JP3933031B2 - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP3933031B2
JP3933031B2 JP2002315923A JP2002315923A JP3933031B2 JP 3933031 B2 JP3933031 B2 JP 3933031B2 JP 2002315923 A JP2002315923 A JP 2002315923A JP 2002315923 A JP2002315923 A JP 2002315923A JP 3933031 B2 JP3933031 B2 JP 3933031B2
Authority
JP
Japan
Prior art keywords
heat
radiator
thermal expansion
low thermal
expansion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002315923A
Other languages
Japanese (ja)
Other versions
JP2004152970A (en
Inventor
義幸 長友
健 根岸
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002315923A priority Critical patent/JP3933031B2/en
Publication of JP2004152970A publication Critical patent/JP2004152970A/en
Application granted granted Critical
Publication of JP3933031B2 publication Critical patent/JP3933031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、大電圧・大電流を制御する半導体装置に用いられる放熱体に係り、特に半導体チップ等の発熱体を搭載している被放熱体に伝わる熱を放散させるのに好適な放熱体に関する。
【0002】
【従来の技術】
半導体装置としてのパワーモジュールは、一般に、半導体チップがパワーモジュール用基板に搭載され、半導体チップの熱がパワーモジュール用基板に伝達されることから、パワーモジュール用基板に伝わる熱を放熱する必要がある。
このような被放熱体としてのパワーモジュール用基板は、セラミックス材料からなる絶縁基板(セラミックス基板)に金属薄板が直接積層され、この金属薄板に可塑性多孔質金属層を介し、ヒートシンクからなる放熱体が積層接着されている(例えば、特許文献1参照)。可塑性多孔質金属層は、気孔率20〜50%のCuの多孔質焼結体であって、絶縁基板が、これに搭載されている半導体チップからの熱を受けたとき、その熱変形を吸収する応力緩和層をなす構成であり、これにより、絶縁基板及び放熱体の反りや割れを防止できて、放熱体が良好な放熱作用を果たすこともできるようになっている。
【0003】
【特許文献1】
特開平8−335652号公報(第4−12頁、図1〜図5)
【0004】
【発明が解決しようとする課題】
ところで、上記従来のものでは、被放熱体としてのパワーモジュール用基板に設けられた可塑性多孔質金属層が、絶縁基板や放熱体の熱変形を吸収するので、絶縁基板と放熱体との熱膨張係数が異なっても、絶縁基板、放熱体に反りや割れが起こるのを防止できるようにしているものの、絶縁基板と放熱体との間に可塑性多孔質金属層が介在しているので、その分だけ熱抵抗が上昇して熱伝導率が低下する結果、放熱体の放熱効果が悪くなっていた。
【0005】
一般に、放熱体は、被放熱体との間で互いに熱膨張係数の異なる材質で構成する場合、両者の熱膨張係数の差による反りを防ぐためには、両者の熱膨張係数を合わせることが容易に考えられる。その場合、熱膨張係数の低い方(被放熱体)に合わせることとなるが、そうすると、反りを低減できる反面、その分だけ熱伝導率が低下して放熱効果の低下をきたしてしまい、反り対策と良好な熱伝導との双方を兼ね備えたものの要請に応えることができない問題があった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、被放熱体との間で熱膨張係数差があっても、これに拘わることなく反りを低減することができると共に、熱伝導率が低下するのも抑制することができる放熱体を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、一方の面が被放熱体と接合され、他方の面が冷却シンク部に接合される放熱体において、該放熱体は、放熱体本体と、該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材とからなり、前記低熱膨張材は、前記一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して放熱体本体に鋳ぐまれ、かつ、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする。
【0013】
この発明に係る放熱体によれば、低熱膨張材の連絡開口部を介して放熱体本体を充填することで、低熱放熱材が放熱体本体に鋳ぐまれる構成としたので、放熱体全体としての熱膨張係数を確実に下げることができ、被放熱体と放熱体全体との熱膨張係数の差を可及的に小さくすることができ、従って、被放熱体と放熱体とをはんだ等によって接合した場合、放熱体に被放熱体に向かう反りが発生するのを確実に低減することができると共に、放熱体の熱伝導率が低下するのを抑制することができる。
【0014】
また、この発明に係る放熱体によれば、帯状の単位板状体を同列位置で互いに組付けて連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設したので、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できる。
【0015】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1及び図2はこの発明の第1の実施の形態に係る放熱体を適用したパワーモジュールを示す図であって、図1はパワーモジュールの全体図、図2は放熱体における低熱膨張材を上から見た説明図である。
この実施形態のパワーモジュール10は、パワーモジュール用基板11に放熱体16が接合されて構成されている。
パワーモジュール用基板11は、例えばAlN、Al、Si、SiC等により所望の大きさに形成された絶縁基板であって、その上面及び下面に回路層12及び金属層13がそれぞれ積層接合される。回路層12及び金属層13は、Al、Cu等により形成されている。以下は、パワーモジュール用基板11を「絶縁基板11」と略称する。
【0016】
絶縁基板11の回路層12上にはんだ14によって半導体チップ30が搭載される一方、金属層13の下面にはんだ15によって、或いはろう付けや拡散接合等によって放熱体16が接合され、更に、この放熱体16が冷却シンク部20に取り付けられて使用され、該冷却シンク部20内の冷却水(或いは冷却空気)21により、放熱体16に伝達される熱が外部に放熱されることで、パワーモジュール10が構成されている。放熱体16は、冷却シンク部20に取付ねじ22によって密着した状態で取り付けられる。
【0017】
この実施形態において、放熱体16は、放熱体本体17に低熱膨張材18が積層されている。放熱体本体17は、例えばAl、Cu等のような熱伝導率の良好な材質、いわゆる高熱伝導材によって形成されている。高熱伝導材としては、熱伝導率が例えば100W/m・K以上、好ましくは150W/m・Kのものである。
【0018】
一方、低熱膨張材18は、放熱体本体17の熱膨張係数より低い熱膨張係数の材質からなっており、放熱体本体17に積層することで、放熱体16全体の熱膨張係数と絶縁基板11の熱膨張係数との差を可及的に近づけさせるためのものであり、例えばインバーからなっていて、熱膨張係数がおよそ5ppm/℃以下である。
インバー合金とは、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
【0019】
このような材質からなる低熱膨張材18は、図1及び図2に示すように、放熱体本体17と17との間に接合されている。従って、放熱体16が二枚の放熱体本体17と一枚の低熱膨張材18との三層構造であって、絶縁基板11側と冷却シンク部20側とに放熱体本体17が配置されている。
【0020】
また、この低熱膨張材18には、これを貫通する孔19が複数穿設されている。孔19は、放熱体16自体に低熱膨張材18を設けると、それだけ熱伝導率が低下するので、その熱伝導率が低下するのを極力抑えるようにするためのものである。その場合、図2に示すように、低熱膨張材18において、絶縁基板11と対応する領域Aには孔19の穿設される数を少なくすると共に、その対応領域Aの周辺領域Bには孔19の穿設される数を多くしている。
【0021】
つまり、低熱膨張材18において絶縁基板11との対応領域Aでは穿設される孔19の個数を少なくすると共に、それを除く周辺領域Bでは孔19の個数を多くすることにより、孔19の断面積の分布を変えている。この場合、低熱膨張材18に穿設される孔19の数が徒らに増えると、低熱膨張材としての機能を果たし難くなることから、低熱膨張材18の表面積に対し、絶縁基板11及び放熱体本体17並びに低熱膨張材18の材質等に基づき、およそ20〜50%の割合の面積で孔19が形成されることが好ましい。なお、孔19は、この実施形態では丸孔をなしているが、その形状は任意である。
【0022】
このように、パワーモジュール10の放熱体16が、放熱体本体17と低熱膨張材18とを互いに積層して形成されると、放熱体16全体としての熱膨張係数を確実に下げることができるので、絶縁基板11と放熱体16全体との熱膨張係数の差を可及的に小さくすることができる。
【0023】
そのため、放熱体16が絶縁基板11とはんだ15(若しくはろう付けや拡散接合等)によって接合された場合、放熱体16に絶縁基板11に向かう反りが発生するのを確実に低減することができるので、放熱体16を冷却シンク部20に取り付けても、冷却シンク部20と放熱体16との間に隙間が発生するのを防止することができる。
【0024】
しかも、低熱膨張材18が金属であってかつ相応の熱伝導率を有しているので、絶縁基板11上の半導体チップ30からの発熱が、回路層12、絶縁基板11、金属層13、はんだ15、放熱体16及び冷却シンク部20を介して外部に放熱される結果、熱伝導率が低下するのを抑制することもできる。
その結果、放熱体16と絶縁基板11との材質の熱膨張係数に差があっても、反りの抑制と熱伝導率の低下の抑制とを両立させた、良好な放熱体16を得ることができ、これにより、放熱特性に優れたパワーモジュール10が得られる。
【0025】
また、放熱体16が、二層からなる放熱体本体17、17の間に低熱膨張材18が挟まれた状態で接合されているので、つまり、放熱体16において絶縁基板11側と冷却シンク部20側との層に放熱体本体17がそれぞれ配置して形成されているので、絶縁基板11からの熱を受け、その熱が冷却シンク部20に伝達することとなる。
【0026】
その際、低熱膨張材18には孔19が複数設けられているので、この孔19を形成する空間により、絶縁基板11側の放熱体本体17から冷却シンク部20側の放熱体本体17への熱伝達を良好に行うことができ、これによって、放熱体16本来の放熱効果を的確に果たすことができる。
【0027】
しかも、孔19は、低熱膨張材18において、絶縁基板11との対応領域Aでは、その周辺領域Bより少ない個数で穿設され、孔19の断面積が周辺領域Bより少なくしているので、絶縁基板11からの熱影響で、その対応領域Aが熱変形を受けて反りが発生するのを防ぐことができる一方、周辺領域B内の孔19の断面積が対応領域Aより大きくなることで、放熱体本体17間の熱伝達を良好にさせることができ、これによって、熱伝達をいっそう良好に行うことができる。
【0028】
図3及び図4は、この発明の第2の実施の形態に係る放熱体を示している。
この場合は、放熱体16に設けられた低熱膨張材18がリブを有している。
リブは、低熱膨張材18に設けられる孔19の製作に際し、予め所定の厚みに形成された板材に図4に示すように切り込みが設けられ、この切り込みを利用することで形成される。即ち、予め設けられた切り込みを上下方向に立上げたり、立下げたりして折り曲げることで孔19を形成したとき、上記切り込みによって立上げ片18a及び立下げ片18bが共に形成され、これらからなるリブを有する低熱膨張材18が製作される。
そして、この低熱膨張材18が放熱体本体17と17との間に挟着されることで、放熱体16が構成される。
【0029】
この実施形態によれば、放熱体16が放熱体本体17に孔19を穿設した低熱膨張材18が積層されるので、基本的は前述した第1の実施形態と同様の作用効果が得られる。
これに加え、低熱膨張材18が立上げ片18a及び立下げ片18bからなるリブを有しているので、放熱体全体としての剛性が上がり、強度を増大させることができるので、これによっても、絶縁基板11の熱による反りをいっそう抑えることができる。
【0030】
なお、低熱膨張材18は、上述の実施形態では、放熱体本体17間に積層されたり、また放熱体本体17間に挟着することで設けられた例を示したが、これに限らず、例えば、粉末冶金によって孔19付きの板を焼成した後、これにリブを後付けして設けるようにしてもよく、又は、ダイカスト鋳造法によって形成することもでき、更には、熱間鍛造より高温処理される溶融鍛造法によって形成することもできる。それ以外として、以下に示すように放熱体16を構成することもできる。
【0031】
図5及び図6は、この発明の第3の実施の形態に係る放熱体を示す放熱体の構成図である。
この場合の低熱膨張材18は、絶縁基板11側の放熱体本体17と接合される一方の面と、冷却シンク部20側の放熱体本体17と接合される他方の面とに亘る厚み方向と連絡すると共に、該厚み方向と直交方向で互いに連なる開口空間部40を有して設けられ、かつ該開口空間部40に放熱体本体17が充填されることで、図5に示すように、放熱体本体17に鋳ぐまれる構成となっている。
【0032】
具体的に述べると、低熱膨張材18は、図6に示すように、例 えば二枚からなる帯状の単位板状体41、42が厚み方向に沿って組付けることで開口空間部40を連続的に有する連鎖状体43が形成される。
そして、これら連鎖状体43が同一平面上で複数列で設けられると共に、開口空間部40を互いに隣接する列毎に互い違いに配列して形成されている。
【0033】
このように形成された低熱膨張材18は、放熱体16の形成時、放熱体本体17の材料が注入されると、その材料がいずれかの開口空間部40から内部に充填されると、側面から見たとき、図5に示すように、絶縁基板11側である上層の放熱体本体17と、冷却シンク部20側である下層の放熱体本体17間に埋設されるように形成される。
【0034】
この実施形態によれば、低熱膨張材18が厚み方向に沿い放熱体本体17に鋳ぐまれて形成したので、放熱体16全体の熱膨張率を下げることができ、また連絡開口部40により放熱体本体17が絶縁基板11からの熱を良好に受けると共に、その熱を冷却シンク部20に対して伝達させることができ、従って、反りを抑えつつ熱伝達が良好となり、基本的には前述した実施形態と同様の作用効果が得られる。
【0035】
図7は、この発明の第4の実施の形態に係る放熱体を示している。
この実施の形態は、上記の各実施の形態において用いた冷却シンク部に代えて放熱フィン70を用いたものである。放熱フィン70は、帯状の板体を平坦部50a、立上がり部50b、平坦部50c、折返し部50dを有するように折り曲げて、これを一方向に繰り返すように形成したものであり、平坦部50aが放熱体16の表面にろう付け手段により固定されている。
この実施の形態においては、放熱体16,放熱フィン70を介して外部への放熱がなされ、上記の実施の形態と同様の作用、効果が得られる。
【0036】
なお、上記実施の形態において、放熱体に積層された低熱膨張材として、インバーを用いた例を示したが、他の低熱膨張材、例えば高炭素鋼(Fe−C)、42合金、モリブデン(Mo)、タングステン(W)等で構成しても、同様の作用効果が得られる。
また、放熱体16がパワーモジュール用基板11に取り付けられた例を示したが、該基板11に限らず、他の発熱体や熱源に取り付けられる場合にも適用することができ、要は、放熱を必要とする種々の被放熱体に用いられることで実用上有益となる。更に、放熱体16が取り付けられるパワーモジュール用基板11として、放熱体16側の面に金属層13が積層された例を示したが、金属層13が設けられていない絶縁基板11を放熱体16に直接接合しても、同様の作用効果が得られる。
【0037】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、放熱体が被放熱体にはんだ等によって接合された場合、放熱体に被放熱体に向かう反りが発生するのを確実に低減することができると共に、放熱体の熱伝導率が低下するのを抑制することができるという効果が得られる。
【0041】
また、請求項1に係る発明によれば、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の第1の実施の形態に係る放熱体を適用したパワーモジュールを示す全体図である。
【図2】 放熱体における低熱膨張材を上から見た説明図である。
【図3】 この発明の第2の実施の形態に係る放熱体を示す断面図である。
【図4】 低熱膨張材の製作に際し、板材に孔を形成するために切り込みを設けた説明図である。
【図5】 この発明の第3の実施の形態に係る放熱体を示す図であって、放熱体を側面からみた断面図である。
【図6】 低熱膨張材を示す斜視図である。
【図7】 この発明の第4の実施の形態に係る放熱体を示す断面図である。
【符号の説明】
10 パワーモジュール
11 被放熱体(パワーモジュール用基板、絶縁基板)
16 放熱体
17 放熱体本体(高熱伝導材)
18 低熱膨張材
19 孔
18a リブ(立上げ片)
18b リブ(立下げ片)
20 冷却シンク部
40 開口空間部
41、42 帯状の板状体
43 連鎖状体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat radiating body used in a semiconductor device for controlling a large voltage and a large current, and more particularly to a heat radiating body suitable for radiating heat transmitted to a heat radiating body on which a heat generating body such as a semiconductor chip is mounted. .
[0002]
[Prior art]
In general, a power module as a semiconductor device has a semiconductor chip mounted on a power module substrate and heat of the semiconductor chip is transmitted to the power module substrate. Therefore, it is necessary to dissipate heat transmitted to the power module substrate. .
In such a power module substrate as a radiator, a metal thin plate is directly laminated on an insulating substrate (ceramic substrate) made of a ceramic material, and a heat sink made of a heat sink is interposed on the metal thin plate with a plastic porous metal layer. They are laminated and bonded (for example, see Patent Document 1). The plastic porous metal layer is a porous sintered body of Cu having a porosity of 20 to 50%, and when the insulating substrate receives heat from the semiconductor chip mounted thereon, it absorbs the thermal deformation. Thus, it is possible to prevent warping and cracking of the insulating substrate and the heat radiating body, and the heat radiating body can also perform a good heat radiating action.
[0003]
[Patent Document 1]
JP-A-8-335652 (page 4-12, FIGS. 1 to 5)
[0004]
[Problems to be solved by the invention]
By the way, in the said conventional thing, since the plastic porous metal layer provided in the board | substrate for power modules as a to-be-radiated body absorbs the thermal deformation of an insulated substrate or a radiator, the thermal expansion of an insulated substrate and a radiator is carried out. Even if the coefficients are different, the insulation substrate and the heat sink can be prevented from warping or cracking, but the plastic porous metal layer is interposed between the insulation substrate and the heat sink. As a result, only the thermal resistance increased and the thermal conductivity decreased, and as a result, the heat dissipation effect of the radiator was deteriorated.
[0005]
In general, when the heat dissipating body is made of a material having a different thermal expansion coefficient with respect to the heat radiating body, in order to prevent warping due to the difference between the two thermal expansion coefficients, it is easy to match the thermal expansion coefficients of both. Conceivable. In that case, it will be matched to the one with the lower thermal expansion coefficient (heat radiating body), but doing so will reduce the warpage, but the thermal conductivity will be reduced by that much, and the heat dissipation effect will be reduced, and the countermeasure against warpage will be reduced. However, there was a problem that it was not possible to meet the demand of what had both good heat conduction.
[0006]
The present invention has been made in consideration of such circumstances, and the object thereof is to reduce warpage without regard to this even if there is a difference in thermal expansion coefficient between the heat radiating body and the invention. An object of the present invention is to provide a heat dissipating body that can suppress a decrease in thermal conductivity.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a heat radiator in which one surface is joined to a heat sink and the other surface is joined to a cooling sink part. The heat radiator includes a heat radiator main body and heat of the heat radiator main body. A low thermal expansion material made of a material having a lower coefficient of expansion, the low thermal expansion material being in communication with the thickness direction across the one surface and the other surface, and communicating with each other in the cross direction with the thickness direction And is formed in the heat dissipating body through the communication opening, and the belt-like unit plate-like bodies are assembled to each other at the same position so as to continuously have the connection opening. The chain-like body is provided in a plurality of rows on the same plane, and the position of the communication opening is shifted for each row adjacent to each other.
[0013]
According to the heat dissipating body according to the present invention, the low heat dissipating material is filled in the heat dissipating body main body by filling the heat dissipating body main body through the communication opening of the low thermal expansion material. The thermal expansion coefficient can be reliably reduced, and the difference in thermal expansion coefficient between the heat radiating body and the entire heat radiating body can be made as small as possible. Therefore, the heat radiating body and the heat radiating body are joined by solder or the like. When it does, it can reduce reliably that the curvature which goes to a to-be-heated body generate | occur | produces in a heat radiator, and it can suppress that the thermal conductivity of a heat radiator falls.
[0014]
Further , according to the heat dissipating body according to the present invention, the band-like unit plate-like bodies are assembled to each other at the same position to form a chain-like body having continuous communication openings, and the chain-like bodies are formed on the same plane. Since a plurality of rows are provided and the positions of the communication openings are shifted for each row adjacent to each other, a low thermal expansion material having communication openings continuous in the thickness direction over one surface and the other surface is ensured. Can be formed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing a power module to which a heat radiator according to a first embodiment of the present invention is applied. FIG. 1 is an overall view of the power module, and FIG. 2 is a diagram showing a low thermal expansion material in the heat radiator. It is explanatory drawing seen from the top.
The power module 10 of this embodiment is configured by bonding a heat radiator 16 to a power module substrate 11.
The power module substrate 11 is an insulating substrate formed in a desired size with, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like, and a circuit layer 12 and a metal layer 13 are formed on the upper and lower surfaces thereof. Each is laminated and joined. The circuit layer 12 and the metal layer 13 are made of Al, Cu or the like. Hereinafter, the power module substrate 11 is abbreviated as “insulating substrate 11”.
[0016]
A semiconductor chip 30 is mounted on the circuit layer 12 of the insulating substrate 11 by solder 14, while a heat radiator 16 is bonded to the lower surface of the metal layer 13 by solder 15, or by brazing or diffusion bonding. The body 16 is used by being attached to the cooling sink portion 20, and the heat transmitted to the radiator 16 is radiated to the outside by the cooling water (or cooling air) 21 in the cooling sink portion 20, so that the power module 10 is configured. The radiator 16 is attached to the cooling sink portion 20 in close contact with the attachment screw 22.
[0017]
In this embodiment, the heat dissipating body 16 has a low heat expansion material 18 laminated on a heat dissipating body main body 17. The heat dissipating body 17 is formed of a material having a good thermal conductivity such as Al, Cu, for example, a so-called high heat conducting material. The high thermal conductivity material has a thermal conductivity of, for example, 100 W / m · K or more, preferably 150 W / m · K.
[0018]
On the other hand, the low thermal expansion material 18 is made of a material having a thermal expansion coefficient lower than the thermal expansion coefficient of the heat radiating body 17, and is laminated on the heat radiating body 17 so that the thermal expansion coefficient of the entire heat radiating body 16 and the insulating substrate 11 are increased. For example, it is made of invar and has a thermal expansion coefficient of about 5 ppm / ° C. or less.
An Invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% Fe and 35.4 mol% Ni. However, Fe containing other inevitable impurities is also called an Invar alloy.
[0019]
As shown in FIGS. 1 and 2, the low thermal expansion material 18 made of such a material is joined between the radiator bodies 17 and 17. Accordingly, the radiator 16 has a three-layer structure of two radiator bodies 17 and one low thermal expansion material 18, and the radiator body 17 is disposed on the insulating substrate 11 side and the cooling sink portion 20 side. Yes.
[0020]
The low thermal expansion material 18 has a plurality of holes 19 penetrating therethrough. The holes 19 are provided so as to suppress the decrease in the thermal conductivity as much as possible since the thermal conductivity is lowered by providing the low thermal expansion material 18 in the radiator 16 itself. In that case, as shown in FIG. 2, in the low thermal expansion material 18, the number of holes 19 is reduced in the region A corresponding to the insulating substrate 11, and the hole B is formed in the peripheral region B of the corresponding region A. The number of 19 drilled holes is increased.
[0021]
In other words, in the low thermal expansion material 18, the number of holes 19 formed in the region A corresponding to the insulating substrate 11 is reduced, and in the peripheral region B other than that, the number of holes 19 is increased, so that the holes 19 are cut off. The area distribution is changed. In this case, if the number of holes 19 drilled in the low thermal expansion material 18 increases, it becomes difficult to perform the function as the low thermal expansion material. The holes 19 are preferably formed with an area of approximately 20 to 50% based on the material of the body main body 17 and the low thermal expansion material 18. In addition, although the hole 19 has comprised the round hole in this embodiment, the shape is arbitrary.
[0022]
Thus, if the heat radiator 16 of the power module 10 is formed by laminating the heat radiator body 17 and the low thermal expansion material 18, the thermal expansion coefficient of the heat radiator 16 as a whole can be reliably reduced. The difference in thermal expansion coefficient between the insulating substrate 11 and the entire radiator 16 can be made as small as possible.
[0023]
Therefore, when the heat radiating body 16 is joined to the insulating substrate 11 by solder 15 (or brazing, diffusion bonding or the like), it is possible to reliably reduce the occurrence of warping of the heat radiating body 16 toward the insulating substrate 11. Even if the radiator 16 is attached to the cooling sink part 20, it is possible to prevent a gap from being generated between the cooling sink part 20 and the radiator 16.
[0024]
Moreover, since the low thermal expansion material 18 is a metal and has a suitable thermal conductivity, the heat generated from the semiconductor chip 30 on the insulating substrate 11 is generated by the circuit layer 12, the insulating substrate 11, the metal layer 13, and the solder. 15. It can also be suppressed that heat conductivity falls as a result of thermally radiating outside through the heat sink 16 and the cooling sink part 20.
As a result, even if there is a difference in the thermal expansion coefficient between the material of the radiator 16 and the insulating substrate 11, it is possible to obtain a good radiator 16 that achieves both suppression of warpage and suppression of decrease in thermal conductivity. Thus, the power module 10 having excellent heat dissipation characteristics can be obtained.
[0025]
Further, since the radiator 16 is joined in a state where the low thermal expansion material 18 is sandwiched between the radiator bodies 17, 17 having two layers, that is, the insulating substrate 11 side and the cooling sink portion in the radiator 16. Since the heat dissipating body main body 17 is disposed and formed in the layer on the 20 side, the heat from the insulating substrate 11 is received and the heat is transmitted to the cooling sink portion 20.
[0026]
At this time, since a plurality of holes 19 are provided in the low thermal expansion material 18, a space from the heat sink body 17 on the insulating substrate 11 side to the heat sink body 17 on the cooling sink portion 20 side is formed by a space in which the holes 19 are formed. Heat transfer can be performed satisfactorily, and thereby the original heat dissipation effect of the radiator 16 can be accurately achieved.
[0027]
Moreover, the holes 19 are formed in the low thermal expansion material 18 in the corresponding area A with the insulating substrate 11 in a smaller number than the peripheral area B, and the cross-sectional area of the holes 19 is smaller than that in the peripheral area B. It is possible to prevent the corresponding region A from being warped due to thermal influence from the insulating substrate 11, while the cross-sectional area of the hole 19 in the peripheral region B is larger than the corresponding region A. The heat transfer between the heat dissipating body 17 can be improved, whereby the heat transfer can be performed more satisfactorily.
[0028]
3 and 4 show a heat radiator according to the second embodiment of the present invention.
In this case, the low thermal expansion material 18 provided on the radiator 16 has ribs.
When the hole 19 provided in the low thermal expansion material 18 is manufactured, the rib is formed by using a notch as shown in FIG. 4 in a plate material previously formed to have a predetermined thickness. That is, when the hole 19 is formed by bending a notch provided in advance by raising or lowering in the vertical direction, the rising piece 18a and the falling piece 18b are both formed by the above-mentioned notch, and are composed of these. A low thermal expansion material 18 having ribs is produced.
The low thermal expansion material 18 is sandwiched between the heat radiating body main bodies 17 and 17 to constitute the heat radiating body 16.
[0029]
According to this embodiment, since the heat dissipating body 16 is laminated with the low thermal expansion material 18 in which the hole 19 is formed in the heat dissipating body main body 17, the same operation and effect as the first embodiment described above can be basically obtained. .
In addition to this, since the low thermal expansion material 18 has ribs made up of the rising pieces 18a and the falling pieces 18b, the rigidity of the entire radiator can be increased and the strength can be increased. Warpage due to heat of the insulating substrate 11 can be further suppressed.
[0030]
In addition, although the low thermal expansion material 18 showed the example provided by being laminated | stacked between the heat radiator main bodies 17 or being pinched between the heat radiator main bodies 17 in the above-mentioned embodiment, it is not restricted to this, For example, after firing a plate with holes 19 by powder metallurgy, the ribs may be retrofitted to the plate, or it may be formed by die casting, and further processed at a higher temperature than hot forging. It can also be formed by the melt forging method. Otherwise, the heat radiator 16 can also be configured as shown below.
[0031]
5 and 6 are configuration diagrams of a heat radiating body showing a heat radiating body according to a third embodiment of the present invention.
In this case, the low thermal expansion material 18 has a thickness direction extending from one surface joined to the radiator body 17 on the insulating substrate 11 side and the other surface joined to the radiator body 17 on the cooling sink 20 side. As shown in FIG. 5, as shown in FIG. 5, the heat sink body 17 is filled with the open space portion 40 that is connected to each other in the direction orthogonal to the thickness direction and is filled with the heat sink body 17. The body body 17 is configured to be cast.
[0032]
More specifically, as shown in FIG. 6, the low thermal expansion material 18 includes, for example, two band-shaped unit plate bodies 41 and 42 that are assembled along the thickness direction so that the opening space 40 is continuously formed. Thus, the chain 43 is formed.
These chain-like bodies 43 are provided in a plurality of rows on the same plane, and the opening spaces 40 are alternately arranged in rows adjacent to each other.
[0033]
The low thermal expansion material 18 formed in this way is filled with the material of the heat radiating body 17 when the heat radiating body 16 is formed. As shown in FIG. 5, it is formed so as to be embedded between the upper radiator body 17 on the insulating substrate 11 side and the lower radiator body 17 on the cooling sink portion 20 side.
[0034]
According to this embodiment, since the low thermal expansion material 18 is cast and formed in the heat radiating body 17 along the thickness direction, the thermal expansion coefficient of the entire heat radiating body 16 can be lowered, and heat is radiated by the communication opening 40. The body main body 17 can receive heat from the insulating substrate 11 well, and can transmit the heat to the cooling sink portion 20. Therefore, heat transfer is improved while suppressing warping. The same effect as the embodiment can be obtained.
[0035]
FIG. 7 shows a radiator according to the fourth embodiment of the present invention.
In this embodiment, heat radiating fins 70 are used instead of the cooling sink portion used in each of the above embodiments. The heat radiating fin 70 is formed by bending a belt-like plate body so as to have a flat part 50a, a rising part 50b, a flat part 50c, and a folded part 50d, and repeating this in one direction. It is fixed to the surface of the radiator 16 by brazing means.
In this embodiment, heat is radiated to the outside through the heat radiating body 16 and the heat radiating fins 70, and the same operation and effect as the above-described embodiment can be obtained.
[0036]
In the above embodiment, an example of using invar was shown as the low thermal expansion material laminated on the radiator, but other low thermal expansion materials such as high carbon steel (Fe-C), 42 alloy, molybdenum ( Even if it is made of Mo), tungsten (W) or the like, the same effect can be obtained.
Moreover, although the example which attached the heat radiator 16 to the board | substrate 11 for power modules was shown, it is applicable not only to this board | substrate 11, but when it attaches to another heat generating body and a heat source. It is useful in practice by being used for various heat-dissipating bodies that require. Further, as an example of the power module substrate 11 to which the radiator 16 is attached, the metal layer 13 is laminated on the surface on the radiator 16 side. However, the insulating substrate 11 on which the metal layer 13 is not provided is used as the radiator 16. Even if it is directly joined to the same, the same effect can be obtained.
[0037]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the heat radiating body is joined to the heat radiating body with solder or the like, it is possible to reliably reduce the occurrence of warpage of the heat radiating body toward the heat radiating body. The effect that it can suppress that the thermal conductivity of a heat radiator falls is obtained.
[0041]
Moreover, according to the invention which concerns on Claim 1 , the effect that the low thermal expansion material which has a connection opening part mutually connected in the thickness direction over one surface and the other surface can be formed reliably is acquired.
[Brief description of the drawings]
FIG. 1 is an overall view showing a power module to which a heat radiator according to a first embodiment of the invention is applied.
FIG. 2 is an explanatory view of a low thermal expansion material in a heat radiating body as viewed from above.
FIG. 3 is a cross-sectional view showing a heat radiator according to a second embodiment of the present invention.
FIG. 4 is an explanatory view in which a cut is provided to form a hole in a plate material when a low thermal expansion material is manufactured.
FIG. 5 is a view showing a heat dissipating body according to a third embodiment of the present invention, and is a cross-sectional view of the heat dissipating body as viewed from the side.
FIG. 6 is a perspective view showing a low thermal expansion material.
FIG. 7 is a cross-sectional view showing a heat radiator according to a fourth embodiment of the present invention.
[Explanation of symbols]
10 Power Module 11 Heat Dissipator (Power Module Substrate, Insulating Substrate)
16 Heat Dissipator 17 Heat Dissipator Body (High Thermal Conductive Material)
18 Low thermal expansion material 19 Hole 18a Rib (rise piece)
18b rib (falling piece)
20 Cooling sink part 40 Opening space part 41, 42 Band-shaped plate-like body 43 Chain-like body

Claims (1)

一方の面が被放熱体と接合され、他方の面が冷却シンク部に接合される放熱体において、
該放熱体は、放熱体本体と、該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材とからなり、
前記低熱膨張材は、前記一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して放熱体本体に鋳ぐまれ、かつ、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする放熱体。
In the radiator where one surface is bonded to the heat sink and the other surface is bonded to the cooling sink part,
The radiator is composed of a radiator body and a low thermal expansion material made of a material lower than the thermal expansion coefficient of the radiator body,
The low thermal expansion material is provided with a communication opening that communicates with the thickness direction across the one surface and the other surface and that is continuous with the thickness direction in a direction intersecting with the thickness direction, and through the communication opening. The belt-like unit plate-like bodies are assembled to each other at the same position to form a chain-like body having the continuous connection openings, and the chain-like bodies are formed on the same plane. A heat dissipating body characterized in that a plurality of rows are provided and the position of the communication opening is shifted for each row adjacent to each other.
JP2002315923A 2002-10-30 2002-10-30 Radiator Expired - Fee Related JP3933031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315923A JP3933031B2 (en) 2002-10-30 2002-10-30 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315923A JP3933031B2 (en) 2002-10-30 2002-10-30 Radiator

Publications (2)

Publication Number Publication Date
JP2004152970A JP2004152970A (en) 2004-05-27
JP3933031B2 true JP3933031B2 (en) 2007-06-20

Family

ID=32459779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315923A Expired - Fee Related JP3933031B2 (en) 2002-10-30 2002-10-30 Radiator

Country Status (1)

Country Link
JP (1) JP3933031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354377B2 (en) * 2004-09-28 2009-10-28 三菱電機株式会社 Semiconductor device
CN113759042A (en) * 2021-08-31 2021-12-07 上海市计量测试技术研究院 Device for measuring content of benzene series components in waste gas of fixed pollution source

Also Published As

Publication number Publication date
JP2004152970A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP5520815B2 (en) Insulating substrate and base for power module
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2004153075A (en) Substrate for power module and power module
JP2008270294A (en) Heat sink member and semiconductor device
JP6183166B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP3960192B2 (en) Radiator
JP3933031B2 (en) Radiator
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP3912255B2 (en) Power module substrate and power module
JP3975910B2 (en) Radiator
JP3934966B2 (en) Ceramic circuit board
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP2010238965A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP2004087927A (en) Ceramic substrate
JP2004207619A (en) Power module and substrate therefor
JP2004200369A (en) Power module and substrate therefor
JP2016134586A (en) Power semiconductor module
JP2004152969A (en) Power module substrate and power module
JP4395739B2 (en) Radiator, manufacturing method thereof, power module substrate and power module
JP4667723B2 (en) Power module substrate
JP2015043356A (en) Power module
JP4019914B2 (en) Power module substrate and power module
JP3901109B2 (en) Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator
JP4179055B2 (en) Power module substrate, radiator and method of manufacturing the radiator
JP2013211288A (en) Manufacturing method of substrate for power module with heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3933031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees