JP2007035985A - Heat sink used by electronic apparatus, and its manufacturing method - Google Patents

Heat sink used by electronic apparatus, and its manufacturing method Download PDF

Info

Publication number
JP2007035985A
JP2007035985A JP2005218248A JP2005218248A JP2007035985A JP 2007035985 A JP2007035985 A JP 2007035985A JP 2005218248 A JP2005218248 A JP 2005218248A JP 2005218248 A JP2005218248 A JP 2005218248A JP 2007035985 A JP2007035985 A JP 2007035985A
Authority
JP
Japan
Prior art keywords
thermal expansion
heat sink
heat
expansion coefficient
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005218248A
Other languages
Japanese (ja)
Other versions
JP4799069B2 (en
Inventor
Seimei Terao
星明 寺尾
Hideaki Kohiki
英明 小日置
Hiroki Ota
裕樹 太田
Satoshi Uenosono
聡 上ノ薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Precision Corp
Original Assignee
JFE Steel Corp
JFE Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Precision Corp filed Critical JFE Steel Corp
Priority to JP2005218248A priority Critical patent/JP4799069B2/en
Publication of JP2007035985A publication Critical patent/JP2007035985A/en
Application granted granted Critical
Publication of JP4799069B2 publication Critical patent/JP4799069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink and its method for manufacturing, in which no problem due to thermal distortion occurs even if an electronic part having different thermal expansion coefficient and a heat dissipation member are jointed, because heat generated from electronic parts such as semiconductors etc. is diffused more efficiently than before. <P>SOLUTION: In a heatsink for semiconductor devices, the thermal expansion coefficient of the opposed faces are different, and further, the thermal expansion coefficient of one face is 4-14×10<SP>-6</SP>/K, and that of another face is 10-24×10<SP>-6</SP>/K. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子等の電子部品を搭載した電子機器を作動させる間に、電子部品から発生する熱を速やかに放散させる金属板(以下、放熱板という)およびその製造方法に関するものである。   The present invention relates to a metal plate (hereinafter referred to as a heat radiating plate) that quickly dissipates heat generated from an electronic component while operating an electronic device on which the electronic component such as a semiconductor element is mounted, and a manufacturing method thereof.

半導体素子等の電子部品を搭載した電子機器を作動させる際には、電子回路に通電するので、電子部品が発熱する。電子部品の温度が上昇すれば、半導体素子の特性が変化し、電子機器の作動が不安定になる。さらに長時間にわたって使用することによって過剰な高温に曝されると、電子部品の接合材(たとえばハンダ等)や絶縁材(たとえば合成樹脂等)が変質して、電子機器の故障の原因になる。そのため、電子部品から発生する熱を速やかに放散させる必要がある。そこで、放熱板を介して熱を放散させる技術が種々検討されている。   When an electronic device equipped with an electronic component such as a semiconductor element is operated, the electronic circuit is energized, so that the electronic component generates heat. If the temperature of the electronic component rises, the characteristics of the semiconductor element change and the operation of the electronic device becomes unstable. Furthermore, when exposed to an excessively high temperature after being used for a long time, a bonding material (for example, solder) or an insulating material (for example, synthetic resin) of an electronic component is altered, causing a failure of the electronic device. Therefore, it is necessary to quickly dissipate heat generated from the electronic component. Therefore, various techniques for dissipating heat through a heat sink have been studied.

放熱板にはW,Moやセラミックス等の熱膨張率の低い成分とAl,Cu等の熱伝導率の低い成分とを組み合わせ、しかも互いに合金化しない等、それぞれの成分の有する熱特性を阻害しないように複合化させた組織を有する材料が用いられている。
たとえば特許文献1には、W−Cu,Mo−Cu等の金属−金属系複合材料を用いた放熱板が開示されている。この技術では、高価なWやMoを使用するが、比較的安価なCrを使用し、熱膨張率を熱処理にて調整したCr−Cu材の放熱板への適用も紹介されている(特許文献4)。
The heat sink does not impair the thermal properties of each component, such as combining components with low thermal expansion such as W, Mo and ceramics with components with low thermal conductivity such as Al and Cu, and not alloying each other. A material having a complexed structure is used.
For example, Patent Document 1 discloses a heat sink using a metal-metal composite material such as W-Cu or Mo-Cu. In this technology, expensive W and Mo are used, but application of Cr-Cu material with a heat expansion coefficient adjusted by heat treatment using relatively inexpensive Cr is also introduced (Patent Literature). 4).

また特許文献2には、SiC−Al,Cu2O−Cu等のセラミックス−金属系複合材料を用いた放熱板が開示されている。
これらの放熱板を使用する際には、放熱板の片方の面に電子部品をロウ付けまたはハンダ付けし、放熱板の他方の面に電子部品の熱を効率良く放散するための熱放散部材を接合して使用される。この際に、たとえば、電子部品(すなわち半導体素子)の基板として使用するAlNにAl製電極をダイレクトボンディングした基板(いわゆるDBA基板)の熱膨張率は5〜7×10-6/Kであるのに対して、放熱板として使用するW−Cu系複合材料の熱膨張率は6〜8×10-6/K,Mo−Cu系複合材料の熱膨張率は 7.5〜9×10-6/Kであり、いずれも大きな差はない。ところが、汎用の熱放散部材として使用される純Al,Al合金,純Cu,Cu合金の熱膨張率は16〜24×10-6/Kであり、基板や放熱板とは大幅に異なる。
Patent Document 2 discloses a heat sink using a ceramic-metal composite material such as SiC-Al, Cu 2 O—Cu.
When these heat sinks are used, electronic parts are brazed or soldered on one side of the heat sink, and a heat dissipating member for efficiently dissipating the heat of the electronic parts is provided on the other side of the heat sink. Used by joining. At this time, for example, the thermal expansion coefficient of a substrate (so-called DBA substrate) in which an Al electrode is directly bonded to AlN used as a substrate for an electronic component (ie, a semiconductor element) is 5 to 7 × 10 −6 / K. On the other hand, the thermal expansion coefficient of the W-Cu based composite material used as a heat sink is 6 to 8 × 10 -6 / K, and the thermal expansion coefficient of the Mo-Cu based composite material is 7.5 to 9 × 10 -6 / K. There is no big difference. However, the thermal expansion coefficient of pure Al, Al alloy, pure Cu, and Cu alloy used as a general-purpose heat dissipating member is 16 to 24 × 10 −6 / K, which is significantly different from the substrate and the heat sink.

そのため、たとえば放熱板の片方の面にDBA基板をロウ付けやハンダ付け等で温度を上げて接合し、同時に放熱板の他方の面にも熱放散部材を同様に接合した場合に、放熱板とDBA基板との接合面には熱歪に起因する問題は生じないが、放熱板と熱放散部材との接合面では熱歪によって接合面が剥離する等の問題が発生する。
従来のW−Cu,Mo−Cu,Cr−Cu等の金属−金属系複合材料やSiC−Al,Cu2O−Cu等のセラミックス−金属系複合材料を用いた放熱板は、半導体素子側に熱膨張率を対応させることを主目的としているため、W,Mo,Crの配合量が一般的にCu配合量より多く、熱伝導率は純Cuと比較して低い。そのため放熱板だけを空冷するだけでは、半導体から発生する熱を放熱する能力が不足する場合が多い。そのため、Al(熱膨張率23.5×10-6/K)やCu(熱膨張率17.6×10-6/K)のフィン等の熱放散部材と接合させてさらに放熱効率を向上させる必要がある。その際、放熱板と熱放散部材との熱膨張率との差が大きいため、ロウ付けやハンダによる温度を上げた接合を試みると、接合時の反りや熱サイクルでの接合面の亀裂が生じてしまい、安定して熱を放熱することができない。そのため、ネジ止め,接着剤等で機械的に接合している場合が多い。その場合、接合面にはミクロには空隙が生じてしまう。そのため一般的には熱伝導性グリースを充填する等の方策が採られているが、それでもその部分の熱抵抗が大きくなり、十分な放熱効果が得られない。
Therefore, for example, when the DBA substrate is joined to one side of the heat sink by raising the temperature by brazing or soldering, and the heat dissipation member is also joined to the other side of the heat sink at the same time, Although a problem due to thermal strain does not occur on the joint surface with the DBA substrate, problems such as separation of the joint surface due to thermal strain occur at the joint surface between the heat sink and the heat dissipation member.
Conventional heat sinks using metal-metal composite materials such as W-Cu, Mo-Cu, and Cr-Cu, and ceramics-metal composite materials such as SiC-Al, Cu 2 O-Cu are provided on the semiconductor element side. Since the main purpose is to correspond to the thermal expansion coefficient, the compounding amount of W, Mo, Cr is generally larger than the Cu compounding amount, and the thermal conductivity is lower than that of pure Cu. For this reason, the ability to dissipate heat generated from a semiconductor is often insufficient by simply cooling the heat sink alone. Therefore, it is necessary to further improve the heat radiation efficiency by joining with a heat dissipation member such as a fin of Al (thermal expansion coefficient 23.5 × 10 −6 / K) or Cu (thermal expansion coefficient 17.6 × 10 −6 / K). At that time, the difference between the thermal expansion coefficient of the heat sink and the heat dissipation member is large, so when attempting to join at a higher temperature by brazing or soldering, warping at the time of joining or cracking of the joint surface due to thermal cycling occurs. Therefore, heat cannot be radiated stably. Therefore, it is often mechanically joined with screws, adhesives or the like. In that case, microscopic voids are formed on the joint surface. For this reason, measures such as filling with thermally conductive grease are generally taken, but the thermal resistance of that portion still increases and a sufficient heat dissipation effect cannot be obtained.

ところで、金属−金属系複合材料の一般的な放熱板製造方法をW−Cuを例に以下に説明する。
W粉末を成形,焼結後、焼結体の上に銅を載せて溶かし込み浸透させる、いわゆる溶浸法が使用されている。成形工程でW粉末だけでなくCu粉末を混合し成形する場合や、Wの焼結を活性化するためNi,Co等のVIII族元素を少量W粉末に添加し成形する場合もある。Mo−Cuは、W−Cuと同様の方法に加え、Mo粉末とCu粉末を混合し、成形,焼結後圧延する方法が使用されている。
特公平5-38457号公報 特開2002-212651 号公報 特開2001-358266 号公報 特願2005-119104 号公報
By the way, the general heat sink manufacturing method of a metal-metal type composite material is demonstrated below for W-Cu as an example.
A so-called infiltration method is used in which, after forming and sintering W powder, copper is placed on the sintered body and melted and penetrated. In the molding process, not only W powder but also Cu powder may be mixed and molded, or in order to activate the sintering of W, a group VIII element such as Ni or Co may be added to a small amount of W powder and molded. In addition to the same method as W-Cu, Mo-Cu uses a method in which Mo powder and Cu powder are mixed, formed, sintered and rolled.
Japanese Patent Publication No. 5-38457 JP 2002-212651 A JP 2001-358266 A Japanese Patent Application No. 2005-119104

本発明は上記のような問題を解消し、半導体等の電子部品から発生する熱を従来より効率良く逃がすため、熱膨張率が異なる電子部品や熱放散部材を温度を上げて接合しても熱歪に起因する問題が発生しない放熱板、およびその製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems and allows heat generated from electronic components such as semiconductors to escape more efficiently than before. Therefore, even if electronic components or heat dissipating members having different coefficients of thermal expansion are joined by increasing the temperature, It is an object of the present invention to provide a heat sink that does not cause a problem due to distortion and a method for manufacturing the heat sink.

本発明は、半導体等の熱を発する電子部品と接合する面は従来の放熱板の材料であり、一方、放熱フィンを有する冷却器等に代表される熱放散部材との接合面は、CuやAlの熱膨張率に近い材料であることを特徴とする。
従来、放熱板の上下面の特性を変化させる方法として、熱間圧延を用いたクラッド材が一般的であるが、たとえばW板とCu板の組合せとする場合は、熱膨張率の差が大きいため、製造の際に、材料同士の接合のために温度を上げて接合させた後の冷却時に両者の熱膨張差により大きく曲がってしまい、目標とする放熱板を製造することが困難である。
In the present invention, the surface to be bonded to an electronic component that generates heat, such as a semiconductor, is a material of a conventional heat sink, while the bonding surface to a heat dissipation member typified by a cooler having heat radiating fins is Cu or the like. It is characterized by being a material close to the thermal expansion coefficient of Al.
Conventionally, as a method of changing the characteristics of the upper and lower surfaces of the heat sink, a clad material using hot rolling is generally used. For example, when a combination of a W plate and a Cu plate is used, the difference in thermal expansion coefficient is large. For this reason, at the time of manufacturing, the temperature is raised for bonding between the materials, and the cooling after the bonding is greatly bent due to the difference in thermal expansion between the two, making it difficult to manufacture the target heat sink.

唯一クラッド材で製造する方法として、特許文献3に開示されている上下にCuを配置する方法があるが、本発明と同様の効果を得るためにはクラッド後、一方の面のCu層を完全に除去する必要がある。しかし、Cu層を除去するとクラッド時の歪が解放され、加工後、放熱板に反りが生じてしまう。本発明は、圧延工程を使用する必要がなく、通常の放熱板を製造する粉末冶金法により製造できる。たとえばW−Cu系放熱板を製造する場合は、含浸させるCuの量は必要最低限に留めることが経済的な面から一般的である。本発明は逆にCu量を多くし、Cuの層を形成することにより達成できる。   The only method of manufacturing with a clad material is a method of arranging Cu above and below, as disclosed in Patent Document 3, but in order to obtain the same effect as the present invention, a Cu layer on one side is completely formed after cladding. Need to be removed. However, when the Cu layer is removed, the strain at the time of cladding is released, and the heat sink is warped after processing. The present invention does not require a rolling process and can be manufactured by a powder metallurgy method for manufacturing a normal heat sink. For example, when manufacturing a W-Cu heat sink, it is common from the economical aspect to keep the amount of Cu impregnated to the minimum necessary. In contrast, the present invention can be achieved by increasing the amount of Cu and forming a Cu layer.

含浸の際の低熱膨張率材料(粉末)への含浸部分と、含浸する高熱膨張率材料の部分における含浸後の凝固収縮を考慮して含浸すれば、クラッド材と異なり、大きな反りを起こさないように多層構造を製造できる。
本発明は、W,Mo,Cr等の低膨張率金属あるいはSiC,Cu2O等の低膨張率セラミックスと純Al,Al合金,純Cu,Cu合金等の高熱伝導,高熱膨張率金属との複合金属材料からなる放熱板であって、一方の面は低熱膨張率材料の含有量の多い層であり、その反対の面は高膨張率材料の含有量の多い層で構成された放熱板である。ここで複合材料とは、溶融した金属の凝固体や金属粉の焼結体等の種々の金属相によって複合的に構成される材料を指す。
Unlike the clad material, if the impregnation is performed in consideration of the solidification shrinkage after impregnation in the impregnation part of the low thermal expansion coefficient material (powder) and the part of the high thermal expansion coefficient material to be impregnated so as not to cause a large warp. A multilayer structure can be manufactured.
The present invention relates to a low expansion coefficient metal such as W, Mo, Cr, or a low expansion coefficient ceramic such as SiC, Cu 2 O and a high thermal conductivity, high thermal expansion metal such as pure Al, Al alloy, pure Cu, Cu alloy, etc. A heat sink made of a composite metal material, one side of which is a layer with a high content of low thermal expansion material and the other side is a heat sink made of a layer with a high content of high expansion coefficient material is there. Here, the composite material refers to a material composed of various metal phases such as a molten metal solidified body and a sintered metal powder body.

本発明の放熱板では、半導体等の電子部品に接する面の低熱膨張率材料の配合比は、30〜100 体積%の範囲内であることが好ましい。それに対応する熱膨張率は4〜14×10-6/Kであることが好ましい。他方の熱放散部材に接する面の低熱膨張率材の配合比は0〜30体積%の範囲内が好ましく、それに対応する熱膨張率は10〜24×10-6/Kであることが好ましい。 In the heat sink of the present invention, the blending ratio of the low thermal expansion coefficient material on the surface in contact with the electronic component such as a semiconductor is preferably in the range of 30 to 100% by volume. The corresponding coefficient of thermal expansion is preferably 4 to 14 × 10 −6 / K. The blending ratio of the low thermal expansion coefficient material on the surface in contact with the other heat dissipation member is preferably in the range of 0 to 30% by volume, and the corresponding thermal expansion coefficient is preferably 10 to 24 × 10 −6 / K.

なお上下面の材料選定は、接合する相手材の熱膨張率や耐熱衝撃等の使用環境下により適宜選定すれば良く、半導体等の電子部品側の材料の熱膨張率は4〜14×10-6/Kで、反対面の熱放散部材側の材料のそれは10〜24×10-6/K、好ましくは14〜24×10-6/Kの中から選定すれば良い。たとえば電子部品側の基材がガラスセラミックス(11.5×10-6/K)の場合、本発明の電子部品側の熱膨張率は9〜14×10-6/Kが好ましい。AlN( 4.5×10-6/K)の場合は、4〜9×10-6/Kが好ましい。 The material for the upper and lower surfaces may be selected appropriately according to the usage environment such as the thermal expansion coefficient of the mating material and thermal shock, and the thermal expansion coefficient of the material on the electronic component side such as a semiconductor is 4-14 × 10 −. in 6 / K, it is 10~24 × 10 -6 / K of the heat-dissipating member side of the material of the opposite surface, preferably may be selected from among 14~24 × 10 -6 / K. For example, when the base material on the electronic component side is glass ceramics (11.5 × 10 −6 / K), the thermal expansion coefficient on the electronic component side of the present invention is preferably 9 to 14 × 10 −6 / K. In the case of AlN (4.5 × 10 −6 / K), 4 to 9 × 10 −6 / K is preferable.

他方、熱放散部材がAl合金JIS H5302 ADC12 (23×10-6/K)の場合は、本発明の熱放熱部材側の熱膨張率は17〜24×10-6/Kが好ましい。また純Cu(17×10-6/K)の場合、14〜20×10-6/Kが好ましい。
一般的に放熱板は熱伝導率が高いことが必要である。本発明の複合材料に使用される低熱膨張材料は必ずしも熱伝導率が高くない。そのため低熱膨張材の含有量は最小限に留めることが放熱性の面から好ましい。ゆえに、電子部品側のみ必要な低熱膨張率を具備する本発明放熱板用材料は、従来の放熱板と比較し、熱放散性に優れる。
On the other hand, when the heat dissipating member is an Al alloy JIS H5302 ADC12 (23 × 10 −6 / K), the thermal expansion coefficient on the heat dissipating member side of the present invention is preferably 17 to 24 × 10 −6 / K. In the case of pure Cu (17 × 10 −6 / K), 14 to 20 × 10 −6 / K is preferable.
Generally, a heat sink needs to have high thermal conductivity. The low thermal expansion material used for the composite material of the present invention does not necessarily have a high thermal conductivity. Therefore, it is preferable from the viewpoint of heat dissipation that the content of the low thermal expansion material is kept to a minimum. Therefore, the heat sink material of the present invention having a low coefficient of thermal expansion necessary only on the electronic component side is excellent in heat dissipation compared with the conventional heat sink.

また本発明は、粉末成形体に溶融金属を含浸させる放熱板の製造方法である。   Moreover, this invention is a manufacturing method of the heat sink which makes a powder compact | molding body impregnate a molten metal.

本発明の放熱板を使用すれば、半導体と接合する面は従来の放熱板の材料であり、一方、熱放散部材の接合面はCuやAlの熱膨張率に近い材料であるので、ロウ付けあるいはハンダ付けによる接合が可能であり、熱衝撃試験を経ても反りや空隙の生じない良好な性能が得られる。
しかも本発明の放熱板は、従来の放熱板に比べて放熱効率が良くなり、熱放散部材の小型化等により半導体装置の小型化,高性能化に寄与する。
If the heat sink of the present invention is used, the surface to be joined to the semiconductor is the material of the conventional heat sink, while the joint surface of the heat dissipating member is a material close to the thermal expansion coefficient of Cu or Al. Alternatively, bonding by soldering is possible, and good performance without warping or voids is obtained even after a thermal shock test.
Moreover, the heat sink of the present invention has better heat dissipation efficiency than the conventional heat sink, and contributes to miniaturization and higher performance of the semiconductor device by downsizing the heat dissipation member.

図1は、本発明の放熱板に電子部品と熱放散部材とを接合した例を模式的に示す断面図である。
本発明の放熱板3は、複合材料である。ここで複合材料とは、たとえば高熱膨張率を有する金属材料を溶融させることにより生成される相と、低熱膨張率の金属あるいはセラミックス粉末を焼結させることにより生成される相とを複合させた構造を有する材料を指す。
FIG. 1 is a cross-sectional view schematically showing an example in which an electronic component and a heat dissipating member are joined to the heat sink of the present invention.
The heat sink 3 of the present invention is a composite material. Here, the composite material is a structure in which, for example, a phase generated by melting a metal material having a high coefficient of thermal expansion and a phase generated by sintering a metal or ceramic powder having a low coefficient of thermal expansion are combined. Refers to a material having

放熱板3では低熱膨張率材の含有量の分布が、連続的または段階的に変化する。低熱膨張率材の含有量が変化すれば、熱膨張率が変化する。つまり本発明の放熱板3では、連続的または段階的に熱膨張率が変化する。したがって、放熱板3の片方の面に接合する電子部品(たとえば基板2)の熱膨張率と他方の面に接合する熱放散部材4の熱膨張率が異なる場合でも、基板2と放熱板3との接合面における熱膨張率の差を縮小し、かつ熱放散部材4と放熱板3との接合面における熱膨張率の差を縮小することができる。   In the heat sink 3, the distribution of the content of the low thermal expansion coefficient material changes continuously or stepwise. If the content of the low thermal expansion coefficient material changes, the thermal expansion coefficient changes. That is, in the heat sink 3 of the present invention, the thermal expansion coefficient changes continuously or stepwise. Therefore, even when the thermal expansion coefficient of the electronic component (for example, the substrate 2) bonded to one surface of the heat radiating plate 3 is different from that of the heat dissipating member 4 bonded to the other surface, the substrate 2 and the heat radiating plate 3 It is possible to reduce the difference in the coefficient of thermal expansion at the joint surface, and to reduce the difference in the coefficient of thermal expansion at the joint surface between the heat dissipating member 4 and the heat sink 3.

その結果、熱膨張率が異なる電子部品(たとえば基板2)や熱放散部材4を放熱板3に接合しても、熱歪に起因する問題(たとえばハンダ5b,5cの剥離等)は発生しない。したがって本発明では放熱板の上下を、いずれもロウ付けまたはハンダ付けで接合することが可能であり、さらには同時に接合することもできる。従来必要であった熱放散部材とのネジ止め,接着剤等の機械的に接合する手間を省くことができる。また、放熱板と熱放散部材との反り,空隙がなく、熱を効率的に放散することができる。   As a result, even if an electronic component (for example, the substrate 2) or the heat dissipating member 4 having a different coefficient of thermal expansion is joined to the heat radiating plate 3, problems due to thermal distortion (for example, peeling of the solders 5b and 5c) do not occur. Therefore, in the present invention, it is possible to join both the upper and lower sides of the heat sink by brazing or soldering, and it is also possible to join at the same time. It is possible to save the trouble of mechanical joining such as screwing and adhesive with the heat dissipating member, which has been necessary conventionally. Further, there is no warp between the heat radiating plate and the heat dissipating member and there is no gap, and heat can be dissipated efficiently.

半導体等の電子部品に接する面のW,Mo,Cr,SiC,Cu2O等の低熱膨張材料(粉末)の配合量は、30〜100 体積%の範囲内(すなわち30体積%以上)を満足することが好ましい。その理由は、低熱膨張材料の含有量が30体積%未満の場合は、複合材料の熱膨張率が14×10-6を超えてしまい、接合の際に電子部品との間に反りや空隙が生じてしまうからである。 The amount of low thermal expansion material (powder) such as W, Mo, Cr, SiC, Cu 2 O, etc., in contact with electronic parts such as semiconductors, satisfies the range of 30-100% by volume (ie, 30% by volume or more). It is preferable to do. The reason for this is that when the content of the low thermal expansion material is less than 30% by volume, the thermal expansion coefficient of the composite material exceeds 14 × 10 −6 , and there are warping and voids between the electronic parts during bonding. It will occur.

一方の熱放散部材に接する面の純Al,Al合金,純Cu,Cu合金等の高熱伝導,高熱膨張率材料の含有量は、30〜100 体積%の範囲内(すなわち30体積%以上)を満足することが好ましい。その理由は、高熱伝導,高熱膨張材料の含有量が30質量%を未満では、複合材料の熱膨張率が14×10-6より低くなってしまい、接合の際に電子部品との間に反りや空隙が生じてしまうからである。 The content of high thermal conductivity, high thermal expansion material such as pure Al, Al alloy, pure Cu, Cu alloy etc. on the surface in contact with one heat dissipation member should be within the range of 30-100% by volume (ie 30% by volume or more). It is preferable to satisfy. The reason for this is that if the content of the high thermal conductivity and high thermal expansion material is less than 30% by mass, the thermal expansion coefficient of the composite material will be lower than 14 × 10 -6 and warp between the electronic parts during bonding. This is because voids are formed.

[実施例1]
Cr粉を自然充填し、真空中または水素雰囲気中で焼結して、気孔率50体積%の多孔質焼結体(寸法:50mm×50mm×3mm)を2個製作した。その焼結体の上に銅板(寸法:50mm×50mm×5mm)を載置し、真空中で1200℃に加熱してCuを溶解した。このようにしてCrの焼結体内にCuを溶浸させた。
[Example 1]
Cr powder was naturally filled and sintered in a vacuum or in a hydrogen atmosphere to produce two porous sintered bodies (size: 50 mm × 50 mm × 3 mm) with a porosity of 50% by volume. A copper plate (size: 50 mm × 50 mm × 5 mm) was placed on the sintered body and heated to 1200 ° C. in a vacuum to dissolve Cu. Thus, Cu was infiltrated into the sintered body of Cr.

このCrとCuの複合金属材料をフライス盤で加工し、Cr多孔質焼結体にCuを含浸させた部分(以下、Cr−Cu部という)の厚さを1.5mm ,Cuの部分(以下、Cu部という)の厚さを1.5mm (合計厚さ3mm)に加工した。
放熱板3mmに加工した後、電解ニッケルメッキを5μm施し、さらに熱膨張率調整のための時効処理( 550℃,1hr)を行なった。
The composite metal material of Cr and Cu is processed with a milling machine, and the thickness of the portion in which the Cr porous sintered body is impregnated with Cu (hereinafter referred to as Cr-Cu portion) is 1.5 mm, and the Cu portion (hereinafter referred to as Cu) Part) was processed to 1.5 mm (total thickness 3 mm).
After processing to a heat sink of 3 mm, electrolytic nickel plating was applied to 5 μm, and further an aging treatment (550 ° C., 1 hr) for adjusting the thermal expansion coefficient was performed.

2個製作したうちの片方の複合金属材料をCr−Cu部とCu部の境界面で切断し、分割した。複合金属材料のCr−Cu部とCu部の熱膨張率を、それぞれ個別に測定したところ、室温〜200 ℃の範囲の平均熱膨張率は、Cr−Cu部が11×10-6/K,Cu部が16.5×10-6/Kであった。
次に、2個製作したうちの他方の複合金属材料を、図1に示すように放熱板3として使用し、Cr−Cu部の表面にDBA基板2をハンダ付けし、Cu部の表面に冷却フィンを有するAl合金(ADC12 )製の熱放散部材4をハンダ付けした。これを発明例1の電子部品冷却体とする。
One of the two composite metal materials produced was cut at the boundary surface between the Cr-Cu part and the Cu part and divided. When the thermal expansion coefficients of the Cr-Cu part and the Cu part of the composite metal material were individually measured, the average thermal expansion coefficient in the range of room temperature to 200 ° C. was 11 × 10 −6 / K for the Cr—Cu part. The Cu part was 16.5 × 10 −6 / K.
Next, the other composite metal material of the two manufactured is used as the heat sink 3 as shown in FIG. 1, the DBA substrate 2 is soldered to the surface of the Cr—Cu portion, and the surface of the Cu portion is cooled. A heat dissipating member 4 made of an Al alloy (ADC12) having fins was soldered. This is the electronic component cooling body of Invention Example 1.

一方、比較例として、純Cu(熱膨張率17.6×10-6/K)とCu−Mo合金(熱膨張率10×10-6/K)の放熱板3を使用して電子部品冷却体を構成した。つまり、純Cuの放熱板3(厚さ3mm)の片方の面にDBA基板2をハンダ付けし、かつ冷却フィンを有するAl合金(ADC12 )製の熱放散部材4を他方の面にハンダ付けした。これを比較例1の電子部品冷却体とする。また、Cu−Mo合金の放熱板3(厚さ3mm)の片方の面にDBA基板2をハンダ付けし、かつ冷却フィンを有するAl合金製の熱放散部材4を他方の面にハンダ付けした。これを比較例2の電子部品冷却体とする。 On the other hand, as a comparative example, an electronic component cooling body is manufactured using a heat sink 3 of pure Cu (thermal expansion coefficient 17.6 × 10 −6 / K) and Cu—Mo alloy (thermal expansion coefficient 10 × 10 −6 / K). Configured. That is, the DBA substrate 2 is soldered on one surface of a pure Cu heat radiating plate 3 (thickness 3 mm), and the heat dissipation member 4 made of an Al alloy (ADC12) having cooling fins is soldered on the other surface. . This is the electronic component cooling body of Comparative Example 1. Further, the DBA substrate 2 was soldered to one surface of the heat sink 3 (thickness 3 mm) made of Cu—Mo alloy, and the heat dissipation member 4 made of Al alloy having cooling fins was soldered to the other surface. This is the electronic component cooling body of Comparative Example 2.

発明例1と比較例1,2の電子部品冷却体を、−40℃と120 ℃の各槽での保温時間が5分となる熱衝撃試験を行なった。熱衝撃試験は、WINTECH LT20(楠本化成製)液槽式熱衝撃試験器で行なった。試験後のサンプルについて、超音波探傷試験によりクラック等の発生の有無を調査した
その結果、比較例1の電子部品冷却体は、1000サイクル終了後、放熱板3とDBA基板2の接合面での剥離が観察された。比較例2の電子部品冷却体は、1000サイクル終了後、放熱板3と熱放散部材4の接合面にクラックの発生が確認された。発明例1の電子部品冷却体は、3000サイクル終了後でも、剥離やクラックの発生は認められなかった。
The electronic component cooling bodies of Invention Example 1 and Comparative Examples 1 and 2 were subjected to a thermal shock test in which the heat retention time in each tank at −40 ° C. and 120 ° C. was 5 minutes. The thermal shock test was conducted with a WINTECH LT20 (manufactured by Enomoto Kasei) liquid tank type thermal shock tester. About the sample after the test, the presence or absence of occurrence of cracks or the like was investigated by the ultrasonic flaw detection test. As a result, the electronic component cooling body of Comparative Example 1 was found at the joint surface between the heat sink 3 and the DBA substrate 2 after 1000 cycles. Delamination was observed. In the electronic component cooling body of Comparative Example 2, generation of cracks was confirmed on the joint surface between the heat radiating plate 3 and the heat dissipating member 4 after 1000 cycles. In the electronic component cooling body of Invention Example 1, no peeling or cracking was observed even after 3000 cycles.

[実施例2]
純W粉末にNiを0.15%添加し、□50mm×2mmに成形して、水素中1450℃で焼結してWの密度を15g/cm2 とし、□50×5mmの純Cu板を水素中1200℃で溶浸を行なう。その後、W焼結体にCuを溶浸した部分(以下、W−Cu部という)の厚さを1.5mm ,純Cuの部分(以下、Cu部という)を1.5mm の厚さでフライス加工して、3mm厚の2層の放熱板を製作した。実施例1と同様の方法で層の境界面で分割し、それぞれの部分の熱膨張率を測定した。W−Cu部の熱膨張率は 4.8×10-6/Kであり、Cu部分17×10-6/Kであった。
[Example 2]
Ni is added to pure W powder at 0.15%, formed into □ 50mm × 2mm, sintered at 1450 ° C in hydrogen to make W density 15g / cm 2, and □ 50 × 5mm pure Cu plate in hydrogen Infiltrate at 1200 ° C. After that, the thickness of the portion in which Cu was infiltrated into the W sintered body (hereinafter referred to as W-Cu portion) was milled to 1.5 mm, and the pure Cu portion (hereinafter referred to as Cu portion) was milled to a thickness of 1.5 mm. A two-layer heat sink with a thickness of 3 mm was manufactured. It divided | segmented on the interface of a layer by the method similar to Example 1, and measured the thermal expansion coefficient of each part. The thermal expansion coefficient of the W-Cu part was 4.8 × 10 −6 / K, and the Cu part was 17 × 10 −6 / K.

[実施例3]
純W粉末を□50mm×2mmに成形して、水素中1450℃で焼結してWの密度を13g/cm2 とし、□50×5mmの純Cu板を水素中1200℃で溶浸を行なう。その後、W焼結体にCuを溶浸したW−Cu部の厚さを1.5mm ,純CuのCu部を1.5mm の厚さでフライス加工して、3mm厚の2層の放熱板を製作した。実施例1と同様の方法で層の境界面で分割し、それぞれの部分の熱膨張率を測定した。W−Cu部の熱膨張率は 7.3×10-6/Kであり、Cu部は17×10-6/Kであった。
[Example 3]
Forming pure W powder into □ 50mm × 2mm, sintering at 1450 ° C in hydrogen to W density of 13g / cm 2 , infiltration of □ 50 × 5mm pure Cu plate at 1200 ° C in hydrogen . After that, the W-Cu part in which Cu was infiltrated into the W sintered body was milled to a thickness of 1.5 mm and the Cu part of pure Cu to a thickness of 1.5 mm to produce a 3 mm thick two-layer heat sink. did. It divided | segmented on the interface of a layer by the method similar to Example 1, and measured the thermal expansion coefficient of each part. The thermal expansion coefficient of the W-Cu part was 7.3 × 10 −6 / K, and the Cu part was 17 × 10 −6 / K.

[実施例4]
純W粉末にNiを0.15%添加し、実施例2と同じ条件で□50mm×1mmに成形して、さらに純W粉末に実施例3と同じ条件で□50mm×1mmに成形したものを上に重ねて、水素中1450℃で焼結した。さらに□50×5mmの純Cu板を水素中1200℃で溶浸を行なう。その後、W焼結体にCuを溶浸したW−Cu部の厚さを2mm,純CuのCu部を1mmの厚さでフライス加工した。□50mmの側面に溶け出したCuおよび側面をフライス加工して□45mm×3mmの板に仕上げた。その板を5μm厚の電解ニッケルメッキを行なった。この放熱板の上面にAlN板を、下面に無酸素銅(C1020)板をそれぞれロウ付けで接合した。得られた接合体を実施例1で述べた−40〜120 ℃での冷熱衝撃試験を同じ条件で実施した。3000サイクル終了後でも剥離やクラックの発生は見られなかった。
[Example 4]
Ni added to pure W powder 0.15%, molded into □ 50mm × 1mm under the same conditions as in Example 2, and then further formed into pure W powder into □ 50mm × 1mm under the same conditions as in Example 3 Again, sintering was performed at 1450 ° C. in hydrogen. Furthermore, □ 50 × 5mm pure Cu plate is infiltrated in hydrogen at 1200 ℃. Thereafter, the W-Cu part in which Cu was infiltrated into the W sintered body was milled to a thickness of 2 mm, and the Cu part of pure Cu was milled to a thickness of 1 mm. □ Cu that melted on the side of 50 mm and the side were milled to a plate of □ 45 mm × 3 mm. The plate was subjected to electrolytic nickel plating having a thickness of 5 μm. An AlN plate was joined to the upper surface of the heat radiating plate, and an oxygen-free copper (C1020) plate was joined to the lower surface by brazing. The obtained bonded body was subjected to the thermal shock test at −40 to 120 ° C. described in Example 1 under the same conditions. Even after 3000 cycles, no peeling or cracking was observed.

本発明の放熱板に電子部品と熱放散部材とを接合した例を模式的に示す断面図である。It is sectional drawing which shows typically the example which joined the electronic component and the heat-dissipating member to the heat sink of this invention.

符号の説明Explanation of symbols

1 半導体素子
2 基板
3 放熱板
4 熱放散部材
5a ハンダ
5b ハンダ
5c ハンダ
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Board | substrate 3 Heat sink 4 Heat dissipation member
5a Solder
5b Solder
5c solder

Claims (2)

放熱板において、対向する面の熱膨張係数が異なり、さらに、一方の面の熱膨張係数が4〜14×10-6/K、他方の面の熱膨張係数が10〜24×10-6/Kであることを特徴とする半導体装置用放熱板。 In the heat radiating plate, the thermal expansion coefficients of the opposing surfaces are different, the thermal expansion coefficient of one surface is 4 to 14 × 10 −6 / K, and the thermal expansion coefficient of the other surface is 10 to 24 × 10 −6 / K. A heat sink for a semiconductor device, wherein the heat sink is K. 粉末成形体に溶融金属を含浸させることを特徴とする請求項1に記載の半導体装置用放熱板の製造方法。
The method for manufacturing a heat sink for a semiconductor device according to claim 1, wherein the powder compact is impregnated with molten metal.
JP2005218248A 2005-07-28 2005-07-28 Heat sink used in electronic equipment Expired - Fee Related JP4799069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218248A JP4799069B2 (en) 2005-07-28 2005-07-28 Heat sink used in electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218248A JP4799069B2 (en) 2005-07-28 2005-07-28 Heat sink used in electronic equipment

Publications (2)

Publication Number Publication Date
JP2007035985A true JP2007035985A (en) 2007-02-08
JP4799069B2 JP4799069B2 (en) 2011-10-19

Family

ID=37794861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218248A Expired - Fee Related JP4799069B2 (en) 2005-07-28 2005-07-28 Heat sink used in electronic equipment

Country Status (1)

Country Link
JP (1) JP4799069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040044A1 (en) 2009-10-01 2011-04-07 Jfe精密株式会社 Heat sink for electronic device, and process for production thereof
JP2013531389A (en) * 2010-07-16 2013-08-01 エンブレーション リミテッド Apparatus and method for taking a thermal interface

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062776A (en) * 1973-10-05 1975-05-28
JPS5921032A (en) * 1982-07-26 1984-02-02 Sumitomo Electric Ind Ltd Substrate for semiconductor device
JPH0449642A (en) * 1990-06-18 1992-02-19 Nippon Tungsten Co Ltd Substrate material for semiconductor device and its manufacturing method
JPH053265A (en) * 1990-10-26 1993-01-08 Sumitomo Electric Ind Ltd Complex heatsing for semiconductor loading and its manufacture
JPH10321776A (en) * 1997-05-19 1998-12-04 Nisshin Steel Co Ltd Radiator member for semiconductor element
JPH11307701A (en) * 1997-08-22 1999-11-05 Tokyo Tungsten Co Ltd Heat sink and manufacture therefor
JP2002170914A (en) * 2000-11-30 2002-06-14 Hitachi Cable Ltd Heat sink for semiconductor device and its manufacturing method and device
JP2004327711A (en) * 2003-04-24 2004-11-18 Toyota Motor Corp Semiconductor module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062776A (en) * 1973-10-05 1975-05-28
JPS5921032A (en) * 1982-07-26 1984-02-02 Sumitomo Electric Ind Ltd Substrate for semiconductor device
JPH0449642A (en) * 1990-06-18 1992-02-19 Nippon Tungsten Co Ltd Substrate material for semiconductor device and its manufacturing method
JPH053265A (en) * 1990-10-26 1993-01-08 Sumitomo Electric Ind Ltd Complex heatsing for semiconductor loading and its manufacture
JPH10321776A (en) * 1997-05-19 1998-12-04 Nisshin Steel Co Ltd Radiator member for semiconductor element
JPH11307701A (en) * 1997-08-22 1999-11-05 Tokyo Tungsten Co Ltd Heat sink and manufacture therefor
JP2002170914A (en) * 2000-11-30 2002-06-14 Hitachi Cable Ltd Heat sink for semiconductor device and its manufacturing method and device
JP2004327711A (en) * 2003-04-24 2004-11-18 Toyota Motor Corp Semiconductor module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040044A1 (en) 2009-10-01 2011-04-07 Jfe精密株式会社 Heat sink for electronic device, and process for production thereof
CN102612745A (en) * 2009-10-01 2012-07-25 Jfe精密株式会社 Heat sink for electronic device, and process for production thereof
US9299636B2 (en) 2009-10-01 2016-03-29 Jfe Precision Corporation Heat sink for electronic device and process for production thereof
JP2013531389A (en) * 2010-07-16 2013-08-01 エンブレーション リミテッド Apparatus and method for taking a thermal interface

Also Published As

Publication number Publication date
JP4799069B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR102097177B1 (en) Power module substrate, power module substrate with heat sink, and power module
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
TW201701975A (en) Bonded body, power module substrate with heat sink, heat sink and method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
JP2008240155A (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
JP2013211546A (en) Ceramic-copper assembly and manufacturing method of the same
JPWO2009119438A1 (en) Insulating substrate and manufacturing method thereof
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP7151583B2 (en) Insulated circuit board with heat sink
JP6656657B2 (en) Ceramic / aluminum joint, power module substrate, and power module
JP2022023954A (en) Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
JP4799069B2 (en) Heat sink used in electronic equipment
JP2022048812A (en) Heat dissipation member and method for manufacturing the same
KR20180059778A (en) A substrate for a light emitting module, a light emitting module, a substrate for a light emitting module formed with a cooler, and a method for manufacturing a substrate for a light emitting module
JP7299672B2 (en) Ceramic circuit board and its manufacturing method
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP4935753B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2006229247A (en) Circuit board and manufacturing method therefor
JP7298988B2 (en) Ceramic circuit board and its manufacturing method
JP4807378B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
WO2019159257A1 (en) METHOD FOR MANUFACTURING CERAMIC/AL-SiC COMPOSITE MATERIAL JOINED BODY, AND METHOD FOR MANUFACTURING HEAT SINK-EQUIPPED SUBSTRATE FOR POWER MODULE
JP2010098058A (en) Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP4798171B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP2001168250A (en) Insulating substrate for semiconductor device, semiconductor device using that and manufacturing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees