JPH0995745A - Low thermal expansion-high thermal conductivity copper composite material and its production - Google Patents

Low thermal expansion-high thermal conductivity copper composite material and its production

Info

Publication number
JPH0995745A
JPH0995745A JP7279767A JP27976795A JPH0995745A JP H0995745 A JPH0995745 A JP H0995745A JP 7279767 A JP7279767 A JP 7279767A JP 27976795 A JP27976795 A JP 27976795A JP H0995745 A JPH0995745 A JP H0995745A
Authority
JP
Japan
Prior art keywords
composite material
thermal expansion
thermal conductivity
powder
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7279767A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hamayoshi
繁幸 濱吉
Masahiko Oshima
昌彦 大島
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7279767A priority Critical patent/JPH0995745A/en
Publication of JPH0995745A publication Critical patent/JPH0995745A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a low thermal expansion-high thermal expansion copper composite material by subjecting a powdery mixture composed of specified ratios of copper powder and silicon carbide powder to press sintering. SOLUTION: By volume, 20 to 80% silicon carbide powder is added to 80 to 20% copper powder, which are mixed, and press sintering is executed at 600 to 950 deg.C under >=1,000kg/cm<2> pressure. Thus, the copper composite material whose thermal expansion coefficient is regulated to 5×10<-6> to 14×10<-6> /K and thermal conductivity to 150 to 380W/(m.K) can be obtd. Furthermore, preferably, the purity of the copper powder is regulated to ∞99%, the concn. of iron impurities therein to <=0.001%, the purity of the silicon carbide powder to >=99%, and the average grain size thereof to >=10μ, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低い熱膨張係数と高
い熱伝導率を有する銅複合材料及びその製造方法に関
し、詳しくは半導体装置の放熱板材に好適な材料及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper composite material having a low coefficient of thermal expansion and high thermal conductivity and a method for manufacturing the same, and more particularly to a material suitable for a heat dissipation plate of a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年半導体技術の分野では、トランジス
タの大容量化、LSIの高集積、高速及び高性能化等、
半導体素子の性能向上が著しい。このため、半導体素子
から発生した熱エネルギーを、放熱板材によりいかに効
率よく放散させるかが重要な課題となっている。従来の
半導体装置用放熱板材料としては、基板に銅(Cu)、
大型の基板にモリブデン(Mo)、パッケージにプラス
チック又はアルミナ(Al2 3 )、また大容量化した
パッケージに窒化アルミニウム(AlN)等が用いられ
ている。
2. Description of the Related Art In recent years, in the field of semiconductor technology, large capacity of transistors, high integration of LSI, high speed and high performance, etc.
The performance of semiconductor devices is remarkably improved. Therefore, how to efficiently dissipate the heat energy generated from the semiconductor element by the heat dissipation plate material is an important issue. As a conventional heat sink material for a semiconductor device, copper (Cu),
Molybdenum (Mo) is used for a large substrate, plastic or alumina (Al 2 O 3 ) is used for a package, and aluminum nitride (AlN) is used for a package having a large capacity.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置用放
熱板材において、熱伝導率が常温付近にて 390W/(m
・K)と高い銅は放熱性に優れているが、トランジス
タ、LSI チップ等の半導体材料に使用されるシリコン
(Si)の熱膨張係数が 4.2×10-6/Kであるのに対し
て、銅の熱膨張係数が17.0×10 -6 /Kと差が大きいた
め、回路の作動中に繰り返し与えられる熱応力により放
熱板材と半導体材料との間にあるPb−Sn等のハンダ
接合面が剥離する恐れがあるという問題がある。逆に、
熱膨張係数が 5.l×l0-6/KのMoは、半導体材料の熱
膨張係数に近似しているためハンダ接合面での信頼性に
優れているが、熱伝導率が 150W/(m・K)と低いた
め放熱性が十分でないという問題がある。また170 W/
(m・K)の熱伝導率及び 4.5×l0-6/Kの熱膨張係数
とバランスが優れたセラミックスであるAlNは、コス
トが高く経済的に不利であるという問題がある。さら
に、これらの従来材は単一材料で構成されているため熱
膨張係数と熱伝導率の両特性を任意にコントロールする
ことが困難であるという問題がある。
In the conventional heat dissipation plate material for semiconductor devices, the heat conductivity is 390 W / (m
・ K) and high copper have excellent heat dissipation, whereas the coefficient of thermal expansion of silicon (Si) used in semiconductor materials such as transistors and LSI chips is 4.2 × 10 -6 / K. Copper has a large coefficient of thermal expansion of 17.0 × 10 -6 / K, so the solder joint surface such as Pb-Sn between the heat dissipation plate and the semiconductor material peels off due to the thermal stress repeatedly applied during the operation of the circuit. There is a problem that there is a risk of doing. vice versa,
Mo having a thermal expansion coefficient of 5.l × 10 -6 / K is excellent in reliability at the solder joint surface because it is close to the thermal expansion coefficient of semiconductor materials, but has a thermal conductivity of 150 W / (m・ There is a problem that the heat dissipation is not sufficient because it is as low as K). 170 W /
AlN, which is a ceramic having a good balance between the thermal conductivity of (m · K) and the thermal expansion coefficient of 4.5 × 10 −6 / K, has a problem that it is costly and economically disadvantageous. Further, since these conventional materials are composed of a single material, there is a problem that it is difficult to arbitrarily control both characteristics of the thermal expansion coefficient and the thermal conductivity.

【0004】従って、本発明の目的は安価で、低熱膨張
性かつ高熱伝導性を有する銅複合材料を提供することで
ある。
Therefore, it is an object of the present invention to provide a copper composite material which is inexpensive, has a low thermal expansion coefficient and a high thermal conductivity.

【0005】[0005]

【課題を解決するための手段】以上の問題に鑑み鋭意研
究の結果、本発明者らは銅と炭化珪素からなる複合材料
が高い熱伝導性と低い熱膨張性を有することを発見し、
本発明を完成した。
As a result of intensive studies in view of the above problems, the present inventors have found that a composite material composed of copper and silicon carbide has high thermal conductivity and low thermal expansion,
The present invention has been completed.

【0006】すなわち、本発明の低熱膨張・高熱伝導性
銅複合材料は、80〜20体積%の銅粉末に20〜80体積%の
炭化珪素粉末を添加した混合粉末を加圧焼結して得られ
たものであることを特徴とする。
That is, the low thermal expansion and high thermal conductivity copper composite material of the present invention is obtained by pressure sintering a mixed powder obtained by adding 20 to 80% by volume of silicon carbide powder to 80 to 20% by volume of copper powder. It is characterized by being

【0007】また、低熱膨張・高熱伝導性銅複合材料を
製造する本発明の方法は、80〜20体積%の銅粉末に20〜
80体積%の炭化珪素粉末を添加して混合し、600 〜950
℃の温度及び1000 kg/cm2 以上の圧力下で加圧焼結する
ことを特徴とする。
Further, the method of the present invention for producing a copper composite material having a low thermal expansion and a high thermal conductivity is 20 to 80% by volume of copper powder.
Add 80% by volume of silicon carbide powder and mix to 600-950
It is characterized by performing pressure sintering at a temperature of ℃ and a pressure of 1000 kg / cm 2 or more.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。 (1) 銅粉末 銅粉末として純度が99%以上のものが好ましい。銅粉末
の純度が99%未満であると、得られる複合材料の熱伝達
率が小さくなるので好ましくない。銅粉末の平均粒径は
10〜300 μmであるのが好ましく、20〜100 μmである
のがより好ましく、特に20〜50μmが好ましい。原料粉
末の全体積に対して、銅粉末の含有率は80〜20体積%で
ある。銅粉末の含有率が80体積%を越えると熱膨張係数
が大きくなり、また含有率が20体積%未満であると熱伝
導率が小さくなるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. (1) Copper powder Copper powder having a purity of 99% or more is preferable. If the purity of the copper powder is less than 99%, the heat transfer coefficient of the obtained composite material becomes small, which is not preferable. The average particle size of copper powder is
The thickness is preferably 10 to 300 μm, more preferably 20 to 100 μm, and particularly preferably 20 to 50 μm. The copper powder content is 80 to 20% by volume based on the total volume of the raw material powder. When the content of the copper powder exceeds 80% by volume, the coefficient of thermal expansion increases, and when the content is less than 20% by volume, the thermal conductivity decreases, which is not preferable.

【0009】銅粉末中の鉄不純物の濃度は0.001 %以下
であるのが好ましい。鉄不純物の濃度が0.001 %を超え
ると熱伝導率が低下する。
The concentration of iron impurities in the copper powder is preferably 0.001% or less. If the concentration of iron impurities exceeds 0.001%, the thermal conductivity will decrease.

【0010】(2) 炭化珪素粉末 炭化珪素粉末として純度が99%以上のものが好ましい。
炭化珪素粉末の純度が99%未満であると、熱伝達率が低
いので好ましくない。原料粉末の全体積に対して、炭化
珪素粉末の含有率は20〜80体積%である。炭化珪素粉末
の含有率が80体積%を越えると熱伝導率が低くなり、ま
た含有率が20体積%未満であると熱膨張係数が大きくな
るので好ましくない。
(2) Silicon Carbide Powder Silicon carbide powder having a purity of 99% or more is preferable.
If the purity of the silicon carbide powder is less than 99%, the heat transfer rate is low, which is not preferable. The content of the silicon carbide powder is 20 to 80% by volume based on the total volume of the raw material powder. When the content of the silicon carbide powder exceeds 80% by volume, the thermal conductivity becomes low, and when the content is less than 20% by volume, the thermal expansion coefficient becomes large, which is not preferable.

【0011】炭化珪素粉末の平均粒径は10μm以上であ
るのが好ましい。平均粒径が10μm未満であると、セラ
ミックス粒子が凝集して金属基地に均一に分散し難く、
また粒子凝集部に気孔を生じるために熱伝導率が低下す
る。炭化珪素の平均粒径は10〜300 μmであるのがより
好ましく、特に20〜100 μmが好ましい。
The average particle size of the silicon carbide powder is preferably 10 μm or more. If the average particle size is less than 10 μm, the ceramic particles agglomerate and are difficult to uniformly disperse in the metal matrix,
Moreover, since the pores are generated in the particle agglomeration portion, the thermal conductivity is lowered. The average particle size of silicon carbide is more preferably 10 to 300 μm, and particularly preferably 20 to 100 μm.

【0012】(3) 製造方法 銅粉末と炭化珪素粉末を上記割合で混合する。混合は各
種公知の方法で行うことができ、例えばボールミル等を
用いて行うことができる。混合時間は3時間以上である
のが好ましい。次いで上記混合粉末を所望形状に予備成
形する。成形方法として金型プレス法等が挙げられる。
(3) Manufacturing Method Copper powder and silicon carbide powder are mixed in the above ratio. Mixing can be performed by various known methods, for example, using a ball mill or the like. The mixing time is preferably 3 hours or more. Next, the mixed powder is preformed into a desired shape. Examples of the molding method include a die pressing method.

【0013】次に得られた予備成形体を焼結するが、焼
結方法としてはHIP又はホットプレス等の加圧焼結が
好ましい。焼結温度は600 〜950 ℃であり、圧力は1000
kg/cm2 以上であるのが好ましい。焼結温度が600 ℃未
満であると得られる複合材料の気孔率が大きくなり、95
0 ℃を超えると熱伝達率が小さくなるので好ましくな
い。また圧力が1000 kg/cm2 未満であると、得られる複
合材料の気孔率が大きくなるので好ましくない。より好
ましい焼結温度は800 〜900 ℃であり、より好ましい圧
力は1000〜2000 kg/cm2 である。
Next, the preformed body obtained is sintered, and the preferred sintering method is pressure sintering such as HIP or hot pressing. Sintering temperature is 600-950 ° C, pressure is 1000
It is preferably at least kg / cm 2 . If the sintering temperature is below 600 ° C, the porosity of the resulting composite material will increase and
If the temperature exceeds 0 ° C, the heat transfer rate becomes small, which is not preferable. Further, if the pressure is less than 1000 kg / cm 2 , the porosity of the obtained composite material increases, which is not preferable. A more preferable sintering temperature is 800 to 900 ° C., and a more preferable pressure is 1000 to 2000 kg / cm 2 .

【0014】(4) 銅複合材料 このようにして得られる複合材料の気孔率は10%以下で
あり、熱膨張係数は5〜14×10-6/Kであり、熱伝導率
は150 〜380 W/(m・K)である。複合材料の気孔率
が10%を超えると熱伝導率が低い。好ましい気孔率は8
%以下である。
(4) Copper Composite Material The composite material thus obtained has a porosity of 10% or less, a coefficient of thermal expansion of 5 to 14 × 10 −6 / K, and a thermal conductivity of 150 to 380. It is W / (mK). When the porosity of the composite material exceeds 10%, the thermal conductivity is low. Preferred porosity is 8
% Or less.

【0015】本発明の銅複合材料は以下の特徴を有す
る。 (a) 基地となる銅粒子及び炭化珪素粒子の含有量(体積
%)を適宜選択することにより、熱膨張係数及び熱伝導
率を所望の特性にコントロールできる。
The copper composite material of the present invention has the following features. (a) The thermal expansion coefficient and the thermal conductivity can be controlled to desired characteristics by appropriately selecting the content (volume%) of the copper particles and silicon carbide particles serving as the base.

【0016】(b) 放熱板材の上に搭載される半導体材料
に近似する熱膨張係数を得ることができるので、放熱板
と半導体材料とのハンダ接合面が熱応力により剥離等せ
ず、ハンダ接合面の信頼性が向上する。
(B) Since it is possible to obtain a thermal expansion coefficient similar to that of the semiconductor material mounted on the heat dissipation plate material, the solder joint surface between the heat dissipation plate and the semiconductor material is not peeled off due to thermal stress, and the solder joint is performed. The reliability of the surface is improved.

【0017】(c) 基地が銅であるため高い熱伝導率が得
られ、半導体材料から発生した熱エネルギーを効率よく
放散させることができ、トランジスタチップ、LSIチ
ップ等の誤動作及び熱破損を防止できる。
(C) Since the base is copper, high thermal conductivity can be obtained, heat energy generated from the semiconductor material can be efficiently dissipated, and malfunctions and thermal damage of transistor chips, LSI chips, etc. can be prevented. .

【0018】[0018]

【実施例】本発明を以下の具体的実施例により更に詳細
に説明する。実施例1 (1) 原料粉末 炭化珪素粉末の粒径は130 μm以下(平均粒径57μm)
であり、純度は99.3%以上である。銅粉末の粒径は130
μm以下(平均粒径40μm)であり、純度は99.9%以上
であった。また銅粉末中の鉄不純物濃度は0.0001%以下
であった。
The present invention will be described in more detail with reference to the following specific examples. Example 1 (1) Raw Material Powder Silicon carbide powder having a particle size of 130 μm or less (average particle size 57 μm)
And the purity is 99.3% or more. The particle size of copper powder is 130
The average particle size was 40 μm or less, and the purity was 99.9% or more. The iron impurity concentration in the copper powder was 0.0001% or less.

【0019】(2) 成形 上記炭化珪素及び銅粉末を表1に示す割合で配合し、ボ
ールミルで24時間乾式混合した。混合粉末を5ton/cm2
の圧力で直径30mm×高さ30mmの成形体を製造した。
(2) Molding The above silicon carbide and copper powders were blended in the proportions shown in Table 1 and dry mixed in a ball mill for 24 hours. 5 ton / cm 2 of mixed powder
A molded body having a diameter of 30 mm and a height of 30 mm was manufactured under the pressure.

【0020】この成形体を軟鋼製の円筒状容器に入れ、
650 ℃で4時間真空脱気を行った後に1400 kg/cm2 及び
850 ℃の条件でHIP焼結を1時間行い、銅基地に炭化
珪素粒子が均一に分散した緻密な5種類の焼結体を得
た。
This molded body was placed in a mild steel cylindrical container,
After vacuum degassing at 650 ℃ for 4 hours, 1400 kg / cm 2 and
HIP sintering was carried out at 850 ° C. for 1 hour to obtain five dense sintered bodies in which silicon carbide particles were uniformly dispersed in a copper matrix.

【0021】(3) 測定 得られた5種類の焼結体について以下の特性をそれぞれ
測定した。 1.熱伝導率 各焼結体から直径10mm×高さ2mmのテストピースを切り
出した後、熱定数測定装置(LF/TCM-FA8510B、理学電機
社製)を用いて、レーザーフラッシュ法(JIS1606 準
拠)に従って熱伝導率を測定した。結果を表1に示す。
(3) Measurement The following characteristics were measured for each of the obtained five types of sintered bodies. 1. Thermal conductivity After cutting out a test piece with a diameter of 10 mm and a height of 2 mm from each sintered body, use a thermal constant measuring device (LF / TCM-FA8510B, manufactured by Rigaku Denki Co., Ltd.) according to the laser flash method (JIS1606 compliant). The thermal conductivity was measured. The results are shown in Table 1.

【0022】2.熱膨張係数 各焼結体から角3mm×長さ17mmのテストピースを切り出
した後、常温から100℃の温度範囲でTMA(サーモ
メカニカルアナライザー、セイコー(株)製)を用いて
熱膨張係数を測定した。結果を合わせて表1に示す。
2. Coefficient of thermal expansion After cutting out a test piece of 3 mm square x 17 mm long from each sintered body, measure the thermal expansion coefficient using TMA (thermo-mechanical analyzer, Seiko Co., Ltd.) in the temperature range from room temperature to 100 ° C. did. The results are shown together in Table 1.

【0023】3.気孔率 各焼結体から角10mm×高さ2mmのテストピースを切り出
した後、アルキメデス法に従ってそれぞれの気孔率を測
定し、結果を表1に示す。
3. Porosity A test piece of 10 mm square and 2 mm high was cut out from each sintered body, and then each porosity was measured according to the Archimedes method, and the results are shown in Table 1.

【0024】 表1 実施例1実験結果 混合体積% 熱伝導率 熱膨張係数 気孔率 Cu SiC W/(m・K) ×10-6/K % 20:80 150 6.5 5.0 30:70 162 7.1 4.2 40:60 185 9.3 3.1 50:50 203 11.0 2.0 80:20 360 13.8 0.1 Table 1 Example 1 Experimental results Mixed volume% Thermal conductivity Thermal expansion coefficient Porosity Cu SiC W / (m · K) × 10 −6 / K% 20:80 150 6.5 5.0 30:70 162 7.1 4.2 40 : 60 185 9.3 3.1 50:50 203 11.0 2.0 80:20 360 13.8 0.1

【0025】表1から分かるように、上記混合比で得ら
れた複合材料のいずれも150W/(m・K)以上と高
い熱伝導率を示した。
As can be seen from Table 1, all of the composite materials obtained with the above mixing ratio showed a high thermal conductivity of 150 W / (m · K) or more.

【0026】実施例2 実施例1と同じ方法で50体積%の銅粉末と50体積%の炭
化珪素粉末を混合して予備成形した後、表2に示す各焼
結条件でそれぞれHIPを行い、得られた焼結体につい
て実施例1と同様に熱伝導率と気孔率を測定した。結果
を表2に合わせて示す。
Example 2 In the same manner as in Example 1, 50% by volume of copper powder and 50% by volume of silicon carbide powder were mixed and preformed, and then HIP was performed under the respective sintering conditions shown in Table 2, The thermal conductivity and the porosity of the obtained sintered body were measured in the same manner as in Example 1. The results are shown in Table 2.

【0027】表2 実施例2の実験結果 温度 圧力 熱伝導率 気孔率℃ kg/cm2 W/(m・K) % 850 1400 203 2.0 850 1200 155 9.6 850 500 l20 12.0 Table 2 Experimental results of Example 2 Temperature Pressure Thermal conductivity Porosity ℃ kg / cm 2 W / ( mK )% 850 1400 203 2.0 850 1200 155 9.6 850 500 l20 12.0

【0028】表2から分かるように、圧力が1000 kg/cm
2 未満であると、得られた焼結体の気孔率が10%を超え
て大きくなり、熱伝導率が著しく低下した。
As can be seen from Table 2, the pressure is 1000 kg / cm.
When it was less than 2 , the porosity of the obtained sintered body exceeded 10% and increased, and the thermal conductivity significantly decreased.

【0029】比較例1 銅粉末中の鉄不純物濃度を0.1 %とした以外は、実施例
1と同じ方法で50体積%の銅粉末と50体積%の炭化珪素
粉末を混合して予備成形した後、実施例1と同じ焼結条
件で焼結し、得られた焼結体について実施例1と同様に
熱伝導率と気孔率を測定した。結果を表3に示す。
Comparative Example 1 After preforming by mixing 50% by volume of copper powder and 50% by volume of silicon carbide powder in the same manner as in Example 1, except that the iron impurity concentration in the copper powder was 0.1%. Sintering was performed under the same sintering conditions as in Example 1, and the thermal conductivity and porosity of the obtained sintered body were measured in the same manner as in Example 1. The results are shown in Table 3.

【0030】表3 比較例1の実験結果 鉄不純物 熱伝導率% W/(m・K) 0.1 40Table 3 Experimental Results of Comparative Example 1 Iron Impurity Thermal Conductivity % W / (m · K) 0.1 40

【0031】表3から分かるように、鉄不純物濃度が0.
001 %を超えると、熱伝導率が著しく低下した。
As can be seen from Table 3, the iron impurity concentration is 0.
When it exceeds 001%, the thermal conductivity is remarkably reduced.

【0032】[0032]

【発明の効果】本発明の銅複合材料は、制御された気孔
率を有するために低熱膨張性及び高熱伝導性を兼ね備え
ている。また本発明の銅複合材料は、銅粒子及び炭化珪
素粒子の含有量(体積%)を適宜調整することにより、
熱膨張係数及び熱伝導率を所望のレベルにコントロール
できるので、半導体材料の放熱板材として幅広く用いる
ことができる。
The copper composite material of the present invention has both a low thermal expansion property and a high thermal conductivity because it has a controlled porosity. Further, the copper composite material of the present invention, by appropriately adjusting the content (volume%) of copper particles and silicon carbide particles,
Since the coefficient of thermal expansion and the thermal conductivity can be controlled to desired levels, it can be widely used as a heat dissipation plate material for semiconductor materials.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 80〜20体積%の銅粉末に20〜80体積%の
炭化珪素粉末を添加した混合粉末を加圧焼結して得られ
ることを特徴とする低熱膨張・高熱伝導性銅複合材料。
1. A low-thermal-expansion / high-thermal-conductivity copper composite obtained by pressure-sintering a mixed powder obtained by adding 20 to 80% by volume of silicon carbide powder to 80 to 20% by volume of copper powder. material.
【請求項2】 請求項1に記載の低熱膨張・高熱伝導性
銅複合材料において、前記複合材料の熱膨張係数が5 ×
10-6〜14×10-6/Kであり、熱伝導率が150 〜380 W/
(m・K)であることを特徴とする複合材料。
2. The low thermal expansion / high thermal conductivity copper composite material according to claim 1, wherein the composite material has a thermal expansion coefficient of 5 ×.
10 −6 to 14 × 10 −6 / K, and the thermal conductivity is 150 to 380 W /
A composite material characterized by being (m · K).
【請求項3】 請求項1又は2に記載の低熱膨張・高熱
伝導性銅複合材料において、前記炭化珪素粉末の平均粒
径が10μm以上であることを特徴とする複合材料。
3. The low thermal expansion / high thermal conductivity copper composite material according to claim 1 or 2, wherein the silicon carbide powder has an average particle size of 10 μm or more.
【請求項4】 請求項1〜3のいずれかに記載の低熱膨
張・高熱伝導性銅複合材料において、前記炭化珪素粉末
の純度が99%以上であり、前記銅粉末の純度が99%以上
であることを特徴とする複合材料。
4. The low thermal expansion / high thermal conductivity copper composite material according to claim 1, wherein the silicon carbide powder has a purity of 99% or more, and the copper powder has a purity of 99% or more. A composite material characterized by being.
【請求項5】 請求項1〜4のいずれかに記載の低熱膨
張・高熱伝導性銅複合材料において、前記銅粉末中の鉄
不純物の濃度が 0.00l%以下であることを特徴とする複
合材料。
5. The low thermal expansion / high thermal conductivity copper composite material according to any one of claims 1 to 4, wherein the concentration of iron impurities in the copper powder is 0.001% or less. .
【請求項6】 低熱膨張・高熱伝導性銅複合材料を製造
する方法において、80〜20体積%の銅粉末に20〜80体積
%の炭化珪素粉末を添加して混合し、600 〜950 ℃の温
度及び1000 kg/cm2 以上の圧力下で加圧焼結することを
特徴とする方法。
6. A method for producing a low thermal expansion and high thermal conductivity copper composite material, wherein 20 to 80% by volume of silicon carbide powder is added and mixed to 80 to 20% by volume of copper powder, and the mixture is heated to 600 to 950 ° C. A method comprising press-sintering at a temperature of 1000 kg / cm 2 or more.
【請求項7】 請求項6に記載の低熱膨張・高熱伝導性
銅複合材料を製造する方法において、前記混合粉末をH
IP又はホットプレスにより加圧焼結することを特徴と
する方法。
7. The method for producing a low thermal expansion / high thermal conductivity copper composite material according to claim 6, wherein the mixed powder is H
A method characterized by performing pressure sintering by IP or hot pressing.
JP7279767A 1995-10-03 1995-10-03 Low thermal expansion-high thermal conductivity copper composite material and its production Pending JPH0995745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279767A JPH0995745A (en) 1995-10-03 1995-10-03 Low thermal expansion-high thermal conductivity copper composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279767A JPH0995745A (en) 1995-10-03 1995-10-03 Low thermal expansion-high thermal conductivity copper composite material and its production

Publications (1)

Publication Number Publication Date
JPH0995745A true JPH0995745A (en) 1997-04-08

Family

ID=17615631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279767A Pending JPH0995745A (en) 1995-10-03 1995-10-03 Low thermal expansion-high thermal conductivity copper composite material and its production

Country Status (1)

Country Link
JP (1) JPH0995745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987231A1 (en) * 1998-09-14 2000-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
CN109811179A (en) * 2017-11-20 2019-05-28 郑州大学 A kind of MoSi2- SiC-Cu conductance composite ceramic material and preparation method thereof
KR20210091503A (en) * 2020-01-14 2021-07-22 목포대학교산학협력단 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987231A1 (en) * 1998-09-14 2000-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
EP1284250A1 (en) * 1998-09-14 2003-02-19 Sumitomo Electric Industries Co., Ltd. A method for manufacturing a composite material
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
CN109811179A (en) * 2017-11-20 2019-05-28 郑州大学 A kind of MoSi2- SiC-Cu conductance composite ceramic material and preparation method thereof
KR20210091503A (en) * 2020-01-14 2021-07-22 목포대학교산학협력단 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

Similar Documents

Publication Publication Date Title
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
US4960734A (en) Ceramic composite and process for preparation thereof
EP1114807B1 (en) Semiconductor device or heat dissipating substrate therefor using a composite material
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPH0925166A (en) Aluminum nitride sintered compact and its production
JPS63156075A (en) High heat conductivity electric insulation aluminum nitride sintered body and manufacture
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
WO2002077304A1 (en) Heat dissipation member for electronic apparatus and method for producing the same
JP2000311971A (en) Semiconductor device and heat sink thereof
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JPH0790413A (en) Composite material
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP3420415B2 (en) High thermal conductive composite material
JP2000192168A (en) Silicon carbide composite material and its production
JP2002212651A (en) Copper composite material
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JPH11116362A (en) Silicon carbide-based composite and heat radiating part using the same
JPH01305863A (en) Aluminium nitride sintered body, its production, and electronic parts using the same sintered body
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
JP2000311972A (en) Semiconductor device
JP2003277875A (en) Tungsten carbide/copper composite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040407