002121639A5 (en) 2005-10-27

Family

ID=18796271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000317494A Pending JP2002121639A (en) 2000-10-18 2000-10-18 Heat radiation substrate, and high-power high-frequency transistor package using it

Country Status (1)

Country Link
JP (1) JP2002121639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525207A (en) * 2011-11-23 2014-09-25 レイセオン カンパニー High frequency, high bandwidth, low loss microstrip-waveguide transition
KR20200052841A (en) * 2018-11-07 2020-05-15 (주)메탈라이프 MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
WO2022172855A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader and semiconductor package
WO2022172856A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525207A (en) * 2011-11-23 2014-09-25 レイセオン カンパニー High frequency, high bandwidth, low loss microstrip-waveguide transition
KR20200052841A (en) * 2018-11-07 2020-05-15 (주)메탈라이프 MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
KR102231919B1 (en) 2018-11-07 2021-03-25 (주)메탈라이프 MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
WO2022172855A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader and semiconductor package
WO2022172856A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Similar Documents

Publication Publication Date Title
US6114048A (en) Functionally graded metal substrates and process for making same
US6737168B1 (en) Composite material and semiconductor device using the same
US6238454B1 (en) Isotropic carbon/copper composites
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPH11310843A (en) Member for semiconductor device and its production
JP2000336438A (en) Metal-ceramics composite material and its manufacture
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
US5886269A (en) Substrate and heat sink for a semiconductor and method of manufacturing the same
JP4360832B2 (en) Copper alloy
JP3948797B2 (en) Method for producing silicon carbide composite
JP3999989B2 (en) Copper-tungsten carbide composite material
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JP2001217364A (en) Al-SiC COMPOSITE
JP2003073756A (en) Composite material and manufacturing method therefor
JP3626695B2 (en) Manufacturing method of heat dissipation member for electronic equipment
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP2001284509A (en) Al-SiC COMPOSITE BODY
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106