JPH10321776A - Radiator member for semiconductor element - Google Patents

Radiator member for semiconductor element

Info

Publication number
JPH10321776A
JPH10321776A JP12843497A JP12843497A JPH10321776A JP H10321776 A JPH10321776 A JP H10321776A JP 12843497 A JP12843497 A JP 12843497A JP 12843497 A JP12843497 A JP 12843497A JP H10321776 A JPH10321776 A JP H10321776A
Authority
JP
Japan
Prior art keywords
powder
metal
aln
high thermal
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12843497A
Other languages
Japanese (ja)
Inventor
Shuichi Sugita
修一 杉田
Eiki Takeshima
鋭機 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12843497A priority Critical patent/JPH10321776A/en
Publication of JPH10321776A publication Critical patent/JPH10321776A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiator member which is low in thermal expansion coefficient and superior in thermal conductivity characteristic. SOLUTION: This radiator member is made by sintering a powder green compact of a mixture of AlN powder coated with wetting-property improving metal and metal powder having high thermal conductivity, and has a structure such that gaps between AlN powder particles are filled with the high thermal- conductivity metal. AlN powder may be formed in the form of plurality of layers of the wetting property improving metal and high thermal-conductivity metal or may be coated with an alloy or mixture of such metals. In this case, the coated AlN powder may be made into a green compact and sintered as it is. The high thermal-conductivity metal is a metal of Cu, Al, Ag or an alloy thereof. The wetting-property improving metal is a metal of Y, Ti, Zr or Hf, or an alloy thereof. Since gaps between the AlN power particles are filled with the high thermal-conductivity metal, the raditor member can exhibit high thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱膨張率が小さく、熱
伝導率が大きなヒートシンク,半導体基板等の放熱部材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating member having a small coefficient of thermal expansion and a large thermal conductivity, such as a heat sink or a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体素子搭載用の基板としては、搭載
される半導体素子と基板との接合界面に熱応力に起因し
た亀裂が発生することを防ぐため、半導体素子に比較的
近似した小さな熱膨張率をもつW,Mo,コバール等の
金属材料やAl23 ,AlN,BeO等のセラミック
ス材料が使用されている。また、半導体素子搭載用の基
板には、半導体素子で発生した熱を放散させ、定格温度
以下に半導体素子を維持するため、良好な熱伝導性を有
することが要求される。そこで、特に高熱伝導性が要求
される基板には、各種のCu合金が使用されることもあ
った。熱伝導性は、半導体素子で発生した熱を外部に放
散させるヒートシンクや放熱フィン等でも同様に要求さ
れる。以下の説明においては、半導体の素子搭載用基
板,ヒートシンク,放熱フィン等を放熱部材と総称す
る。
2. Description of the Related Art As a substrate for mounting a semiconductor element, a small thermal expansion relatively close to that of the semiconductor element is used in order to prevent cracks due to thermal stress from being generated at a bonding interface between the mounted semiconductor element and the substrate. Metal materials such as W, Mo, and Kovar having a high modulus, and ceramic materials such as Al 2 O 3 , AlN, and BeO are used. Further, a substrate for mounting a semiconductor element is required to have good thermal conductivity in order to dissipate heat generated in the semiconductor element and maintain the semiconductor element at a temperature equal to or lower than a rated temperature. Therefore, various types of Cu alloys are sometimes used for a substrate that requires particularly high thermal conductivity. Thermal conductivity is also required for a heat sink or a radiation fin that dissipates heat generated in the semiconductor element to the outside. In the following description, a semiconductor element mounting substrate, a heat sink, a radiating fin, and the like are collectively referred to as a radiating member.

【0003】ところで、近年の半導体集積技術の進歩に
対応して、半導体素子の大型化や高密度化等が進められ
ている。半導体素子の大型化や高密度化に伴って、半導
体素子で発生する熱量も相当に増加しており、放熱部材
に対する要求特性も、より過酷なものになっている。こ
の要求に応えるため、たとえば特開昭50−62776
号公報では、熱伝導性の優れたCu,Ag等の金属と熱
膨張率の小さいW,Mo等からなる複合焼結体をSi素
子とCu製端子板との間に介在させる方法が開示されて
いる。また、特開昭59−21032号公報では、溶浸
法でW粉末焼結体の中にCuを溶浸させた材料を半導体
素子搭載用基板として使用することが開示されている。
Cu,Ag等とW,Mo等を複合化させた放熱部材で
は、CuやAg等の含有量を変化させることによって、
熱膨張率や熱伝導率を任意に設定することができる。こ
の長所を活用し、搭載しようとする半導体素子の材質,
パッケージの形状,基板の大きさ等に応じた最適の放熱
部材が製造され、広く使用されている。
Meanwhile, in response to recent advances in semiconductor integration technology, the size and density of semiconductor elements have been increased. With the increase in size and density of semiconductor elements, the amount of heat generated in the semiconductor elements has also increased considerably, and the required characteristics of heat dissipating members have become more severe. To meet this demand, for example, Japanese Patent Application Laid-Open No. 50-62776
In the publication, a method is disclosed in which a composite sintered body made of a metal such as Cu or Ag having excellent thermal conductivity and W, Mo or the like having a low coefficient of thermal expansion is interposed between the Si element and the Cu terminal plate. ing. Japanese Patent Application Laid-Open No. Sho 59-21032 discloses that a material obtained by infiltrating Cu into a W powder sintered body by an infiltration method is used as a substrate for mounting a semiconductor element.
In a heat dissipating member in which Cu, Ag, etc. are combined with W, Mo, etc., by changing the content of Cu, Ag, etc.,
The coefficient of thermal expansion and the coefficient of thermal conductivity can be set arbitrarily. Utilizing this advantage, the material of the semiconductor device to be mounted,
Optimal heat radiation members according to the shape of the package, the size of the substrate, and the like are manufactured and widely used.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近の半導体
集積技術革新は著しく、従来よりも放熱特性が一層優れ
た放熱部材の開発が強く求められている。因みに、現在
市販されている30重量%Cuと70重量%Wとからな
る放熱部材は、熱膨張率が約7.5×10-6/℃,熱伝
導率が約140W/m・Kである。また、30重量Cu
と70重量%Moとからなる放熱部材は、熱膨張率が約
9.5×10-6/℃,熱伝導率が約230W/m/Kで
ある。これに対して、現在要求されている放熱部材の熱
膨張率は8.0×10-6/℃以下、熱伝導率が約200
W/m・K以上である。このように熱膨張率が小さく、
熱伝導率が大きな放熱部材は、従来のW,MoとCu,
Agとの組合せでは製造できない。また、比重ができる
だけ小さく、圧延によって大面積の薄板加工が可能なこ
とも、放熱部材用の材料に要求されている。本発明は、
このような要求に応えるべく案出されたものであり、半
導体素子に近似する低い熱膨張率をもつAlN粉末を混
合して焼結することにより、熱膨張率が小さく、熱伝導
率が大きな放熱部材を提供することを目的とする。
However, recent innovations in semiconductor integrated technology have been remarkable, and there has been a strong demand for the development of heat radiating members having better heat radiating characteristics than conventional ones. Incidentally, a commercially available heat radiation member composed of 30% by weight of Cu and 70% by weight of W has a thermal expansion coefficient of about 7.5 × 10 −6 / ° C. and a thermal conductivity of about 140 W / m · K. . In addition, 30 weight Cu
The radiating member composed of and 70% by weight Mo has a thermal expansion coefficient of about 9.5 × 10 −6 / ° C. and a thermal conductivity of about 230 W / m / K. On the other hand, the thermal expansion coefficient of the heat radiation member required at present is 8.0 × 10 −6 / ° C. or less, and the thermal conductivity is about 200
W / m · K or more. Thus, the coefficient of thermal expansion is small,
The heat dissipating member having a large thermal conductivity is made of conventional W, Mo and Cu,
It cannot be manufactured in combination with Ag. In addition, it is also required that the material for the heat dissipating member has a specific gravity as small as possible and a large area thin plate can be processed by rolling. The present invention
It has been devised to meet such a demand. By mixing and sintering AlN powder having a low coefficient of thermal expansion close to that of a semiconductor element, heat radiation having a small coefficient of thermal expansion and a large coefficient of thermal conductivity is achieved. An object is to provide a member.

【0005】[0005]

【課題を解決するための手段】本発明の半導体素子用放
熱部材は、その目的を達成するため、濡れ性改善金属で
コーティングしたAlN粉末と高熱伝導性金属との混合
粉末圧粉体が焼結されたものであり、AlN粉末粒子の
粒子間隙が高熱伝導性金属で充填された組織をもつこと
を特徴とする。AlN粉末は、濡れ性改善金属及び高熱
伝導性金属で複層に、或いは濡れ性改善金属と高熱伝導
性金属との合金又は混合物でコーティングしても良い。
この場合、コーティングされたAlN粉末は、そのまま
圧粉成形し、焼結することが可能である。高熱伝導性金
属としては、Cu,Al,Agの金属単体又はこれらの
合金等が使用される。濡れ性改善金属としては、Y,T
i,Zr,Hfの金属単体又はこれらの合金等が使用さ
れる。
In order to achieve the object, a heat radiating member for a semiconductor device according to the present invention is formed by sintering a mixed powder compact of an AlN powder coated with a wettability improving metal and a high thermal conductive metal. Wherein the particle gaps of the AlN powder particles have a structure filled with a highly thermally conductive metal. The AlN powder may be coated in multiple layers with a wettability improving metal and a high thermal conductivity metal, or with an alloy or mixture of a wettability improving metal and a high thermal conductivity metal.
In this case, the coated AlN powder can be directly compacted and sintered. As the high thermal conductive metal, a single metal of Cu, Al, Ag or an alloy thereof is used. As the wettability improving metal, Y, T
A single metal of i, Zr, Hf or an alloy thereof is used.

【0006】[0006]

【実施の形態】AlNは、半導体素子に近似した低い熱
膨張率を示し、熱伝導性も良好である。このような物性
を活用し、AlN焼結体は、半導体の高性能放熱部材と
して、VHF帯電力増幅モジュール、高電圧・大電流ス
イッチングモジュール、オプトエレクトエロニクス用モ
ジュール、マイクロウエーブ用セラミックスパッケージ
基板等の用途に広く使用されている。しかし、特開昭6
0−127267号公報,特開昭60−71575号公
報,特開昭61−10071号公報,特開昭63−27
7570号公報,特開昭63−277573号公報等で
紹介されているように、230W/m・K以上の高い熱
伝導率のものを製造するためには、N2 ガス雰囲気下、
カーボン製の容器の中で1850℃で10時間と極めて
高い温度で長時間焼結する必要がある。更に、焼結体に
不純物として含まれる酸素量を1000ppm以下にコ
ントロールする必要があった。しかも、AlN焼結体
は、展延性がないので圧延による薄板加工ができないた
め、現在では主に小型で特殊な用途のみにしか使用され
ていない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS AlN exhibits a low coefficient of thermal expansion close to that of a semiconductor element and has good thermal conductivity. Utilizing such physical properties, the AlN sintered body is used as a high-performance heat dissipation member for semiconductors, such as a VHF band power amplification module, a high-voltage / large-current switching module, a module for opto-electronics, and a ceramic package substrate for microwaves. Widely used for applications. However, JP
JP-A-127267, JP-A-60-71575, JP-A-61-10071, JP-A-63-27
As described in JP-A-7570 and JP-A-63-277573, in order to produce a product having a high thermal conductivity of 230 W / m · K or more, it is necessary to use an N 2 gas atmosphere.
It is necessary to sinter at a very high temperature of 1850 ° C. for 10 hours in a carbon container for a long time. Further, it was necessary to control the amount of oxygen contained as an impurity in the sintered body to 1000 ppm or less. Moreover, since the AlN sintered body has no ductility and cannot be processed into a thin plate by rolling, it is currently mainly used only for small and special applications.

【0007】AlNの焼結温度がこのように高いのは、
高融点のY23 (融点:2410℃)やCaO(融
点:2572℃)等の酸化物を焼結助剤として使用して
いるためである。また、焼結体中の不純物酸素量が10
00ppm以上になると、粒界を構成しているY−Al
−O化合物やCa−Al−O化合物の中にトラップしき
れない酸素がAlNの結晶格子中に固溶し、熱伝導率を
著しく低下させることも原因の一つであると考えられて
いる。そこで、本発明者等は、比重の小さなAlN粉末
粒子の間を透間なくCu、Al,Ag等の展延性に優れ
た比較的低融点の金属で充填できると、熱膨張率をかな
り低く保持した状態で熱伝導率の一層の向上が図れ、よ
り低温での焼結や圧延による大面積の放熱部材の製造が
可能となるものと考えた。しかし、AlN粉末粒子は、
Cu,Al,Ag等の溶融金属に対して全く濡れ性を示
さず、単にこれらの粉末を混合しただけでは焼結反応が
進行しない。
The reason why the sintering temperature of AlN is so high is that
This is because an oxide such as Y 2 O 3 having a high melting point (melting point: 2410 ° C.) or CaO (melting point: 2572 ° C.) is used as a sintering aid. Further, the amount of impurity oxygen in the sintered body is 10
When the content exceeds 00 ppm, the Y-Al
It is considered that one of the causes is that oxygen that cannot be completely trapped in the -O compound or the Ca-Al-O compound forms a solid solution in the crystal lattice of AlN, thereby significantly lowering the thermal conductivity. The present inventors have found that if AlN powder particles having a small specific gravity can be filled with a relatively low-melting-point metal such as Cu, Al, or Ag, which has excellent spreadability, without a gap, the coefficient of thermal expansion can be kept at a considerably low value. It was considered that the thermal conductivity could be further improved in this state, and that a large-area heat radiation member could be manufactured by sintering or rolling at a lower temperature. However, AlN powder particles,
It has no wettability to molten metals such as Cu, Al and Ag, and the sintering reaction does not proceed simply by mixing these powders.

【0008】AlN粉末の濡れ性を改善するため、本発
明では、Y,Ti,Zr,Hfの金属単体(以下、濡れ
性改善金属という),これら金属元素とCu,Al,A
g(以下、高熱伝導性金属という)との合金,混合物と
して又は複層形態でAlN粉末を予めコーティングして
いる。AlN粉末の濡れ性がY,Ti,Zr,Hf等の
金属元素により改善されることは、「セラミックス接合
工学」、(1996.11.15 日刊工業新聞社発行
岩本信也、須賀唯知著)p.224〜231等により
知られているが、本発明ではこの濡れ性改善を利用して
半導体素子用放熱部材に適した焼結体を製造している。
AlN粉末粒子に対する濡れ性改善金属の重量比を1〜
10重量%の範囲に調整すると、AlN粉末粒子の表面
に連続したコーティング層が形成され、実質的に粉末粒
子の全表面が濡れ性改善金属で覆われる。したがって、
コーティングされたAlN粉末を使用して作成した焼結
体では、個々のAlN粉末粒子の間に確実に高熱伝導性
金属の金属相が介在し、AlN粉末粒子相互が直接的に
隣り合うことがなくなるので、焼結体の接合強度が著し
く向上する。
In order to improve the wettability of AlN powder, in the present invention, a single metal of Y, Ti, Zr, Hf (hereinafter referred to as a wettability improving metal), these metal elements and Cu, Al, A
g (hereinafter, referred to as a high thermal conductive metal), AlN powder is previously coated as an alloy, a mixture, or in a multilayer form. The improvement of the wettability of AlN powder by metal elements such as Y, Ti, Zr, Hf is described in “Ceramics Joining Engineering”, (Nov. 15, 1996, published by Nikkan Kogyo Shimbun, Shinya Iwamoto, Yuichi Suga), p. . In the present invention, a sintered body suitable for a heat dissipating member for a semiconductor element is manufactured by utilizing this improvement in wettability.
The weight ratio of the wettability improving metal to the AlN powder particles is 1 to
When adjusted to the range of 10% by weight, a continuous coating layer is formed on the surface of the AlN powder particles, and substantially the entire surface of the powder particles is covered with the wettability improving metal. Therefore,
In the sintered body prepared using the coated AlN powder, the metal phase of the high thermal conductive metal is reliably interposed between the individual AlN powder particles, and the AlN powder particles are not directly adjacent to each other. Therefore, the bonding strength of the sintered body is significantly improved.

【0009】AlN粉末に対する濡れ性改善金属の割合
が1重量%を下回ると、AlN粉末粒子の表面に形成さ
れるコーティング層が縞状や点状になり易い。このよう
なAlN粉末を用いて得られた焼結体では、高熱伝導性
金属の金属相を介在させることなく、AlN粉末粒子相
互が直接的に隣り合った部分が観察される。この部分で
は、ピンホール等の内部欠陥が発生しやすい。逆に、濡
れ性改善金属の割合が10重量%を越えると、得られた
焼結体の特性に及ぼすY,Ti,Zr,Hf等の影響が
大きく現れ、熱膨張率が半導体素子に比較して著しく大
きくなる。その結果、繰返し昇温及び降温する半導体素
子と放熱部材との間の接合界面に熱応力に起因した亀裂
等が発生し易くなる。濡れ性改善金属で被覆されるAl
N粉末粒子は、連続したコーティング層の作用を効率よ
く発揮させるため、1〜10μmの粒径を持つことが必
要である。AlN粉末粒子の粒径が1μm未満では、A
lN粉末粒子相互の凝集が激しく、個々のAlN粉末粒
子に均一なコーティング層を形成することが困難であ
る。逆に、AlN粉末粒子の粒径が10μmを越える
と、個々のAlN粉末粒子に形成すべきコーティング層
が厚くなるので、膜厚の不均一化やコーティング表面の
凸凹が激しくなり易く、粉末の流動性や見掛け比重の変
動等の実用的諸問題が発生する。
When the ratio of the metal for improving the wettability to the AlN powder is less than 1% by weight, the coating layer formed on the surface of the AlN powder particles tends to be striped or dotted. In the sintered body obtained using such an AlN powder, a portion in which AlN powder particles are directly adjacent to each other is observed without intervening a metal phase of a highly thermally conductive metal. In this portion, internal defects such as pinholes are likely to occur. Conversely, when the proportion of the wettability improving metal exceeds 10% by weight, the effects of Y, Ti, Zr, Hf, etc. on the properties of the obtained sintered body appear greatly, and the coefficient of thermal expansion is larger than that of the semiconductor element. Significantly increased. As a result, cracks and the like due to thermal stress are likely to occur at the bonding interface between the semiconductor element and the heat dissipation member that repeatedly rises and falls in temperature. Al coated with wettability improving metal
The N powder particles need to have a particle size of 1 to 10 μm in order to efficiently exert the effect of the continuous coating layer. When the particle size of the AlN powder particles is less than 1 μm, A
The agglomeration of the 1N powder particles is so severe that it is difficult to form a uniform coating layer on the individual AlN powder particles. Conversely, if the particle size of the AlN powder particles exceeds 10 μm, the coating layer to be formed on the individual AlN powder particles becomes thicker, so that the thickness of the coating becomes uneven, and the surface of the coating tends to become uneven, and the powder flow Practical problems such as fluctuations in properties and apparent specific gravity occur.

【0010】濡れ性改善金属でコーティングされたAl
N粉末粒子と高熱伝導性金属との混合割合を変えること
により、目的とする焼結体の熱膨張率や熱伝導率を種々
調整することができる。AlN粉末以外にも、人造ダイ
ヤ,立方晶BN等の粉末を使用することができるが、S
iC、TiC、CrC、WC、TiN、Si34 等の
セラミックス粉末は、概して熱膨張率が小さいものの、
熱伝導率が著しく劣るので、放熱部材として使用できな
い。濡れ性改善金属は、スパッタリング法,イオンプレ
ーティング法,真空蒸着法,CVD法等でAlN粉末粒
子にコーティングされる。なかでも、粉末スパッタリン
グ法が最適である。スパッタリング法以外の方法で、Y
(融点:1526℃)、Ti(融点1670℃)、Zr
(融点:1852℃),Hf(融点:2227℃)等の
高融点金属をコーティングしたり、融点が相当低いCu
(融点:1085℃)、Al(融点:660℃)、Ag
(融点:961℃)等と濡れ性改善金属との合金を一定
組成のままコーティングすることは極めて難しい。スパ
ッタリング法によるAlN粉末のコーティングは、本発
明者等が開発した粉末スパッタリング装置を使用するこ
とにより容易に実施できる。この種の粉末スパッタリン
グ装置としては、たとえば粉末を装入した回転容器の回
転により形成した粉末流動層に金属をスパッタリングす
る装置(特開平2−153068号公報)がある。
Al coated with a wettability improving metal
By changing the mixing ratio of the N powder particles and the high thermal conductive metal, the coefficient of thermal expansion and thermal conductivity of the target sintered body can be variously adjusted. Powders such as artificial diamond and cubic BN can be used in addition to AlN powder.
Ceramic powders such as iC, TiC, CrC, WC, TiN, and Si 3 N 4 generally have a small coefficient of thermal expansion,
Since the thermal conductivity is extremely poor, it cannot be used as a heat radiating member. The wettability improving metal is coated on the AlN powder particles by a sputtering method, an ion plating method, a vacuum evaporation method, a CVD method, or the like. Among them, the powder sputtering method is most suitable. In a method other than the sputtering method, Y
(Melting point: 1526 ° C), Ti (melting point: 1670 ° C), Zr
(Melting point: 1852 ° C.), Hf (melting point: 2227 ° C.), etc.
(Melting point: 1085 ° C), Al (melting point: 660 ° C), Ag
(Melting point: 961 ° C.) and an alloy of a wettability improving metal and the like with a constant composition are extremely difficult to coat. The coating of the AlN powder by the sputtering method can be easily performed by using a powder sputtering apparatus developed by the present inventors. As this type of powder sputtering apparatus, for example, there is an apparatus (Japanese Patent Laid-Open No. 2-153068) for sputtering metal onto a powder fluidized bed formed by rotation of a rotary container charged with powder.

【0011】濡れ性改善金属でコーティングされたAl
N粉末は、次に示す何れかの方法で高熱伝導性金属と混
合され、焼結される。 (1) 濡れ性改善金属を予めコーティングしたAlN
粉末と高熱伝導性金属の1種又は2種以上と混合し、圧
粉成形し、圧粉体を水素ガス雰囲気中で800℃〜12
00℃に加熱する。 (2)AlN粉末の表面に、第1層として濡れ性改善金
属でコーティングし、第1層の上に高熱伝導性金属でコ
ーティングして第2層を形成する。得られた二層複合粉
末を圧粉成形し、水素ガス雰囲気中で800〜1200
℃に加熱する。 (3)AlN粉末の表面に、濡れ性改善金属と高熱伝導
性金属との合金又は混合物で予めコーティングしたAl
N粉末を圧粉成形し、水素ガス雰囲気中で800℃〜1
200℃に加熱する。
Al coated with wettability improving metal
The N powder is mixed with a highly thermally conductive metal and sintered by any of the following methods. (1) AlN pre-coated with a wettability improving metal
The powder is mixed with one or more kinds of high thermal conductive metals, compacted, and compacted in a hydrogen gas atmosphere at 800 ° C. to 12 ° C.
Heat to 00 ° C. (2) The surface of the AlN powder is coated as a first layer with a wettability improving metal, and the first layer is coated with a highly thermally conductive metal to form a second layer. The obtained two-layer composite powder is compacted, and 800 to 1200 in a hydrogen gas atmosphere.
Heat to ° C. (3) Al previously coated on the surface of AlN powder with an alloy or a mixture of a wettability improving metal and a high thermal conductive metal
N powder is compacted in a hydrogen gas atmosphere at 800 ° C to 1 ° C.
Heat to 200 ° C.

【0012】得られた焼結体は、断面減少率50%以上
の圧下率で必要な厚さまで圧延される。圧下率を50%
以上に設定することにより、焼結体が圧密化され、靭性
が向上する。圧密化された焼結体は、密度が実質的に理
論密度まで上昇する。この焼結体は、AlN粉末粒子の
間が隙間なく高熱伝導性金属で充填されている構造とな
っているので、圧延に起因したクラック等の欠陥が圧延
後の組織に発生することも抑制される。圧延された焼結
体は、用途に応じて打抜き加工,曲げ加工等が施され、
所定形状の放熱部材となる。ここで、圧密化された組織
に由来して優れた加工性が発現し、打抜き加工や曲げ加
工時に欠け,破断等の欠陥が発生せず、高精度で目標形
状に加工される。加工後の製品は、平坦で緻密な表面を
もっている。したがって、素子の搭載に先立って形成さ
れる無電解ニッケルめっき層等の密着性も向上する。
The obtained sintered body is rolled to a required thickness at a reduction of 50% or more. 50% reduction
By setting as described above, the sintered body is consolidated and the toughness is improved. The density of the consolidated sintered body increases to substantially the theoretical density. Since the sintered body has a structure in which the space between the AlN powder particles is filled with the high thermal conductive metal without any gap, the generation of defects such as cracks due to rolling in the structure after rolling is also suppressed. You. The rolled sintered body is subjected to punching, bending, etc., depending on the application.
The heat radiation member has a predetermined shape. Here, excellent workability is developed due to the consolidated structure, and defects such as chipping and breakage do not occur at the time of punching or bending, and the target shape is processed with high accuracy. The processed product has a flat and dense surface. Therefore, the adhesion of the electroless nickel plating layer formed prior to the mounting of the element is also improved.

【0013】本発明に従った放熱部材の比重は、4〜5
であり、従来の放熱部材に比較して極めて低い値を示
す。因みに、30重量%Cu−70重量%Wの放熱部材
では比重が16.2。30重量%Cu−70重量%Mo
の放熱部材では比重が9.8であり、本発明の放熱部材
に比較して重いものである。また、AlN粉末の単位重
量当りの価格はW粉末やMo粉末の価格とほぼ同レベル
であるが、AlN粉末の比重は3.3であり、W粉末の
比重19.3,Mo粉末の比重10.2と比較して非常
に軽い。そのため、単位体積当りの価格に換算すると、
原料粉末価格は1/6〜1/3と極めて安価である。
The specific gravity of the heat radiation member according to the present invention is 4 to 5
Which is an extremely low value as compared with the conventional heat dissipation member. By the way, the specific gravity of the heat radiating member of 30 wt% Cu-70 wt% W is 16.2. 30 wt% Cu-70 wt% Mo.
Has a specific gravity of 9.8, which is heavier than the heat radiating member of the present invention. The price per unit weight of AlN powder is almost the same as the price of W powder or Mo powder, but the specific gravity of AlN powder is 3.3, the specific gravity of W powder is 19.3, and the specific gravity of Mo powder is 10%. 2. Very light compared to 2. Therefore, when converted to the price per unit volume,
The raw material price is extremely low, 1/6 to 1/3.

【0014】[0014]

【実施例】【Example】

実施例1:本発明者等が開発した粉末スパッタリング装
置(特開平2−153068号公報参照)を使用し、市
販のAlN粉末(東洋アルミニウム株式会社製 TOY
ALNITE−US,平均粒径1.4μm)の表面に1
重量%のYをコーティングした。コーティング粉末75
gと市販のCu粉末(福田金属箔粉株式会社製 平均粒
径1.0μm)25gを十分混合し、圧力5トン/cm
2 で圧粉成形した。圧粉体を水素ガス雰囲気中で120
0℃に1時間保持することにより焼結した。得られた焼
結体を断面減少率50%で冷間圧延し、板厚0.5mm
の板状に成形した。 実施例2:実施例1と同様に、AlN粉末を4重量%の
Tiでコーティングした。コーティング粉末80gと市
販のAl粉末(東洋アルミニウム株式会社製 平均粒径
10.0μm)20gを十分混合し、圧粉成形後、水素
ガス雰囲気中で800℃に1時間保持することにより焼
結した。得られた焼結体を断面減少率50%で冷間圧延
し、板厚0.5mmの板状に成形した。
Example 1 A commercially available AlN powder (TOY manufactured by Toyo Aluminum Co., Ltd.) was used using a powder sputtering apparatus developed by the present inventors (see Japanese Patent Application Laid-Open No. 2-153068).
(ALNITE-US, average particle size 1.4 μm)
% By weight of Y was coated. Coating powder 75
g and 25 g of commercially available Cu powder (average particle size: 1.0 μm manufactured by Fukuda Metal Foil Powder Co., Ltd.) are sufficiently mixed, and the pressure is 5 ton / cm.
2 was compacted. The green compact is placed in a hydrogen gas atmosphere for 120 minutes.
Sintering was performed by maintaining the temperature at 0 ° C. for 1 hour. The obtained sintered body is cold-rolled at a cross-sectional reduction rate of 50% to a thickness of 0.5 mm.
Into a plate shape. Example 2: As in Example 1, AlN powder was coated with 4% by weight of Ti. 80 g of the coating powder and 20 g of a commercially available Al powder (average particle size: 10.0 μm, manufactured by Toyo Aluminum Co., Ltd.) were sufficiently mixed, compacted, and then sintered at 800 ° C. for 1 hour in a hydrogen gas atmosphere. The obtained sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm.

【0015】実施例3:実施例1と同様に、AlN粉末
を7重量%のZrでコーティングした。コーティング粉
末85gと市販のAg粉末(株式会社高純度化学研究所
製 平均粒径3.0μm)15gを十分混合し、圧粉成
形後、水素ガス雰囲気中で1100℃に1時間保持する
ことにより焼結した。得られた焼結体を断面減少率50
%で冷間圧延し、板厚0.5mmの板状に成形した。 実施例4:実施例1と同様に、AlN粉末を10重量%
のHfでコーティングした。コーティング粉末90gと
市販のAg−Cu合金粉末(日本アトマイズ加工株式会
社製 Ag72重量%−Cu28重量%,平均粒径5.
0μm)10gを十分混合し、圧粉成形後、水素ガス雰
囲気中で900℃に1時間保持することにより焼結し
た。得られた焼結体を断面減少率50%で冷間圧延し、
板厚0.5mmの板状に成形した。
Example 3 As in Example 1, AlN powder was coated with 7% by weight of Zr. After sufficiently mixing 85 g of the coating powder and 15 g of a commercially available Ag powder (average particle size: 3.0 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd.), the mixture is compacted, and then sintered at 1100 ° C. for 1 hour in a hydrogen gas atmosphere. Tied. The obtained sintered body was subjected to a cross-sectional reduction rate of 50.
%, And formed into a plate having a thickness of 0.5 mm. Example 4: As in Example 1, 10% by weight of AlN powder
Hf. 90 g of the coating powder and a commercially available Ag-Cu alloy powder (Ag 72 wt% -Cu 28 wt%, manufactured by Nippon Atomize Processing Co., Ltd.
(0 μm), 10 g were sufficiently mixed, compacted, and sintered at 900 ° C. for 1 hour in a hydrogen gas atmosphere. The obtained sintered body is cold-rolled at a cross-sectional reduction rate of 50%,
It was formed into a plate having a thickness of 0.5 mm.

【0016】実施例5:実施例1と同様に、市販のAl
N粉末(東洋アルミニウム株式会社製 TOYALNI
TE−UF,平均粒径2.0μm)の表面を第1層とし
て1重量%のYでコーティングし、更に25重量%のC
uでコーティングして第1層の上に第2層を形成した。
得られた2層コーティング粉末100gを圧力5トン/
cm2 で圧粉成形した後、水素ガス雰囲気中で1200
℃に1時間保持することにより焼結した。次いで、焼結
体を断面減少率50%で冷間圧延し、板厚0.5mmの
板状に成形した。 実施例6:実施例5と同様に、AlN粉末を第1層とし
て4重量%のTiでコーティングし、更に第2層として
20重量%のAlでコーティングした。得られた2層コ
ーティング粉末100gを圧粉成形した後、水素ガス雰
囲気中で800℃に1時間保持することにより焼結し
た。次いで、焼結体を断面減少率50%で冷間圧延し、
板厚0.5mmの板状に成形した。
Example 5: As in Example 1, commercially available Al
N powder (TOYALNI manufactured by Toyo Aluminum Co., Ltd.)
TE-UF, average particle size of 2.0 μm) is coated as a first layer with 1% by weight of Y and further 25% by weight of C
u to form a second layer on the first layer.
A pressure of 5 ton /
After compacting at a pressure of 1200 cm 2 ,
Sintering was carried out by holding at 1 ° C. for 1 hour. Next, the sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm. Example 6: As in Example 5, AlN powder was coated as a first layer with 4% by weight of Ti and further as a second layer with 20% by weight of Al. After 100 g of the obtained two-layer coating powder was compacted, it was sintered by being kept at 800 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body is cold-rolled at a cross-sectional reduction rate of 50%,
It was formed into a plate having a thickness of 0.5 mm.

【0017】実施例7:実施例5と同様に、AlN粉末
を第1層として7重量%のZrでコーティングし、更に
第2層として15重量%のAgでコーティングした。得
られた2層コーティング粉末100gを圧粉成形した
後、水素ガス雰囲気中で1100℃に1時間保持するこ
とにより焼結した。次いで、焼結体を断面減少率50%
で冷間圧延し、板厚0.5mmの板状に成形した。 実施例8:実施例5と同様に、AlN粉末を第1層とし
て10重量%のHfでコーティングし、更に第2層とし
て10重量%のAg−Cu合金(Ag72重量%,Cu
28重量%)でコーティングした。得られた2層コーテ
ィング粉末100gを圧粉成形した後、水素ガス雰囲気
中で900℃に1時間保持することにより焼結した。次
いで、焼結体を断面減少率50%で冷間圧延し、板厚
0.5mmの板状に成形した。
Example 7: As in Example 5, AlN powder was coated as a first layer with 7% by weight of Zr and further as a second layer with 15% by weight of Ag. After 100 g of the obtained two-layer coating powder was compacted, it was sintered at 1100 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was reduced in cross-section reduction rate by 50%.
To form a plate having a thickness of 0.5 mm. Example 8: As in Example 5, AlN powder was coated as a first layer with 10% by weight of Hf, and as a second layer, a 10% by weight Ag-Cu alloy (Ag 72% by weight, Cu
28% by weight). After 100 g of the obtained two-layer coating powder was compacted, it was sintered at 900 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm.

【0018】実施例9:実施例1と同様に、市販のAl
N粉末(東洋アルミニウム株式会社製 TOYALNI
TE−UM,平均粒径6.5μm)74gをCu−Y合
金(Cu96.2重量%,Y3.8重量%)26gでコ
ーティングした。コーティング粉末100gを圧粉成形
した後、水素ガス雰囲気中で1200℃に1時間保持す
ることにより焼結した。次いで、焼結体を断面減少率5
0%で冷間圧延し、板厚0.5mmの板状に成形した。 実施例10:実施例9と同様に、AlN粉末76gをA
l−Ti合金(Al83.3重量%,Ti16.7重量
%)24gでコーティングした。コーティング粉末10
0gを圧粉成形した後、水素ガス雰囲気中で800℃に
1時間保持することにより焼結した。次いで、焼結体を
断面減少率50%で冷間圧延し、板厚0.5mmの板状
に成形した。
Example 9: As in Example 1, commercially available Al
N powder (TOYALNI manufactured by Toyo Aluminum Co., Ltd.)
74 g of TE-UM, average particle size 6.5 μm) were coated with 26 g of a Cu—Y alloy (Cu 96.2 wt%, Y 3.8 wt%). After 100 g of the coating powder was compacted, it was sintered at 1200 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was reduced in cross-sectional reduction rate by 5%.
It was cold rolled at 0% and formed into a plate having a thickness of 0.5 mm. Example 10: As in Example 9, 76 g of AlN powder
It coated with 24 g of 1-Ti alloy (83.3 weight% of Al, 16.7 weight% of Ti). Coating powder 10
After 0 g was compacted, it was sintered by holding it at 800 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm.

【0019】実施例11:実施例9と同様に、AlN粉
末78gをAg−Zr合金(Ag68.2重量%,Zr
31.8重量%)22gでコーティングした。コーティ
ング粉末100gを圧粉成形した後、水素ガス雰囲気中
で1100℃に1時間保持することにより焼結した。次
いで、焼結体を断面減少率50%で冷間圧延し、板厚
0.5mmの板状に成形した。 実施例12:実施例9と同様に、AlN粉末80gをH
f−Ag−Cu合金(Hf50.0重量%,Ag36.
0重量%,Cu14.0重量%)20gでコーティング
した。コーティング粉末100gを圧粉成形した後、水
素ガス雰囲気中で900℃に1時間保持することにより
焼結した。次いで、焼結体を断面減少率50%で冷間圧
延し、板厚0.5mmの板状に成形した。
Example 11: In the same manner as in Example 9, 78 g of AlN powder was mixed with an Ag-Zr alloy (68.2% by weight of Ag, Zr
31.8% by weight). After 100 g of the coating powder was compacted, it was sintered at 1100 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm. Example 12: As in Example 9, 80 g of AlN powder was
f-Ag-Cu alloy (Hf 50.0% by weight, Ag36.
(0% by weight, Cu 14.0% by weight). After 100 g of the coating powder was compacted, it was sintered by holding it at 900 ° C. for 1 hour in a hydrogen gas atmosphere. Next, the sintered body was cold-rolled at a cross-sectional reduction rate of 50% to form a plate having a thickness of 0.5 mm.

【0020】比較例1:市販のAlN粉末(東洋アルミ
ニウム株式会社製 TOYALNITE−US,平均粒
径1.4μm)74gを市販のY粉末(株式会社高純度
化学研究所製平均粒径10.0μm)1g及び市販のC
u粉末25gと十分混合し、圧力5トン/cm2 で圧粉
成形した後、水素ガス雰囲気中で1200℃に1時間保
持することによって焼結を試みた。 比較例2:比較例1と同様に、AlN粉末76gを市販
のTi粉末(株式会社高純度化学研究所製 平均粒径1
0.0μm)4g及び市販のAl粉末20gと十分混合
し、圧粉成形した後、水素ガス雰囲気中で800℃に1
時間保持することによって焼結を試みた。
Comparative Example 1: 74 g of a commercially available AlN powder (TOYALNITE-US, manufactured by Toyo Aluminum Co., Ltd., average particle size: 1.4 μm) was converted to 74 g of a commercially available Y powder (average particle size: 10.0 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd.) 1 g and commercially available C
After sufficiently mixing with 25 g of the u powder and compacting at a pressure of 5 ton / cm 2 , sintering was attempted by holding the mixture at 1200 ° C. for 1 hour in a hydrogen gas atmosphere. Comparative Example 2: In the same manner as in Comparative Example 1, 76 g of AlN powder was replaced with a commercially available Ti powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., having an average particle size of 1).
0.0 μm), sufficiently mixed with 4 g of commercially available Al powder and 20 g of commercially available Al powder, and then compacted.
Sintering was attempted by holding for a time.

【0021】比較例3:比較例1と同様に、AlN粉末
78gを市販のZr粉末(株式会社高純度化学研究所製
平均粒径8.0μm)7g及び市販のAg粉末15g
と十分混合し、圧粉成形した後、水素ガス雰囲気中で1
100℃に1時間保持することによって焼結を試みた。 比較例4:比較例1と同様に、AlN粉末80gを市販
のHf粉末(株式会社高純度化学研究所製 平均粒径1
0.0μm)10g,市販のAg粉末7.2g及び市販
のCu粉末2.8gと十分混合し、圧粉成形した後、水
素ガス雰囲気中で900℃に1時間保持することによっ
て焼結を試みた。以上の実施例で得られた各焼結体の熱
伝導率を測定したところ、表1に示すように何れも20
0W/m・K以上の高い熱伝導率を示した。また、熱膨
張率は、8.0×10-6/℃以下の低い値を示した。こ
れらの結果から、放熱特性に優れた半導体パッケージ用
放熱部材として使用できることが判る。これに対し、表
面処理を施していないAlN粉末を使用した比較例で
は、Cu,Al,Ag等の溶融金属でAlN粉末粒子が
全く濡れないため、焼結体とならなかった。
Comparative Example 3: As in Comparative Example 1, 78 g of AlN powder was mixed with 7 g of commercially available Zr powder (average particle size 8.0 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 15 g of commercially available Ag powder.
And then compacted, and then pressed in a hydrogen gas atmosphere for 1 hour.
Sintering was attempted by holding at 100 ° C. for 1 hour. Comparative Example 4: As in Comparative Example 1, 80 g of AlN powder was prepared by using a commercially available Hf powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size: 1).
0.0 μm) 10 g, commercially available Ag powder 7.2 g and commercially available Cu powder 2.8 g were sufficiently mixed, compacted, and then sintered at 900 ° C. for 1 hour in a hydrogen gas atmosphere. Was. When the thermal conductivity of each of the sintered bodies obtained in the above examples was measured, as shown in Table 1, each of the sintered bodies had a thermal conductivity of 20%.
It showed a high thermal conductivity of 0 W / m · K or more. The coefficient of thermal expansion showed a low value of 8.0 × 10 −6 / ° C. or less. From these results, it can be seen that it can be used as a heat dissipation member for a semiconductor package having excellent heat dissipation characteristics. On the other hand, in the comparative example using the AlN powder not subjected to the surface treatment, the AlN powder particles did not wet at all with the molten metal such as Cu, Al, and Ag, and thus did not become a sintered body.

【0022】 [0022]

【0023】[0023]

【発明の効果】以上に説明したように、本発明の半導体
素子用放熱部材は、濡れ性改善金属でコーティングした
AlN粉末を高熱伝導性金属と混合して圧粉成形したも
のを焼結しているので、AlN粉末粒子の間隙が高熱伝
導性金属で充填された構造をもっている。そのため、A
lN本来の低熱膨張率及び高熱伝導性が活用され、高性
能化に伴って発熱量が大きくなる傾向にある半導体素子
の基板,ヒートシンク,放熱フィン等に適した放熱部材
として使用される。
As described above, the heat radiating member for a semiconductor element of the present invention is obtained by mixing AlN powder coated with a wettability improving metal with a high thermal conductive metal, compacting the mixture, and sintering the resultant. Therefore, it has a structure in which the gaps between the AlN powder particles are filled with a highly thermally conductive metal. Therefore, A
It is used as a heat dissipating member suitable for a semiconductor element substrate, a heat sink, a heat dissipating fin, and the like, which utilize the inherent low coefficient of thermal expansion and high thermal conductivity of 1N and tend to generate a large amount of heat as performance increases.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 濡れ性改善金属でコーティングしたAl
N粉末と高熱伝導性金属との混合粉末圧粉体が焼結され
たものであり、AlN粉末粒子の粒子間隙が高熱伝導性
金属で充填された組織をもつ半導体素子用放熱部材。
1. Al coated with a wettability improving metal
A heat-dissipating member for a semiconductor device, comprising a sintered compact of a mixed powder of N powder and a high thermal conductive metal, wherein the AlN powder particles have a structure filled with a high thermal conductive metal.
【請求項2】 濡れ性改善金属及び高導電性金属で複層
にコーティングしたAlN粉末の粉末圧粉体が焼結され
たものであり、Al粉末粒子の粒子間隙が高熱伝導性金
属で充填された組織をもつ半導体素子用放熱部材。
2. A sintered compact of a powder compact of AlN powder coated in multiple layers with a wettability improving metal and a highly conductive metal, wherein a gap between the Al powder particles is filled with a highly thermally conductive metal. Heat dissipating member for semiconductor elements having a textured structure.
【請求項3】 濡れ性改善金属と高導電性金属との合金
又は混合物でコーティングしたAlN粉末の粉末圧粉体
が焼結されたものであり、Al粉末粒子の粒子間隙が高
熱伝導性金属で充填された組織をもつ半導体素子用放熱
部材。
3. A powder compact of AlN powder coated with an alloy or a mixture of a wettability improving metal and a highly conductive metal is sintered, and a gap between the Al powder particles is made of a highly thermally conductive metal. A heat dissipating member for a semiconductor element having a filled structure.
【請求項4】 Cu,Al,Agの金属単体又はこれら
の合金から選ばれた1種又は2種以上を請求項1〜3の
何れかに記載の高熱伝導性金属として使用した半導体素
子用放熱部材。
4. The heat radiation for a semiconductor element using one or more selected from the group consisting of a single metal of Cu, Al, and Ag or an alloy thereof as the high thermal conductive metal according to claim 1. Element.
【請求項5】 Y,Ti,Zr,Hfの金属単体又はこ
れらの合金から選ばれた1種又は2種以上を請求項1〜
3の何れかに記載の濡れ性改善金属として使用した半導
体素子用放熱部材。
5. The method according to claim 1, wherein one or more selected from a single metal of Y, Ti, Zr and Hf or an alloy thereof.
3. A heat-dissipating member for a semiconductor element used as the wettability improving metal according to any one of the above items 3.
JP12843497A 1997-05-19 1997-05-19 Radiator member for semiconductor element Withdrawn JPH10321776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12843497A JPH10321776A (en) 1997-05-19 1997-05-19 Radiator member for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12843497A JPH10321776A (en) 1997-05-19 1997-05-19 Radiator member for semiconductor element

Publications (1)

Publication Number Publication Date
JPH10321776A true JPH10321776A (en) 1998-12-04

Family

ID=14984657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12843497A Withdrawn JPH10321776A (en) 1997-05-19 1997-05-19 Radiator member for semiconductor element

Country Status (1)

Country Link
JP (1) JPH10321776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035985A (en) * 2005-07-28 2007-02-08 Jfe Seimitsu Kk Heat sink used by electronic apparatus, and its manufacturing method
CN100364080C (en) * 2004-05-15 2008-01-23 鸿富锦精密工业(深圳)有限公司 Heat sink and manufacturing method
CN110964967A (en) * 2019-12-23 2020-04-07 有研亿金新材料有限公司 Back plate with low thermal expansion coefficient and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364080C (en) * 2004-05-15 2008-01-23 鸿富锦精密工业(深圳)有限公司 Heat sink and manufacturing method
JP2007035985A (en) * 2005-07-28 2007-02-08 Jfe Seimitsu Kk Heat sink used by electronic apparatus, and its manufacturing method
CN110964967A (en) * 2019-12-23 2020-04-07 有研亿金新材料有限公司 Back plate with low thermal expansion coefficient and manufacturing method thereof
CN110964967B (en) * 2019-12-23 2021-07-23 有研亿金新材料有限公司 Back plate with low thermal expansion coefficient and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7531020B2 (en) Heat sink made from diamond-copper composite material containing boron, and method of producing a heat sink
US8575051B2 (en) Heat sink having a high thermal conductivity
JP4251986B2 (en) High thermal conductive diamond sintered body and method for producing the same
JP3493844B2 (en) Semiconductor substrate material, method of manufacturing the same, and semiconductor device using the substrate
US5783316A (en) Composite material having high thermal conductivity and process for fabricating same
US4997798A (en) Process for producing aluminum nitride sintered body with high thermal conductivity
JP3115238B2 (en) Silicon nitride circuit board
WO2000076940A1 (en) Composite material and semiconductor device using the same
JP2005184021A (en) Heat sink using high temperature conductive diamond sintered body and its manufacturing method
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP2939444B2 (en) Multilayer silicon nitride circuit board
JPH10321776A (en) Radiator member for semiconductor element
JPH0969590A (en) Silicon nitride circuit substrate
KR20220165595A (en) Composite and heat dissipation parts
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
JPH0313190B2 (en)
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JP2002212651A (en) Copper composite material
JP2820566B2 (en) Method of manufacturing heat dissipation member for semiconductor package
JPH10231175A (en) Low thermal expansion and highly heat conductive heat dissipation material and its production
JPH0684265B2 (en) Aluminum nitride sintered body
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP2023087658A (en) Composite material and heat dissipation component including the same
JPH0790413A (en) Composite material
KR20230164796A (en) Composite and heat dissipation parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803