JPH09157773A - Aluminum composite material having low thermal expandability and high thermal conductivity and its production - Google Patents

Aluminum composite material having low thermal expandability and high thermal conductivity and its production

Info

Publication number
JPH09157773A
JPH09157773A JP8279860A JP27986096A JPH09157773A JP H09157773 A JPH09157773 A JP H09157773A JP 8279860 A JP8279860 A JP 8279860A JP 27986096 A JP27986096 A JP 27986096A JP H09157773 A JPH09157773 A JP H09157773A
Authority
JP
Japan
Prior art keywords
aluminum
composite material
thermal conductivity
powder
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8279860A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hamayoshi
繁幸 濱吉
Masahiko Oshima
昌彦 大島
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8279860A priority Critical patent/JPH09157773A/en
Publication of JPH09157773A publication Critical patent/JPH09157773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a coefft. of thermal expansion and thermal conductivity to a desired level by specifying the porosity of a composite material having specific constitution to specific % or below. SOLUTION: The content of aluminum powder is preferably >=99%. The content of silicon carbide powder is preferably >=99%. A preform formed by press molding a powder mixture formed by adding, by volumetric %, 20 to 90% silicon carbide to 80 to 10% aluminum powder is put into molds. The preform is then heated at a temp. above the m. p. of the aluminum, by which the aluminum composite material having the low thermal expandability and the high thermal conductivity is obtd. The porosity of the composite material is then confined to <=10%. The powder mixture is subjected to pressure sintering at the temp. above the m. p. of the aluminum and under >=500kg/cm<2> pressure. As a result, the composite material is widely usable as the radiation plate of semiconductor materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低い熱膨張係数と高
い熱伝導率を有するアルミニウム複合材料及びその製造
方法に関し、詳しくは半導体装置の放熱板に好適な材料
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum composite material having a low coefficient of thermal expansion and high thermal conductivity and a method for manufacturing the same, and more particularly to a material suitable for a heat sink of a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体技術の分野ではトランジス
タの大容量化、LSIの高集積・高速・高性能化など半
導体素子の性能向上が著しい。このため、半導体素子か
ら発生した熱エネルギーを放熱板によりいかに効率よく
放散させるかが重要な課題となっている。従来の半導体
装置用放熱板材料としては、基板に銅(Cu)、大型の
基板にモリブデン(Mo)、パッケージにプラスチッ
ク、アルミナ(Al2 3)、大容量化パッケージに窒
化アルミニウム(AlN)等が用いられている。
2. Description of the Related Art In recent years, in the field of semiconductor technology, there has been a remarkable improvement in the performance of semiconductor elements, such as increasing the capacity of transistors and increasing the integration, speed and performance of LSIs. Therefore, it is an important issue how to efficiently dissipate the heat energy generated from the semiconductor element by the heat sink. Conventional heat sink materials for semiconductor devices include copper (Cu) for a substrate, molybdenum (Mo) for a large substrate, plastic, alumina (Al 2 O 3 ) for a package, and aluminum nitride (AlN) for a large capacity package. Is used.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置用放
熱板材料において、熱伝導率が常温付近にて 390W/
(m・K)と高い銅は放熱性に優れているが、トランジ
スタ、LSI チップ等の半導体材料に使用されるシリコン
(Si)の熱膨張係数が 4.2×10-6/Kであるのに対し
て、銅の熱膨張係数が17.0×10 -6 /Kと差が大きいた
め、回路の作動中に繰り返し与えられる熱応力により放
熱板と半導体材料との間にあるPb−Sn等のハンダ接
合面が剥離する恐れがあるという問題がある。逆に、熱
膨張係数が 5.l×l0-6/KのMoは、半導体材料の熱膨
張係数に近似しているためハンダ接合面での信頼性に優
れているが、熱伝導率が 150W/(m・K)と低いため
放熱性が十分でないという問題がある。また、熱伝導率
が170 W/(m・K)で熱膨張係数が 4.5×l0-6/Kと
バランスに優れたセラミックスであるAlNは、コスト
が高く経済的に不利であるという問題がある。さらに、
これらの従来材は単一材料で構成されているため、熱膨
張係数と熱伝導率の両特性を任意にコントロールするこ
とが困難であるという問題がある。
In the conventional heat dissipation plate material for semiconductor devices, the thermal conductivity is 390 W / near room temperature.
High copper (m · K) has excellent heat dissipation, but the thermal expansion coefficient of silicon (Si) used in semiconductor materials such as transistors and LSI chips is 4.2 × 10 -6 / K. Since the coefficient of thermal expansion of copper is as large as 17.0 × 10 -6 / K, the solder joint surface such as Pb-Sn between the heat sink and the semiconductor material is repeatedly exposed to thermal stress during circuit operation. There is a problem that there is a risk of peeling. On the other hand, Mo with a coefficient of thermal expansion of 5.l × 10-6 / K is excellent in reliability at the solder joint surface because it is close to the coefficient of thermal expansion of semiconductor materials, but its thermal conductivity is 150W. Since it is as low as / (m · K), there is a problem that heat dissipation is not sufficient. In addition, AlN, which is a ceramic with a good balance of thermal conductivity of 170 W / (m · K) and thermal expansion coefficient of 4.5 × 10 −6 / K, has a problem that it is costly and economically disadvantageous. . further,
Since these conventional materials are composed of a single material, there is a problem in that it is difficult to arbitrarily control both properties of the thermal expansion coefficient and the thermal conductivity.

【0004】一方、新しい半導体装置用放熱板材料とし
て、特公平7-26174 号にアルミニウム又はアルミニウム
合金と緑色炭化珪素とからなる補助電子部品材料が開示
されている。また、特開昭64-83634号に窒化アルミニウ
ム、炭化珪素、窒化ホウ素及びグラファイトからなる群
より選ばれた少なくとも一種とアルミニウムとからなる
低熱膨張・高熱放散性アルミニウム複合合金が開示され
ている。しかしこれらの放熱板材では熱伝導率はまだ十
分ではない。例えば、特開昭64-83634号に記載の炭化珪
素を60体積%を含有するアルミニウム複合合金では熱伝
導率が119 W/(m・K)(表3を参照)と放熱性が十
分ではない。また特公平7-26174 号に記載の緑色炭化珪
素を50体積%を含有する複合材料では熱伝導率が170 W
/(m・K)(表1を参照)であり、150 W/(m・
K)以上の熱伝導率を確保するためには、炭化珪素含有
量を60体積%以上に上げることは不可能である。つま
り、従来の放熱板材では炭化珪素含有量の選択範囲が狭
く、半導体材料の熱膨張係数に合わせるには不十分であ
る。
On the other hand, as a new heat dissipation plate material for semiconductor devices, Japanese Patent Publication No. 7-26174 discloses an auxiliary electronic component material composed of aluminum or aluminum alloy and green silicon carbide. Further, Japanese Patent Laid-Open No. 64-83634 discloses a low thermal expansion / high heat dissipation aluminum composite alloy comprising at least one selected from the group consisting of aluminum nitride, silicon carbide, boron nitride and graphite and aluminum. However, the heat conductivity of these heat sinks is not yet sufficient. For example, the aluminum composite alloy containing 60% by volume of silicon carbide described in JP-A-64-83634 has a thermal conductivity of 119 W / (m · K) (see Table 3) and is not sufficient in heat dissipation. . Further, in the composite material containing 50% by volume of green silicon carbide described in JP-B-7-26174, the thermal conductivity is 170 W.
/ (M · K) (see Table 1), 150 W / (m · K)
In order to secure the thermal conductivity of K) or more, it is impossible to raise the silicon carbide content to 60% by volume or more. That is, in the conventional heat radiation plate material, the selection range of the silicon carbide content is narrow, and it is insufficient to match the thermal expansion coefficient of the semiconductor material.

【0005】従って、本発明の目的は低熱膨張性かつ高
熱伝導性を有するアルミニウム複合材料を提供すること
である。
Accordingly, it is an object of the present invention to provide an aluminum composite material having low thermal expansion and high thermal conductivity.

【0006】[0006]

【課題を解決するための手段】以上の問題に鑑み鋭意研
究の結果、本発明者らは複合材料の気孔率と熱伝導性と
の関係に着目し、気孔率が小さいほど複合材料の熱伝導
性が高いこと、かつ加圧焼結により複合材料の気孔率を
制御することができることを発見し、本発明を完成し
た。
As a result of earnest research in view of the above problems, the present inventors have focused on the relationship between the porosity and thermal conductivity of a composite material, and the smaller the porosity, the more the thermal conductivity of the composite material. The present invention was completed by discovering that the composite material has high property and that the porosity of the composite material can be controlled by pressure sintering.

【0007】すなわち、本発明の第一の低熱膨張・高熱
伝導性アルミニウム複合材料は、80〜10体積%のアルミ
ニウム粉末に20〜90体積%の炭化珪素粉末を添加した混
合粉末を加圧成形した予備成形体を型に入れ、アルミニ
ウムの融点以上の温度で加熱して得られる低熱膨張・高
熱伝導性アルミニウム複合材料であって、前記複合材料
の気孔率が10%以下であることを特徴とする。
That is, the first low thermal expansion / high thermal conductivity aluminum composite material of the present invention was pressure-molded with a mixed powder in which 20 to 90% by volume of silicon carbide powder was added to 80 to 10% by volume of aluminum powder. A low-thermal-expansion / high-thermal-conductivity aluminum composite material obtained by placing a preform in a mold and heating it at a temperature equal to or higher than the melting point of aluminum, characterized in that the composite material has a porosity of 10% or less. .

【0008】本発明の第二の低熱膨張・高熱伝導性アル
ミニウム複合材料は、80〜10体積%のアルミニウム粉末
に20〜90体積%の炭化珪素粉末を添加した混合粉末を、
アルミニウムの融点以上の温度と 500 kg/cm2 以上の圧
力下で加圧焼結して得られる低熱膨張・高熱伝導性アル
ミニウム複合材料であって、前記複合材料の気孔率が10
%以下であることを特徴とする複合材料。
A second low thermal expansion / high thermal conductivity aluminum composite material of the present invention is a mixed powder obtained by adding 20 to 90% by volume of silicon carbide powder to 80 to 10% by volume of aluminum powder,
A low thermal expansion and high thermal conductivity aluminum composite material obtained by pressure sintering at a temperature above the melting point of aluminum and a pressure of 500 kg / cm 2 or above, wherein the porosity of the composite material is 10
% Or less, a composite material.

【0009】また、低熱膨張・高熱伝導性アルミニウム
複合材料を製造する本発明の第一の方法は、80〜10体積
%のアルミニウム粉末に20〜90体積%の炭化珪素粉末を
添加した混合粉末を加圧成形した予備成形体を型に入
れ、アルミニウムの融点以上の温度で加熱することを特
徴とする。
The first method of the present invention for producing an aluminum composite material having a low thermal expansion and a high thermal conductivity is a mixed powder obtained by adding 20 to 90% by volume of silicon carbide powder to 80 to 10% by volume of aluminum powder. It is characterized in that the pressure-molded preform is put into a mold and heated at a temperature not lower than the melting point of aluminum.

【0010】また、低熱膨張・高熱伝導性アルミニウム
複合材料を製造する本発明の第二の方法は、80〜10体積
%のアルミニウム粉末に20〜90体積%の炭化珪素粉末を
添加して混合し、アルミニウムの融点以上の温度と 500
kg/cm2 以上の圧力下で加圧焼結することを特徴とす
る。
The second method of the present invention for producing a low thermal expansion and high thermal conductivity aluminum composite material is to add 20 to 90 volume% of silicon carbide powder to 80 to 10 volume% of aluminum powder and mix them. , A temperature above the melting point of aluminum and 500
It is characterized by performing pressure sintering under a pressure of kg / cm 2 or more.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。 (1) アルミニウム粉末 アルミニウム粉末として純度が99%以上のものが好まし
い。アルミニウム粉末の純度が99%未満であると、得ら
れる複合材料の熱伝達率が小さくなるので好ましくな
い。アルミニウム粉末の平均粒径は10〜300 μmである
のが好ましく、20〜100 μmがより好ましく、特に30〜
50μmが好ましい。原料粉末の全体積に対して、アルミ
ニウム粉末の含有率は80〜10体積%である。アルミニウ
ム粉末の含有率が80体積%を越えると熱膨張係数が大き
くなり、また含有率が10体積%未満であると熱伝導率が
小さくなるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. (1) Aluminum powder Aluminum powder having a purity of 99% or more is preferable. If the purity of the aluminum powder is less than 99%, the heat transfer coefficient of the obtained composite material becomes small, which is not preferable. The average particle size of the aluminum powder is preferably 10 to 300 μm, more preferably 20 to 100 μm, and particularly 30 to
50 μm is preferable. The content of aluminum powder is 80 to 10% by volume based on the total volume of the raw material powder. If the content of the aluminum powder exceeds 80% by volume, the coefficient of thermal expansion increases, and if the content is less than 10% by volume, the thermal conductivity decreases, which is not preferable.

【0012】(2) 炭化珪素粉末 炭化珪素粉末として純度が99%以上のものが好ましい。
炭化珪素粉末の純度が99%未満であると、熱伝達率が低
いので好ましくない。原料粉末の全体積に対して、炭化
珪素粉末の含有率は20〜90体積%である。炭化珪素粉末
の含有率が90体積%を越えると熱伝導率が低くなり、ま
た含有率が20体積%未満であると熱膨張係数が大きくな
るので好ましくない。
(2) Silicon Carbide Powder Silicon carbide powder having a purity of 99% or more is preferable.
If the purity of the silicon carbide powder is less than 99%, the heat transfer rate is low, which is not preferable. The content ratio of the silicon carbide powder is 20 to 90% by volume based on the total volume of the raw material powder. If the content of the silicon carbide powder exceeds 90% by volume, the thermal conductivity becomes low, and if the content is less than 20% by volume, the thermal expansion coefficient becomes large, which is not preferable.

【0013】炭化珪素粉末の平均粒径は10μm以上であ
るのが好ましい。平均粒径が10μm未満であると、セラ
ミックス粒子が凝集して金属基地に均一に分散し難い。
また粒子凝集部に気孔を生じ、熱伝導率が低下する。炭
化珪素の平均粒径が10〜300μmであるのがより好まし
く、特に20〜100 μmが好ましい。
The average particle size of the silicon carbide powder is preferably 10 μm or more. When the average particle size is less than 10 μm, the ceramic particles are aggregated and it is difficult to uniformly disperse them in the metal matrix.
In addition, pores are generated in the particle agglomeration portion, and the thermal conductivity decreases. The average particle size of silicon carbide is more preferably 10 to 300 μm, and particularly preferably 20 to 100 μm.

【0014】(3) 製造方法 まずアルミニウム粉末と炭化珪素粉末を上記割合で混合
する。混合は各種公知の方法で行うことができ、例えば
ボールミル等を用いて行うことができる。混合時間は3
時間以上であるのが好ましい。次いで上記混合粉末を所
望形状に予備成形する。成形方法として、金型プレス
法、CIP法等が挙げられる。
(3) Manufacturing Method First, aluminum powder and silicon carbide powder are mixed in the above ratio. Mixing can be performed by various known methods, for example, using a ball mill or the like. Mixing time is 3
It is preferably longer than or equal to time. Next, the mixed powder is preformed into a desired shape. Examples of the molding method include a die pressing method and a CIP method.

【0015】得られた予備成形体を焼結するが、本発明
の第一の複合材料及び第一の製造方法では、加圧成形し
た予備成形体を黒鉛、セラミックス等からなる加熱成形
用型に入れ、アルミニウムの融点(660 ℃)以上の温度
で加熱して成形、焼結する。
The obtained preformed body is sintered. In the first composite material and the first manufacturing method of the present invention, the pressure-formed preformed body is formed into a heat-molding die made of graphite, ceramics or the like. Put in, heat at a temperature above the melting point of aluminum (660 ° C), shape and sinter.

【0016】本発明の第二の複合材料及び第二の製造方
法では、得られた予備成形体をHIP又はホットプレス
等の加圧焼結法で焼結する。焼結温度はアルミニウムの
融点660℃以上、圧力は 500 kg/cm2 以上であるのが好
ましい。焼結温度が660 ℃未満であると得られる複合材
料の気孔率が大きくなるので好ましくない。また圧力が
500 kg/cm2 未満であると、得られる複合材料の気孔率
が大きいので好ましくない。より好ましい焼結温度は67
0 ℃超であり、より好ましい圧力は500 〜1000kg/cm2
である。
In the second composite material and the second manufacturing method of the present invention, the obtained preformed body is sintered by a pressure sintering method such as HIP or hot pressing. The sintering temperature is preferably 660 ° C. or higher of the melting point of aluminum, and the pressure is preferably 500 kg / cm 2 or higher. If the sintering temperature is lower than 660 ° C., the porosity of the obtained composite material increases, which is not preferable. Also the pressure
When it is less than 500 kg / cm 2 , the porosity of the obtained composite material is large, which is not preferable. A more preferable sintering temperature is 67
More than 0 ℃, more preferable pressure is 500-1000kg / cm 2
It is.

【0017】(4) アルミニウム複合材料 このようにして得られる複合材料の気孔率は10%以下で
あり、熱膨張係数は4〜20×10-6/Kであり、熱伝導率
は150 〜280 W/(m・K)である。複合材料の気孔率
が10%を超えると熱伝導率が低下する。好ましい気孔率
は8%以下である。
(4) Aluminum Composite Material The composite material thus obtained has a porosity of 10% or less, a coefficient of thermal expansion of 4 to 20 × 10 −6 / K, and a thermal conductivity of 150 to 280. It is W / (mK). When the porosity of the composite material exceeds 10%, the thermal conductivity decreases. A preferable porosity is 8% or less.

【0018】特に焼結温度が 670℃超である場合、本発
明の複合材料の熱伝導率(単位:W/(m・K))は
[アルミニウム含有率(体積%)+130 ]の値以上にな
り、アルミニウム含有率を20体積%に設定しても150 W
/(m・K)以上の熱伝導率を確保することができる。
Especially when the sintering temperature is higher than 670 ° C., the thermal conductivity (unit: W / (m · K)) of the composite material of the present invention is not less than the value of [aluminum content (volume%) + 130]. Even if the aluminum content rate is set to 20% by volume, 150 W
A thermal conductivity of / (m · K) or higher can be secured.

【0019】本発明のアルミニウム複合材料は以下の特
徴を有する: (a) 基地となるアルミニウム粒子及び炭化珪素粒子の含
有量(体積%)を適宜選択することにより、熱膨張係数
及び熱伝導率を所望の特性にコントロールできる。
The aluminum composite material of the present invention has the following characteristics: (a) The coefficient of thermal expansion and the thermal conductivity can be determined by appropriately selecting the content (volume%) of the aluminum particles and silicon carbide particles serving as the base. It can be controlled to desired characteristics.

【0020】(b) 放熱板の上に搭載される半導体材料に
近似する熱膨張係数を得ることができるので、放熱板と
半導体材料とのハンダ接合面が熱応力により剥離等せ
ず、ハンダ接合面の信頼性が向上する。
(B) Since it is possible to obtain a thermal expansion coefficient close to that of the semiconductor material mounted on the heat sink, the solder joint surface between the heat sink and the semiconductor material does not peel off due to thermal stress and solder joints are performed. The reliability of the surface is improved.

【0021】(c) 基地がアルミニウムであるため高い熱
伝導率が得られ、半導体材料から発生した熱エネルギー
を効率よく放散させることができ、トランジスタチッ
プ、LSIチップ等の誤動作及び熱破損を防止できる。
(C) Since the base is aluminum, high thermal conductivity can be obtained, heat energy generated from the semiconductor material can be efficiently dissipated, and malfunctions and thermal damage of transistor chips, LSI chips, etc. can be prevented. .

【0022】[0022]

【実施例】本発明を以下の具体的実施例により更に詳細
に説明する。実施例1 (1) 原料粉末 使用した炭化珪素粉末の粒径は130 μm以下(平均粒径
57μm)であり、純度は99.3 %以上であった。またア
ルミニウム粉末の粒径は130 μm以下(平均粒径40μ
m)であり、純度は99.9 %以上であった。
The present invention will be described in more detail with reference to the following specific examples. Example 1 (1) Raw material powder The particle size of the silicon carbide powder used was 130 μm or less (average particle size).
57 μm) and the purity was 99.3% or more. The particle size of the aluminum powder is 130 μm or less (average particle size 40 μm
m), and the purity was 99.9% or more.

【0023】(2) 成形 上記炭化珪素及びアルミニウム粉末を表1に示す割合で
配合し、ボールミルで24時間乾式混合した。混合粉末を
圧力1ton/cm2 の金型プレスで直径80mm×高さ6mmの成
形体を製造した。
(2) Molding The above silicon carbide and aluminum powders were blended in the proportions shown in Table 1 and dry-mixed in a ball mill for 24 hours. A molding having a diameter of 80 mm and a height of 6 mm was manufactured from the mixed powder by a die press under a pressure of 1 ton / cm 2 .

【0024】次に真空中、700 ℃及び500 kg/cm2 の条
件でホットプレス成形を1時間行い、アルミニウム基地
に炭化珪素粒子が均一に分散した緻密な5種類の焼結体
を得た。
Next, hot press molding was carried out for 1 hour under the conditions of 700 ° C. and 500 kg / cm 2 in vacuum to obtain five dense sintered bodies in which silicon carbide particles were uniformly dispersed in an aluminum matrix.

【0025】(3) 測定 得られた5種類の焼結体について以下の特性を測定し
た。 1.熱伝導率 各焼結体から直径10mm×高さ2mmのテストピースを切り
出した後、熱定数測定装置(LF/TCM-FA8510B、理学電機
社製)を用いて、レーザーフラッシュ法(JIS1606 準
拠)に従って熱伝導率を測定した。結果を表1に示す。
(3) Measurement The following characteristics were measured for the five types of the obtained sintered bodies. 1. Thermal conductivity After cutting out a test piece with a diameter of 10 mm and a height of 2 mm from each sintered body, use a thermal constant measuring device (LF / TCM-FA8510B, manufactured by Rigaku Denki Co., Ltd.) according to the laser flash method (JIS1606 compliant). The thermal conductivity was measured. Table 1 shows the results.

【0026】2.熱膨張係数 各焼結体から角3mm×長さ17mmのテストピースを切り出
した後、常温から100℃の温度範囲でTMA(サーモ
メカニカルアナライザー、セイコー(株)製)を用いて
熱膨張係数を測定した。結果を合わせて表1に示す。
2. Coefficient of thermal expansion After cutting out a test piece of 3 mm square x 17 mm long from each sintered body, measure the thermal expansion coefficient using TMA (thermo-mechanical analyzer, Seiko Co., Ltd.) in the temperature range from room temperature to 100 ° C. did. The results are shown together in Table 1.

【0027】3.気孔率 各焼結体から角10mm×高さ2mmのテストピースを切り出
した後、アルキメデス法に従ってそれぞれの気孔率を測
定し、結果を表1に示す。
3. Porosity A test piece of 10 mm square and 2 mm high was cut out from each sintered body, and then each porosity was measured according to the Archimedes method, and the results are shown in Table 1.

【0028】 表1 実施例1の実験結果 混合体積% 熱伝導率 熱膨張係数 気孔率 Al SiC W/(m・K) ×10-6/K % 20:80 l57 5.3 0.1 以下 50:50 222 11.0 0.1 以下 60:40 225 13.0 0.1 以下 70:30 227 14.8 0.1 以下 80:20 229 19.8 0.1 以下Table 1 Experimental results of Example 1 Mixed volume% Thermal conductivity Thermal expansion coefficient Porosity Al SiC W / (m · K) × 10 −6 / K% 20:80 l57 5.3 0.1 or less 50:50 222 11.0 0.1 or less 60:40 225 13.0 0.1 or less 70:30 30 227 14.8 0.1 or less 80:20 229 19.8 0.1 or less

【0029】表1から分かるように、上記混合比で得ら
れた複合材料はいずれも150W/(m・K)以上と高
い熱伝導率を示した。
As can be seen from Table 1, all of the composite materials obtained with the above mixing ratio showed a high thermal conductivity of 150 W / (m · K) or more.

【0030】実施例2 実施例1と同じ方法で60体積%のアルミニウム粉末と40
体積%の炭化珪素粉末を混合して予備成形した後、表2
に示す各焼結条件でそれぞれ焼結し、得られた焼結体に
ついて実施例1と同様に熱伝導率と気孔率を測定した。
結果を表2に合わせて示す。
Example 2 In the same manner as in Example 1, 60% by volume of aluminum powder and 40
After mixing by volume% silicon carbide powder and preforming, Table 2
Sintering was carried out under the respective sintering conditions shown in, and the thermal conductivity and the porosity of the obtained sintered body were measured in the same manner as in Example 1.
The results are shown in Table 2.

【0031】 表2 実施例2の実験結果 温度 圧力 熱伝導率 気孔率 ℃ kg/cm2 W/(m・K) % 焼結方法 700 500 225 0.1 以下 HP(1) 670 500 160 9.5 HP 600 500 l34 12.0 HP 700 250 80 14.0 HP 600 無加圧 30 40.0 真空焼結 注(1) ホットプレス。Table 2 Experimental Results of Example 2 Temperature Pressure Thermal conductivity Porosity ℃ kg / cm 2 W / (mK)% Sintering method 700 500 225 0.1 or less HP (1) 670 500 160 9.5 HP 600 500 l34 12.0 HP 700 250 80 14.0 HP 600 pressureless 30 40.0 vacuum sintering Notes (1) hot pressing.

【0032】表2から分かるように、焼結温度が660 ℃
未満又は圧力が500 kg/cm2 未満であると、得られた焼
結体の気孔率が10%を超えて大きくなり、熱伝導率が著
しく低下した。
As can be seen from Table 2, the sintering temperature is 660 ° C.
If the pressure is less than or less than 500 kg / cm 2 , the porosity of the obtained sintered body is increased to more than 10% and the thermal conductivity is remarkably lowered.

【0033】比較例1 炭化珪素粉末の平均粒径を5μmとした以外は、実施例
1と同じように60体積%のアルミニウム粉末と40体積%
の炭化珪素粉末を混合して予備成形した後、実施例1と
同じ焼結条件で焼結し、得られた焼結体について実施例
1と同様に熱伝導率と気孔率を測定した。結果を表3に
示す。
Comparative Example 1 60% by volume of aluminum powder and 40% by volume were obtained in the same manner as in Example 1 except that the average particle size of the silicon carbide powder was 5 μm.
After the silicon carbide powder of 1 was mixed and preformed, it was sintered under the same sintering conditions as in Example 1, and the thermal conductivity and porosity of the obtained sintered body were measured in the same manner as in Example 1. Table 3 shows the results.

【0034】 表3 比較例1の実験結果 炭化珪素の平均粒径 熱伝導率 気孔率 μm W/(m・K) % 5 120 12Table 3 Experimental Results of Comparative Example 1 Average particle diameter of silicon carbide Thermal conductivity Porosity μm W / (m · K)% 5 120 12

【0035】表3から分かるように、炭化珪素の粒径が
10μm未満であると、焼結体の気孔率が大きくなり、熱
伝導率が低下した。
As can be seen from Table 3, the particle size of silicon carbide is
When it is less than 10 μm, the porosity of the sintered body is increased and the thermal conductivity is lowered.

【0036】実施例3 実施例1と同様にアルミニウム粉末50体積%と炭化珪素
50体積%とを配合し、ボールミルで24時間乾式混合し
た。混合粉末を金型に供給して圧力5ton/cm2 で加圧成
形し、直径80mm×高さ6mmの予備成形体を得た。得られ
た予備成形体を加熱成形用の黒鉛製型に入れ、真空雰囲
気中で約100 ℃/時間の速度で昇温し、次いで700 〜75
0 ℃で1時間保持後、冷却し、アルミニウム基地に炭化
珪素粒子が均一に分散した緻密な焼結体を得た。実施例
1と同様に測定した結果、この焼結体の気孔率は0.1 %
以下、熱膨張係数は11.0×10-6/K、熱伝導率は220 W
/(m・k)であった。
Example 3 As in Example 1, 50% by volume of aluminum powder and silicon carbide
50% by volume was blended and dry-mixed for 24 hours with a ball mill. The mixed powder was supplied to a mold and pressure-molded at a pressure of 5 ton / cm 2 to obtain a preform having a diameter of 80 mm and a height of 6 mm. The obtained preform is placed in a graphite mold for heat forming, heated in a vacuum atmosphere at a rate of about 100 ° C./hour, and then 700-75.
After holding at 0 ° C. for 1 hour, it was cooled to obtain a dense sintered body in which silicon carbide particles were uniformly dispersed in an aluminum matrix. As a result of measurement in the same manner as in Example 1, the porosity of this sintered body was 0.1%.
Below, the coefficient of thermal expansion is 11.0 × 10 -6 / K, the thermal conductivity is 220 W
It was / (m · k).

【0037】[0037]

【発明の効果】本発明のアルミニウム複合材料は、制御
された気孔率を有するために低熱膨張性及び高熱伝導性
を兼ね備えている。また本発明のアルミニウム複合材料
は、アルミニウム粒子及び炭化珪素粒子の含有量を適宜
調整することにより、熱膨張係数及び熱伝導率を所望の
レベルにコントロールできるので、半導体材料の放熱板
材として幅広く用いることができる。
The aluminum composite material of the present invention has low porosity and high thermal conductivity because it has a controlled porosity. Further, the aluminum composite material of the present invention can control the thermal expansion coefficient and the thermal conductivity to desired levels by appropriately adjusting the contents of the aluminum particles and the silicon carbide particles, and thus can be widely used as a heat dissipation plate material for semiconductor materials. You can

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 80〜10体積%のアルミニウム粉末に20〜
90体積%の炭化珪素粉末を添加した混合粉末を加圧成形
した予備成形体を型に入れ、アルミニウムの融点以上の
温度で加熱して得られる低熱膨張・高熱伝導性アルミニ
ウム複合材料において、前記複合材料の気孔率が10%以
下であることを特徴とする複合材料。
1. 20% to 80% by volume of aluminum powder
In a low thermal expansion / high thermal conductivity aluminum composite material obtained by placing a preform formed by pressure molding a mixed powder containing 90% by volume of silicon carbide powder and heating it at a temperature equal to or higher than the melting point of aluminum. A composite material characterized in that the porosity of the material is 10% or less.
【請求項2】 80〜10体積%のアルミニウム粉末に20〜
90体積%の炭化珪素粉末を添加した混合粉末を、アルミ
ニウムの融点以上の温度と 500 kg/cm2 以上の圧力下で
加圧焼結して得られる低熱膨張・高熱伝導性アルミニウ
ム複合材料において、前記複合材料の気孔率が10%以下
であることを特徴とする複合材料。
2. 20 to 20% by volume of aluminum powder of 80 to 10% by volume
In a low thermal expansion and high thermal conductivity aluminum composite material obtained by pressure sintering a mixed powder containing 90% by volume of silicon carbide powder at a temperature above the melting point of aluminum and a pressure of 500 kg / cm 2 or above, A composite material having a porosity of 10% or less.
【請求項3】 請求項1又は2に記載の低熱膨張・高熱
伝導性アルミニウム複合材料において、前記複合材料の
熱膨張係数が4 ×10-6〜20×10-6/Kであり、熱伝導率
が150 〜280 W/(m・K)であることを特徴とする複
合材料。
3. The low thermal expansion / high thermal conductivity aluminum composite material according to claim 1 or 2, wherein the thermal expansion coefficient of the composite material is 4 × 10 −6 to 20 × 10 −6 / K. A composite material having a rate of 150 to 280 W / (m · K).
【請求項4】 請求項1〜3のいずれかに記載の低熱膨
張・高熱伝導性アルミニウム複合材料において、前記炭
化珪素粉末の平均粒径が10μm以上であることを特徴と
する複合材料。
4. The low thermal expansion / high thermal conductivity aluminum composite material according to claim 1, wherein the silicon carbide powder has an average particle size of 10 μm or more.
【請求項5】 請求項1〜4のいずれかに記載の低熱膨
張・高熱伝導性アルミニウム複合材料において、前記炭
化珪素粉末の純度が99%以上であり、前記アルミニウム
粉末の純度が99%以上であることを特徴とする複合材
料。
5. The low thermal expansion / high thermal conductivity aluminum composite material according to claim 1, wherein the silicon carbide powder has a purity of 99% or more, and the aluminum powder has a purity of 99% or more. A composite material characterized by being.
【請求項6】 請求項1〜5のいずれかに記載の低熱膨
張・高熱伝導性アルミニウム複合材料において、前記複
合材料の熱伝導率(単位:W/(m・K))が[アルミ
ニウム含有率(体積%)+130 ]の値以上であることを
特徴とする複合材料。
6. The low thermal expansion / high thermal conductivity aluminum composite material according to claim 1, wherein the composite material has a thermal conductivity (unit: W / (m · K)) of [aluminum content rate]. (Volume%) + 130] or more.
【請求項7】 低熱膨張・高熱伝導性アルミニウム複合
材料を製造する方法において、80〜10体積%のアルミニ
ウム粉末に20〜90体積%の炭化珪素粉末を添加した混合
粉末を加圧成形した予備成形体を型に入れ、アルミニウ
ムの融点以上の温度で加熱することを特徴とする方法。
7. A method for producing an aluminum composite material having a low thermal expansion and a high thermal conductivity, wherein a mixed powder of 20 to 90% by volume of silicon carbide powder added to 80 to 10% by volume of aluminum powder is subjected to preforming. A method comprising placing a body in a mold and heating at a temperature not lower than the melting point of aluminum.
【請求項8】 低熱膨張・高熱伝導性アルミニウム複合
材料を製造する方法において、80〜10体積%のアルミニ
ウム粉末に20〜90体積%の炭化珪素粉末を添加して混合
し、アルミニウムの融点以上の温度と 500 kg/cm2 以上
の圧力下で加圧焼結することを特徴とする方法。
8. A method for producing a low thermal expansion / high thermal conductivity aluminum composite material, wherein 20 to 90% by volume of silicon carbide powder is added to and mixed with 80 to 10% by volume of aluminum powder to obtain a material having a melting point not lower than that of aluminum. A method characterized in that pressure sintering is carried out at a temperature of 500 kg / cm 2 or more.
【請求項9】 請求項8に記載の低熱膨張・高熱伝導性
アルミニウム複合材料を製造する方法において、前記混
合粉末をHIP又はホットプレスにより加圧焼結するこ
とを特徴とする方法。
9. The method for producing a low thermal expansion / high thermal conductivity aluminum composite material according to claim 8, wherein the mixed powder is pressure-sintered by HIP or hot pressing.
JP8279860A 1995-10-03 1996-10-02 Aluminum composite material having low thermal expandability and high thermal conductivity and its production Pending JPH09157773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8279860A JPH09157773A (en) 1995-10-03 1996-10-02 Aluminum composite material having low thermal expandability and high thermal conductivity and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-279769 1995-10-03
JP27976995 1995-10-03
JP8279860A JPH09157773A (en) 1995-10-03 1996-10-02 Aluminum composite material having low thermal expandability and high thermal conductivity and its production

Publications (1)

Publication Number Publication Date
JPH09157773A true JPH09157773A (en) 1997-06-17

Family

ID=26553482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8279860A Pending JPH09157773A (en) 1995-10-03 1996-10-02 Aluminum composite material having low thermal expandability and high thermal conductivity and its production

Country Status (1)

Country Link
JP (1) JPH09157773A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938137A2 (en) * 1998-02-24 1999-08-25 Sumitomo Electric Industries, Ltd. Member for semiconductor device and method for producing the same
EP0987231A1 (en) * 1998-09-14 2000-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
US6183874B1 (en) 1996-06-14 2001-02-06 Sumitomo Electric Industries, Ltd. Substrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
EP1195810A1 (en) * 2000-03-15 2002-04-10 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
KR100413547B1 (en) * 2001-05-29 2003-12-31 한국기계연구원 Aluminum matrix composite materials with high thermal conductivity and low thermal expansivity for electronic packaging, and manufacturing method therefor
US6737168B1 (en) 1999-06-14 2004-05-18 Sumitomo Electric Industries, Ltd. Composite material and semiconductor device using the same
US6764773B2 (en) 2001-08-31 2004-07-20 Sumitomo Electric Industrial Co., Ltd. Heat-dissipating substrate, method for making the same, and semiconductor device including the same
KR100453518B1 (en) * 2001-11-01 2004-10-20 한국과학기술연구원 Method for fabrication of si-al alloy structural material
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
WO2008146646A1 (en) * 2007-05-29 2008-12-04 A.L.M.T.Corp. Heat spreader for semiconductor device and method for manufacturing the heat spreader
WO2009005082A1 (en) * 2007-07-05 2009-01-08 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
JP2009062593A (en) * 2007-09-07 2009-03-26 Nihon Ceratec Co Ltd Temperature-controlling plate and manufacturing method therefor
WO2010007974A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Process for production of aluminum-diamond composite
WO2010007922A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Aluminum-diamond composite and method for producing the same
JP2010024077A (en) * 2008-07-17 2010-02-04 Denki Kagaku Kogyo Kk Aluminum-silicon carbide composite and method for producing the same
WO2013011668A1 (en) 2011-07-15 2013-01-24 日本軽金属株式会社 Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
CN103540830A (en) * 2013-11-14 2014-01-29 湖南航天工业总公司 Method for preparing carborundum and diamond particle reinforced aluminum-base composite material
KR20140063618A (en) 2011-07-28 2014-05-27 덴끼 가가꾸 고교 가부시키가이샤 Heat dissipating component for semiconductor element
WO2015115649A1 (en) 2014-02-03 2015-08-06 電気化学工業株式会社 Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
WO2015163056A1 (en) * 2014-04-21 2015-10-29 住友ベークライト株式会社 Metal-based substrate, metal-based circuit board, and electronic device
WO2018123380A1 (en) 2016-12-28 2018-07-05 デンカ株式会社 Heat dissipation component for semiconductor element
US10302375B2 (en) 2014-04-25 2019-05-28 Denka Company Limited Aluminum-diamond composite, and heat dissipating component using same
US10358704B2 (en) 2014-07-03 2019-07-23 Denka Company Limited Composite body and method for manufacturing same
US10539379B2 (en) 2014-09-02 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
US10640853B2 (en) 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
US10751912B2 (en) 2015-10-13 2020-08-25 Denka Company Limited Aluminum-diamond-based composite and method for producing same
US10869413B2 (en) 2014-07-04 2020-12-15 Denka Company Limited Heat-dissipating component and method for manufacturing same
CN114875262A (en) * 2022-06-15 2022-08-09 重庆大学 High-compression-strength low-thermal-expansion magnesium-based alloy and preparation method thereof
CN115807184A (en) * 2022-09-07 2023-03-17 河南瀚银光电科技股份有限公司 High-performance silicon carbide particle reinforced aluminum matrix composite and preparation method thereof
US11971605B2 (en) 2018-05-09 2024-04-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mirror support for a composite optical mirror and method for its production

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534190B1 (en) 1996-06-14 2003-03-18 Sumitomo Electric Industries, Ltd. Substrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
US6388273B1 (en) 1996-06-14 2002-05-14 Sumitomo Electric Industries, Ltd. Substrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
US6183874B1 (en) 1996-06-14 2001-02-06 Sumitomo Electric Industries, Ltd. Substrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
US6974558B2 (en) 1996-06-14 2005-12-13 Sumotomo Electric Industries, Ltd. Susbstrate material for mounting a semiconductor device, substrate for mounting a semiconductor device, semiconductor device, and method of producing the same
EP0938137A2 (en) * 1998-02-24 1999-08-25 Sumitomo Electric Industries, Ltd. Member for semiconductor device and method for producing the same
US6123895A (en) * 1998-02-24 2000-09-26 Sumitomo Electric Industries, Ltd. Aluminum base member for semiconductor device containing a nitrogen rich surface and method for producing the same
EP0938137A3 (en) * 1998-02-24 1999-11-03 Sumitomo Electric Industries, Ltd. Member for semiconductor device and method for producing the same
US6507105B1 (en) 1998-02-24 2003-01-14 Sumitomo Electric Industries, Ltd. Member for semiconductor device and method for producing the same
EP1284250A1 (en) * 1998-09-14 2003-02-19 Sumitomo Electric Industries Co., Ltd. A method for manufacturing a composite material
EP0987231A1 (en) * 1998-09-14 2000-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
US6737168B1 (en) 1999-06-14 2004-05-18 Sumitomo Electric Industries, Ltd. Composite material and semiconductor device using the same
EP1195810A1 (en) * 2000-03-15 2002-04-10 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
EP1195810A4 (en) * 2000-03-15 2007-10-10 Sumitomo Electric Industries Aluminum-silicon carbide semiconductor substrate and method for producing the same
US6876075B2 (en) 2000-03-15 2005-04-05 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
KR100413547B1 (en) * 2001-05-29 2003-12-31 한국기계연구원 Aluminum matrix composite materials with high thermal conductivity and low thermal expansivity for electronic packaging, and manufacturing method therefor
US6764773B2 (en) 2001-08-31 2004-07-20 Sumitomo Electric Industrial Co., Ltd. Heat-dissipating substrate, method for making the same, and semiconductor device including the same
KR100453518B1 (en) * 2001-11-01 2004-10-20 한국과학기술연구원 Method for fabrication of si-al alloy structural material
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
JP4913605B2 (en) * 2005-01-20 2012-04-11 株式会社アライドマテリアル Method for manufacturing member for semiconductor device
US7749430B2 (en) 2005-01-20 2010-07-06 A.L.M.T. Corp. Member for semiconductor device and production method thereof
WO2008146646A1 (en) * 2007-05-29 2008-12-04 A.L.M.T.Corp. Heat spreader for semiconductor device and method for manufacturing the heat spreader
JP2008300450A (en) * 2007-05-29 2008-12-11 Allied Material Corp Heat spreader for semiconductor device, and manufacturing method for the heat spreader
WO2009005082A1 (en) * 2007-07-05 2009-01-08 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
JP2009013475A (en) * 2007-07-05 2009-01-22 Sumitomo Precision Prod Co Ltd Composite material with high thermal conductivity
KR101534478B1 (en) * 2007-07-05 2015-07-07 수미도모 프리시젼 프로덕츠 캄파니 리미티드 Highly thermally conductive composite material
US8163060B2 (en) 2007-07-05 2012-04-24 Sumitomo Precision Products Co., Ltd. Highly heat-conductive composite material
JP2009062593A (en) * 2007-09-07 2009-03-26 Nihon Ceratec Co Ltd Temperature-controlling plate and manufacturing method therefor
JP2010024077A (en) * 2008-07-17 2010-02-04 Denki Kagaku Kogyo Kk Aluminum-silicon carbide composite and method for producing the same
KR20160072847A (en) 2008-07-17 2016-06-23 덴카 주식회사 Aluminum-diamond composite and method for producing the same
WO2010007922A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Aluminum-diamond composite and method for producing the same
US8322398B2 (en) 2008-07-17 2012-12-04 Denki Kagaku Kogyo Kabushiki Kaisha Manufacturing method of aluminum-diamond composite
KR20110040923A (en) 2008-07-17 2011-04-20 덴끼 가가꾸 고교 가부시키가이샤 Aluminum-diamond composite and method for producing the same
WO2010007974A1 (en) 2008-07-17 2010-01-21 電気化学工業株式会社 Process for production of aluminum-diamond composite
US9017824B2 (en) 2008-07-17 2015-04-28 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and manufacturing method
US8945466B2 (en) 2011-07-15 2015-02-03 Nippon Light Metal Company, Ltd. Composite material for heat dissipating plate and method of production of same
WO2013011668A1 (en) 2011-07-15 2013-01-24 日本軽金属株式会社 Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
KR20140063618A (en) 2011-07-28 2014-05-27 덴끼 가가꾸 고교 가부시키가이샤 Heat dissipating component for semiconductor element
US9524918B2 (en) 2011-07-28 2016-12-20 Denka Company Limited Heat dissipating component for semiconductor element
CN103540830A (en) * 2013-11-14 2014-01-29 湖南航天工业总公司 Method for preparing carborundum and diamond particle reinforced aluminum-base composite material
CN103540830B (en) * 2013-11-14 2015-08-26 湖南航天工业总公司 A kind of method preparing silicon carbide and diamond particles reinforced aluminum matrix composites
WO2015115649A1 (en) 2014-02-03 2015-08-06 電気化学工業株式会社 Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
JP2015207668A (en) * 2014-04-21 2015-11-19 住友ベークライト株式会社 Metal base board, metal base circuit board, and electronic device
WO2015163056A1 (en) * 2014-04-21 2015-10-29 住友ベークライト株式会社 Metal-based substrate, metal-based circuit board, and electronic device
US10302375B2 (en) 2014-04-25 2019-05-28 Denka Company Limited Aluminum-diamond composite, and heat dissipating component using same
US10358704B2 (en) 2014-07-03 2019-07-23 Denka Company Limited Composite body and method for manufacturing same
US10869413B2 (en) 2014-07-04 2020-12-15 Denka Company Limited Heat-dissipating component and method for manufacturing same
US10539379B2 (en) 2014-09-02 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
US10751912B2 (en) 2015-10-13 2020-08-25 Denka Company Limited Aluminum-diamond-based composite and method for producing same
US10640853B2 (en) 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
WO2018123380A1 (en) 2016-12-28 2018-07-05 デンカ株式会社 Heat dissipation component for semiconductor element
US10541189B2 (en) 2016-12-28 2020-01-21 Denka Company Limited Heat dissipation component for semiconductor element
US11971605B2 (en) 2018-05-09 2024-04-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mirror support for a composite optical mirror and method for its production
CN114875262A (en) * 2022-06-15 2022-08-09 重庆大学 High-compression-strength low-thermal-expansion magnesium-based alloy and preparation method thereof
CN115807184A (en) * 2022-09-07 2023-03-17 河南瀚银光电科技股份有限公司 High-performance silicon carbide particle reinforced aluminum matrix composite and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
CN108746637B (en) Aluminum silicon/aluminum silicon carbide gradient composite material and preparation method thereof
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
US20060157884A1 (en) Method for producing a composite material
US6077327A (en) Aluminum composite material of low-thermal expansion and high-thermal conductivity and method of producing same
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPS63156075A (en) High heat conductivity electric insulation aluminum nitride sintered body and manufacture
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
CN113264775B (en) Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP2002294358A (en) Thermally conductive composite material
JP3999989B2 (en) Copper-tungsten carbide composite material
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JPH06329474A (en) Sintered aluminum nitride and its production
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JPH11116362A (en) Silicon carbide-based composite and heat radiating part using the same
JPH0790413A (en) Composite material
JPH01305863A (en) Aluminium nitride sintered body, its production, and electronic parts using the same sintered body
JP3420415B2 (en) High thermal conductive composite material