JP2007096252A - Liquid-cooling circuit substrate and liquid cooling electronic device - Google Patents

Liquid-cooling circuit substrate and liquid cooling electronic device Download PDF

Info

Publication number
JP2007096252A
JP2007096252A JP2006049580A JP2006049580A JP2007096252A JP 2007096252 A JP2007096252 A JP 2007096252A JP 2006049580 A JP2006049580 A JP 2006049580A JP 2006049580 A JP2006049580 A JP 2006049580A JP 2007096252 A JP2007096252 A JP 2007096252A
Authority
JP
Japan
Prior art keywords
liquid
groove
wiring conductor
substrate
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049580A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yakubo
清 八久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006049580A priority Critical patent/JP2007096252A/en
Publication of JP2007096252A publication Critical patent/JP2007096252A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily assembled structure capable of securely reducing thermal resistance by achieving miniaturization of an inverter which constitutes a power module and of an insulated substrate of a power device, with a connection structure that may cause no cracks while securing water-proof properties. <P>SOLUTION: A liquid-cooling circuit substrate 8 is configured by bonding a wiring substrate 4 where a wiring conductor 2 is formed on the insulated substrate 3 to a heat dissipating substrate 5 where a groove 7 for allowing a cooling liquid to flow on a principal plane is formed so as to cover the groove 7. The wiring conductor 2 having an edge 2' along the groove 7 is formed, and the edge 2' along the groove 7 in the wiring conductor 2 is positioned inward of the groove 7 by in-plane penetration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パワーモジュール等に使用される、放熱性及び信頼性に優れた液冷式回路基板およびそれを用いた液冷式電子装置に関する。 The present invention relates to a liquid-cooled circuit board excellent in heat dissipation and reliability used for a power module and the like, and a liquid-cooled electronic device using the same.

近年、IGBT(Insulated Gate Bipolar Transistor)やIPM(Intelligent Power Module)を初めとするパワーモジュールにおいて、酸化アルミニウム(Al)、窒化珪素(Si)、窒化アルミニウム(AlN)等のセラミックス基板からなる配線基板を、銅(Cu)やアルミニウム(Al)等の金属からなる放熱板(ヒートシンクともいう)に半田付けした後、樹脂ケース等を取り付けることでパワーモジュールが得られている。 In recent years, ceramics such as aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN) in power modules such as IGBT (Insulated Gate Bipolar Transistor) and IPM (Intelligent Power Module). A power module is obtained by soldering a wiring board made of a substrate to a heat radiating plate (also called a heat sink) made of a metal such as copper (Cu) or aluminum (Al), and then attaching a resin case or the like.

一方、電鉄車両やハイブリッドカーを含む電気自動車等の車載用途において、パワーモジュールは、更なる大電流化が要求されるようになっており、例えば電源のON、OFFに伴う耐久性に代表される高信頼性が要求されている。このようなパワーモジュールの信頼性を損なう要因としては、使用されているセラミックス基板の割れや、セラミックス基板と放熱板との接合に使用されている半田にクラックが発生することが知られている。   On the other hand, in an in-vehicle application such as an electric vehicle including an electric railway vehicle and a hybrid car, the power module is required to have a higher current. For example, the power module is represented by durability associated with power ON / OFF. High reliability is required. As a factor which impairs the reliability of such a power module, it is known that the ceramic substrate used is cracked or the solder used for joining the ceramic substrate and the heat sink is cracked.

セラミックス基板に発生するクラックは絶縁不良の原因となるし、セラミックス基板と放熱板との間の半田に発生するクラックは放熱性を悪化させ、その結果半導体素子の動作不能を引き起こしてしまい、パワーモジュールとしての寿命を縮めることに直結してしま
うので、上記問題の発生が極力防止された、長期に渡って信頼性の高いパワーモジュールが求められている。
Cracks that occur in the ceramic substrate cause poor insulation, and cracks that occur in the solder between the ceramic substrate and the heat sink deteriorate the heat dissipation, resulting in the inoperability of the semiconductor element, and the power module Therefore, there is a need for a power module that is highly reliable over a long period of time, in which the occurrence of the above problems is prevented as much as possible.

上記の事情から、セラミックス基板に生じるクラックを防止するために、応力緩和性に優れるアルミニウム(Al)を配線用金属として用いることや、セラミックス基板と放熱板との間に用いられる半田に発生する熱応力を低減させるためにセラミックス基板に近い
熱膨張率を有するアルミシリコンカーバイト(Al−Si−C)或いは銅モリブデン(Cu−Mo)等の複合材を放熱板として用いることが提案されている。
From the above circumstances, in order to prevent cracks generated in the ceramic substrate, aluminum (Al), which has excellent stress relaxation properties, is used as a wiring metal, and heat generated in the solder used between the ceramic substrate and the heat sink. In order to reduce stress, it has been proposed to use a composite material such as aluminum silicon carbide (Al—Si—C) or copper molybdenum (Cu—Mo) having a thermal expansion coefficient close to that of a ceramic substrate as a heat sink.

セラミックス基板と複合材からなる放熱板とを組み合わせて得られる大電流化が要求されるパワーモジュールは高信頼性を有し、電鉄車両やハイブリッドカーなどに好適なものであるが、このような構造のものは搭載されるIGBTやIPMが正常に作動するためには冷却性能が不足しており、さらには複合材の放熱板が高価なためモジュール全体の値段が高いという問題点がある。   A power module that requires a large current obtained by combining a ceramic substrate and a heat sink made of a composite material has high reliability and is suitable for electric railway vehicles and hybrid cars. However, there is a problem that the cooling performance is insufficient in order for the mounted IGBT and IPM to operate normally, and furthermore, the price of the entire module is high because the composite heat sink is expensive.

冷却性能についてみると、従来のパワーモジュールは放熱板と冷却ユニットとの間が放熱グリースを介して固定されていること、更に、セラミックス基板と放熱板とが半田で接合されていることが冷却性能を低下させる主原因と考えられている。半田や放熱グリースはセラミックス基板や放熱板などに比べて熱伝導率が非常に低く、パワーモジュール構造体の全体の冷却性能のボトルネックとなっている。   In terms of cooling performance, the conventional power module has a cooling performance that the heat sink and the cooling unit are fixed with heat dissipation grease, and that the ceramic substrate and the heat sink are joined with solder. It is thought to be the main cause of lowering. Solder and heat radiation grease have very low thermal conductivity compared to ceramic substrates and heat radiation plates, and are a bottleneck for the overall cooling performance of the power module structure.

冷却性能が高ければパワーモジュールの寸法や重量を減少することができるが、例えば車載用途において、コンパクトなパワーモジュールは設置スペースの確保や軽量化につながるという大きな利点が期待され、このため、パワーモジュール構造体の冷却性能の更なる向上が望まれている。   If the cooling performance is high, the size and weight of the power module can be reduced. For example, in an in-vehicle application, a compact power module is expected to have a great advantage of securing installation space and weight reduction. Further improvement of the cooling performance of the structure is desired.

また、コスト面についてみると、パワーモジュール本体価格が高価であることが大きな欠点となっている。その主な原因は、Al−Si−C等の複合材料は特殊な製法によって製造せざるをえないためであり、このことが高信頼性パワーモジュールの用途拡大の足かせになっている。コストが安くかつ信頼性が高いパワーモジュールの開発が熱望されている。   In terms of cost, the high price of the power module body is a major drawback. The main reason is that a composite material such as Al—Si—C must be manufactured by a special manufacturing method, which hinders the expansion of applications of the high-reliability power module. The development of power modules with low cost and high reliability is eagerly desired.

このような要求に対応して例えば、下記の特許文献1の構造においては、セラミックス基板に電子部品を搭載するためのアルミニウムを主成分とする配線を有し、それによって得られたセラミック配線基板を、アルミニウム系ロウ材で冷却ユニットに接合してなるパワーモジュール構造体が提案されている。
特開2002−93968号公報
In response to such a demand, for example, in the structure of Patent Document 1 below, a ceramic substrate having an aluminum-based wiring for mounting an electronic component on a ceramic substrate is provided. A power module structure formed by joining an aluminum brazing material to a cooling unit has been proposed.
JP 2002-93968 A

しかしながら、特許文献1に開示されたアルミニウム合金製の冷却ユニットを使用したパワーモジュール構造体は、空冷式のため例えば中、小型のハイブリットカーでは小型化することができたが、大型車、4WD車等のより高出力のハイブリッドカーに使用しようとすると、パワーモジュール構造体が大きくなってしまう問題があった。   However, since the power module structure using the aluminum alloy cooling unit disclosed in Patent Document 1 is air-cooled, it can be reduced in, for example, a medium or small hybrid car. When trying to use it in a higher output hybrid car such as the above, there is a problem that the power module structure becomes large.

従って、本発明の液冷式回路基板は上記問題点を鑑みて完成されたものであり、その目的は、電流密度を増加した場合に於いても半導体素子の温度上昇を効果的に抑制することのできる小形高効率インバータを実現するために、防水性を確保しつつ絶縁基板の割れの恐れのない接続構造で熱抵抗を安定に低減しパワーモジュールを構成するインバータを小型化し、パワー素子の絶縁基板を小型化し組立ての容易な構造を提供することである。   Accordingly, the liquid-cooled circuit board of the present invention has been completed in view of the above problems, and its purpose is to effectively suppress the temperature rise of the semiconductor element even when the current density is increased. In order to realize a small, high-efficiency inverter that can withstand power, it is possible to reduce the size of the inverter that constitutes the power module by stably reducing the thermal resistance with a connection structure that ensures waterproofness and without the risk of cracking the insulating substrate, and insulates the power element It is to provide a structure in which a substrate is miniaturized and easily assembled.

本発明の液冷式回路基板は、主面に冷却液を流すための溝を形成した放熱基板に、絶縁基板に配線導体を形成した配線基板を、前記溝を塞ぐように接合して成る液冷式回路基板において、平面透視して前記溝に沿った縁辺を有する前記配線導体を形成するとともに該配線導体の前記溝に沿った縁辺を前記溝の内側に位置させたことを特徴とする。   The liquid-cooled circuit board of the present invention comprises a heat dissipation board having a groove for flowing a coolant on the main surface, and a wiring board having a wiring conductor formed on an insulating substrate joined so as to close the groove. In the cold circuit board, the wiring conductor having an edge along the groove is formed in a plan view, and the edge of the wiring conductor along the groove is positioned inside the groove.

本発明の液冷式回路基板において好ましくは、前記配線導体は、前記絶縁基板の表面に接合した回路パターン形状の金属板から成ることを特徴とする。   In the liquid-cooled circuit board according to the present invention, preferably, the wiring conductor is made of a metal plate having a circuit pattern shape bonded to the surface of the insulating substrate.

本発明の液冷式回路基板において好ましくは、前記配線導体は細長い形状であり、該細長い形状の配線導体の先端の縁辺が平面透視して前記溝の内側に位置していることを特徴とする。   In the liquid-cooled circuit board according to the present invention, preferably, the wiring conductor has an elongated shape, and an edge of the distal end of the elongated wiring conductor is located inside the groove when seen in a plan view. .

本発明の液冷式回路基板において好ましくは、前記絶縁基板は前記放熱基板の両主面に接合されており、前記配線導体は前記放熱基板の一方主面に接合された前記絶縁基板に形成されたものと、前記放熱基板の他方主面に接合された前記絶縁基板に形成されたものとが対称関係になっていることを特徴とする。   In the liquid-cooled circuit board of the present invention, preferably, the insulating substrate is bonded to both main surfaces of the heat dissipation substrate, and the wiring conductor is formed on the insulating substrate bonded to one main surface of the heat dissipation substrate. And the one formed on the insulating substrate bonded to the other main surface of the heat dissipation substrate are in a symmetrical relationship.

本発明の液冷式回路基板において好ましくは、前記絶縁基板は前記放熱基板に金属板を介して接合されていることを特徴とする。   In the liquid-cooled circuit board of the present invention, preferably, the insulating substrate is bonded to the heat dissipation substrate via a metal plate.

本発明の液冷式電子装置は、上記本発明の液冷式回路基板の前記配線基板上に、平面透視して前記溝と重なるように電子部品を搭載して成ることを特徴とする液冷式電子装置。   A liquid-cooled electronic device according to the present invention is characterized in that an electronic component is mounted on the wiring board of the liquid-cooled circuit board according to the present invention so as to overlap the groove when seen in a plan view. Electronic device.

本発明の液冷式回路基板は、主面に冷却液を流すための溝を形成した放熱基板に、絶縁基板に配線導体を形成した配線基板を、溝を塞ぐように接合して成ることから、冷却液を直接配線基板に接触させることができるので冷却性能が向上し、また、従来の空冷式放熱板を用いた構造において必要であった放熱板が不要になるとともに、冷却性能の向上に伴い搭載する半導体素子などの電子部品の削減も可能になるのでインバータの小型が実現できる。   The liquid-cooled circuit board of the present invention is formed by joining a wiring board in which a wiring conductor is formed on an insulating substrate to a heat-radiating board having a groove for flowing a cooling liquid on the main surface so as to close the groove. Cooling performance can be improved because the coolant can be brought into direct contact with the wiring board. In addition, a heat sink that is required in a structure using a conventional air-cooled heat sink is not required, and cooling performance is improved. Along with this, it is possible to reduce the number of electronic components such as semiconductor elements to be mounted, so that the size of the inverter can be reduced.

更には、平面透視して溝に沿った縁辺を有する配線導体を形成するとともにこの配線導体の溝に沿った縁辺を前記溝の内側に位置させたことにより、放熱基板と配線基板の接合時の熱膨張差により配線導体の縁辺付近に発生する応力を開放された溝の内側で分散することができ、配線基板にクラックが発生するのを有効に防止することが可能な高信頼性を有する液冷却式回路基板を得ることができる。   Further, the wiring conductor having an edge along the groove when viewed through the plane is formed, and the edge along the groove of the wiring conductor is positioned inside the groove, so that when the heat dissipation board and the wiring board are joined, A highly reliable liquid that can disperse the stress generated near the edge of the wiring conductor due to the difference in thermal expansion inside the open groove, and can effectively prevent the generation of cracks in the wiring board. A cooled circuit board can be obtained.

本発明の液冷式回路基板は、配線導体が絶縁基板の表面に接合した回路パターン形状の金属板から成ることから、容易に配線導体断面を矩形とすることができるため一般的に印刷で形成した場合の断面がかまぼこ状の配線導体に比べ同一厚みで同一配線導体幅であっても断面積が大きくなるため、より多くの電流を流すことが可能となる。また、印刷で形成した配線導体は、微小な粒子を焼結した構造となっているため、同一断面積であっても同一断面積の純金属板に比べて電気抵抗が高いため、配線導体を金属板とすることで、より大きな電流を流すことが可能となり、その結果、冷却性能の優れた液冷式回路基板を得ることができる。   The liquid-cooled circuit board of the present invention is generally formed by printing because the wiring conductor is made of a metal plate having a circuit pattern shape bonded to the surface of the insulating substrate, so that the wiring conductor cross section can be easily made rectangular. In this case, even if the cross section has the same thickness and the same wiring conductor width as compared with the kamaboko-shaped wiring conductor, the cross-sectional area becomes large, so that a larger amount of current can flow. Moreover, since the wiring conductor formed by printing has a structure in which minute particles are sintered, even if it has the same cross-sectional area, the electric resistance is higher than that of a pure metal plate having the same cross-sectional area. By using a metal plate, it becomes possible to flow a larger current, and as a result, a liquid-cooled circuit board having excellent cooling performance can be obtained.

本発明の液冷式回路基板は、配線導体が細長い形状であり、この細長い形状の配線導体の先端の縁辺が平面透視して溝の内側に位置していることから、より大きな応力が加わりやすい細長い形状の配線導体の先端部において、より良好に応力を分散でき、配線基板のクラックをより有効に防止できる。   In the liquid-cooled circuit board according to the present invention, the wiring conductor has an elongated shape, and since the edge of the tip of the elongated wiring conductor is located inside the groove as seen in a plan view, more stress is easily applied. Stress can be distributed more favorably at the tip of the elongated wiring conductor, and cracks in the wiring board can be more effectively prevented.

本発明の液冷式回路基板は、絶縁基板が放熱基板の両主面に接合されており、配線導体は放熱基板の一方主面に接合された絶縁基板に形成されたものと、放熱基板の他方主面に接合された絶縁基板に形成されたものとが対称関係になっていることから、液冷式回路基板の歪を良好に抑制でき、さらに良好にクラックを防止できる。   In the liquid-cooled circuit board of the present invention, the insulating substrate is bonded to both main surfaces of the heat dissipation substrate, and the wiring conductor is formed on the insulating substrate bonded to one main surface of the heat dissipation substrate. Since it is in a symmetrical relationship with that formed on the insulating substrate bonded to the other main surface, it is possible to satisfactorily suppress the distortion of the liquid-cooled circuit board and further to prevent cracks.

本発明の液冷式回路基板において好ましくは、絶縁基板が放熱基板に金属板を介して接合されていることから、絶縁基板の主面の配線導体と他主面の金属板とで絶縁基板を挟み込むことによって配線基板全体としての反りを低減することができ、応力が生じるのをより有効に防止できる。   In the liquid-cooled circuit board of the present invention, preferably, since the insulating substrate is joined to the heat dissipation substrate via a metal plate, the insulating substrate is formed by the wiring conductor on the main surface of the insulating substrate and the metal plate on the other main surface. By interposing, the warping of the entire wiring board can be reduced, and the occurrence of stress can be more effectively prevented.

本発明の液冷式電子装置は、上記本発明の液冷式回路基板の特徴を有する小型で放熱性に優れ、クラック等の発生しない高信頼性を有するものとなる。また、平面透視して溝と重なるように電子部品を搭載して成ることから、電子部品の放熱性をきわめて高めることができる。   The liquid-cooled electronic device according to the present invention has a small size, excellent heat dissipation, and high reliability without occurrence of cracks, etc., having the characteristics of the liquid-cooled circuit board according to the present invention. Further, since the electronic component is mounted so as to overlap with the groove when seen in a plan view, the heat dissipation of the electronic component can be greatly enhanced.

本発明の液冷却式回路基板を添付の図面に基づいて詳細に説明する。   A liquid-cooled circuit board according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の液冷式回路基板の実施の形態の一例の断面図である。図2はその平面透視図である。これらの図において1は金属板、2は配線導体、3は絶縁基板、4は配線導体2と絶縁基板3と金属板1より構成される配線基板、5は放熱基板、6は接合材、7は放熱基板5に形成された冷却液が流れる溝である。9はボンディングワイヤー、10は電子部品としての半導体素子である。本発明の液冷式回路基板8は絶縁基板3に例えば窒化珪素基板を用い、銅を主成分とする配線導体2と金属板1により構成される配線基板4を放熱基板5の両側に銀(Ag)、銅(Cu)、インジウム(In)を主要な成分とする融点が約570℃の接合材6で接合されることにより形成される。   FIG. 1 is a cross-sectional view of an example of an embodiment of a liquid-cooled circuit board according to the present invention. FIG. 2 is a plan perspective view thereof. In these figures, 1 is a metal plate, 2 is a wiring conductor, 3 is an insulating substrate, 4 is a wiring substrate composed of the wiring conductor 2, the insulating substrate 3 and the metal plate 1, 5 is a heat dissipation substrate, 6 is a bonding material, 7 Is a groove formed in the heat dissipation substrate 5 through which the coolant flows. 9 is a bonding wire, and 10 is a semiconductor element as an electronic component. In the liquid-cooled circuit board 8 of the present invention, for example, a silicon nitride substrate is used as the insulating substrate 3, and the wiring substrate 4 composed of the wiring conductor 2 mainly composed of copper and the metal plate 1 is silver ( It is formed by bonding with a bonding material 6 having a melting point of about 570 ° C. containing Ag, copper (Cu), and indium (In) as main components.

本発明の液冷式回路基板8は、主面に冷却液を流すための溝7を形成した放熱基板5に、絶縁基板3に配線導体2を形成した配線基板4を、溝7を塞ぐように接合して成る液冷式回路基板8において、平面透視して溝7に沿った縁辺2’を有する配線導体2を形成するとともに配線導体2の溝7に沿った縁辺2’を溝7の内側に位置させている。   In the liquid-cooled circuit board 8 of the present invention, the wiring board 4 in which the wiring conductor 2 is formed on the insulating substrate 3 is plugged into the heat dissipation board 5 in which the groove 7 for flowing the cooling liquid is formed on the main surface. In the liquid-cooled circuit board 8 bonded to the wiring conductor 2, the wiring conductor 2 having the edge 2 ′ along the groove 7 is formed in a plan view and the edge 2 ′ along the groove 7 of the wiring conductor 2 is formed on the groove 7. It is located inside.

これにより、冷却液を直接配線基板4に接触させることができるので冷却性能が向上し、また、従来の空冷式放熱板を用いた構造において必要であった放熱板が不要になるとともに、冷却性能の向上に伴い搭載する半導体素子10などの電子部品の削減も可能になるのでインバータの小型が実現できる。例えば、従来の空冷式放熱板を用いた構造では熱抵抗が0.45℃/W〜0.5℃/Wに対し、本発明では0.3℃/W〜0.35℃/Wと改善される。   As a result, the cooling liquid can be brought into direct contact with the wiring board 4 so that the cooling performance is improved. In addition, the heat radiation plate that is necessary in the structure using the conventional air-cooled heat radiation plate is unnecessary, and the cooling performance is improved. With the improvement, it becomes possible to reduce the number of electronic components such as the semiconductor element 10 to be mounted, so that the inverter can be downsized. For example, in the structure using a conventional air-cooled heat sink, the thermal resistance is improved from 0.35 ° C / W to 0.35 ° C / W in the present invention, whereas the thermal resistance is improved from 0.45 ° C / W to 0.5 ° C / W. Is done.

更には、平面透視して溝7に沿った縁辺2’を有する配線導体2を形成するとともにこの配線導体2の溝7に沿った縁辺2’を溝7の内側に位置させたことにより、放熱基板5と配線基板4の接合時の熱膨張差により配線導体2の縁辺2’付近に発生する応力を開放された溝7の内側で分散することができ、配線基板4にクラックが発生するのを有効に防止することが可能な高信頼性を有する液冷却式回路基板8を得ることができる。   Further, the wiring conductor 2 having the edge 2 ′ along the groove 7 as seen in a plan view is formed and the edge 2 ′ along the groove 7 of the wiring conductor 2 is positioned inside the groove 7. Stress generated in the vicinity of the edge 2 ′ of the wiring conductor 2 due to a difference in thermal expansion when the substrate 5 and the wiring substrate 4 are joined can be dispersed inside the opened groove 7, and cracks are generated in the wiring substrate 4. It is possible to obtain a liquid-cooled circuit board 8 having high reliability capable of effectively preventing the above-described problem.

このような配線導体2の溝7に沿った縁辺2’は、図2および図3に示すように溝7の軸方向と略平行な配線導体2の縁に位置する辺部を示す。なお、図2のように配線導体2が細長であり、その先端が曲面状である場合でも、その先端の一部が溝7に沿う部分があり、その部分が縁辺2’となる。   Such an edge 2 ′ along the groove 7 of the wiring conductor 2 indicates a side located at the edge of the wiring conductor 2 substantially parallel to the axial direction of the groove 7 as shown in FIGS. 2 and 3. In addition, even when the wiring conductor 2 is elongated as shown in FIG. 2 and its tip is curved, a portion of the tip has a portion along the groove 7, and this portion becomes the edge 2 '.

絶縁基板3に用いられる窒化珪素基板は、窒化珪素質焼結体からなる板状体である。窒化珪素基板を得るには、まず窒化珪素粉末に希土類酸化物粉末や酸化アルミニウム粉末等の焼結助剤を添加し混合して窒化珪素質焼結体の原料粉末を調整する。次いで、この原料粉末に有機バインダー及び分散媒を添加し混合してペースト化し、このペーストを例えばドクターブレード法でシート状に成形して窒化珪素質グリーンシートを作製する。このような窒化珪素質グリーンシートを必要に応じて積層し、プレス加工を施して圧着(加圧接着)して窒化珪素質成形体を作製する。この後、窒化珪素質成形体を空気中もしくは窒素雰囲気中で脱脂処理した後、窒素雰囲気等の非酸化性雰囲気中で焼成することにより、目的とする窒化珪素基板を得ることができる。   The silicon nitride substrate used for the insulating substrate 3 is a plate-like body made of a silicon nitride-based sintered body. In order to obtain a silicon nitride substrate, first, a sintering aid such as rare earth oxide powder or aluminum oxide powder is added to and mixed with the silicon nitride powder to prepare a raw material powder of the silicon nitride sintered body. Next, an organic binder and a dispersion medium are added to the raw material powder and mixed to form a paste, and the paste is formed into a sheet shape by, for example, a doctor blade method to produce a silicon nitride green sheet. Such silicon nitride-based green sheets are laminated as necessary, pressed, and pressed (pressure-bonded) to produce a silicon nitride-based molded body. Thereafter, the silicon nitride-based molded body is degreased in air or in a nitrogen atmosphere, and then fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, whereby a target silicon nitride substrate can be obtained.

絶縁基板3は、配線導体2上に搭載される半導体素子10等の電子部品が発生する熱を金属板1から放熱基板5へと有効に伝導して放散させ、配線基板4および液冷式回路基板8の放熱特性を向上させるためには、熱伝導率が少なくとも60W/m・K以上であることが好ましく、半導体素子10の実装密度が大きくなることと半導体素子10の小型化による発熱密度が大きくなることから、特に80W/m・K以上、さらには100W/m・K以上であることが好ましい。   The insulating substrate 3 effectively conducts and dissipates heat generated by electronic components such as the semiconductor element 10 mounted on the wiring conductor 2 from the metal plate 1 to the heat radiating substrate 5. In order to improve the heat dissipation characteristics of the substrate 8, it is preferable that the thermal conductivity is at least 60 W / m · K or more. The mounting density of the semiconductor element 10 is increased and the heat generation density due to the miniaturization of the semiconductor element 10 is increased. In particular, it is preferably 80 W / m · K or more, and more preferably 100 W / m · K or more, because it increases.

また、絶縁基板3は、配線基板4および液冷式回路基板8の機械的強度を向上させ、放熱特性を劣化させないためには、その厚みを0.2〜1.0mmとすることが好ましい。厚みが0.2mm未満では、絶縁基板3と金属板1と放熱基板5とを接合したときに発生する応力により、絶縁基板3に割れが発生しやすくなる傾向がある。他方、厚みが1.0mmを超えると、半導体素子10から発生する熱を冷却液が流れる溝7に良好に伝達することが困難となる傾向がある。   The insulating substrate 3 preferably has a thickness of 0.2 to 1.0 mm in order to improve the mechanical strength of the wiring substrate 4 and the liquid-cooled circuit substrate 8 and not to deteriorate the heat dissipation characteristics. If the thickness is less than 0.2 mm, the insulating substrate 3 tends to crack due to the stress generated when the insulating substrate 3, the metal plate 1, and the heat dissipation substrate 5 are joined. On the other hand, if the thickness exceeds 1.0 mm, it tends to be difficult to transfer heat generated from the semiconductor element 10 to the groove 7 through which the coolant flows.

配線基板4は、前述のようにして製造した絶縁基板3を金属板1と金属板から成る配線導体2で挟んで直接接合法や活性金属法を用いて接合して配線基板4を作製する。   The wiring substrate 4 is produced by sandwiching the insulating substrate 3 manufactured as described above between the metal plate 1 and the wiring conductor 2 made of the metal plate and bonding them using a direct bonding method or an active metal method.

例えば、活性金属法を用いる場合であれば、銀−銅合金粉末を主成分とする銀ロウ粉末に、チタン・ジルコニウム・ハフニウム等の活性金属やその水素化物の少なくとも1種からなる活性金属粉末を2〜5重量%添加した活性金属ロウ材に、適当な有機溶剤・溶媒を添加混合して得た活性金属ロウ材ペーストを、絶縁基板3の上下面に従来周知のスクリーン印刷技術を用いて所定パターンに印刷する。   For example, in the case of using the active metal method, an active metal powder composed of at least one of active metals such as titanium, zirconium, hafnium and hydrides thereof is added to silver brazing powder mainly composed of silver-copper alloy powder. An active metal brazing paste obtained by adding and mixing an appropriate organic solvent / solvent with the active metal brazing material added in an amount of 2 to 5% by weight is applied to the upper and lower surfaces of the insulating substrate 3 using a well-known screen printing technique. Print on the pattern.

その後、金属板1と配線導体2で絶縁基板3をはさんで真空中で、所定温度で加熱処理し、活性金属ロウ材を溶融させて、絶縁基板3と金属板1と配線導体2を接合させる。   Thereafter, the insulating plate 3 is sandwiched between the metal plate 1 and the wiring conductor 2 in a vacuum and heat-treated at a predetermined temperature to melt the active metal brazing material, thereby joining the insulating substrate 3, the metal plate 1 and the wiring conductor 2. Let

金属板1と配線導体2はインゴット(塊)に圧延加工法や抜き打ち加工法等従来周知の金属加工法を施すことによって、例えば、厚さが0.3mmで、回路配線パターンの形状等に対応する所定のパターン形状に製作される。あるいは広面積の金属板を絶縁基板3に接合しておき、これからエッチングにより所定の回路を形成するようにしたものであってもよい。   For example, the metal plate 1 and the wiring conductor 2 have a thickness of 0.3 mm and can correspond to the shape of the circuit wiring pattern by applying a conventionally known metal processing method such as a rolling method or a punching method to the ingot (lumb). To a predetermined pattern shape. Alternatively, a metal plate having a large area may be bonded to the insulating substrate 3 and a predetermined circuit may be formed by etching.

また、配線導体2は、金属板でなく従来周知の導体ペーストで印刷形成したり、蒸着法や、めっき法で形成しても良い。   Further, the wiring conductor 2 may be formed by printing with a conventionally known conductor paste instead of a metal plate, or may be formed by vapor deposition or plating.

ここで、配線導体2の厚さは、大電流による発熱を抑制し、配線導体2と絶縁基板3との接合時に接合界面に発生する熱負荷によるクラックを抑制するためには、0.1〜1.0mmが好ましい。配線導体2の厚さが0.1mmより小さいと、電気抵抗が大きくなるため半導体素子10に十分な電流を供給できにくくなる傾向がある。他方、1.0mmより大きいと、絶縁基板3と配線導体2の熱膨張係数の違いや、活性金属を介して接合したときに発生する応力により、絶縁基板3に割れ等が発生しやすくなる傾向がある。配線導体2と金属板1は、絶縁基板3の両主面の熱膨張係数を合わせて配線基板4全体としての反りを低減するためには、同じ材質にすることが好ましい。   Here, the thickness of the wiring conductor 2 is 0.1 to suppress heat generation due to a large current and to suppress cracks due to a thermal load generated at the bonding interface when the wiring conductor 2 and the insulating substrate 3 are bonded. 1.0 mm is preferred. If the thickness of the wiring conductor 2 is smaller than 0.1 mm, the electric resistance increases, and it tends to be difficult to supply a sufficient current to the semiconductor element 10. On the other hand, if it is larger than 1.0 mm, the insulating substrate 3 tends to be cracked due to the difference in thermal expansion coefficient between the insulating substrate 3 and the wiring conductor 2 or the stress generated when the insulating substrate 3 is joined via the active metal. There is. The wiring conductor 2 and the metal plate 1 are preferably made of the same material in order to reduce the warpage of the wiring substrate 4 as a whole by combining the thermal expansion coefficients of both main surfaces of the insulating substrate 3.

また、配線導体2が銅板から成る場合であれば、これを無酸素銅で形成しておくと無酸素銅はロウ付けの際に銅の表面が銅中に存在する酸素により酸化されることなくロウ材との濡れ性が良好となり、ロウ材を介しての接合を強固なものとすることができる。また、配線導体2は例えばアルミニウムやニッケル、その他の導電性合金でも良い。   Further, if the wiring conductor 2 is made of a copper plate, if the wiring conductor 2 is formed of oxygen-free copper, the oxygen-free copper is not oxidized by the oxygen present in the copper during brazing. The wettability with the brazing material becomes good, and the bonding through the brazing material can be made strong. The wiring conductor 2 may be aluminum, nickel, or other conductive alloys, for example.

さらに、配線導体2は、その表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法等により被着させておくと、配線導体2と外部電気回路との電気的接続を良好なものにできるとともに、配線導体2に半導体素子10等の電子部品を半田を介して強固に接着させることができる。また、金属板1には直接冷却水が接触する。従って、金属板1と配線導体2は、その表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法により被着させておくことが好ましい。   Furthermore, the wiring conductor 2 can be connected to the external surface of the wiring conductor 2 when a metal having good conductivity made of nickel and having good corrosion resistance and wettability with the brazing material is deposited by plating or the like. The electrical connection with the circuit can be improved, and an electronic component such as the semiconductor element 10 can be firmly bonded to the wiring conductor 2 via solder. Further, the cooling water is in direct contact with the metal plate 1. Therefore, it is preferable that the metal plate 1 and the wiring conductor 2 are coated with a metal having good conductivity made of nickel and having good corrosion resistance and wettability with the brazing material on the surface thereof.

放熱基板5は、冷却液の流路となる溝7が形成されたものであって、銅やアルミニウム等の金属、または銅モリブデン(Cu−Mo)合金やアルミシリコンカーバイド(Al−Si−C)系等の複合金属材料等により製作される。   The heat radiating substrate 5 is formed with a groove 7 serving as a flow path for the coolant, and is made of a metal such as copper or aluminum, or a copper molybdenum (Cu—Mo) alloy or aluminum silicon carbide (Al—Si—C). Manufactured with composite metal materials such as the system.

放熱基板5の厚さは、冷却液の流路の圧力損失を小さくして冷却液の流量を多くすることおよび配線基板4と放熱基板5との接合界面に発生する熱負荷によるクラックを抑制するために、1.0〜20.0mmが好ましい。1.0mmより小さいと圧力損失が大きくなり、冷却液が流れにくくなるため冷却能力が低下する傾向がある。20.0mmより大きいと配線基板4と放熱基板5の熱膨張係数の違いにより配線基板4に加わる応力が大きくなるので、クラックが発生しやすくなる傾向がある。   The thickness of the heat dissipation substrate 5 reduces the pressure loss in the flow path of the coolant and increases the flow rate of the coolant, and suppresses cracks due to the thermal load generated at the joint interface between the wiring substrate 4 and the heat dissipation substrate 5. Therefore, 1.0-20.0 mm is preferable. If it is smaller than 1.0 mm, the pressure loss increases and the cooling capacity tends to decrease because the coolant is difficult to flow. If it is larger than 20.0 mm, the stress applied to the wiring board 4 increases due to the difference in the thermal expansion coefficient between the wiring board 4 and the heat dissipation board 5, so that cracks tend to occur.

冷却液の流れる溝7は対向する2枚の配線基板2と放熱基板5により構成される。配線基板2の直下には半導体素子10を十分に冷却できるように冷却液の流路となる溝が配置される。溝7の幅は1〜5mmが好ましく1.0mmより小さいと圧力損失が大きくなり、冷却液が流れにくくなる。また溝7の幅が5mmを超えた場合、配線基板4と放熱基板5の熱膨張係数の違いにより配線基板4が変形しクラックが発生しやすくなる傾向がある。溝7は半導体素子10周辺部に複数個配置されることが好ましい。配線基板4と放熱基板5の接合部分は3mm以上あることが好ましい。3mmより小さいと十分な気密性を確保しにくくなる傾向があり、また熱を拡散しにくくなる傾向がある。   The groove 7 through which the coolant flows is composed of two opposing wiring boards 2 and a heat dissipation board 5. Immediately below the wiring substrate 2, a groove serving as a coolant flow path is disposed so that the semiconductor element 10 can be sufficiently cooled. The width of the groove 7 is preferably 1 to 5 mm, and if it is smaller than 1.0 mm, the pressure loss increases and the coolant does not flow easily. In addition, when the width of the groove 7 exceeds 5 mm, the wiring board 4 tends to be deformed due to the difference in thermal expansion coefficient between the wiring board 4 and the heat dissipation board 5 and cracks tend to occur. It is preferable that a plurality of the grooves 7 are arranged on the periphery of the semiconductor element 10. The junction between the wiring board 4 and the heat dissipation board 5 is preferably 3 mm or more. If it is smaller than 3 mm, it tends to be difficult to ensure sufficient airtightness, and it is difficult to diffuse heat.

また、例えば図4に示すように、放熱基板5の中央部に接続部11を形成した構造、つまり、上下に溝7を形成した構造の場合、内部を接続部11で接続することにより放熱基板5の剛性を高めることができ、配線基板4と放熱基板5との接合界面に発生するクラックを抑制することができ、更には冷却液と接する面積が増え接続部11に熱が拡散することにより効率よく冷却することができる。接続部11の厚みは溝7の幅の0.5倍以上が好ましく、溝7の幅に対し接続部11の厚みが0.5倍未満の場合は放熱基板5の剛性が弱くなる傾向がある。   For example, as shown in FIG. 4, in the case of the structure in which the connection portion 11 is formed at the center of the heat dissipation substrate 5, that is, the structure in which the grooves 7 are formed in the upper and lower sides, the heat dissipation substrate is connected by connecting the inside with the connection portion 11. 5 can be increased, cracks generated at the bonding interface between the wiring board 4 and the heat dissipation board 5 can be suppressed, and further, the area in contact with the cooling liquid can be increased and heat can be diffused to the connection portion 11. It can be cooled efficiently. The thickness of the connecting portion 11 is preferably 0.5 times or more the width of the groove 7, and when the thickness of the connecting portion 11 is less than 0.5 times the width of the groove 7, the rigidity of the heat dissipation substrate 5 tends to be weak. .

また、冷却液の流れる溝7の深さは、1.0〜20.0mmが好ましい。1.0mmより小さいと圧力損失が大きくなり、冷却液が流れにくくなるため冷却能力が低下する傾向がある。20.0mmより大きいと配線基板4と放熱基板5の熱膨張係数の違いにより配線基板4に加わる応力が大きくなるので、クラックが発生しやすくなる傾向がある。   Further, the depth of the groove 7 through which the coolant flows is preferably 1.0 to 20.0 mm. If it is smaller than 1.0 mm, the pressure loss increases and the cooling capacity tends to decrease because the coolant is difficult to flow. If it is larger than 20.0 mm, the stress applied to the wiring board 4 increases due to the difference in the thermal expansion coefficient between the wiring board 4 and the heat dissipation board 5, so that cracks tend to occur.

配線基板2と放熱基板5は接合前もしくは接合後に冷却液による侵食の影響を防ぐためにNiめっき等の耐食メッキをほどこすことが好ましい。   The wiring board 2 and the heat dissipation board 5 are preferably subjected to corrosion-resistant plating such as Ni plating in order to prevent the influence of erosion by the coolant before or after bonding.

以上の構成により図1に示すような半導体素子10から水冷式ヒートシンクとして機能する放熱基板5までの熱伝達経路を短くして半導体素子1からの熱を充分に冷却し、かつ信頼性の高い液冷式回路基板8が完成する。   With the above configuration, a heat transfer path from the semiconductor element 10 to the heat dissipation substrate 5 functioning as a water-cooled heat sink as shown in FIG. 1 is shortened to sufficiently cool the heat from the semiconductor element 1 and a highly reliable liquid. The cold circuit board 8 is completed.

そして、上記本発明の液冷式回路基板8の配線基板4上に、平面透視して溝7と重なるように電子部品を搭載することにより、本発明の液冷式電子装置となる。これにより、上記本発明の液冷式回路基板8の特徴を有する小型で放熱性に優れ、クラック等の発生しない高信頼性を有する液冷式電子装置となる。また、平面透視して溝7と重なるように半導体素子10などの電子部品を搭載して成ることから、電子部品の放熱性をきわめて高めることができる。   Then, by mounting electronic components on the wiring substrate 4 of the liquid-cooled circuit board 8 of the present invention so as to overlap with the grooves 7 in a plan view, the liquid-cooled electronic device of the present invention is obtained. Thus, a liquid-cooled electronic device having the characteristics of the liquid-cooled circuit board 8 of the present invention, having a small size, excellent heat dissipation, and high reliability free from cracks or the like is obtained. Further, since the electronic component such as the semiconductor element 10 is mounted so as to overlap with the groove 7 when seen in a plan view, the heat dissipation of the electronic component can be greatly enhanced.

なお、本発明は上述の最良の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を行うことは何等差し支えない。例えば、図3のように、溝を液の流れ方向と垂直方向に形成しても良い。   Note that the present invention is not limited to the above-described best modes and examples, and various modifications may be made without departing from the scope of the present invention. For example, as shown in FIG. 3, the grooves may be formed in a direction perpendicular to the liquid flow direction.

本発明の液冷式回路基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the liquid cooling type circuit board of this invention. 本発明の液冷式回路基板の実施の一例を示す平面透視図である。It is a plane perspective view which shows an example of implementation of the liquid cooling type circuit board of this invention. 本発明の液冷式回路基板の他の例を示す平面透視図である。It is a plane perspective view which shows the other example of the liquid cooling type circuit board of this invention. 本発明の液冷式回路基板のもう一つの例を示す断面図である。It is sectional drawing which shows another example of the liquid cooling type circuit board of this invention.

符号の説明Explanation of symbols

2:配線導体
2’:縁辺
3:絶縁基板
4:配線基板
5:放熱基板
7:溝
8:液冷式回路基板
10:半導体素子(電子部品)
2: Wiring conductor 2 ': Edge 3: Insulating substrate 4: Wiring substrate 5: Heat dissipation substrate 7: Groove 8: Liquid-cooled circuit board 10: Semiconductor element (electronic component)

Claims (6)

主面に冷却液を流すための溝を形成した放熱基板に、絶縁基板に配線導体を形成した配線基板を、前記溝を塞ぐように接合して成る液冷式回路基板において、平面透視して前記溝に沿った縁辺を有する前記配線導体を形成するとともに該配線導体の前記溝に沿った縁辺を前記溝の内側に位置させたことを特徴とする液冷式回路基板。 In a liquid-cooled circuit board formed by bonding a wiring board in which a wiring conductor is formed on an insulating substrate to a heat dissipation board in which a groove for flowing a coolant on the main surface is formed so as to close the groove, see through the plane. A liquid-cooled circuit board, wherein the wiring conductor having an edge along the groove is formed, and the edge of the wiring conductor along the groove is positioned inside the groove. 前記配線導体は、前記絶縁基板の表面に接合した回路パターン形状の金属板から成ることを特徴とする請求項1記載の液冷式回路基板。 2. The liquid-cooled circuit board according to claim 1, wherein the wiring conductor is made of a metal plate having a circuit pattern shape bonded to the surface of the insulating substrate. 前記配線導体は細長い形状であり、該細長い形状の配線導体の先端の縁辺が平面透視して前記溝の内側に位置していることを特徴とする請求項1または請求項2記載の液冷式回路基板。 The liquid-cooled type according to claim 1 or 2, wherein the wiring conductor has an elongated shape, and an edge of the elongated wiring conductor is located inside the groove as seen in a plan view. Circuit board. 前記絶縁基板は前記放熱基板の両主面に接合されており、前記配線導体は前記放熱基板の一方主面に接合された前記絶縁基板に形成されたものと、前記放熱基板の他方主面に接合された前記絶縁基板に形成されたものとが対称関係になっていることを特徴とする請求項1乃至請求項3のいずれかに記載の液冷式回路基板。 The insulating substrate is bonded to both main surfaces of the heat dissipation substrate, and the wiring conductor is formed on the insulating substrate bonded to one main surface of the heat dissipation substrate, and the other main surface of the heat dissipation substrate. 4. The liquid-cooled circuit board according to claim 1, wherein the liquid-cooled circuit board is symmetrical with the one formed on the bonded insulating substrates. 前記絶縁基板は前記放熱基板に金属板を介して接合されていることを特徴とする請求項1乃至請求項4のいずれかに記載の液冷式回路基板。 The liquid-cooled circuit board according to any one of claims 1 to 4, wherein the insulating substrate is bonded to the heat dissipation substrate via a metal plate. 請求項1乃至請求項5のいずれかに記載の液冷式回路基板の前記配線基板上に、平面透視して前記溝と重なるように電子部品を搭載して成ることを特徴とする液冷式電子装置。 6. A liquid-cooled circuit board, wherein an electronic component is mounted on the wiring board of the liquid-cooled circuit board according to claim 1 so as to be seen through the plane and overlap the groove. Electronic equipment.
JP2006049580A 2005-08-29 2006-02-27 Liquid-cooling circuit substrate and liquid cooling electronic device Pending JP2007096252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049580A JP2007096252A (en) 2005-08-29 2006-02-27 Liquid-cooling circuit substrate and liquid cooling electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247048 2005-08-29
JP2006049580A JP2007096252A (en) 2005-08-29 2006-02-27 Liquid-cooling circuit substrate and liquid cooling electronic device

Publications (1)

Publication Number Publication Date
JP2007096252A true JP2007096252A (en) 2007-04-12

Family

ID=37981529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049580A Pending JP2007096252A (en) 2005-08-29 2006-02-27 Liquid-cooling circuit substrate and liquid cooling electronic device

Country Status (1)

Country Link
JP (1) JP2007096252A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061488A1 (en) * 2008-12-10 2010-06-17 Siemens Aktiengesellschaft Power converter module with cooled busbar
JP2010199426A (en) * 2009-02-26 2010-09-09 Toyota Industries Corp Semiconductor device
JP2012253106A (en) * 2011-05-31 2012-12-20 Zycube:Kk Laminated module and interposer used for the same
CN103954162A (en) * 2014-05-16 2014-07-30 中国科学院工程热物理研究所 Low resistance hydraulic cavitation structure with microchannel heat exchange enhancing function
CN115515403A (en) * 2022-11-08 2022-12-23 哈尔滨工业大学 Integrated forming device and method for aluminum-copper composite liquid cooling channel structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061488A1 (en) * 2008-12-10 2010-06-17 Siemens Aktiengesellschaft Power converter module with cooled busbar
US8599556B2 (en) 2008-12-10 2013-12-03 Siemens Aktiengesellschaft Power converter module with cooled busbar arrangement
JP2010199426A (en) * 2009-02-26 2010-09-09 Toyota Industries Corp Semiconductor device
JP2012253106A (en) * 2011-05-31 2012-12-20 Zycube:Kk Laminated module and interposer used for the same
CN103748682A (en) * 2011-05-31 2014-04-23 赛方塊股份有限公司 Laminated module and interposer used in same
CN103954162A (en) * 2014-05-16 2014-07-30 中国科学院工程热物理研究所 Low resistance hydraulic cavitation structure with microchannel heat exchange enhancing function
CN103954162B (en) * 2014-05-16 2015-10-21 中国科学院工程热物理研究所 A kind of low-resistance Hydrodynamic cavitation structure strengthening Thermal Performance of Micro Channels
CN115515403A (en) * 2022-11-08 2022-12-23 哈尔滨工业大学 Integrated forming device and method for aluminum-copper composite liquid cooling channel structure
CN115515403B (en) * 2022-11-08 2024-01-12 哈尔滨工业大学 Integrated forming method for aluminum-copper composite liquid cooling channel structure

Similar Documents

Publication Publication Date Title
JP2007251076A (en) Power semiconductor module
JP6072667B2 (en) Semiconductor module and manufacturing method thereof
TWI713746B (en) Power module substrate
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
US20230075200A1 (en) Power module and method for manufacturing same
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP2008270294A (en) Heat sink member and semiconductor device
JP2012074591A (en) Circuit board and electronic divice
JP2011199275A (en) Ceramic circuit substrate, and electronic device using the same
JP7018756B2 (en) Power module board and power module
JP2017220609A (en) Semiconductor module
JP3934966B2 (en) Ceramic circuit board
JP6317178B2 (en) Circuit board and electronic device
JP4496040B2 (en) Electric element cooling module
JP2007266224A (en) Power module
WO2019163941A1 (en) Substrate for power modules, and power module
JP2004087927A (en) Ceramic substrate
JP4496043B2 (en) Electric element cooling module
JP2020072130A (en) Electric circuit board and power module
JP4496042B2 (en) Electric element cooling module
JP4496041B2 (en) Electric element cooling module
JP2003124584A (en) Ceramic circuit board
JP2013229377A (en) Circuit board and electronic apparatus using the same
JP2013012687A (en) Ceramic circuit board and electronic device using the same