JP4395739B2 - Radiator, manufacturing method thereof, power module substrate and power module - Google Patents

Radiator, manufacturing method thereof, power module substrate and power module Download PDF

Info

Publication number
JP4395739B2
JP4395739B2 JP2004194164A JP2004194164A JP4395739B2 JP 4395739 B2 JP4395739 B2 JP 4395739B2 JP 2004194164 A JP2004194164 A JP 2004194164A JP 2004194164 A JP2004194164 A JP 2004194164A JP 4395739 B2 JP4395739 B2 JP 4395739B2
Authority
JP
Japan
Prior art keywords
radiator
thermal expansion
heat
hole
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004194164A
Other languages
Japanese (ja)
Other versions
JP2006019410A (en
Inventor
敏之 長瀬
和明 久保
義幸 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004194164A priority Critical patent/JP4395739B2/en
Publication of JP2006019410A publication Critical patent/JP2006019410A/en
Application granted granted Critical
Publication of JP4395739B2 publication Critical patent/JP4395739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、発熱体の熱を外部へ放散させる構成とされた放熱体およびその製造方法に係り、特に、大電流、大電圧を制御する半導体装置に用いられるパワーモジュールに好適な放熱体およびその製造方法並びにパワーモジュール用基板およびパワーモジュールに関するものである。   The present invention relates to a heat radiating body configured to dissipate heat of a heat generating body to the outside and a manufacturing method thereof, and more particularly to a heat radiating body suitable for a power module used in a semiconductor device that controls a large current and a large voltage, and The present invention relates to a manufacturing method, a power module substrate, and a power module.

この種の放熱体が用いられるパワーモジュールとしては、一般に、次のような構成が知られている。すなわち、絶縁基板の一方の表面側に発熱体としての半導体チップを備え、この絶縁基板の他方の表面側に放熱体を備え、半導体チップの熱を放熱体を介して外部へ放散させる構成である。このパワーモジュールの構成要素のうち、絶縁基板および半導体チップの熱膨張係数は、放熱体の熱膨張係数と比べて小さいため、発熱体によりこのパワーモジュールが温度サイクル下で使用された際に、絶縁基板の熱膨張係数と放熱体の熱膨張係数との差に起因して、これらの接合界面に剥離が発生する場合があった。   The following configuration is generally known as a power module in which this type of heat radiator is used. That is, a semiconductor chip as a heating element is provided on one surface side of the insulating substrate, a heat radiator is provided on the other surface side of the insulating substrate, and the heat of the semiconductor chip is dissipated outside through the heat radiator. . Among the components of this power module, the thermal expansion coefficient of the insulating substrate and the semiconductor chip is small compared to the thermal expansion coefficient of the heat radiating element. Therefore, when this power module is used under a temperature cycle by the heat generating element, it is insulated. Due to the difference between the thermal expansion coefficient of the substrate and the thermal expansion coefficient of the heat dissipating member, peeling may occur at these joint interfaces.

この問題を解決するための手段として、放熱体を、Cu,Cu合金,Al,Al合金等からなる高熱伝導体としての放熱体本体同士の間に、Ni−Co−Fe系合金等からなる低熱膨張体を配設した積層構造が知られている(例えば特許文献1参照)。この放熱体の製造方法としては、低熱膨張体の表面に貫通孔を穿設しておき、この低熱膨張体の表裏面に放熱体本体を載置し、この状態でこれらを加圧加熱して、放熱体本体を塑性変形させて低熱膨張体の貫通孔内に流入させ、これにより、前記積層構造とされた放熱体を製造する方法が知られている。
特開平9−1361号公報
As a means for solving this problem, the heat sink is a low heat composed of a Ni—Co—Fe alloy or the like between the heat dissipator bodies as a high thermal conductor composed of Cu, Cu alloy, Al, Al alloy or the like. A laminated structure in which an expansion body is disposed is known (for example, see Patent Document 1). As a manufacturing method of the heat radiating body, through holes are formed in the surface of the low thermal expansion body, the heat radiating body is placed on the front and back surfaces of the low thermal expansion body, and these are pressurized and heated in this state. A method is known in which the heat dissipating body is plastically deformed and allowed to flow into the through hole of the low thermal expansion body, thereby manufacturing the heat dissipating body having the laminated structure.
Japanese Patent Laid-Open No. 9-1361

ところで、前記従来では、前記加圧加熱により、低熱膨張体の表裏面から放熱体本体を貫通孔内に流入させて放熱体を製造するため、製造された放熱体において、低熱膨張体の表裏面に各々配設された放熱体本体の厚さを略均一にすることが困難であるという問題があった。すなわち、低熱膨張体の表裏面にそれぞれ配設された放熱体本体の厚さをそれぞれの表面に沿った方向に対して均一にすることが困難であるとともに、それぞれの放熱体本体が前記貫通孔内へ流入する体積量を均一にすることが困難であるという問題があった。   By the way, in the prior art, in order to manufacture the radiator by flowing the radiator body into the through hole from the front and back surfaces of the low thermal expansion body by the pressure heating, in the manufactured radiator, the front and rear surfaces of the low thermal expansion body. There is a problem that it is difficult to make the thickness of the heat dissipating body main body substantially uniform. That is, it is difficult to make the thickness of the heat dissipating body main body respectively disposed on the front and back surfaces of the low thermal expansion body uniform in the direction along each surface, and each heat dissipating body main body is the through hole. There was a problem that it was difficult to make the volume flowing into the inside uniform.

したがって、この放熱体がパワーモジュールとして使用され温度サイクル下に置かれた際に、熱膨張により発生する変形応力が、それぞれの放熱体本体で異なることに起因して放熱体に反りが発生し易いという問題があった。この場合、放熱体と発熱体を有する絶縁基板側との接合界面に剥離が生じたり、また、放熱体の下面(絶縁基板側と反対側の表面)に冷却シンクが配設された構成では、放熱体と冷却シンクとの間に空隙が生じる場合があり、パワーモジュールに良好な放熱特性を具備させることが困難であるという問題があった。   Therefore, when this heat radiator is used as a power module and placed under a temperature cycle, the deformation stress generated by thermal expansion is different in each heat radiator body, and the heat radiator is likely to warp. There was a problem. In this case, peeling occurs at the bonding interface between the radiator and the insulating substrate having the heating element, and the cooling sink is disposed on the lower surface of the radiator (the surface opposite to the insulating substrate). There is a case where a gap is generated between the radiator and the cooling sink, and there is a problem that it is difficult to provide the power module with good heat dissipation characteristics.

この発明は、このような事情を考慮してなされたもので、温度サイクル下で使用されても反り発生を抑制することができるとともに、低熱膨張性および高熱伝導性を兼ね備えた放熱体およびその製造方法並びにパワーモジュール用基板およびパワーモジュールを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and is capable of suppressing the occurrence of warping even when used under a temperature cycle, and has a low thermal expansion property and high thermal conductivity, and its manufacture. It is an object to provide a method, a power module substrate, and a power module.

前記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、上下の放熱体本体のに、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が配置された3層構造とされ、前記放熱体本体の表面側に設けられた発熱体の熱を、前記放熱体本体および低熱膨張体の積層方向に伝導させ放散させる構成とされた放熱体であって、前記低熱膨張体に穿設された貫通孔内に、前記放熱体本体より熱伝導率の高い孔埋め材が配設され、前記放熱体本体と、該放熱体本体に対向する前記低熱膨張材および前記孔埋め材とが全面にわたってろう付けされ接合されていることを特徴とし、前記放熱体本体としてはCr−Zr−Cu系合金若しくはNi−Si−Cu系合金が好ましく、前記低熱膨張体としてはFe−Ni系合金が好ましく、前記孔埋め材としては純Cuが好ましい。
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a three-layer structure in which a low thermal expansion body having a thermal expansion coefficient lower than that of the heat dissipation body is disposed between the upper and lower heat dissipation body, and the surface of the heat dissipation body. A heat dissipating body configured to conduct and dissipate heat of the heat generating element provided on the side in the stacking direction of the heat dissipating body and the low thermal expansion body, and in a through hole formed in the low thermal expansion body A hole filling material having a higher thermal conductivity than the heat dissipating body is disposed, and the heat dissipating body, and the low thermal expansion material and the hole filling material facing the heat dissipating body are brazed and joined over the entire surface. The heat radiator body is preferably a Cr-Zr-Cu alloy or Ni-Si-Cu alloy, the low thermal expansion body is preferably an Fe-Ni alloy, and the hole filling material is Is preferably pure Cu.

この発明に係る放熱体によれば、放熱体本体と、前記低熱膨張材および前記孔埋め材とがろう付けされ接合されているので、この放熱体が低熱膨張体を有する構成であるにもかかわらず、この放熱体の熱伝導率の低下を抑制することができる。したがって、低熱膨張性および高熱伝導性を兼ね備えた放熱体が得られる。
特に、放熱体本体,低熱膨張体,および孔埋め材を前述した材料により形成すると、低熱膨張性および高熱伝導性を確実に具備させることができるとともに、放熱体の高強度化を図ることができ、したがって、放熱体より熱膨張係数の小さい発熱体側と放熱体とが接合された構成において、これが温度サイクル下で使用されても、放熱体に反りが発生することを抑制することができる。
According to the heat dissipating body according to the present invention, since the heat dissipating body main body, the low thermal expansion material and the hole filling material are brazed and joined, the heat dissipating body has a low thermal expansion body. Therefore, the fall of the thermal conductivity of this heat radiator can be suppressed. Therefore, a radiator having both low thermal expansion and high thermal conductivity can be obtained.
In particular, if the heat dissipating body, the low thermal expansion body, and the hole filling material are formed of the above-described materials, it is possible to reliably provide low thermal expansion and high thermal conductivity and to increase the strength of the heat dissipating body. Therefore, in a configuration in which the heat generating body side having a smaller thermal expansion coefficient than the heat radiating body and the heat radiating body are joined, even when this is used under a temperature cycle, it is possible to prevent the heat radiating body from warping.

請求項2に係る発明は、請求項1記載の放熱体において、前記貫通孔は、前記低熱膨張体の表面のうち、前記発熱体と対応する領域における占有面積比が、該対応領域の周辺領域における占有面積比より小さくなるように形成されていることを特徴とする。   The invention according to claim 2 is the heat dissipating body according to claim 1, wherein the through-hole has an occupied area ratio in a region corresponding to the heating element on a surface of the low thermal expansion body, and a peripheral region of the corresponding region. It is characterized by being formed so as to be smaller than the occupied area ratio.

この発明に係る放熱体によれば、放熱体の前記対応領域における曲げ剛性の低下が最小限に抑制され、発熱体からの熱により前記対応領域に反りが発生することを抑制することができる。   According to the heat dissipating body according to the present invention, a decrease in bending rigidity in the corresponding region of the heat dissipating body can be suppressed to the minimum, and the occurrence of warpage in the corresponding region due to the heat from the heating element can be suppressed.

請求項3に係る発明は、請求項1または2に記載の放熱体において、前記貫通孔の開口端部は、当該開口端から貫通方向に向うに従い漸次縮径されるとともに、径方向内方に向って凸とされた凸曲面部とされていることを特徴とする。   The invention according to claim 3 is the heat radiator according to claim 1 or 2, wherein the opening end of the through hole is gradually reduced in diameter from the opening end toward the penetration direction, and radially inward. It is characterized by being a convex curved surface portion that is convex toward the surface.

この発明に係る放熱体によれば、前記凸曲面部が応力緩和部として作用することになり、放熱体が温度サイクル下に置かれた状態において、孔埋め材の放熱体本体との接合部に応力集中が発生することを抑制することができる。したがって、前記接合部に亀裂が発生することを抑制することができるので、放熱体の高熱伝導性を長期にわたって維持することができる。   According to the heat dissipating body according to the present invention, the convex curved surface portion acts as a stress relieving portion, and in a state where the heat dissipating member is placed under a temperature cycle, the hole filling material is joined to the heat dissipating member main body. It is possible to suppress the occurrence of stress concentration. Therefore, since it can suppress that a crack generate | occur | produces in the said junction part, the high thermal conductivity of a thermal radiation body can be maintained over a long term.

請求項に係る発明は、上下の放熱体本体のに、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が配置された3層構造とされ、前記放熱体本体の表面側に設けられた発熱体の熱を前記放熱体本体および低熱膨張体の積層方向に伝導させ放散させる構成とされた放熱体の製造方法であって、前記低熱膨張体に穿設された貫通孔に、前記放熱体本体より熱伝導率の高い孔埋め材を配設する孔埋め工程と、該孔埋め工程の後に、前記放熱体本体と、該放熱体本体に対向する前記低熱膨張体および前記孔埋め材を全面にわたりろう付けにより接合する接合工程とを有することを特徴とする。 The invention according to claim 4 is a three-layer structure in which a low thermal expansion body having a thermal expansion coefficient lower than that of the heat dissipation body is disposed between the upper and lower heat dissipation body, and the surface of the heat dissipation body. A method of manufacturing a heat radiating body configured to conduct and dissipate heat of a heat generating body provided on the side in the stacking direction of the heat radiating body main body and the low thermal expansion body, and a through hole formed in the low thermal expansion body A hole filling step of disposing a hole filling material having a higher thermal conductivity than the heat dissipating body, and after the hole filling step, the heat dissipating body, the low thermal expansion body facing the heat dissipating body, and the A bonding step of bonding the hole filling material over the entire surface by brazing.

この発明に係る放熱体の製造方法によれば、孔埋め工程と接合工程とを各別に有するので、低熱膨張体の表裏面に各々配設された放熱体本体の厚さを略均一にすることが可能になり、放熱体の使用に際し、この放熱体に反りが発生することを抑制することができる。   According to the method of manufacturing a radiator according to the present invention, since the hole filling step and the bonding step are separately provided, the thickness of the radiator body respectively disposed on the front and back surfaces of the low thermal expansion body is made substantially uniform. It is possible to suppress the occurrence of warping of the heat dissipator when the heat dissipator is used.

請求項に係る発明は、請求項記載の放熱体の製造方法において、前記孔埋め工程は、予め形成された前記貫通孔の空間体積より大きい体積の孔埋め材を前記貫通孔に圧入することを特徴とする。 According to a fifth aspect of the present invention, in the method for manufacturing a radiator according to the fourth aspect , in the hole filling step, a filling material having a volume larger than a space volume of the through hole formed in advance is press-fitted into the through hole. It is characterized by that.

この発明に係る放熱体の製造方法によれば、圧入により孔埋め材を貫通孔の内側の全域に行き渡らせることができる。   According to the method for manufacturing a heat radiator according to the present invention, the hole filling material can be spread all over the inside of the through hole by press-fitting.

請求項に係る発明は、放熱体本体に、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が積層された放熱体と、発熱体を備えた絶縁基板とを備え、前記放熱体の一方の表面に前記絶縁基板が配設され、前記発熱体の熱を積層方向に伝導させ放散させる構成とされたパワーモジュール用基板であって、前記放熱体が請求項1からのいずれかに記載の放熱体であることを特徴とする。 The invention according to claim 6 includes a heat radiating body in which a low thermal expansion body having a thermal expansion coefficient lower than the thermal expansion coefficient of the heat radiating body is laminated on the heat radiating body, and an insulating substrate including a heating element, 4. The power module substrate, wherein the insulating substrate is disposed on one surface of the heat dissipating body and configured to conduct and dissipate heat of the heat generating member in the stacking direction, wherein the heat dissipating member is of claim 1 to 3 . It is a heat radiator according to any one of the above.

請求項に係る発明は、放熱体本体に、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が積層された放熱体と、発熱体を備えた絶縁基板と、内部に冷媒が循環する構成とされた冷却シンク部とを備え、前記放熱体の一方の表面に前記絶縁基板が配設されるとともに、他方の表面に前記冷却シンク部が配設され、前記発熱体の熱を前記放熱体の一方の表面から他方の表面に伝導させ放散させる構成とされたパワーモジュールであって、前記放熱体が請求項1からのいずれかに記載の放熱体であることを特徴とする。 According to a seventh aspect of the present invention, there is provided a heat radiating body in which a low thermal expansion coefficient having a thermal expansion coefficient lower than the thermal expansion coefficient of the heat radiating body is laminated on the heat radiating body, an insulating substrate including the heating element, and a refrigerant inside A cooling sink portion configured to circulate, and the insulating substrate is disposed on one surface of the heat dissipating body, and the cooling sink portion is disposed on the other surface of the heat dissipating body. A power module configured to conduct and dissipate from one surface of the radiator to the other surface, wherein the radiator is the radiator according to any one of claims 1 to 3. To do.

この発明に係る放熱体によれば、この放熱体が低熱膨張体を有する構成であるにもかかわらず、この放熱体の熱伝導率の低下を抑制することができ、低熱膨張性および高熱伝導性を兼ね備えた放熱体が得られる。
また、この発明に係る放熱体の製造方法によれば、孔埋め工程と接合工程とを各別に有するので、低熱膨張体の表裏面に各々配設された放熱体本体の厚さを略均一にすることが可能になり、放熱体の使用に際し、この放熱体に反りが発生することを抑制することができる。
According to the heat dissipating body according to the present invention, although the heat dissipating body has a configuration having a low thermal expansion body, it is possible to suppress a decrease in the thermal conductivity of the heat dissipating body, and to achieve low thermal expansion and high thermal conductivity. A heat radiator having both of the above is obtained.
In addition, according to the method for manufacturing a radiator according to the present invention, since the hole filling step and the joining step are separately provided, the thickness of the radiator body respectively disposed on the front and back surfaces of the low thermal expansion body is made substantially uniform. It is possible to suppress the occurrence of warpage of the heat radiating body when the heat radiating body is used.

以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実施形態に係る放熱体を適用したパワーモジュールを示す全体図である。
このパワーモジュールは、大別すると図1に示すように、パワーモジュール用基板10と、冷却シンク部31とを備えている。
パワーモジュール用基板10は、例えばAlN,Al,Si,SiC等により形成された絶縁基板11と、この絶縁基板11の上面に配設された回路層12と、絶縁基板11の下面に配設された金属層13と、回路層12の上面に配設された半導体チップ(発熱体)30と、金属層13の下面に配設された放熱体16とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view showing a power module to which a radiator according to an embodiment of the present invention is applied.
This power module roughly includes a power module substrate 10 and a cooling sink portion 31 as shown in FIG.
The power module substrate 10 includes an insulating substrate 11 made of, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC, a circuit layer 12 disposed on the upper surface of the insulating substrate 11, and an insulating substrate 11. And a semiconductor chip (heating element) 30 disposed on the upper surface of the circuit layer 12, and a radiator 16 disposed on the lower surface of the metal layer 13.

回路層12および金属層13は、純Al,Al合金,純Cu,Cu合金等により形成され、はんだ付けまたはろう付け等により絶縁基板11の上下面に積層接合され、半導体チップ30は、はんだ14を介して回路層12の上面に接合されている。
そして、金属層13の下面にはんだ15により、あるいはろう付けや拡散接合等により放熱体16が接合され、さらに、この放熱体16に、取り付けねじ33により冷却シンク部31が取り付けられてパワーモジュールが構成されている。
The circuit layer 12 and the metal layer 13 are formed of pure Al, Al alloy, pure Cu, Cu alloy or the like, and are laminated and bonded to the upper and lower surfaces of the insulating substrate 11 by soldering or brazing. Is joined to the upper surface of the circuit layer 12.
And the heat sink 16 is joined to the lower surface of the metal layer 13 by solder 15 or by brazing, diffusion bonding or the like, and the cooling sink portion 31 is further attached to the heat sink 16 by means of mounting screws 33 so that the power module is mounted. It is configured.

なお、冷却シンク部31の内部には、冷却液や冷却空気などの冷媒32を供給および回収する図示しない冷媒循環手段と連結された流通孔31aが形成されており、この流通孔31a内に供給された冷媒32により、半導体チップ30から放熱体16に伝導された熱を回収し、この熱を回収した冷媒32を前記冷媒循環手段が回収するとともに、新たな冷媒32を供給し、以上を繰返すことにより、半導体チップ30からの熱をパワーモジュールから放散させるようになっている。   In addition, a circulation hole 31a connected to a refrigerant circulation means (not shown) that supplies and collects a refrigerant 32 such as a coolant and cooling air is formed inside the cooling sink portion 31, and is supplied into the circulation hole 31a. The heat transferred from the semiconductor chip 30 to the heat radiating body 16 is recovered by the generated refrigerant 32, and the refrigerant circulating means recovers the refrigerant 32 from which the heat has been recovered, and a new refrigerant 32 is supplied, and the above is repeated. As a result, heat from the semiconductor chip 30 is dissipated from the power module.

放熱体16は、熱伝導率が150W/m・K以上、引張強度が500MPa以上とされた放熱体本体17と、この放熱体本体17の熱膨張係数より低い熱膨張係数の材質からなる低熱膨張体18とを備え、放熱体本体17同士の間に低熱膨張体18が配設され、これらはろう付けにより接合されている。   The radiator 16 includes a radiator body 17 having a thermal conductivity of 150 W / m · K or more and a tensile strength of 500 MPa or more, and a low thermal expansion made of a material having a thermal expansion coefficient lower than that of the radiator body 17. The low thermal expansion body 18 is provided between the heat radiating body main bodies 17 and these are joined by brazing.

低熱膨張体18には、図2に示すように、平面視6角形状とされた貫通孔19が複数穿設され、これらの貫通孔19内に、放熱体本体17より熱伝導率の高い(200W/m・K以上)孔埋め材21が配設されている。そして、これらの孔埋め材21と放熱体本体17とは、ろう付けにより互いが接合した状態となっており、熱伝導率の比較的高い放熱体本体17および孔埋め材21が積層方向に連続した構成となっている。これにより、放熱体16が低熱膨張体18を有すると、それだけ放熱体16の熱伝導率が低下することになるが、この熱伝導率の低下を極力抑えることができるようになっている。   As shown in FIG. 2, a plurality of through holes 19 having a hexagonal shape in plan view are formed in the low thermal expansion body 18, and in these through holes 19, the thermal conductivity is higher than that of the radiator body 17 ( 200 W / m · K or more) The hole filling material 21 is provided. The hole-filling material 21 and the radiator body 17 are joined to each other by brazing, and the heat-radiator body 17 and the hole-filling material 21 having relatively high thermal conductivity are continuous in the stacking direction. It has become the composition. Thereby, if the heat radiator 16 has the low thermal expansion body 18, the thermal conductivity of the heat radiator 16 is lowered as much, but the reduction of the thermal conductivity can be suppressed as much as possible.

また、貫通孔19は、図2に示すように、低熱膨張体18の表面のうち、絶縁基板11と対応する領域Xにおける占有面積比が、この対応領域Xの周辺領域Yにおける占有面積比より小さくされている。具体的には、絶縁基板11,放熱体本体17などの材質や大きさなどにより決定されるが、本実施形態においては、前記対応領域Xには、低熱膨張体18の表面積の約30%以上50%以下を占有して貫通孔19が形成され、前記周辺領域Yには、低熱膨張体18の表面積の約40%以上70%以下を占有して貫通孔19が形成されている。   In addition, as shown in FIG. 2, the through hole 19 has an occupied area ratio in the region X corresponding to the insulating substrate 11 in the surface of the low thermal expansion body 18 as compared to an occupied area ratio in the peripheral region Y of the corresponding region X. It has been made smaller. Specifically, it is determined by the material and size of the insulating substrate 11 and the heat dissipating body 17 and the like, but in the present embodiment, the corresponding region X has about 30% or more of the surface area of the low thermal expansion body 18. The through hole 19 is formed by occupying 50% or less, and the through hole 19 is formed in the peripheral region Y by occupying about 40% to 70% of the surface area of the low thermal expansion body 18.

このように、低熱膨張体18の表面のうち、対応領域Xと周辺領域Yとで貫通孔19の占有面積比を異ならせることにより、対応領域Xにおける曲げ剛性の低下を抑制できるとともに、放熱体16全体の熱伝導率の低下を抑制することができるようになっている。
なお、貫通孔19を平面視6角形状とすることにより、低熱膨張体18の表面上で、各貫通孔19同士の間隔を略一定とすることを容易に実現することができ、前記各領域X,Yごとで、低熱膨張体18の表面に沿った方向において、熱伝導率の均一化を実現できるようになっている。
また、貫通孔19の開口端部は、図3に示すように、この開口端から貫通方向に向うに従い漸次縮径されるとともに、径方向内方に向って凸とされた凸曲面部19aとされ、この凹曲面部19aの表面を含めた貫通孔19の内側の略全域にわたって孔埋め材19が配設された構成となっている。
As described above, by changing the occupation area ratio of the through-holes 19 between the corresponding region X and the peripheral region Y in the surface of the low thermal expansion body 18, it is possible to suppress a decrease in bending rigidity in the corresponding region X, and to dissipate heat. It is possible to suppress a decrease in the thermal conductivity of the entire 16.
In addition, by making the through-holes 19 have a hexagonal shape in plan view, it is possible to easily realize a substantially constant interval between the through-holes 19 on the surface of the low thermal expansion body 18. For each of X and Y, the thermal conductivity can be made uniform in the direction along the surface of the low thermal expansion body 18.
Further, as shown in FIG. 3, the opening end portion of the through hole 19 is gradually reduced in diameter from the opening end toward the penetrating direction, and has a convex curved surface portion 19a that is convex radially inward. In addition, the hole filling material 19 is arranged over substantially the entire area inside the through hole 19 including the surface of the concave curved surface portion 19a.

なお、本実施形態においては、放熱体本体17はCr−Zr−Cu系合金若しくはNi−Si−Cu系合金により形成されている。放熱体本体17をこれらの合金材料により形成することによって、純Al等の純金属を採用した場合と比べて、高強度化を図ることが可能になり、放熱体16使用時における温度サイクルによってクリープ変形することを抑制することができる。
また、低熱膨張体18はFe−Ni系合金により形成され、孔埋め材21は純Cuにより形成されている。低熱膨張体18のFe−Ni系合金としては特にインバー合金(熱膨張係数が約2.0×10−6/℃以下)が好ましい。このインバー合金は、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。ただし、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
さらに、放熱体本体17と、低熱膨張体18および孔埋め材21とを接合するろう材として、本実施形態では、JIS Z 3261に規定されるAg−Cu系のろう材を採用した。
In the present embodiment, the radiator body 17 is made of a Cr—Zr—Cu alloy or a Ni—Si—Cu alloy. By forming the heat dissipating body 17 from these alloy materials, it becomes possible to increase the strength as compared with the case where pure metal such as pure Al is adopted, and creep due to the temperature cycle when the heat dissipating body 16 is used. Deformation can be suppressed.
The low thermal expansion body 18 is made of an Fe—Ni alloy, and the hole filling material 21 is made of pure Cu. As the Fe—Ni-based alloy of the low thermal expansion body 18, an Invar alloy (thermal expansion coefficient is about 2.0 × 10 −6 / ° C. or less) is particularly preferable. This Invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% Fe and 35.4 mol% Ni. However, Fe containing other inevitable impurities is also called an Invar alloy.
Furthermore, as the brazing material for joining the heat dissipating body 17, the low thermal expansion body 18 and the hole filling material 21, in this embodiment, an Ag—Cu based brazing material defined in JIS Z 3261 is used.

このように、放熱体16が低熱膨張体18を有することにより、放熱体16全体の熱膨張係数は放熱体本体17の熱膨張係数より低くなり、放熱体16の熱膨張係数と絶縁基板11の熱膨張係数との差が可及的に近づくことになる。   As described above, since the radiator 16 has the low thermal expansion body 18, the thermal expansion coefficient of the entire radiator 16 is lower than the thermal expansion coefficient of the radiator body 17, and the thermal expansion coefficient of the radiator 16 and the insulating substrate 11. The difference from the thermal expansion coefficient will be as close as possible.

低熱膨張体18の厚さAは、放熱体本体17の厚さBの0.3倍以上1.3倍以下とされている。これは、放熱体16自体に低熱膨張体18を設けると、それだけ熱伝導率が低下するため、この熱伝導率の低下を極力抑えるためであるとともに、この熱伝導率の低下を抑えるために、いたずらに低熱膨張体18の厚さAを薄くすると、放熱体16自体の熱膨張係数に寄与する低熱膨張体18の影響が小さくなり、放熱体16の熱膨張係数が放熱体本体17の熱膨張係数と略同一となることを回避するためである。
すなわち、低熱膨張体18の厚さAを放熱体本体の厚さBの0.3倍以上1.3倍以下とすることにより、放熱体16の熱膨張係数の低下,すなわち放熱体16の反り発生抑制と、放熱体16の熱伝導率の低下抑制との双方を図ることができる。
The thickness A of the low thermal expansion body 18 is 0.3 to 1.3 times the thickness B of the heat dissipating body 17. This is because if the low thermal expansion body 18 is provided in the heat radiating body 16 itself, the thermal conductivity is lowered accordingly, so that the reduction of the thermal conductivity is suppressed as much as possible, and in order to suppress the reduction of the thermal conductivity, If the thickness A of the low thermal expansion body 18 is unnecessarily thin, the influence of the low thermal expansion body 18 that contributes to the thermal expansion coefficient of the heat radiating body 16 itself is reduced. This is to avoid being substantially the same as the coefficient.
That is, by making the thickness A of the low thermal expansion body 18 0.3 times or more and 1.3 times or less the thickness B of the radiator body, the thermal expansion coefficient of the radiator 16 is reduced, that is, the curvature of the radiator 16 is reduced. Both suppression of generation and suppression of decrease in thermal conductivity of the radiator 16 can be achieved.

次に、以上のように構成された放熱体16の製造方法について説明する。
まず、低熱膨張体18のうち、対応領域Xと周辺領域Yとで占有面積比を異ならせて貫通孔19を複数穿設するとともに、これらの各貫通孔19の空間体積より大きい体積の孔埋め材19を純Cuにより形成する。この孔埋め材21としては、例えば図4に示すようないわゆるリベット形状がある。
Next, the manufacturing method of the heat radiator 16 configured as described above will be described.
First, in the low thermal expansion body 18, the corresponding area X and the peripheral area Y have different occupation area ratios, and a plurality of through holes 19 are formed, and the filling of a volume larger than the space volume of each through hole 19 is made. The material 19 is formed of pure Cu. As the hole filling material 21, for example, there is a so-called rivet shape as shown in FIG.

この孔埋め材21を貫通孔19に嵌合した状態で、低熱膨張体18の厚さ方向に加圧することにより、孔埋め材21を貫通孔19内に圧入し、これにより、貫通孔19の内部に孔埋め材21が配設される。この際、孔埋め材21は、貫通孔19の空間体積より大きい体積で形成されているので、この孔埋め材21の過大体積分は、貫通孔19の径方向外方へ流動し、貫通孔19の内周面と密に接するとともに、貫通孔19の凸曲面部19aの表面上にも流動し、これにより、凹曲面部19aの表面を含めた貫通孔19の内側の全域にわたって孔埋め材21が行き渡ることになる。   In a state where the hole filling material 21 is fitted into the through hole 19, the hole filling material 21 is pressed into the through hole 19 by pressurizing in the thickness direction of the low thermal expansion body 18. A hole filling material 21 is disposed inside. At this time, since the hole filling material 21 is formed in a volume larger than the space volume of the through hole 19, the excessive volume of the hole filling material 21 flows outward in the radial direction of the through hole 19, In close contact with the inner peripheral surface of 19 and also flows on the surface of the convex curved surface portion 19a of the through hole 19, thereby filling the entire area inside the through hole 19 including the surface of the concave curved surface portion 19a. 21 will go around.

その後、この低熱膨張体18の表裏面の略全面に図示しないろう材または箔を載置し、さらに、このろう材または箔の表面に放熱体本体17を載置した後に、加熱状態でこれらを積層方向に加圧することにより、ろう付けにより放熱体本体17と、低熱膨張体18および孔埋め材21とを接合し、放熱体16を形成する。   Thereafter, a brazing material or foil (not shown) is placed on substantially the entire front and back surfaces of the low thermal expansion body 18, and further, the radiator body 17 is placed on the surface of the brazing material or foil, and then these are heated in a heated state. By applying pressure in the stacking direction, the radiator body 17, the low thermal expansion body 18, and the hole filling material 21 are joined by brazing to form the radiator 16.

以上の製造方法における具体的な実施例を説明する。
72Ag−28Cuからなる厚さ約50μmのろう材と、Cu−Cr−Zr系合金からなる厚さ約1.0mm,幅約80mm,長さ約200mmの放熱体本体17と、Fe−36Ni系合金からなる厚さ約1.0mm,幅約80mm,長さ約200mmの低熱膨張体18とを採用した。そして、低熱膨張体18の表面に最外径約5.8mmの貫通孔19を、互いが約5.8mmのピッチ間隔を有するように複数形成し、この貫通孔19内に前述のように孔埋め材21を配設する。
Specific examples of the above manufacturing method will be described.
A brazing material made of 72Ag-28Cu with a thickness of about 50 μm, a heat radiator body 17 made of a Cu—Cr—Zr-based alloy with a thickness of about 1.0 mm, a width of about 80 mm, and a length of about 200 mm, and an Fe-36Ni-based alloy And a low thermal expansion body 18 having a thickness of about 1.0 mm, a width of about 80 mm, and a length of about 200 mm. A plurality of through holes 19 having an outermost diameter of about 5.8 mm are formed on the surface of the low thermal expansion body 18 so as to have a pitch interval of about 5.8 mm, and the holes are formed in the through holes 19 as described above. A filling material 21 is disposed.

その後、この低熱膨張体18と、ろう材と、放熱体本体17とを前述のように積層した状態で、0.1MPa以上の圧力で積層方向に加圧し、この状態で、これらを減圧還元性雰囲気(H、0.2〜0.4Torr)とされた接合炉内に置く。そして、接合炉内の温度を20℃/分で約760℃まで昇温させた後に、この温度を約60分間保持し、これにより、ろう材,放熱体本体17,低熱膨張体18,および孔埋め材21の温度を均一にする。その後、さらに、20℃/分で約830℃まで昇温させ、この温度を約20分間保持し、これにより、ろう材を溶融させる。 Thereafter, the low thermal expansion body 18, the brazing material, and the heat radiating body main body 17 are laminated as described above, and are pressurized in the laminating direction at a pressure of 0.1 MPa or more. atmosphere (H 2, 0.2~0.4Torr) placed in a by bonding oven. And after raising the temperature in a joining furnace to about 760 degreeC at 20 degreeC / min, this temperature is hold | maintained for about 60 minutes, and, thereby, brazing material, the heat radiator main body 17, the low thermal expansion body 18, and a hole The temperature of the filling material 21 is made uniform. Thereafter, the temperature is further raised to about 830 ° C. at 20 ° C./minute, and this temperature is maintained for about 20 minutes, thereby melting the brazing material.

そして、接合炉内から減圧還元性雰囲気を排出するとともに、真空雰囲気を吸入し、炉内温度を約200℃まで除冷した後に、さらに、真空雰囲気を排出するとともに、Nガスを吸入し、室温まで急冷する。
以上により、放熱体本体17と、低熱膨張体18および孔埋め材21とが接合され、放熱体16が得られる。
Then, the vacuum reducing atmosphere is discharged from the inside of the joining furnace, the vacuum atmosphere is sucked, the furnace temperature is cooled to about 200 ° C., the vacuum atmosphere is further discharged, and N 2 gas is sucked. Quench rapidly to room temperature.
As described above, the heat radiating body 17, the low thermal expansion body 18 and the hole filling material 21 are joined, and the heat radiating body 16 is obtained.

以上説明したように、本実施形態による放熱体16によれば、放熱体本体17と、低熱膨張材18および孔埋め材21とがろう付けされ接合されているので、この放熱体16が低熱膨張体18を有する構成であるにもかかわらず、この放熱体16の熱伝導率の低下を抑制することができる。したがって、低熱膨張性および高熱伝導性を兼ね備えた放熱体16が得られる。   As described above, according to the radiator 16 according to the present embodiment, the radiator body 17, the low thermal expansion material 18 and the hole filling material 21 are brazed and joined. Despite the configuration having the body 18, it is possible to suppress a decrease in the thermal conductivity of the heat radiating body 16. Therefore, the heat radiating body 16 having both low thermal expansion and high thermal conductivity is obtained.

特に、放熱体本体17がCr−Zr−Cu系合金若しくはNi−Si−Cu系合金により形成され、低熱膨張体18がFe−Ni系合金により形成され、孔埋め材21が純Cuにより形成されているので、放熱体16に低熱膨張性および高熱伝導性を確実に具備させることができるとともに、高強度化を図ることができ、したがって、放熱体16より熱膨張係数の小さい絶縁基板11側と放熱体16とが接合された構成において、これが温度サイクル下で使用されても、放熱体16に反りが発生することを抑制することができる。   In particular, the heat dissipating body 17 is formed of a Cr—Zr—Cu alloy or a Ni—Si—Cu alloy, the low thermal expansion member 18 is formed of a Fe—Ni alloy, and the hole filling material 21 is formed of pure Cu. Therefore, the heat dissipating body 16 can be surely provided with low thermal expansion and high thermal conductivity, and high strength can be achieved. Therefore, the insulating substrate 11 side having a smaller thermal expansion coefficient than the heat dissipating body 16 can be provided. In the configuration in which the heat radiating body 16 is joined, even if it is used under a temperature cycle, the heat radiating body 16 can be prevented from warping.

また、貫通孔19は、低熱膨張体18の表面のうち、前記対応領域Xにおける占有面積比より前記周辺領域Yにおける占有面積比の方が大きくされているので、放熱体16の前記対応領域Xにおける曲げ剛性の低下が最小限に抑制され、半導体チップ30からの熱により前記対応領域Xに反りが発生することを抑制することができる。   Further, since the through-hole 19 has a larger occupied area ratio in the peripheral region Y than a occupied area ratio in the corresponding region X in the surface of the low thermal expansion body 18, the corresponding region X in the heat radiator 16. It is possible to suppress a decrease in bending rigidity at the minimum, and to prevent the corresponding region X from being warped by heat from the semiconductor chip 30.

さらに、貫通孔19の開口部が凸曲面部19aとされているので、放熱体16が温度サイクル下に置かれた際に、孔埋め材21の放熱体本体17との接合部に発生する応力集中が緩和されることになる。したがって、前記接合部に亀裂が発生することを抑制することができるので、放熱体16の高熱伝導性を長期にわたって維持することができる。   Furthermore, since the opening portion of the through hole 19 is a convex curved surface portion 19a, the stress generated at the joint portion of the hole filling material 21 with the radiator body 17 when the radiator 16 is placed under a temperature cycle. Concentration will be eased. Therefore, since it can suppress that a crack generate | occur | produces in the said junction part, the high thermal conductivity of the heat radiator 16 can be maintained over a long period of time.

また、本実施形態による放熱体16の製造方法によれば、前述した孔埋め工程と接合工程とを各別に有するので、低熱膨張体18の表裏面に各々配設された放熱体本体17の厚さAを略均一にすることが可能になり、放熱体16の使用に際し、この放熱体16に反りが発生することを抑制することができる。さらに、前記孔埋め工程は、予め形成された貫通孔19の空間体積より大きい体積の孔埋め材21を貫通孔19に圧入するので、圧入により孔埋め材21を貫通孔19の内部の略全域に行き渡らせることができる。   Moreover, according to the manufacturing method of the heat radiating body 16 according to the present embodiment, since the hole filling step and the joining step described above are separately provided, the thickness of the heat radiating body main body 17 respectively disposed on the front and back surfaces of the low thermal expansion body 18. It is possible to make the thickness A substantially uniform, and it is possible to suppress the occurrence of warpage of the heat radiating body 16 when the heat radiating body 16 is used. Further, in the hole filling step, since the hole filling material 21 having a volume larger than the space volume of the through hole 19 formed in advance is press-fitted into the through hole 19, the hole filling material 21 is almost entirely inside the through hole 19 by press fitting. Can be spread over.

なお、前述の実施形態では、放熱体本体17に積層された低熱膨張体18として、Fe―Ni系合金を用いた例を示したが、他の低熱膨張体、例えば高炭素鋼(Fe−C)、42合金、モリブデン(Mo)、タングステン(W)等で構成しても、同様の作用効果が得られる。   In the above-described embodiment, an example in which an Fe—Ni-based alloy is used as the low thermal expansion body 18 laminated on the heat radiating body 17 is shown. However, other low thermal expansion bodies such as high carbon steel (Fe—C) are used. ), 42 alloy, molybdenum (Mo), tungsten (W), etc., the same effects can be obtained.

さらに、放熱体16に冷却シンク部31を配設した構成を示したが、この構成に限らず、コルゲートフィンを設けた構成としてもよい。すなわち、放熱体16表面にろう材を介して接合された接合部と、接合部の一端に設けられ接合部と直交して立上がる立上がり部と、立上がり部の上端に設けられ接合部に平行且つ離間する方向に延びる平坦部と、平坦部の一端に設けられ平坦部に直交且つ放熱体16に向かって折返る折返し部とを備えた突出部を、放熱体16の沿面方向に沿って繰返し連続して設けた構成としてもよい。なお、この構成においては、立上がり部と平坦部と折返し部と放熱体16表面とが空間を形成することになる。   Furthermore, although the structure which has arrange | positioned the cooling sink part 31 in the heat radiator 16 was shown, it is good also as a structure which provided not only this structure but a corrugated fin. That is, a joining portion joined to the surface of the heat radiating body 16 via a brazing material, a rising portion provided at one end of the joining portion and rising up perpendicular to the joining portion, and provided at an upper end of the rising portion and parallel to the joining portion and A projecting portion including a flat portion extending in a separating direction and a folded portion provided at one end of the flat portion and orthogonal to the flat portion and folded back toward the radiator 16 is continuously repeated along the creeping direction of the radiator 16. It is good also as a structure provided. In this configuration, the rising portion, the flat portion, the folded portion, and the surface of the radiator 16 form a space.

また、前記実施形態においては、放熱体16を半導体装置のパワーモジュールに適用したが、これに限定することなく、それ以外の発熱体や熱源に取り付けて使用しても良い。さらに、リベット形状の孔埋め材21を圧入により貫通孔19内に配設したが、粉末材料を貫通孔19内に充填し、その後、この粉末材料を加圧加熱して焼結させるようにしてもよい。また、低熱膨張体18の貫通孔19の形状は、図2に示す6角形状に限らず、例えば円形状であってもよい。   Moreover, in the said embodiment, although the heat radiator 16 was applied to the power module of the semiconductor device, you may use it attaching to other heat generating bodies and heat sources, without limiting to this. Further, the rivet-shaped hole filling material 21 is disposed in the through-hole 19 by press-fitting, but the powder material is filled in the through-hole 19 and then the powder material is pressurized and heated to be sintered. Also good. Further, the shape of the through hole 19 of the low thermal expansion body 18 is not limited to the hexagonal shape shown in FIG.

低熱膨張性および高熱伝導性を兼ね備えた放熱体を提供し、放熱体が温度サイクル下で使用されてもこの放熱体に反りが発生することを抑制する。   A heat radiator having both low thermal expansibility and high thermal conductivity is provided, and even when the heat radiator is used under a temperature cycle, warpage of the heat radiator is suppressed.

この発明の一実施形態に係る放熱体を適用したパワーモジュールを示す全体図である。1 is an overall view showing a power module to which a heat radiator according to an embodiment of the present invention is applied. 図1に示す低熱膨張体の平面図である。It is a top view of the low thermal expansion body shown in FIG. 図1に示す放熱体の拡大断面側面図である。It is an expanded sectional side view of the heat radiator shown in FIG. 図1に示す放熱体を製造する製造工程において、孔埋め材を圧入する工程を示す拡大断面側面図である。It is an expanded sectional side view which shows the process of pressing-in a hole-filling material in the manufacturing process which manufactures the heat radiator shown in FIG.

符号の説明Explanation of symbols

10 パワーモジュール用基板
11 絶縁基板
16 放熱体
17 放熱体本体
18 低熱膨張体
19 貫通孔
19a 凸曲面部
21 孔埋め材
30 半導体チップ(発熱体)
X 対応領域
Y 周辺領域

DESCRIPTION OF SYMBOLS 10 Power module board | substrate 11 Insulation board | substrate 16 Heat radiating body 17 Heat radiating body main body 18 Low thermal expansion body 19 Through-hole 19a Convex-curved surface part 21 Filling material 30 Semiconductor chip (heating element)
X corresponding area Y peripheral area

Claims (7)

上下の放熱体本体のに、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が配置された3層構造とされ、前記放熱体本体の表面側に設けられた発熱体の熱を、前記放熱体本体および低熱膨張体の積層方向に伝導させ放散させる構成とされた放熱体であって、
前記低熱膨張体に穿設された貫通孔内に、前記放熱体本体より熱伝導率の高い孔埋め材が配設され、
前記放熱体本体と、該放熱体本体に対向する前記低熱膨張材および前記孔埋め材とが全面にわたってろう付けされ接合されていることを特徴とする放熱体。
A three-layer structure in which a low thermal expansion coefficient having a thermal expansion coefficient lower than the thermal expansion coefficient of the radiator body is arranged between the upper and lower radiator bodies, and the heating element provided on the surface side of the radiator body A heat radiator configured to conduct and dissipate heat in the stacking direction of the heat radiator body and the low thermal expansion body ,
In the through-hole drilled in the low thermal expansion body, a hole filling material having a higher thermal conductivity than the radiator body is disposed,
A heat radiator, wherein the heat radiator body, the low thermal expansion material and the hole filling material facing the heat radiator body are brazed and joined over the entire surface .
請求項1記載の放熱体において、
前記貫通孔は、前記低熱膨張体の表面のうち、前記発熱体と対応する領域における占有面積比が、該対応領域の周辺領域における占有面積比より小さくなるように形成されていることを特徴とする放熱体。
The heat radiator according to claim 1,
The through hole is formed such that, in the surface of the low thermal expansion body, an occupied area ratio in a region corresponding to the heating element is smaller than an occupied area ratio in a peripheral region of the corresponding region. Heatsink.
請求項1または2に記載の放熱体において、
前記貫通孔の開口端部は、当該開口端から貫通方向に向うに従い漸次縮径されるとともに、径方向内方に向って凸とされた凸曲面部とされていることを特徴とする放熱体。
In the heat radiator according to claim 1 or 2,
The opening end portion of the through hole is a convex curved surface portion that is gradually reduced in diameter as it goes from the opening end toward the penetrating direction and that protrudes radially inward. .
上下の放熱体本体のに、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が配置された3層構造とされ、前記放熱体本体の表面側に設けられた発熱体の熱を前記放熱体本体および低熱膨張体の積層方向に伝導させ放散させる構成とされた放熱体の製造方法であって、
前記低熱膨張体に穿設された貫通孔に、前記放熱体本体より熱伝導率の高い孔埋め材を配設する孔埋め工程と、
該孔埋め工程の後に、前記放熱体本体と、該放熱体本体に対向する前記低熱膨張体および前記孔埋め材を全面にわたりろう付けにより接合する接合工程とを有することを特徴とする放熱体の製造方法。
A three-layer structure in which a low thermal expansion coefficient having a thermal expansion coefficient lower than the thermal expansion coefficient of the radiator body is arranged between the upper and lower radiator bodies, and the heating element provided on the surface side of the radiator body A method of manufacturing a radiator that is configured to conduct and dissipate heat in the stacking direction of the radiator body and the low thermal expansion body ,
A hole filling step of disposing a hole filling material having a higher thermal conductivity than the heat dissipating body in the through hole formed in the low thermal expansion body;
After the hole-filling step, the heat-radiating member main body, and a joining step of joining the low thermal expansion body and the hole-filling material facing the heat-dissipating body main body by brazing over the entire surface . Production method.
請求項4記載の放熱体の製造方法において、
前記孔埋め工程は、予め形成された前記貫通孔の空間体積より大きい体積の孔埋め材を前記貫通孔に圧入することを特徴とする放熱体の製造方法。
In the manufacturing method of the heat radiator of Claim 4,
The said hole-filling process press-fits the hole-filling material of the volume larger than the space volume of the said through-hole previously formed in the said through-hole, The manufacturing method of the heat radiator characterized by the above-mentioned.
放熱体本体に、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が積層された放熱体と、発熱体を備えた絶縁基板とを備え、
前記放熱体の一方の表面に前記絶縁基板が配設され、前記発熱体の熱を積層方向に伝導させ放散させる構成とされたパワーモジュール用基板であって、
前記放熱体が請求項1からのいずれかに記載の放熱体であることを特徴とするパワーモジュール用基板。
The radiator body includes a radiator in which a low thermal expansion coefficient having a thermal expansion coefficient lower than the thermal expansion coefficient of the radiator body is laminated, and an insulating substrate including the heating element.
The insulating substrate is disposed on one surface of the heat dissipating body, and the power module substrate is configured to conduct and dissipate heat of the heating element in the stacking direction,
A power module substrate, wherein the heat dissipating member is a heat radiator according to any one of claims 1 to 3.
放熱体本体に、該放熱体本体の熱膨張係数より低い熱膨張係数の低熱膨張体が積層された放熱体と、発熱体を備えた絶縁基板と、内部に冷媒が循環する構成とされた冷却シンク部とを備え、
前記放熱体の一方の表面に前記絶縁基板が配設されるとともに、他方の表面に前記冷却シンク部が配設され、
前記発熱体の熱を前記放熱体の一方の表面から他方の表面に伝導させ放散させる構成とされたパワーモジュールであって、
前記放熱体が請求項1からのいずれかに記載の放熱体であることを特徴とするパワーモジュール。
Cooling structure in which a heat radiating body is laminated with a low thermal expansion body having a thermal expansion coefficient lower than that of the heat radiating body, an insulating substrate provided with the heat generating body, and a cooling medium configured to circulate inside. With a sink part,
The insulating substrate is disposed on one surface of the radiator, and the cooling sink portion is disposed on the other surface.
A power module configured to conduct and dissipate heat of the heat generating body from one surface of the heat radiating body to the other surface,
A power module, wherein the radiator is the radiator according to any one of claims 1 to 3 .
JP2004194164A 2004-06-30 2004-06-30 Radiator, manufacturing method thereof, power module substrate and power module Expired - Lifetime JP4395739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194164A JP4395739B2 (en) 2004-06-30 2004-06-30 Radiator, manufacturing method thereof, power module substrate and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194164A JP4395739B2 (en) 2004-06-30 2004-06-30 Radiator, manufacturing method thereof, power module substrate and power module

Publications (2)

Publication Number Publication Date
JP2006019410A JP2006019410A (en) 2006-01-19
JP4395739B2 true JP4395739B2 (en) 2010-01-13

Family

ID=35793413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194164A Expired - Lifetime JP4395739B2 (en) 2004-06-30 2004-06-30 Radiator, manufacturing method thereof, power module substrate and power module

Country Status (1)

Country Link
JP (1) JP4395739B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962147B2 (en) * 2012-03-30 2016-08-03 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
JP6044097B2 (en) * 2012-03-30 2016-12-14 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
CN117545321A (en) * 2023-11-28 2024-02-09 惠科股份有限公司 Display panel and display device

Also Published As

Publication number Publication date
JP2006019410A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP3862737B1 (en) Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material
JP6199397B2 (en) Semiconductor device and manufacturing method thereof
JP5125241B2 (en) Power module substrate manufacturing method
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
JP5151080B2 (en) Insulating substrate, method for manufacturing insulating substrate, power module substrate and power module
JP2004241765A (en) Composite material and manufacturing method therefor
JP2008235852A (en) Ceramic substrate and semiconductor module using the same
JP5520815B2 (en) Insulating substrate and base for power module
JP2004153075A (en) Substrate for power module and power module
JP2002064169A (en) Heat radiating structure
JP4395739B2 (en) Radiator, manufacturing method thereof, power module substrate and power module
JP4605009B2 (en) Power module manufacturing method
JP2008124187A6 (en) Power module base
JP2008124187A (en) Base for power module
JP4457905B2 (en) Insulated circuit board for power module and power module
JP3938079B2 (en) Power module substrate manufacturing method
JP4345686B2 (en) Insulated circuit board and power module
JP2009158715A (en) Heat dissipator and power module
JP2005328087A (en) Power module substrate
JP3912255B2 (en) Power module substrate and power module
JP3960192B2 (en) Radiator
JP2004296493A (en) Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP4457921B2 (en) Insulated circuit board for power module and power module
JP3933031B2 (en) Radiator
JP3975910B2 (en) Radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4395739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

EXPY Cancellation because of completion of term