JP2004022973A - Ceramic circuit board and semiconductor module - Google Patents

Ceramic circuit board and semiconductor module Download PDF

Info

Publication number
JP2004022973A
JP2004022973A JP2002178635A JP2002178635A JP2004022973A JP 2004022973 A JP2004022973 A JP 2004022973A JP 2002178635 A JP2002178635 A JP 2002178635A JP 2002178635 A JP2002178635 A JP 2002178635A JP 2004022973 A JP2004022973 A JP 2004022973A
Authority
JP
Japan
Prior art keywords
circuit board
metal
heat
semiconductor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178635A
Other languages
Japanese (ja)
Inventor
Takayuki Miyao
宮尾 貴幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002178635A priority Critical patent/JP2004022973A/en
Publication of JP2004022973A publication Critical patent/JP2004022973A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic circuit board that can be improved in reliability and heat characteristic by suppressing warping of a substrate, and to provide a semiconductor module. <P>SOLUTION: The ceramic circuit board and semiconductor module1 are constituted, by respectively attaching metallic circuit board 3 and 4 in a state of facing both main surfaces of a substrate 6, formed by bonding two silicon nitride plates 2 to each other with a metal plate 5 in between and respectively mounting semiconductor elements 7 and 8 on the metal circuit boards 3 and 4 at mutually non-facing positions and, at the same time, forming a flow passage 10 for a cooling liquid in the metal plate 5 so that the passage 10 faces the mounted positions of the elements 7 and 8. Therefore, the heat radiation characteristics of the circuit board and module 1 are improved, and electronic components, such as the semiconductor elements 7 and 8 mounted on the metal circuit boards 3 and 4 can be operated stably for a long period. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基板と金属板とから成る基体に金属回路板を接合した、基体中に冷却液の流路を内蔵するセラミック回路基板およびこれを用いた半導体モジュールに関するものである。
【0002】
【従来の技術】
近年、パワーモジュール用基板やスイッチングモジュール用基板等の回路基板として、セラミック基板上に活性金属ロウ材を介して銅等から成る金属回路板を直接接合させたセラミック回路基板が用いられている。
【0003】
図3に従来のセラミック回路基板を用いた半導体モジュールの例を断面図で示す。図3において、11はセラミック回路基板を示し、このセラミック回路基板11は、セラミック基板12と、その上面に取着された複数の金属回路板13と、セラミック基板12の下面に取着された金属板15とから構成されている。そして、このようなセラミック回路基板11は、金属回路板13上に半導体素子17等の電子部品が搭載され、金属板15との間に半田16を介在させて放熱部材19上に接合実装されることにより、半導体モジュールとして使用される。
【0004】
かかるセラミック回路基板11は、酸化アルミニウム質焼結体から成るセラミック基板12を用いる場合には、具体的には以下の方法によって製作される。
【0005】
まず、銀−銅合金にチタン・ジルコニウム・ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属粉末に有機溶剤・溶媒を添加混合してロウ材ペーストを調製する。
【0006】
次に、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・可塑剤・溶剤等を添加混合して泥漿状と成すとともにこれから従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術を採用して複数のセラミックグリーンシートを得た後、所定寸法に形成し、次に、セラミックグリーンシートを必要に応じて上下に積層するとともに還元雰囲気中にて約1600℃の温度で焼成し、セラミックグリーンシートを焼結一体化させて酸化アルミニウム質焼結体から成るセラミック基板12を形成する。
【0007】
次に、セラミック基板12上にロウ材ペーストを間に挟んで銅等から成る複数の金属回路板13を載置し、一方、これに対向するセラミック基板12の下面には同様にロウ材ペーストを間に挟んで銅等から成る金属板15を配置する。
【0008】
そして最後に、セラミック基板12と金属回路板13との間およびセラミック基板12と金属板15との間に配されているロウ材ペーストを非酸化性雰囲気中にて約900℃の温度に加熱して溶融させ、このロウ材でセラミック基板12と金属回路板13とを、およびセラミック基板12と金属板15とを接合することによって製作される。
【0009】
このように製作されたセラミック回路基板11は、IGBT(Insulated Gate Bipolar Transistor)やMOS−FET(Metal Oxide Semiconductor − Field Effect Transistor)等の半導体素子17等の電子部品を半田などの接着剤を介して接合した後、例えば、アルミニウム等の放熱部材19に半田16で接合される。さらに、この放熱部材19は、放熱部材19に設けられたねじ穴(図示せず)を用いて、グリース状の低熱伝導の伝熱性組成物20を介して水冷式ヒートシンク21にねじ止めされて接合されることによって、半導体モジュールが構成される。
【0010】
水冷式ヒートシンク21は、冷却液の流路18内に冷却液としての水等の冷媒を循環させることにより、この冷媒によって放熱部材19から伝導された熱を強制的に外部に伝達する。このように構成された半導体モジュールでは、半導体素子17等が発した熱は、金属回路板13・セラミック基板12・金属板15・半田16・放熱部材19および伝熱性組成物20を介して水冷式ヒートシンク21により外部に放散されるようになっている。
【0011】
【発明が解決しようとする課題】
しかし、上記従来の半導体モジュールでは、セラミック回路基板11(セラミック基板12の熱膨張係数が約3〜10×10−6/℃)とアルミニウム等の放熱部材19(熱膨張係数が約18〜23×10−6/℃)との熱膨張係数が大きく相違することから、セラミック回路基板11と放熱部材19との間の半田16にクラックが発生し、放熱部材19の剥離が生じて信頼性が著しく劣化する場合があるという問題点があった。
【0012】
また、セラミック回路基板11と放熱部材19との熱膨張率の差によって、両者を半田16により半田付けした後に冷却すると、反りが生じるという問題点もあった。この反りが大きい場合は、放熱部材19とこれを冷却するための水冷式ヒートシンク21との接着が悪くなるため、放熱特性が劣化することとなる。この反りは面積が大きな放熱部材19を用いる程大きくなる。そして、この放熱部材19が水冷式ヒートシンク21にねじ止めにより接合されるので、半導体素子17のスイッチングによる加熱・冷却の繰り返しによってさらに大きな曲げ荷重が加わることとなり、セラミック基板12にクラックや割れが生じ、信頼性が低下するという問題点があった。
【0013】
さらに、半導体素子17等から水冷式ヒートシンク21までの熱の伝達経路が比較的長く、特に熱伝導率の低い半田16や伝熱性組成物20を介して積層接着することに起因して半導体素子17からの発熱を有効に水冷式ヒートシンク21まで伝達して放散させることができない不具合が生じるという問題点もあった。
【0014】
本発明は以上のような従来の技術の問題点に鑑み完成されたもので、その目的は、セラミック回路基板を損傷することがなく、半導体素子から水冷式ヒートシンクまでの伝達経路を短くして半導体素子からの熱を有効に放散し、かつ反りを抑制することができるセラミック回路基板およびこれを用いた半導体モジュールを提供することにある。
【0015】
【課題を解決するための手段】
本発明のセラミック回路基板は、2枚の窒化珪素板の間に金属板を挟んで接合して成る基体の両主面に金属回路板を互いに対向させて取着して成り、前記両主面の前記金属回路板にそれぞれ互いに対向しない位置に半導体素子が搭載されるとともに、前記金属板に前記半導体素子の搭載位置と対向するように配置された冷却液の流路を形成したことを特徴とするものである。
【0016】
また、本発明の半導体モジュールは、上記構成のセラミック回路基板の前記金属回路板の前記搭載位置に前記半導体素子を搭載して成ることを特徴とするものである。
【0017】
本発明のセラミック回路基板によれば、基体を機械的強度や破壊靭性値に優れる窒化珪素焼結体から成る窒化珪素板の間に金属板を挟んで接合して成るものとし、この基体を用いて、セラミック回路基板全体として金属回路板/窒化珪素板/金属板/窒化珪素板/金属回路板の構成としたことから、基体の中間層として金属板を設けることで基体の剛性が上がり、また、基体の両主面に金属回路板を互いに対向させて取着して成るため、基体の上下面の熱膨張係数を均衡させることができ、基板の反りをより効率よく抑制することが可能となる。そのため、熱的・機械的応力に起因するクラックや割れの発生を防止し、その結果として、クラックに起因する絶縁不良を防止して製品の信頼性を向上させることが可能となる。
【0018】
また、本発明のセラミック回路基板によれば、基体の中間層として設けた金属板に半導体素子の搭載位置と対向するように配置された冷却液の流路が形成されているため、金属板が水冷式ヒートシンクの役割を果たす。従って、従来のセラミック回路基板のように、放熱部材のねじ止めによる外力によりセラミック基板である窒化珪素板に負荷がかかることが無い。また、半導体素子が発した熱は金属回路板−窒化珪素板−金属板という短経路にて伝達され、金属板中に形成された冷却液の流路に有効に伝達して冷却液により速やかに放散され、伝熱経路の途中に熱伝導率の低い半田や伝熱性組成物を介していないため、半導体素子から拡散された熱を効率よく放散することが可能であり、放熱特性が向上する。
【0019】
さらに、本発明のセラミック回路基板によれば、基体の両主面に金属回路板を互いに対向させて取着して成り、両主面の金属回路板は、それぞれ半導体素子を搭載することが可能であるため、従来の半導体モジュール用のセラミック回路基板と比較して、半導体素子の実装密度を高めて半導体モジュールの小型化を図ることができる。また、基体の両主面のそれぞれ互いに対向しない位置に半導体素子が搭載されることから、両主面の半導体素子から拡散された熱量が分散されることとなるため、金属板にて熱干渉を起こすことによる冷却効率の低下がない。
【0020】
このような構成により、基体の変形が抑制されるため、セラミック基板である窒化珪素板を損傷することがなく、放熱特性が良好であり、搭載される半導体素子を長期にわたり安定して作動させることができる半導体モジュールとして使用することができ、さらに、放熱特性が良好であることから、金属回路板に搭載される半導体素子等の電子部品の実装密度を高めることが可能である。
【0021】
また、本発明の半導体モジュールによれば、上記構成の本発明のセラミック回路基板の金属回路板の搭載位置に半導体素子を搭載して成ることから、以上のような本発明のセラミック回路基板による作用効果を備えたものとなる。すなわち、セラミック回路基板における反りを効率よく抑制して熱的・機械的応力に起因するクラックや割れの発生を防止することができ、クラックに起因する絶縁不良を防止して製品の信頼性を向上させることが可能となる。また、金属板が水冷式ヒートシンクの役割を果たすため放熱部材のねじ止めによる外力によりセラミック基板である窒化珪素板に負荷がかかることが無く、また、短い伝熱経路で半導体素子から拡散された熱を効率よく放散することが可能である。また、両主面に半導体素子を搭載することが可能であるため、半導体素子の実装密度を高めて半導体モジュールの小型化を図ることができる。また、基体の両主面のそれぞれ互いに対向しない位置に半導体素子が搭載されており、両主面の半導体素子から拡散された熱量が分散されることとなるため、金属板にて熱干渉を起こすことによる冷却効率の低下がない。
【0022】
従って、本発明の半導体モジュールによれば、基体の変形が抑制されて基体を損傷することがなく、放熱特性が良好であり、半導体素子等の電子部品の実装密度を高めることが可能で、搭載された半導体素子を長期にわたり安定して作動させることができる半導体モジュールとなる。
【0023】
【発明の実施の形態】
次に、本発明を添付図面に基づき詳細に説明する。
【0024】
図1は本発明のセラミック回路基板およびそれを用いた半導体モジュールについて実施の形態の一例を示す断面図であり、図2はその平面図である。これらの図において、1は半導体モジュール、2は窒化珪素板、3および4は金属回路板、5は金属板、6は2枚の窒化珪素板2の間に金属板5を挟んで接合して成る基体7および8は電子部品としての半導体素子、10は金属板5の内部に形成された冷却液の流路である。本発明の半導体モジュール1におけるセラミック回路基板は、2枚の窒化珪素板2の間に冷却液の流路10を内蔵した金属板5を挟んで接合して成る基体6の一方の主面、ここでは上面に金属回路板3を、他方の主面、ここでは下面に金属回路板4を接合して成る、全体として5層構造の構成になっている。
【0025】
窒化珪素板2は、窒化珪素質焼結体から成る板状体である。窒化珪素板2を得るには、まず窒化珪素粉末に希土類酸化物粉末や酸化アルミニウム粉末等の焼結助剤を添加・混合して窒化珪素質焼結体の原料粉末を調製する。次いで、この原料粉末に有機バインダおよび分散媒を添加・混合してペースト化し、このペーストをドクターブレード法等の成形法でシート状に成形して窒化珪素質グリーンシートを作製する。このような窒化珪素質グリーンシートを必要枚数積層し、プレス加工等を施して圧着(加圧接着)して窒化珪素質成形体を作製する。この後、窒化珪素質成形体を空気中もしくは窒素雰囲気等の非酸化性雰囲気中で脱脂処理した後、窒素雰囲気等の非酸化性雰囲気中で焼成することにより、目的とする窒化珪素板2を得ることができる。
【0026】
窒化珪素板2は、金属回路板3・4上に搭載される半導体素子7・8等の電子部品が発生する熱を金属回路板3・4から金属板5へと有効に伝導して放散させ、セラミック回路基板および半導体モジュール1の放熱特性を向上させるためには、熱伝導率が少なくとも60W/m・K以上であることが好ましく、半導体素子7・8の実装密度が大きくなることと半導体素子7・8の小型化による発熱密度が大きくなることから、特に80W/m・K以上、さらには100W/m・K以上であることが好ましい。
【0027】
また、窒化珪素板2は、セラミック回路基板および半導体モジュール1の機械的強度を向上させ、放熱特性を劣化させないためには、その厚みを0.2〜1.0mmとすることが好ましい。厚みが0.2mm未満では、窒化珪素板2と金属回路板3・4と金属板5とを接合したときに発生する応力により、窒化珪素板2に割れ等が発生しやすくなる傾向がある。他方、厚みが1.0mmを超えると、半導体素子7・8から発生する熱を冷却液の流路10を内蔵した金属板5に良好に伝達することが困難となる傾向がある。
【0028】
本発明の半導体モジュール1におけるセラミック回路基板は、前述のようにして製造した2枚の窒化珪素板2の間に金属板5を挟んで直接接合法や活性金属法を用いて接合して基体6を作製し、その基体6の上面および下面に、直接接合法や活性金属法を用いて導電性を有する銅やアルミニウム等の金属材料から成る金属回路板3および金属回路板4をそれぞれ接合することにより製造される。
【0029】
例えば、活性金属法を用いる場合であれば、銀−銅合金粉末等から成る銀ロウ粉末やアルミニウム−シリコン合金粉末等から成るアルミニウムロウ粉末に、チタン・ジルコニウム・ハフニウム等の活性金属やその水素化物の少なくとも1種から成る活性金属粉末を2〜5重量%添加した活性金属ロウ材に、適当な有機溶剤・溶媒を添加混合して得た活性金属ロウ材ペーストを、窒化珪素板2の上下面に従来周知のスクリーン印刷技術を用いて金属回路板3・金属回路板4および金属板5に対応した所定パターンに印刷する。
【0030】
その後、下から金属回路板4・窒化珪素板2・金属板5・窒化珪素板2・金属回路板3の順で、印刷された活性金属ロウ材ペーストパターンをそれぞれの間に挟むように載置し、これを真空中・中性雰囲気中または還元雰囲気中で、所定温度(銀ロウ材の場合は約900℃、アルミニウムロウ材の場合は約600℃)で加熱処理し、活性金属ロウ材を溶融させて、窒化珪素板2と金属板5ならびに金属回路板3および金属回路板4とを接合する。
【0031】
銅やアルミニウム等から成る金属回路板3・4は、銅やアルミニウム等のインゴット(塊)に圧延加工法や抜き打ち加工法等従来周知の金属加工法を施すことによって、例えば、厚さが0.5mmで、基体6の形状や回路配線パターンの形状等に対応する所定のパターン形状に製作される。あるいは、金属回路板3・4は、広面積の金属板を接合しておき、これからエッチングにより所定の回路を形成するようにしたものであってもよい。
【0032】
金属回路板3・4は、基体6を介して、上下の主面で対称的な位置に互いに対向させて取着されていることから、金属回路板3・4に搭載された半導体素子7・8が動作発熱しても、窒化珪素板2と金属回路板3および金属回路板4との間の熱膨張係数の相違に起因するセラミック回路基板の反りの発生が抑制され、信頼性の高い半導体モジュール1を得ることができる。また、金属回路板3・4の両方の主面にそれぞれ半導体素子7・8を搭載可能なため、従来の半導体モジュール用のセラミック回路基板と比較して、半導体素子7・8の実装密度を高めて半導体モジュール1の小型化を図ることができる。
【0033】
金属回路板3・4の厚さは、大電流による金属回路板3・4からの発熱を抑制し、また、金属回路板3・4と窒化珪素板2との接合時に接合界面に発生する熱負荷によるクラックを抑制するために、0.1〜1.0mmが好ましい。金属回路板3・4の厚さが0.1mmより小さいと、電気抵抗が大きくなるため半導体素子7・8からの大電流信号を伝播しにくくなる傾向がある。他方、1.0mmより大きいと、窒化珪素板2と金属回路板3・4とを接合したときに発生する応力により、窒化珪素板2に割れ等が発生しやすくなる傾向がある。これら金属回路板3・4は、活性金属ロウ付け時や半導体素子7・8等の電子部品搭載のための半田リフロー時に生じる加熱による反りを抑制するために、同じ厚み・同じ材質にすることが好ましい。
【0034】
また、金属回路板3・4は、銅から成る場合であれば、これを無酸素銅で形成しておくと、無酸素銅はロウ付けの際に銅の表面が銅中に存在する酸素により酸化されることなくロウ材との濡れ性が良好となり、ロウ材を介しての接合を強固なものとすることができる。したがって、金属回路板3・4は、これを無酸素銅で形成しておくことが好ましい。
【0035】
さらに、金属回路板3・4は、その表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法により被着させておくと、金属回路板3・4と外部電気回路との電気的接続を良好なものにできるとともに、金属回路板3・4に半導体素子7・8等の電子部品を半田を介して強固に接着させることができる。従って、金属回路板3・4は、その表面にニッケルから成る良導電性で、かつ耐蝕性およびロウ材との濡れ性が良好な金属をメッキ法により被着させておくことが好ましい。
【0036】
金属板5は、その内部に金属回路板3・4の半導体素子7・8の搭載位置に対向するように配置された冷却液の流路10が冷却液の循環が可能なように形成されたものであって、例えば水冷式ヒートシンクを用いることができる。このような金属板5は、銅やアルミニウム等の金属、またはCu−MoやAlSiC系等の複合金属材料等により製作される。
【0037】
金属板5の厚さは、冷却液の流路10の圧力損失を小さくして冷却液の流量を多くすることにより金属板5と窒化珪素板2との接合界面に発生する熱負荷によるクラックを抑制するためには、1.0〜20.0mmが好ましい。また、冷却液の流路10を溝状に形成した場合は、その深さは、圧力損失を小さくして冷却液の流量を多くとるために、0.5mm以上であることが好ましい。溝状の冷却液の流路10の深さが0.5mmより浅くなると、圧力損失が大きくなるため冷却液の流量が少なくなり、半導体素子7・8からの熱を効率よく冷却液に伝達しにくくなる傾向がある。
【0038】
金属板5の厚さが1.0mmより小さい場合は、金属板5の片側の肉厚が薄くなり過ぎることにより、金属板5と窒化珪素板2との接合時に加わる負荷により、金属板5が変形する可能性がある。他方、金属板5の厚さが20.0mmより大きいと、基体6が重くなることによりセラミック回路基板および半導体モジュール1自体が重くなるという問題がある。
【0039】
冷却液の流路10は、半導体素子7・8の搭載位置と対向するように少なくともそれら搭載位置の中心直下に設置される。また、冷却液の流路10の内壁は、搭載される半導体素子7・8の中心から半導体素子7・8の外辺距離の1.5倍以上の範囲に位置するように設置されるのが好ましい。冷却液の流路10の内壁が半導体素子7・8の搭載位置の中心直下を基準として半導体素子7・8の中心から半導体素子7・8の外辺距離の1.5倍未満の範囲に位置していると、半導体素子7・8から発生する熱はセラミック回路基板の横方向へも伝導するため、熱交換を行なうのに必要な冷却液の流路10の幅が十分に確保できないことから、半導体素子7・8から拡散された熱を効率よく冷却することができない傾向がある。
【0040】
また、冷却液の流路10の形状は、半導体素子7・8の搭載位置と対向しつつ金属板5の全体にわたって例えば基体6を1周するような形状とされ、冷却液の圧力損失が大きくならないように冷却液の流路10の中心が半導体素子7・8の直下を通るような構造とし、かつ流路長を短くし、流路10の屈曲部が少なくなるような形状とするのが好ましい。また、冷却液の流路10の幅を半導体素子7・8の外辺距離の3倍以上の範囲に維持しつつ、さらには、複数の仕切壁を冷却液の流路10に平行に設置し、屈曲する個所においては曲率半径をできるだけ大きくすることにより、冷却液の流速を増やすことができ半導体素子7・8から拡散された熱を効率よく冷却することが可能となる。
【0041】
以上のような本発明のセラミック回路基板に対し、金属回路板3・4の所定の搭載位置に半導体素子7・8等の電子部品を搭載して半田等を介して接合し、金属回路板3・4の所定の部位にアルミニウム等のボンディングワイヤで電気的に接続することにより、本発明の半導体モジュール1が構成される。このとき、金属回路板3・4に搭載される半導体素子7・8は、上下でそれぞれ互いに対向しない位置に搭載され、半導体素子7・8の中心から半導体素子7・8の外辺距離の1.5倍以上離れた位置にあるように搭載されることが好ましい。上下の半導体素子7・8が互いの半導体素子7・8の中心から半導体素子7・8の外辺距離の1.5倍より近い位置にあると、半導体素子7・8による発熱密度が大きくなることにより、両主面の半導体素子7・8から拡散された熱量が効果的に分散されないことから金属板5にて熱干渉を起こす傾向がある。その結果、両主面の半導体素子7・8から拡散された熱量と冷却液との熱交換を効果的に行なうことが困難となり、半導体素子7・8から拡散された熱を効率よく冷却できない傾向がある。
【0042】
また、両主面の金属回路板3・4には、それぞれ互いに対向しない位置に半導体素子7・8が搭載されるため、従来の半導体モジュール用のセラミック回路基板と比較して、半導体素子7・8の実装密度を高めて半導体モジュール1の小型化を図ることができる。
【0043】
以上の構成により、図1に示すような、半導体素子7・8から水冷式ヒートシンクとして機能する金属板5までの熱の伝達経路を短くして半導体素子7・8からの熱を有効に放散することができ、両主面の半導体素子7・8の熱干渉も低減した本発明のセラミック回路基板を用いた本発明の半導体モジュール1が完成する。
【0044】
【実施例】
以下、実施例および比較例の試験結果を挙げて本発明のセラミック回路基板および半導体モジュールについて詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
【0045】
図1に示した本発明のセラミック回路基板および半導体モジュール1について、表1の実施例の欄に示すような各厚み構成の半導体モジュールの熱抵抗θj−w(単位:℃/W)を計算した。一方、比較例として、図3に示した従来のセラミック回路基板11についても、表1の比較例の欄に示すような各厚み構成の半導体モジュールの熱抵抗θj−wを計算した。
【0046】
なお、熱抵抗θj−wは、回路基板のサイズを30mm□とし、これに搭載される半導体素子のチップサイズを8mm□として求めた。ただし、実施例においては、上側の主面に搭載した半導体素子のみ発熱したものとして、比較例との対比が容易なように設定している。この熱抵抗θj−wは、チップ温度Tjと冷却液の流路の温度Twとについて定常熱伝導解析を行ない、各温度差を印加電力で割ることにより計算した。この熱抵抗θj−wは値が小さい程、放熱能力が高いと判断できる。このようにして求めた熱抵抗θj−wの結果を表1に示す。
【0047】
【表1】

Figure 2004022973
【0048】
表1に示す結果より、熱抵抗θj−wは、実施例では、半導体素子が発した熱は金属回路板−セラミック基板(窒化珪素板)−金属板という短経路にて冷却液の流路に有効に伝達して放散していることから、比較例のように熱伝導率の低い半田や伝熱性組成物あるいは余分に放熱部材を介していないため、放熱特性が熱抵抗θj−wで0.49から0.37へと向上していることが分かる。
【0049】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、冷却液の流路10中の半導体素子7・8の直下部においては、半導体素子7・8から拡散された熱を効率よく放散するために、冷却液との接触面積を大きくとれるように、フィン形状の熱交換板を設置してもよい。
【0050】
【発明の効果】
本発明のセラミック回路基板によれば、機械的強度や破壊靭性値に優れる2枚の窒化珪素板の間に金属板を挟んで接合して成る基体の両主面に金属回路板を互いに対向させて取着して成ることから、基体の中間層として金属板を設けることで基体の剛性が上がり、また、基体の上下面の熱膨張係数を均衡させることができ、基板の反りをより効率よく抑制することが可能となる。そのため、熱的・機械的応力に起因するクラックや割れの発生を防止し、クラックに起因する絶縁不良を防止して、製品の信頼性を向上させることが可能となる。
【0051】
また、本発明のセラミック回路基板によれば、基体の中間層として設けた金属板に半導体素子の搭載位置と対向するように配置された冷却液の流路が形成されているため、金属板が水冷式ヒートシンクの役割を果たし、従来のセラミック回路基板のように、放熱部材のねじ止めによる外力によりセラミック基板である窒化珪素板に負荷がかかることが無い。また、半導体素子が発した熱は金属回路板−窒化珪素板−金属板という短経路にて伝達され、金属板中に形成された冷却液の流路に有効に伝達して冷却液により速やかに放散され、伝熱経路の途中に熱伝導率の低い半田や伝熱性組成物を介していないため、半導体素子から拡散された熱を効率よく放散することが可能であり、放熱特性が向上する。
【0052】
さらに、本発明のセラミック回路基板によれば、基体の両主面に金属回路板を互いに対向させて取着して成り、両主面の金属回路板には、それぞれ互いに対向しない位置に半導体素子が搭載されるため、従来の半導体モジュール用のセラミック回路基板と比較して、半導体素子の実装密度を高めて半導体モジュールの小型化を図ることができる。しかも、金属板に半導体素子の搭載位置と対向するように配置された冷却液の流路を形成してあることから、半導体素子から拡散された熱を効率よく放散することが可能である。また、基体の両主面の金属回路板には、それぞれ互いに対向しない位置に半導体素子が搭載されることから、両主面の半導体素子から拡散された熱量を分散することができるため、金属板にて熱干渉を起こすことによる冷却効率の低下がない。
【0053】
このような構成により、セラミック基板である窒化珪素板を損傷することがなく、半導体素子から水冷式ヒートシンクとして機能する金属板までの熱の伝達経路を短くして半導体素子からの熱を有効に放散することができ、かつ基板の反りを抑制することができるので、搭載される半導体素子を長期にわたり安定して作動させることができる半導体モジュールとして使用することができ、金属回路板に搭載される半導体素子等の電子部品の実装密度を高めることが可能なセラミック回路基板となる。
【0054】
また、本発明の半導体モジュールによれば、上記構成の本発明のセラミック回路基板の金属回路板の搭載位置に半導体素子を搭載して成ることから、以上のような本発明のセラミック回路基板による作用効果を備えたものとなる。すなわち、セラミック回路基板における反りを効率よく抑制して熱的・機械的応力に起因するクラックや割れの発生を防止することができ、クラックに起因する絶縁不良を防止して製品の信頼性を向上させることが可能となる。また、金属板が水冷式ヒートシンクの役割を果たすため放熱部材のねじ止めによる外力によりセラミック基板である窒化珪素板に負荷がかかることが無く、また、短い伝熱経路で半導体素子から拡散された熱を効率よく放散することが可能である。また、両主面に半導体素子を搭載することが可能であるため、半導体素子の実装密度を高めて半導体モジュールの小型化を図ることができる。また、基体の両主面のそれぞれ互いに対向しない位置に半導体素子が搭載されており、両主面の半導体素子から拡散された熱量が分散されることとなるため、金属板にて熱干渉を起こすことによる冷却効率の低下がない。
【0055】
従って、本発明の半導体モジュールによれば、基体の変形が抑制されて基体を損傷することがなく、放熱特性が良好であり、半導体素子等の電子部品の実装密度を高めることが可能で、搭載された半導体素子を長期にわたり安定して作動させることができる半導体モジュールとなる。
【0056】
以上により、本発明によれば、セラミック回路基板を損傷することがなく、半導体素子から水冷式ヒートシンクまでの伝達経路を短くして半導体素子からの熱を有効に放散し、かつ反りを抑制することができる、金属回路板上に搭載される半導体素子等の電子部品を長期にわたり安定して作動させることができる信頼性の高いセラミック回路基板およびこれを用いた半導体モジュールを提供することができた。
【図面の簡単な説明】
【図1】本発明のセラミック回路基板および半導体モジュールの実施の形態の一例を示す断面図である。
【図2】本発明のセラミック回路基板および半導体モジュールの実施の形態の一例を示す平面図である。
【図3】従来のセラミック回路基板の例を示す断面図である。
【符号の説明】
1:半導体モジュール
2:窒化珪素板
3、4:金属回路板
5:金属板
6:基体
7、8:半導体素子
10:冷却液の流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic circuit board in which a metal circuit board is joined to a base made of a ceramic substrate and a metal plate, and a cooling liquid passage is built in the base, and a semiconductor module using the same.
[0002]
[Prior art]
In recent years, as a circuit board such as a power module board or a switching module board, a ceramic circuit board in which a metal circuit board made of copper or the like is directly joined to a ceramic substrate via an active metal brazing material has been used.
[0003]
FIG. 3 is a sectional view showing an example of a semiconductor module using a conventional ceramic circuit board. 3, reference numeral 11 denotes a ceramic circuit board. The ceramic circuit board 11 includes a ceramic board 12, a plurality of metal circuit boards 13 attached to an upper surface thereof, and a metal board attached to a lower surface of the ceramic substrate 12. And a plate 15. In such a ceramic circuit board 11, electronic components such as semiconductor elements 17 are mounted on a metal circuit board 13, and are mounted on a heat radiating member 19 with a solder 16 interposed between the ceramic circuit board 11 and the metal plate 15. Thereby, it is used as a semiconductor module.
[0004]
When using the ceramic substrate 12 made of an aluminum oxide sintered body, the ceramic circuit board 11 is specifically manufactured by the following method.
[0005]
First, an organic solvent and a solvent are added to an active metal powder obtained by adding at least one of titanium, zirconium, and hafnium and a hydride thereof to a silver-copper alloy to prepare a brazing material paste.
[0006]
Next, an appropriate organic binder, a plasticizer, a solvent, and the like are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to form a slurry, and a conventionally known doctor blade method or calender roll method is used. After obtaining a plurality of ceramic green sheets by employing a tape forming technique such as that described above, the ceramic green sheets are formed into a predetermined size, and then, the ceramic green sheets are stacked vertically as necessary, and at about 1600 ° C. in a reducing atmosphere. The ceramic green sheet is fired at a temperature and sintered and integrated to form a ceramic substrate 12 made of an aluminum oxide sintered body.
[0007]
Next, a plurality of metal circuit boards 13 made of copper or the like are placed on the ceramic substrate 12 with the brazing material paste interposed therebetween, while the brazing material paste is similarly placed on the lower surface of the ceramic substrate 12 opposed thereto. A metal plate 15 made of copper or the like is interposed therebetween.
[0008]
Finally, the brazing material paste disposed between the ceramic substrate 12 and the metal circuit board 13 and between the ceramic substrate 12 and the metal plate 15 is heated to a temperature of about 900 ° C. in a non-oxidizing atmosphere. It is manufactured by joining the ceramic substrate 12 and the metal circuit board 13 and the ceramic substrate 12 and the metal plate 15 with the brazing material.
[0009]
The ceramic circuit board 11 manufactured in this manner is bonded to an electronic component such as a semiconductor element 17 such as an IGBT (Insulated Gate Bipolar Transistor) or a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) by an adhesive such as solder. After joining, for example, it is joined to a heat radiating member 19 such as aluminum by solder 16. Further, the heat dissipating member 19 is screwed and joined to a water-cooled heat sink 21 via a grease-like heat conductive composition 20 having a low thermal conductivity using a screw hole (not shown) provided in the heat dissipating member 19. Thus, a semiconductor module is configured.
[0010]
The water-cooled heat sink 21 circulates a coolant such as water as a coolant in the coolant flow path 18, thereby forcibly transmitting heat conducted from the heat radiation member 19 by the coolant to the outside. In the semiconductor module configured as described above, heat generated by the semiconductor element 17 and the like is water-cooled through the metal circuit board 13, the ceramic substrate 12, the metal plate 15, the solder 16, the heat radiation member 19, and the heat conductive composition 20. The heat is radiated to the outside by the heat sink 21.
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional semiconductor module, the ceramic circuit board 11 (the coefficient of thermal expansion of the ceramic substrate 12 is about 3 to 10 × 10 -6 / ° C) and a heat dissipating member 19 such as aluminum (having a coefficient of thermal expansion of about 18 to 23 × 10 -6 / ° C), a crack is generated in the solder 16 between the ceramic circuit board 11 and the heat radiating member 19, and the heat radiating member 19 is peeled off, thereby significantly deteriorating the reliability. There was a problem that there is.
[0012]
In addition, there is also a problem in that when the ceramic circuit board 11 and the heat dissipating member 19 are cooled after being soldered by the solder 16 due to a difference in thermal expansion coefficient between the ceramic circuit board 11 and the heat radiating member 19, warpage occurs. If the warpage is large, the adhesion between the heat radiating member 19 and the water-cooled heat sink 21 for cooling the heat radiating member 19 is deteriorated, so that the heat radiating characteristics are deteriorated. This warp increases as the heat dissipating member 19 having a larger area is used. Further, since the heat radiating member 19 is joined to the water-cooled heat sink 21 by screwing, a larger bending load is applied due to repeated heating and cooling by switching of the semiconductor element 17, and cracks and cracks occur in the ceramic substrate 12. However, there is a problem that reliability is reduced.
[0013]
Further, a heat transfer path from the semiconductor element 17 or the like to the water-cooled heat sink 21 is relatively long, and particularly, the semiconductor element 17 is stacked and bonded via the solder 16 and the heat conductive composition 20 having low thermal conductivity. There is also a problem that heat generated from the heat sink 21 cannot be effectively transmitted to the water-cooled heat sink 21 and dissipated.
[0014]
The present invention has been completed in view of the above-described problems of the conventional technology, and has as its object to shorten the transmission path from a semiconductor element to a water-cooled heat sink without damaging a ceramic circuit board. An object of the present invention is to provide a ceramic circuit board capable of effectively dissipating heat from an element and suppressing warpage, and a semiconductor module using the same.
[0015]
[Means for Solving the Problems]
The ceramic circuit board of the present invention is formed by attaching metal circuit boards to both main surfaces of a base formed by joining a metal plate between two silicon nitride plates so as to face each other. The semiconductor element is mounted at a position not opposed to each other on the metal circuit board, and a flow path of a coolant is formed on the metal plate so as to face the mounting position of the semiconductor element. It is.
[0016]
Further, a semiconductor module according to the present invention is characterized in that the semiconductor element is mounted on the mounting position of the metal circuit board of the ceramic circuit board having the above configuration.
[0017]
According to the ceramic circuit board of the present invention, the base is formed by joining a metal plate between silicon nitride plates made of a silicon nitride sintered body having excellent mechanical strength and fracture toughness, and using this base, Since the entire ceramic circuit board has a metal circuit board / silicon nitride board / metal board / silicon nitride board / metal circuit board configuration, the rigidity of the base is increased by providing a metal plate as an intermediate layer of the base. Since the metal circuit boards are attached to both main surfaces of the base member so as to face each other, the thermal expansion coefficients of the upper and lower surfaces of the base can be balanced, and the warpage of the substrate can be suppressed more efficiently. Therefore, it is possible to prevent the occurrence of cracks and cracks due to thermal and mechanical stress, and as a result, it is possible to prevent insulation failure due to cracks and improve the reliability of products.
[0018]
Further, according to the ceramic circuit board of the present invention, the metal plate provided as the intermediate layer of the base is provided with the flow path of the cooling liquid arranged so as to face the mounting position of the semiconductor element. Plays the role of a water-cooled heat sink. Therefore, unlike the conventional ceramic circuit board, a load is not applied to the silicon nitride plate as the ceramic substrate due to an external force generated by screwing the heat radiation member. Further, the heat generated by the semiconductor element is transmitted through a short path of a metal circuit board-silicon nitride plate-metal plate, and is effectively transmitted to a coolant flow path formed in the metal plate, and is promptly transmitted by the coolant. Since the heat is dissipated and does not pass through the low heat conductivity solder or the heat conductive composition in the middle of the heat transfer path, the heat diffused from the semiconductor element can be efficiently dissipated and the heat radiation characteristics are improved.
[0019]
Further, according to the ceramic circuit board of the present invention, a metal circuit board is attached to both main surfaces of the base so as to face each other, and the metal circuit boards on both main surfaces can mount semiconductor elements, respectively. Therefore, as compared with a conventional ceramic circuit board for a semiconductor module, the mounting density of the semiconductor elements can be increased and the size of the semiconductor module can be reduced. In addition, since the semiconductor elements are mounted on the two main surfaces of the base at positions not opposed to each other, the amount of heat diffused from the semiconductor elements on both main surfaces is dispersed, so that heat interference by the metal plate is prevented. There is no decrease in cooling efficiency due to the occurrence.
[0020]
With such a configuration, deformation of the base is suppressed, so that the silicon nitride plate, which is a ceramic substrate, is not damaged, heat radiation characteristics are good, and the mounted semiconductor element operates stably for a long period of time. In addition, since the semiconductor module can be used as a semiconductor module, and because of good heat radiation characteristics, it is possible to increase the mounting density of electronic components such as semiconductor elements mounted on a metal circuit board.
[0021]
Further, according to the semiconductor module of the present invention, since the semiconductor element is mounted on the mounting position of the metal circuit board of the ceramic circuit board of the present invention having the above configuration, the above-described operation of the ceramic circuit board of the present invention is achieved. It will be effective. In other words, the warpage of the ceramic circuit board can be efficiently suppressed to prevent cracks and cracks caused by thermal and mechanical stress, and insulation failure caused by cracks can be prevented to improve product reliability. It is possible to do. In addition, since the metal plate plays the role of a water-cooled heat sink, no load is applied to the silicon nitride plate, which is a ceramic substrate, due to external force caused by screwing of the heat radiating member. Can be efficiently dissipated. In addition, since semiconductor elements can be mounted on both main surfaces, the mounting density of the semiconductor elements can be increased and the size of the semiconductor module can be reduced. In addition, since the semiconductor elements are mounted on the two main surfaces of the base at positions that do not face each other, the amount of heat diffused from the semiconductor elements on both the main surfaces is dispersed, so that heat interference occurs in the metal plate. Therefore, there is no decrease in cooling efficiency.
[0022]
Therefore, according to the semiconductor module of the present invention, the deformation of the base is suppressed, the base is not damaged, the heat radiation characteristics are good, and the mounting density of electronic components such as semiconductor elements can be increased. The semiconductor module is capable of operating the semiconductor element stably for a long period of time.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
[0024]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board of the present invention and a semiconductor module using the same, and FIG. 2 is a plan view thereof. In these figures, 1 is a semiconductor module, 2 is a silicon nitride plate, 3 and 4 are metal circuit plates, 5 is a metal plate, and 6 is a metal plate 5 sandwiched between two silicon nitride plates 2. The bases 7 and 8 are semiconductor elements as electronic components, and 10 is a flow path of a cooling liquid formed inside the metal plate 5. The ceramic circuit board in the semiconductor module 1 of the present invention has one main surface of a base 6 formed by joining a metal plate 5 having a built-in coolant flow path 10 between two silicon nitride plates 2, In this example, the metal circuit board 3 is joined to the upper surface and the metal circuit board 4 is joined to the other main surface, here, the lower surface.
[0025]
The silicon nitride plate 2 is a plate made of a silicon nitride sintered body. To obtain the silicon nitride plate 2, first, a sintering aid such as a rare earth oxide powder or an aluminum oxide powder is added to and mixed with the silicon nitride powder to prepare a raw material powder for a silicon nitride sintered body. Next, an organic binder and a dispersion medium are added to and mixed with the raw material powder to form a paste, and the paste is formed into a sheet by a forming method such as a doctor blade method to produce a silicon nitride green sheet. A required number of such silicon nitride green sheets are laminated, press-worked or the like, and pressed (bonded under pressure) to produce a silicon nitride molded body. Thereafter, the silicon nitride-based molded body is degreased in a non-oxidizing atmosphere such as air or a nitrogen atmosphere, and then fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, whereby the target silicon nitride plate 2 is formed. Obtainable.
[0026]
The silicon nitride plate 2 effectively conducts and dissipates heat generated by electronic components such as the semiconductor elements 7 and 8 mounted on the metal circuit boards 3.4 from the metal circuit boards 3.4 to the metal plate 5. In order to improve the heat radiation characteristics of the ceramic circuit board and the semiconductor module 1, the thermal conductivity is preferably at least 60 W / m · K or more, and the mounting density of the semiconductor elements 7 and 8 is increased. Since the heat generation density is increased by miniaturization of 7.8, it is particularly preferably at least 80 W / m · K, more preferably at least 100 W / m · K.
[0027]
The silicon nitride plate 2 preferably has a thickness of 0.2 to 1.0 mm in order to improve the mechanical strength of the ceramic circuit board and the semiconductor module 1 and not to deteriorate the heat radiation characteristics. When the thickness is less than 0.2 mm, cracks and the like tend to be easily generated in the silicon nitride plate 2 due to stress generated when the silicon nitride plate 2 is bonded to the metal circuit boards 3 and 4 and the metal plate 5. On the other hand, if the thickness exceeds 1.0 mm, it tends to be difficult to transmit heat generated from the semiconductor elements 7 and 8 to the metal plate 5 having the coolant flow path 10 incorporated therein.
[0028]
The ceramic circuit board in the semiconductor module 1 of the present invention is formed by bonding the metal plate 5 between the two silicon nitride plates 2 manufactured as described above using a direct bonding method or an active metal method. And bonding the metal circuit board 3 and the metal circuit board 4 made of a conductive metal material such as copper or aluminum to the upper and lower surfaces of the base body 6 by using a direct bonding method or an active metal method, respectively. It is manufactured by
[0029]
For example, when the active metal method is used, an active metal such as titanium, zirconium, hafnium or a hydride thereof is added to a silver brazing powder composed of silver-copper alloy powder or an aluminum brazing powder composed of aluminum-silicon alloy powder. An active metal brazing material paste obtained by adding a suitable organic solvent and a solvent to an active metal brazing material obtained by adding 2 to 5% by weight of an active metal powder comprising at least one of Then, a predetermined pattern corresponding to the metal circuit board 3, the metal circuit board 4, and the metal plate 5 is printed using a conventionally known screen printing technique.
[0030]
Thereafter, the printed active metal brazing material paste pattern is placed in order of metal circuit board 4, silicon nitride board 2, metal board 5, silicon nitride board 2, and metal circuit board 3 from below. This is heat-treated at a predetermined temperature (about 900 ° C. for a silver brazing material or about 600 ° C. for an aluminum brazing material) in a vacuum, a neutral atmosphere, or a reducing atmosphere to remove the active metal brazing material. By melting, the silicon nitride plate 2 and the metal plate 5 and the metal circuit board 3 and the metal circuit board 4 are joined.
[0031]
The metal circuit boards 3 and 4 made of copper, aluminum, or the like have a thickness of, for example, 0.1 mm by subjecting an ingot (lumps) of copper, aluminum, or the like to a conventionally known metal processing method such as a rolling method or a punching method. It is manufactured in a predetermined pattern shape corresponding to the shape of the base 6, the shape of the circuit wiring pattern, and the like at 5 mm. Alternatively, the metal circuit boards 3 and 4 may be configured such that a wide area metal plate is joined, and a predetermined circuit is formed by etching.
[0032]
Since the metal circuit boards 3.4 are mounted opposite to each other at symmetrical positions on the upper and lower main surfaces via the base 6, the semiconductor elements 7 mounted on the metal circuit boards 3.4 Even if the heat generation of the ceramic circuit board 8 occurs, the occurrence of warpage of the ceramic circuit board due to the difference in thermal expansion coefficient between the silicon nitride board 2 and the metal circuit board 3 and between the metal circuit board 3 and the metal circuit board 4 is suppressed. Module 1 can be obtained. In addition, since the semiconductor elements 7 and 8 can be mounted on both main surfaces of the metal circuit boards 3 and 4, respectively, the mounting density of the semiconductor elements 7 and 8 is increased as compared with a conventional ceramic circuit board for a semiconductor module. Thus, the size of the semiconductor module 1 can be reduced.
[0033]
The thickness of the metal circuit boards 3.4 suppresses heat generation from the metal circuit boards 3.4 due to a large current, and the heat generated at the joint interface when the metal circuit boards 3.4 and the silicon nitride board 2 are joined. In order to suppress cracks due to load, the thickness is preferably 0.1 to 1.0 mm. When the thickness of the metal circuit boards 3 and 4 is smaller than 0.1 mm, the electric resistance is increased, so that a large current signal from the semiconductor elements 7 and 8 tends to be difficult to propagate. On the other hand, when it is larger than 1.0 mm, cracks and the like tend to be easily generated in the silicon nitride plate 2 due to stress generated when the silicon nitride plate 2 and the metal circuit boards 3 and 4 are joined. These metal circuit boards 3 and 4 should be of the same thickness and the same material in order to suppress warpage due to heating that occurs at the time of active metal brazing or solder reflow for mounting electronic components such as semiconductor elements 7 and 8. preferable.
[0034]
If the metal circuit boards 3 and 4 are made of copper, if they are formed of oxygen-free copper, the oxygen-free copper will have its surface exposed to oxygen existing in the copper during brazing. The wettability with the brazing material is improved without being oxidized, and the bonding via the brazing material can be strengthened. Therefore, it is preferable that the metal circuit boards 3 and 4 are formed of oxygen-free copper.
[0035]
Further, the metal circuit boards 3 and 4 may be coated with a metal having good conductivity and good corrosion resistance and good wettability with the brazing material by a plating method. 4) It is possible to improve the electrical connection between the external circuit and the external electric circuit, and to firmly adhere the electronic components such as the semiconductor elements 7 and 8 to the metal circuit boards 3 and 4 via solder. Therefore, it is preferable that the metal circuit boards 3 and 4 be coated with a metal made of nickel and having good conductivity, good corrosion resistance and good wettability with the brazing material by plating.
[0036]
The metal plate 5 is formed such that a coolant flow path 10 arranged inside the metal circuit boards 3 and 4 so as to face the mounting positions of the semiconductor elements 7 and 8 can circulate the coolant. For example, a water-cooled heat sink can be used. Such a metal plate 5 is made of a metal such as copper or aluminum, or a composite metal material such as Cu-Mo or AlSiC.
[0037]
The thickness of the metal plate 5 is reduced by reducing the pressure loss of the coolant flow path 10 and increasing the flow rate of the coolant to prevent cracks due to a heat load generated at the joint interface between the metal plate 5 and the silicon nitride plate 2. In order to suppress this, 1.0 to 20.0 mm is preferable. When the coolant flow path 10 is formed in a groove shape, the depth is preferably 0.5 mm or more in order to reduce the pressure loss and increase the flow rate of the coolant. If the depth of the groove-shaped coolant flow path 10 is less than 0.5 mm, the pressure loss increases, so that the flow rate of the coolant decreases, and the heat from the semiconductor elements 7 and 8 is efficiently transferred to the coolant. Tends to be difficult.
[0038]
When the thickness of the metal plate 5 is smaller than 1.0 mm, the thickness of one side of the metal plate 5 becomes too thin, so that the metal plate 5 is loaded by the load applied when the metal plate 5 and the silicon nitride plate 2 are joined. It may be deformed. On the other hand, when the thickness of the metal plate 5 is larger than 20.0 mm, there is a problem in that the weight of the base 6 increases, so that the ceramic circuit board and the semiconductor module 1 itself become heavy.
[0039]
The coolant flow path 10 is installed at least immediately below the center of the mounting position so as to face the mounting position of the semiconductor elements 7 and 8. Further, it is preferable that the inner wall of the flow path 10 of the cooling liquid is disposed so as to be located in a range of not less than 1.5 times the outer distance of the semiconductor elements 7.8 from the center of the mounted semiconductor elements 7.8. preferable. The inner wall of the cooling liquid flow path 10 is located within a range of less than 1.5 times the outer distance of the semiconductor elements 7.8 from the center of the semiconductor elements 7.8 with reference to the position immediately below the center of the mounting position of the semiconductor elements 7.8. In this case, the heat generated from the semiconductor elements 7 and 8 is also conducted in the lateral direction of the ceramic circuit board, so that the width of the coolant passage 10 required for heat exchange cannot be sufficiently secured. In addition, there is a tendency that the heat diffused from the semiconductor elements 7 and 8 cannot be efficiently cooled.
[0040]
Further, the shape of the flow path 10 of the cooling liquid is such that, for example, it makes one round of the base 6 over the entire metal plate 5 while facing the mounting position of the semiconductor elements 7 and 8, and the pressure loss of the cooling liquid is large. The structure is such that the center of the coolant flow path 10 passes directly below the semiconductor elements 7 and 8, and the flow path length is shortened so that the bent portion of the flow path 10 is reduced so that the center of the flow path 10 of the coolant does not occur. preferable. Further, while maintaining the width of the coolant flow path 10 in a range that is at least three times the outer edge distance of the semiconductor elements 7 and 8, a plurality of partition walls are installed in parallel with the coolant flow path 10. By making the radius of curvature as large as possible at the bent portions, the flow rate of the cooling liquid can be increased, and the heat diffused from the semiconductor elements 7 and 8 can be efficiently cooled.
[0041]
On the ceramic circuit board of the present invention as described above, electronic components such as semiconductor elements 7 and 8 are mounted on predetermined mounting positions of the metal circuit boards 3 and 4 and joined via solder or the like. (4) The semiconductor module 1 of the present invention is configured by electrically connecting to a predetermined portion with a bonding wire such as aluminum. At this time, the semiconductor elements 7 and 8 mounted on the metal circuit boards 3 and 4 are mounted at positions that are not opposed to each other in the upper and lower directions, and the distance between the center of the semiconductor elements 7 and 8 and the outer edge of the semiconductor elements 7 and 8 is one. It is preferable that the components are mounted so as to be at least 0.5 times apart. When the upper and lower semiconductor elements 7.8 are located at a position closer to 1.5 times the outer edge distance of the semiconductor elements 7.8 from the center of the semiconductor elements 7.8, the heat generation density by the semiconductor elements 7.8 increases. As a result, the amount of heat diffused from the semiconductor elements 7 and 8 on both main surfaces is not effectively dispersed, so that heat interference tends to occur in the metal plate 5. As a result, it becomes difficult to effectively exchange heat between the heat quantity diffused from the semiconductor elements 7 and 8 on both main surfaces and the coolant, and the heat diffused from the semiconductor elements 7 and 8 tends not to be efficiently cooled. There is.
[0042]
Further, since the semiconductor elements 7, 8 are mounted on the metal circuit boards 3, 4 on both main surfaces at positions not opposed to each other, compared with the conventional ceramic circuit board for a semiconductor module, the semiconductor elements 7, 8 are mounted. 8, the mounting density of the semiconductor module 1 can be reduced.
[0043]
With the above configuration, as shown in FIG. 1, the heat transfer path from the semiconductor elements 7, 8 to the metal plate 5 functioning as a water-cooled heat sink is shortened, and the heat from the semiconductor elements 7, 8 is effectively dissipated. Thus, the semiconductor module 1 of the present invention using the ceramic circuit board of the present invention in which the thermal interference between the semiconductor elements 7 and 8 on both main surfaces is reduced is completed.
[0044]
【Example】
Hereinafter, the ceramic circuit board and the semiconductor module of the present invention will be described in detail with reference to test results of Examples and Comparative Examples, but the present invention is not limited to only the following Examples.
[0045]
With respect to the ceramic circuit board and the semiconductor module 1 of the present invention shown in FIG. 1, the thermal resistance θj-w (unit: ° C./W) of the semiconductor module having each thickness configuration as shown in the column of Example of Table 1 was calculated. . On the other hand, as a comparative example, the thermal resistance θj-w of the semiconductor module having each thickness configuration as shown in the column of the comparative example of Table 1 was calculated also for the conventional ceramic circuit board 11 shown in FIG.
[0046]
Note that the thermal resistance θj-w was obtained by setting the size of the circuit board to 30 mm □ and the chip size of the semiconductor element mounted thereon to 8 mm □. However, in the example, it is assumed that only the semiconductor element mounted on the upper main surface generates heat, so that comparison with the comparative example is easy. The thermal resistance θj-w was calculated by performing a steady-state heat conduction analysis on the chip temperature Tj and the temperature Tw of the coolant channel, and dividing each temperature difference by the applied power. It can be determined that the smaller the value of the thermal resistance θj-w, the higher the heat radiation capability. Table 1 shows the results of the thermal resistance θj-w thus obtained.
[0047]
[Table 1]
Figure 2004022973
[0048]
From the results shown in Table 1, the heat resistance θj-w indicates that, in the example, the heat generated by the semiconductor element is transferred to the coolant passage through a short path of a metal circuit board-ceramic substrate (silicon nitride plate) -metal plate. Since it is effectively transmitted and dissipated, it does not pass through a solder or a heat conductive composition having a low thermal conductivity or an extra heat dissipating member as in the comparative example. It can be seen that it has increased from 49 to 0.37.
[0049]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, immediately below the semiconductor elements 7 and 8 in the flow path 10 of the cooling liquid, a large contact area with the cooling liquid can be taken in order to efficiently dissipate the heat diffused from the semiconductor elements 7 and 8. Alternatively, a fin-shaped heat exchange plate may be provided.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the ceramic circuit board of this invention, a metal circuit board is mutually opposing on both main surfaces of the base | substrate which joined and sandwiched the metal plate between two silicon nitride plates excellent in mechanical strength and fracture toughness value. The rigidity of the base is increased by providing a metal plate as an intermediate layer of the base, and the thermal expansion coefficients of the upper and lower surfaces of the base can be balanced, thereby suppressing the warpage of the base more efficiently. It becomes possible. Therefore, it is possible to prevent the occurrence of cracks and cracks due to thermal and mechanical stress, prevent insulation failure due to cracks, and improve the reliability of products.
[0051]
Further, according to the ceramic circuit board of the present invention, the metal plate provided as the intermediate layer of the base is provided with the flow path of the cooling liquid arranged so as to face the mounting position of the semiconductor element. It plays the role of a water-cooled heat sink and does not apply a load to a silicon nitride plate as a ceramic substrate due to external force caused by screwing of a heat radiating member unlike a conventional ceramic circuit substrate. Further, the heat generated by the semiconductor element is transmitted through a short path of a metal circuit board-silicon nitride plate-metal plate, and is effectively transmitted to a coolant flow path formed in the metal plate, and is promptly transmitted by the coolant. Since the heat is dissipated and does not pass through the low heat conductivity solder or the heat conductive composition in the middle of the heat transfer path, the heat diffused from the semiconductor element can be efficiently dissipated and the heat radiation characteristics are improved.
[0052]
Further, according to the ceramic circuit board of the present invention, a metal circuit board is attached to both main surfaces of the base so as to face each other, and the semiconductor element is provided on the metal circuit boards on both main surfaces at positions not opposed to each other. Is mounted, so that the mounting density of semiconductor elements can be increased and the size of the semiconductor module can be reduced as compared with a conventional ceramic circuit board for a semiconductor module. In addition, since the cooling liquid flow path is formed in the metal plate so as to face the mounting position of the semiconductor element, the heat diffused from the semiconductor element can be efficiently dissipated. In addition, since the semiconductor elements are mounted on the metal circuit boards on both main surfaces of the base at positions not opposed to each other, the amount of heat diffused from the semiconductor elements on both main surfaces can be dispersed. Thus, there is no decrease in cooling efficiency due to heat interference.
[0053]
With such a configuration, the heat transfer path from the semiconductor element to the metal plate functioning as a water-cooled heat sink is shortened without effectively damaging the silicon nitride plate serving as the ceramic substrate, thereby effectively dissipating heat from the semiconductor element. The semiconductor device can be used as a semiconductor module capable of operating the mounted semiconductor element stably for a long period of time, and the semiconductor mounted on the metal circuit board can be suppressed. The ceramic circuit board can increase the mounting density of electronic components such as elements.
[0054]
Further, according to the semiconductor module of the present invention, since the semiconductor element is mounted on the mounting position of the metal circuit board of the ceramic circuit board of the present invention having the above configuration, the above-described operation of the ceramic circuit board of the present invention is achieved. It will be effective. In other words, the warpage of the ceramic circuit board can be efficiently suppressed to prevent cracks and cracks caused by thermal and mechanical stress, and insulation failure caused by cracks can be prevented to improve product reliability. It is possible to do. In addition, since the metal plate plays the role of a water-cooled heat sink, no load is applied to the silicon nitride plate, which is a ceramic substrate, by external force due to screwing of the heat radiating member, and heat diffused from the semiconductor element through a short heat transfer path. Can be efficiently dissipated. In addition, since semiconductor elements can be mounted on both main surfaces, the mounting density of the semiconductor elements can be increased and the size of the semiconductor module can be reduced. In addition, since the semiconductor elements are mounted on the two main surfaces of the base at positions that do not face each other, the amount of heat diffused from the semiconductor elements on both the main surfaces is dispersed, so that heat interference occurs in the metal plate. Therefore, there is no decrease in cooling efficiency.
[0055]
Therefore, according to the semiconductor module of the present invention, the deformation of the base is suppressed, the base is not damaged, the heat radiation characteristics are good, and the mounting density of electronic components such as semiconductor elements can be increased. The semiconductor module is capable of operating the semiconductor element stably for a long period of time.
[0056]
As described above, according to the present invention, the transmission path from the semiconductor element to the water-cooled heat sink can be shortened without effectively damaging the ceramic circuit board, effectively dissipating heat from the semiconductor element, and suppressing warpage. A highly reliable ceramic circuit board capable of stably operating an electronic component such as a semiconductor element mounted on a metal circuit board for a long time, and a semiconductor module using the same can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a ceramic circuit board and a semiconductor module of the present invention.
FIG. 2 is a plan view showing an example of an embodiment of a ceramic circuit board and a semiconductor module of the present invention.
FIG. 3 is a cross-sectional view illustrating an example of a conventional ceramic circuit board.
[Explanation of symbols]
1: Semiconductor module
2: Silicon nitride plate
3, 4: metal circuit board
5: metal plate
6: Substrate
7, 8: Semiconductor element
10: Coolant flow path

Claims (2)

2枚の窒化珪素板の間に金属板を挟んで接合して成る基体の両主面に金属回路板を互いに対向させて取着して成り、前記両主面の前記金属回路板にそれぞれ互いに対向しない位置に半導体素子が搭載されるとともに、前記金属板に前記半導体素子の搭載位置と対向するように配置された冷却液の流路を形成したことを特徴とするセラミック回路基板。A metal circuit board is attached to both main surfaces of a substrate formed by bonding a metal plate between two silicon nitride plates so as to face each other, and does not face each other to the metal circuit boards on both main surfaces. A ceramic circuit board, wherein a semiconductor element is mounted at a position, and a flow path of a cooling liquid is formed on the metal plate so as to face the mounting position of the semiconductor element. 請求項1記載のセラミック回路基板の前記金属回路板の前記搭載位置に前記半導体素子を搭載して成ることを特徴とする半導体モジュール。A semiconductor module comprising the ceramic element mounted on the mounting position of the metal circuit board of the ceramic circuit board according to claim 1.
JP2002178635A 2002-06-19 2002-06-19 Ceramic circuit board and semiconductor module Pending JP2004022973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178635A JP2004022973A (en) 2002-06-19 2002-06-19 Ceramic circuit board and semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178635A JP2004022973A (en) 2002-06-19 2002-06-19 Ceramic circuit board and semiconductor module

Publications (1)

Publication Number Publication Date
JP2004022973A true JP2004022973A (en) 2004-01-22

Family

ID=31176299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178635A Pending JP2004022973A (en) 2002-06-19 2002-06-19 Ceramic circuit board and semiconductor module

Country Status (1)

Country Link
JP (1) JP2004022973A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066464A (en) * 2004-08-24 2006-03-09 Toyota Industries Corp Semiconductor device
JP2006294971A (en) * 2005-04-13 2006-10-26 Toyota Industries Corp Substrate for power module and its production process
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP2008205371A (en) * 2007-02-22 2008-09-04 Mitsubishi Materials Corp Liquid-cooled type cooler and unit for mounting power element
DE102007028475A1 (en) * 2007-06-01 2008-09-04 Bombardier Transportation Gmbh Liquid cooler for cooling electronic high power components, particularly electronic valves or valve assemblies, has plate-type cooling element and multiple of running channels
JP2008244118A (en) * 2007-03-27 2008-10-09 Hitachi Metals Ltd Semiconductor module
WO2008149818A1 (en) * 2007-05-30 2008-12-11 Kyocera Corporation Laminated heat dissipating base body, and heat dissipating unit and electronic device using the laminated heat dissipating base body
JP2008311397A (en) * 2007-06-14 2008-12-25 Nec Toppan Circuit Solutions Inc Mounting structure of semiconductor element, printed wiring board and its manufacturing method
US7529091B2 (en) * 2004-05-25 2009-05-05 Danfoss Silicon Power Gmbh Power semiconductor module and method for cooling a power semiconductor module
JP2010103582A (en) * 2004-03-31 2010-05-06 Dowa Holdings Co Ltd Aluminum bonding member
JP2016046430A (en) * 2014-08-25 2016-04-04 京セラ株式会社 Circuit board and electronic device
WO2018145910A1 (en) * 2017-02-09 2018-08-16 Mahle International Gmbh Cooling apparatus, electronics assembly, and method of producing the same
KR20190024163A (en) * 2017-08-31 2019-03-08 한국세라믹기술원 Ceramic-metal package and manufacturing method therof
JP2020017692A (en) * 2018-07-27 2020-01-30 Tdk株式会社 Electronic component package
WO2020203665A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Composite printed wiring board, and manufacturing method for same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103582A (en) * 2004-03-31 2010-05-06 Dowa Holdings Co Ltd Aluminum bonding member
US7529091B2 (en) * 2004-05-25 2009-05-05 Danfoss Silicon Power Gmbh Power semiconductor module and method for cooling a power semiconductor module
JP2006066464A (en) * 2004-08-24 2006-03-09 Toyota Industries Corp Semiconductor device
JP2006294971A (en) * 2005-04-13 2006-10-26 Toyota Industries Corp Substrate for power module and its production process
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP2008205371A (en) * 2007-02-22 2008-09-04 Mitsubishi Materials Corp Liquid-cooled type cooler and unit for mounting power element
JP2008244118A (en) * 2007-03-27 2008-10-09 Hitachi Metals Ltd Semiconductor module
JP5144657B2 (en) * 2007-05-30 2013-02-13 京セラ株式会社 Laminated heat dissipation base, heat dissipation unit using the same, and electronic device
WO2008149818A1 (en) * 2007-05-30 2008-12-11 Kyocera Corporation Laminated heat dissipating base body, and heat dissipating unit and electronic device using the laminated heat dissipating base body
DE102007028475A1 (en) * 2007-06-01 2008-09-04 Bombardier Transportation Gmbh Liquid cooler for cooling electronic high power components, particularly electronic valves or valve assemblies, has plate-type cooling element and multiple of running channels
JP2008311397A (en) * 2007-06-14 2008-12-25 Nec Toppan Circuit Solutions Inc Mounting structure of semiconductor element, printed wiring board and its manufacturing method
JP2016046430A (en) * 2014-08-25 2016-04-04 京セラ株式会社 Circuit board and electronic device
WO2018145910A1 (en) * 2017-02-09 2018-08-16 Mahle International Gmbh Cooling apparatus, electronics assembly, and method of producing the same
KR20190024163A (en) * 2017-08-31 2019-03-08 한국세라믹기술원 Ceramic-metal package and manufacturing method therof
KR101993521B1 (en) * 2017-08-31 2019-06-26 한국세라믹기술원 Ceramic-metal package and manufacturing method therof
JP2020017692A (en) * 2018-07-27 2020-01-30 Tdk株式会社 Electronic component package
WO2020203665A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Composite printed wiring board, and manufacturing method for same
JPWO2020203665A1 (en) * 2019-04-02 2021-09-13 三菱電機株式会社 Composite printed wiring board and its manufacturing method
US20220151072A1 (en) * 2019-04-02 2022-05-12 Mitsubishi Electric Corporation Composite printed wiring board and method of manufacturing the same
US11785718B2 (en) 2019-04-02 2023-10-10 Mitsubishi Electric Corporation Composite printed wiring board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN108133915B (en) Power module with built-in power device and double-sided heat dissipation function and manufacturing method thereof
CN104718615A (en) Semiconductor circuit board, semiconductor device using same, and method for producing semiconductor circuit board
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2004221547A (en) Thermally conductive multilayer substrate and substrate for power modules
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JPH10144967A (en) Thermoelectric element module for cooling
JP3793562B2 (en) Ceramic circuit board
JP3934966B2 (en) Ceramic circuit board
JP2003133662A (en) Ceramic circuit board
JP2007266224A (en) Power module
JP2006073663A (en) Package for containing electric element, electric element unit and electric element cooling module
JP2004087927A (en) Ceramic substrate
JP3588315B2 (en) Semiconductor element module
JP4496043B2 (en) Electric element cooling module
JP2018006377A (en) Composite substrate, electronic device, and electronic module
JP2003124584A (en) Ceramic circuit board
JP4496042B2 (en) Electric element cooling module
JP2006073658A (en) Package for housing electric element, electric element unit and electric element cooling module
JP3960192B2 (en) Radiator
JP6603098B2 (en) Circuit board and electronic device
JP2015164167A (en) Circuit board, manufacturing method of the same and electronic device
JP3583019B2 (en) Joint structure of heat dissipation wiring board
JP3933031B2 (en) Radiator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070323

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070413