JPH0790413A - Composite material - Google Patents

Composite material

Info

Publication number
JPH0790413A
JPH0790413A JP25914493A JP25914493A JPH0790413A JP H0790413 A JPH0790413 A JP H0790413A JP 25914493 A JP25914493 A JP 25914493A JP 25914493 A JP25914493 A JP 25914493A JP H0790413 A JPH0790413 A JP H0790413A
Authority
JP
Japan
Prior art keywords
thermal expansion
quartz
composite material
alloy
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25914493A
Other languages
Japanese (ja)
Inventor
Kenji Hirano
健治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP25914493A priority Critical patent/JPH0790413A/en
Publication of JPH0790413A publication Critical patent/JPH0790413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a functional material having a small thermal expansion coefft. so as to obtain reliability of joining with a semiconductor element and also having thermal conductivity capable of obtaining sufficient heat radiating property. CONSTITUTION:Quartz particles of <=500mum average particle size are uniformly dispersed in a metal material having high thermal expansion such as Cu, Cu- alloy, Al, Al-alloy to decrease the thermal expansion coefft. By properly selecting the volume proportion of quartz particles in the metal material from the range of 40 to 70%, a desirable thermal expansion coefft. can be obtd. while sufficient thermal radiating property is maintained. Thus, both of low thermal expansion and high thermal conductivity can be obtd. The material can easily be produced into a desired form by powder metallurgical processing, and composite material having proper characteristics and a shape according to the purpose can easily be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子用放熱基
板などに使用する複合材料に係り、高熱伝導性で高熱膨
張金属であるCu材中に石英粒子を分散させて、石英の
体積比を選定することにより熱膨張係数を制御し、低熱
膨張、高熱伝導を両立し優れた特性を有する複合材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material used for a heat dissipation substrate for a semiconductor element, etc., in which quartz particles are dispersed in a Cu material which is a metal having high thermal conductivity and high thermal expansion to obtain a volume ratio of quartz. The present invention relates to a composite material which controls the thermal expansion coefficient by selection and has both low thermal expansion and high thermal conductivity and excellent properties.

【0002】[0002]

【従来の技術】半導体パッケージの集積回路チップ、と
りわけ、大型コンピューター用のLSIやULSIは、
高集積度化、演算速度の高速化の方向に進んでおり、作
動中における消費電力の増加に伴う発熱量が非常に大き
くなり、基板材料の熱膨張係数がチップ材料であるシリ
コンやガリウムヒ素等と大きな差があると、チップが剥
離あるいは割れを生ずる問題がある。半導体パッケージ
の設計も、熱放散性を考慮したものとなり、チップを搭
載する基板にも放熱性が要求されるようになり、基板材
料の熱伝導率が大きいことが求められている。
2. Description of the Related Art Integrated circuit chips for semiconductor packages, especially LSIs and ULSIs for large computers,
The trend is toward higher integration and higher calculation speeds, and the amount of heat generated during operation increases significantly with the increase in power consumption, and the coefficient of thermal expansion of the substrate material is silicon or gallium arsenide, which is a chip material. There is a problem that the chip may peel off or crack. The design of the semiconductor package also takes into consideration the heat dissipation property, the substrate on which the chip is mounted is required to have the heat dissipation property, and the substrate material is required to have a high thermal conductivity.

【0003】従って、基板にはチップと熱膨張係数が近
く、かつ熱伝導率が大きいことが要求されており、例え
ば、チップの熱膨張係数に近いMo材と、パッケージ基
板を構成するアルミナ材の熱膨張係数に近いコバール合
金材をろう付け積層し、Mo材にチップを搭載し、コバ
ール合金材を介してパッケージ基板に接合し、さらに放
熱フィンを付設した構成があり、剥離や割れを生ずる危
険は少ないが、放熱性を支配する材料が熱伝導率の低い
コバール合金材であるため、放熱フィンを付設しても、
充分な放熱性が得られない問題があった。
Therefore, the substrate is required to have a coefficient of thermal expansion close to that of the chip and a large thermal conductivity. For example, a Mo material having a coefficient of thermal expansion close to that of the chip and an alumina material constituting the package substrate are required. There is a structure in which Kovar alloy materials with a thermal expansion coefficient close to each other are brazed and laminated, a chip is mounted on Mo material, bonded to the package substrate via the Kovar alloy material, and a radiation fin is attached, which may cause peeling or cracking. However, since the material that controls heat dissipation is Kovar alloy material with low thermal conductivity, even if a heat dissipation fin is attached,
There was a problem that sufficient heat dissipation could not be obtained.

【0004】[0004]

【発明が解決しようとする課題】そこで、チップの熱膨
張係数との整合性を有し、熱伝導率が大きいという、相
反する要求を満足する材料として、クラッド板やCu−
MoあるいはCu−W合金等のヒートスプレッダ用複合
材料が提案されている。ヒートスプレッダ用クラッド板
としては、銅板とインバー合金板を積層した材料が使用
されている。このクラッド板は、熱膨張係数に関しては
チップとほぼ同一にすることができるが、板厚方向への
熱伝導度は、インバー合金板を介在するため、必ずしも
十分でない。
Therefore, as a material satisfying the contradictory requirements of matching the coefficient of thermal expansion of the chip and having a large thermal conductivity, a clad plate or Cu-
Composite materials for heat spreaders such as Mo or Cu-W alloy have been proposed. As the clad plate for the heat spreader, a material in which a copper plate and an Invar alloy plate are laminated is used. The clad plate can be made to have almost the same thermal expansion coefficient as the chip, but the thermal conductivity in the plate thickness direction is not always sufficient because the Invar alloy plate is interposed.

【0005】Cu−Mo、Cu−W合金基板は、チップ
の熱膨張係数とほぼ等しいMo、W粉を焼結することに
よって、気孔率の大きい焼結体を作製し、その後、溶融
した銅を含浸させて製造(特公平5−38457号公
報)するか、あるいはMo、Wの粉末と銅の粉末を焼結
(特開昭62−294147号公報)することによって
得られたMoあるいはWとCuの複合体である。前記複
合体は熱膨張係数、熱伝導度とも実用上満足すべき条件
にかなっているが、Mo、W等が高密度であるため重
く、所定の寸法を得るには機械的成形加工しなければな
らず、加工費が高く、歩留りが悪い。
For Cu-Mo and Cu-W alloy substrates, sintered Mo and W powders having a coefficient of thermal expansion substantially equal to that of a chip are sintered to produce a sintered body having a large porosity, and then molten copper is melted. Mo or W and Cu obtained by impregnating and manufacturing (Japanese Patent Publication No. 5-38457) or sintering Mo and W powder and copper powder (Japanese Patent Laid-Open No. 62-294147). Is a complex of. Both the thermal expansion coefficient and the thermal conductivity of the composite satisfy practically satisfactory conditions, but they are heavy because of high density of Mo, W, etc., and must be mechanically molded to obtain a predetermined dimension. In addition, the processing cost is high and the yield is poor.

【0006】この発明は、半導体素子との接合の信頼性
が得られるように熱膨張係数が小さく、かつ、十分な放
熱性が得られる熱伝導率を兼ね備えた機能材料の提供を
目的としている。
An object of the present invention is to provide a functional material having a small coefficient of thermal expansion so as to obtain reliability of bonding with a semiconductor element and having a thermal conductivity capable of obtaining sufficient heat dissipation.

【0007】[0007]

【課題を解決するための手段】発明者は、熱膨張係数が
小さくかつ十分な放熱性が得られる熱伝導率を兼ね備え
た材料が安価に製造できないか、種々検討の結果、銅の
中に石英粒子を均一に分散させ、その体積比をコントロ
ールすることにより、目的とする特性の材料が得られる
こと知見し、この発明を完成した。すなわち、この発明
は、高熱膨張金属材料中に石英粒子が分散し、石英粒子
の体積比率が40%〜70%であることを特徴とする複
合材料である。また、この発明は、上記の構成におい
て、石英の平均粒径が500μm以下である複合材料、
高熱膨張金属材料がCu、Cu合金、Al、Al合金の
うちいずれかである複合材料を併せて提案する。
As a result of various studies, the inventor has made various studies as to whether a material having a small coefficient of thermal expansion and a thermal conductivity capable of obtaining sufficient heat dissipation can be manufactured at low cost. The inventors have found that a material having desired characteristics can be obtained by uniformly dispersing particles and controlling the volume ratio, and completed the present invention. That is, the present invention is a composite material in which quartz particles are dispersed in a high thermal expansion metal material, and the volume ratio of the quartz particles is 40% to 70%. Further, the present invention is the above-mentioned structure, wherein the composite material has an average particle diameter of quartz of 500 μm or less,
A composite material in which the high thermal expansion metal material is any one of Cu, Cu alloy, Al, and Al alloy is also proposed.

【0008】この発明において、石英は必ずしも理想化
学組成である必要はなく、また完全結晶質から非晶質あ
るいは不純物を含むものでもよいが、目的とする熱膨張
係数を得るのに不純物量だけ石英を増量する必要が生じ
る。この発明による複合材料において、石英の体積比が
40%未満では得られた複合材料の熱膨張係数が大きく
なり過ぎ、また、石英の体積比が70%を越えると、得
られた複合材料の熱伝導率が小さくなり過ぎ、かつ、焼
結時に石英粒子同士が合体し、石英粒子が銅中にランダ
ムに分散しなくなるため、石英の体積比は40〜70%
とする。石英の平均粒径が500μmを越えると、焼結
時に石英粒子同士が合体し、石英粒子が高熱膨張金属材
料の銅等の中にランダムに分散しなくなる。場合によっ
ては石英の塊中に該金属材料が分散するようになり、熱
伝導率が小さくなり過ぎるため、石英の平均粒径は50
0μm以下とする。石英の平均粒径の下限は特に限定し
ないが、望ましくは20μm〜300μm、さらに好ま
しくは50μm〜200μmである。
In the present invention, quartz does not necessarily have to have an ideal chemical composition, and it may be completely crystalline to amorphous or contain impurities. However, in order to obtain a desired coefficient of thermal expansion, quartz is used only in the amount of impurities. It becomes necessary to increase the amount. In the composite material according to the present invention, if the volume ratio of quartz is less than 40%, the coefficient of thermal expansion of the obtained composite material becomes too large, and if the volume ratio of quartz exceeds 70%, the heat of the obtained composite material is increased. The volume ratio of quartz is 40 to 70% because the conductivity becomes too small, and the quartz particles coalesce during sintering and the quartz particles do not randomly disperse in the copper.
And When the average particle diameter of quartz exceeds 500 μm, the quartz particles coalesce with each other during sintering, and the quartz particles are not randomly dispersed in copper or the like which is a high thermal expansion metal material. In some cases, the metal material becomes dispersed in the lump of quartz, and the thermal conductivity becomes too small.
It is set to 0 μm or less. The lower limit of the average particle size of quartz is not particularly limited, but is preferably 20 μm to 300 μm, more preferably 50 μm to 200 μm.

【0009】この発明による複合材料の製造方法として
は、実施例に示す如く、所定の平均粒径の石英と高熱膨
張金属材料粉末を配合混練し、加圧成形あるいは射出成
形などにより所定形状に成形した後、水素雰囲気中など
の非酸化性雰囲気で焼結する粉末冶金的手法が採用でき
る。製造に際し、石英を均一に分散させるため、高熱膨
張金属材料粉末は石英の平均粒径と同等以下が好まし
く、望ましくは200μm以下、さらに好ましくは10
0μm以下である。
As a method for producing a composite material according to the present invention, as shown in the examples, quartz having a predetermined average particle diameter and high thermal expansion metal material powder are mixed and kneaded and molded into a predetermined shape by pressure molding or injection molding. After that, a powder metallurgy method of sintering in a non-oxidizing atmosphere such as a hydrogen atmosphere can be adopted. In order to uniformly disperse the quartz during the production, the high thermal expansion metal material powder is preferably equal to or smaller than the average particle diameter of quartz, preferably 200 μm or less, and more preferably 10 μm or less.
It is 0 μm or less.

【0010】[0010]

【作用】この発明による複合材料は、Cu、Cu合金、
Al、Al合金の高熱膨張金属材料中に平均粒径が50
0μm以下である石英粒子を均一に分散させて熱膨張係
数を低下させるもので、金属材料中に占める石英粒子の
体積比率が40%〜70%の範囲内で適宜選定するする
ことにより、十分な放熱性を確保しながら所望の熱膨張
係数を得ることができ、低熱膨張、高熱伝導を両立し優
れた特性を有し、半導体素子用放熱基板などに最適であ
る。また、粉末冶金的手法にて直接目的の形状に容易に
製造できるため、用途に応じた特性並びに形状を有する
基板などを安価に提供できる。
The composite material according to the present invention is made of Cu, Cu alloy,
The average particle size is 50 in the high thermal expansion metal material such as Al or Al alloy.
Quartz particles of 0 μm or less are dispersed uniformly to reduce the coefficient of thermal expansion, and the volume ratio of the quartz particles in the metal material is appropriately selected within the range of 40% to 70%. It is possible to obtain a desired coefficient of thermal expansion while ensuring heat dissipation, has both excellent properties such as low thermal expansion and high thermal conductivity, and is most suitable for a heat dissipation substrate for semiconductor elements. In addition, since the desired shape can be easily produced directly by a powder metallurgy method, a substrate or the like having characteristics and a shape according to the application can be provided at low cost.

【0011】[0011]

【実施例】【Example】

実施例1 平均粒径150μmの石英粒子と平均粒径100μmの
銅粉を、石英の体積比が20%、40%、60%、80
%となるように混合し、さらに少量のステアリン酸を添
加し、混練した。その後、厚み1.5mm×60mm角
の板状に加圧成形し、1000℃、3時間、水素雰囲気
中で焼結し、複合材料を得た。得られた複合材料より試
験片を切り出し、熱膨張係数及び熱伝導率を測定し、そ
の結果を表1に示す。なお、表1において、石英の体積
比が20%の場合が比較例4、40%の場合が本発明
1、60%の場合が本発明2、80%の場合が比較例5
である。
Example 1 Quartz particles having an average particle size of 150 μm and copper powder having an average particle size of 100 μm were mixed in a volume ratio of quartz of 20%, 40%, 60%, 80.
% So that a small amount of stearic acid was added and kneaded. Then, it was pressure-molded into a plate having a thickness of 1.5 mm × 60 mm square and sintered at 1000 ° C. for 3 hours in a hydrogen atmosphere to obtain a composite material. A test piece was cut out from the obtained composite material, the thermal expansion coefficient and the thermal conductivity were measured, and the results are shown in Table 1. In Table 1, the case where the volume ratio of quartz is 20% is Comparative Example 4, the case where 40% is the present invention 1, the case where 60% is the present invention 2, and the case where the ratio is 80% is the comparative example 5.
Is.

【0012】実施例2 平均粒径15μmの石英粒子と平均粒径10μmの銅粉
を石英の体積比が50%となるよう混合し、さらにこの
混合物に体積比で40%のポリプロピレン系バインダー
を添加し混練した。これを射出成形にて厚み2mm×2
0mm角の板状に成形し、脱脂後、1000℃、3時
間、水素雰囲気中で焼結し、複合材料を得た。得られた
複合材料より試験片を切り出し、熱膨張係数及び熱伝導
率を測定し、その結果を本発明3として表1に示す。
Example 2 Quartz particles having an average particle size of 15 μm and copper powder having an average particle size of 10 μm were mixed so that the volume ratio of quartz was 50%, and a polypropylene binder of 40% by volume was added to the mixture. Then kneaded. This is injection molded with a thickness of 2 mm x 2
It was molded into a 0 mm square plate, degreased, and then sintered in a hydrogen atmosphere at 1000 ° C. for 3 hours to obtain a composite material. A test piece was cut out from the obtained composite material, the coefficient of thermal expansion and the thermal conductivity were measured, and the results are shown in Table 1 as Invention 3 of the present invention.

【0013】比較例 平均粒径600μmの石英粒子と平均粒径100μmの
銅粉を石英の体積比が50%となるように混合し、以
降、実施例1と同様の方法で複合材料を得た。得られた
複合材料より試験片を切り出し、熱膨張係数及び熱伝導
率を測定し、その結果を比較例6として表1に示す。
Comparative Example Quartz particles having an average particle size of 600 μm and copper powder having an average particle size of 100 μm were mixed so that the volume ratio of quartz was 50%. Thereafter, a composite material was obtained in the same manner as in Example 1. . A test piece was cut out from the obtained composite material, the thermal expansion coefficient and the thermal conductivity were measured, and the results are shown in Table 1 as Comparative Example 6.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】この発明による複合材料は、Cu、Al
などの高熱膨張金属材料中に所定平均粒径石英粒子を均
一に分散させて、金属材料中に占める石英粒子の体積比
率を適宜選定するすることにより、半導体素子との接合
の信頼性が得られるように熱膨張係数が小さく、かつ、
十分な放熱性が得られる熱伝導率を兼ね備えた機能材料
が容易に得られ、しかも粉末冶金的手法が採用できるた
め、所定の寸法を得るのに機械的成形加工が不要かつ歩
留がよく、極めて製造性がよい利点がある。
The composite material according to the present invention is made of Cu, Al.
The reliability of bonding with a semiconductor element can be obtained by uniformly dispersing quartz particles of a predetermined average particle size in a high thermal expansion metal material such as, and by appropriately selecting the volume ratio of the quartz particles in the metal material. Has a small coefficient of thermal expansion, and
A functional material that combines thermal conductivity with sufficient heat dissipation can be easily obtained, and since a powder metallurgical method can be adopted, mechanical molding processing is unnecessary and yield is good to obtain a predetermined dimension, It has the advantage of being extremely manufacturable.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高熱膨張金属材料中に石英粒子が分散
し、石英粒子の体積比率が40%〜70%であることを
特徴とする複合材料。
1. A composite material in which quartz particles are dispersed in a high thermal expansion metal material, and the volume ratio of the quartz particles is 40% to 70%.
【請求項2】 石英の平均粒径が500μm以下である
請求項1に記載の複合材料。
2. The composite material according to claim 1, wherein the average particle size of quartz is 500 μm or less.
【請求項3】 高熱膨張金属材料がCu、Cu合金、A
l、Al合金のうちいずれかである請求項1または請求
項2に記載の複合材料。
3. The high thermal expansion metal material is Cu, Cu alloy, A
The composite material according to claim 1 or 2, which is one of Al and Al alloy.
JP25914493A 1993-09-22 1993-09-22 Composite material Pending JPH0790413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25914493A JPH0790413A (en) 1993-09-22 1993-09-22 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25914493A JPH0790413A (en) 1993-09-22 1993-09-22 Composite material

Publications (1)

Publication Number Publication Date
JPH0790413A true JPH0790413A (en) 1995-04-04

Family

ID=17329948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25914493A Pending JPH0790413A (en) 1993-09-22 1993-09-22 Composite material

Country Status (1)

Country Link
JP (1) JPH0790413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
JP2009111120A (en) * 2007-10-30 2009-05-21 Shinko Electric Ind Co Ltd Silicon interposer producing method, silicon interposer and semiconductor device package and semiconductor device incorporating the interposer
CN103589885A (en) * 2013-11-07 2014-02-19 昆明理工大学 Method of preparing aluminum oxide/aluminum silicon-based composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
JP2009111120A (en) * 2007-10-30 2009-05-21 Shinko Electric Ind Co Ltd Silicon interposer producing method, silicon interposer and semiconductor device package and semiconductor device incorporating the interposer
CN103589885A (en) * 2013-11-07 2014-02-19 昆明理工大学 Method of preparing aluminum oxide/aluminum silicon-based composite material

Similar Documents

Publication Publication Date Title
EP1114807B1 (en) Semiconductor device or heat dissipating substrate therefor using a composite material
US6238454B1 (en) Isotropic carbon/copper composites
US6114048A (en) Functionally graded metal substrates and process for making same
US7531020B2 (en) Heat sink made from diamond-copper composite material containing boron, and method of producing a heat sink
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
KR102248760B1 (en) Bonding composition and bonding method using the same
WO2000034539A1 (en) Composite material and use thereof
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JPH0790413A (en) Composite material
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP3451979B2 (en) Semiconductor device
JP3552587B2 (en) Composite materials and semiconductor devices
JP2967065B2 (en) Semiconductor module
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JPH01305863A (en) Aluminium nitride sintered body, its production, and electronic parts using the same sintered body
JP3180100B2 (en) Semiconductor module
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP2001217364A (en) Al-SiC COMPOSITE
JPS61130438A (en) Manufacture of material for semiconductor device
JPH10321776A (en) Radiator member for semiconductor element
JP2001158933A (en) Al-SiC COMPOSITE MATERIAL, PRODUCING METHOD THEREFOR AND SEMICONDUCTOR SYSTEM USING SAME