JP3960192B2 - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP3960192B2
JP3960192B2 JP2002303002A JP2002303002A JP3960192B2 JP 3960192 B2 JP3960192 B2 JP 3960192B2 JP 2002303002 A JP2002303002 A JP 2002303002A JP 2002303002 A JP2002303002 A JP 2002303002A JP 3960192 B2 JP3960192 B2 JP 3960192B2
Authority
JP
Japan
Prior art keywords
thermal expansion
radiator
heat
low thermal
expansion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002303002A
Other languages
Japanese (ja)
Other versions
JP2004140159A (en
Inventor
義幸 長友
健 根岸
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002303002A priority Critical patent/JP3960192B2/en
Publication of JP2004140159A publication Critical patent/JP2004140159A/en
Application granted granted Critical
Publication of JP3960192B2 publication Critical patent/JP3960192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Description

【0001】
【発明の属する技術分野】
この発明は、大電圧・大電流を制御する半導体装置に用いられる放熱体に係り、特に半導体チップ等の発熱体を搭載している被放熱体に伝わる熱を放散させるのに好適な放熱体に関する。
【0002】
【従来の技術】
半導体装置としてのパワーモジュールは、一般に、半導体チップがパワーモジュール用基板に搭載され、半導体チップの熱がパワーモジュール用基板に伝達されることから、パワーモジュール用基板に伝わる熱を放熱する必要がある。
このような被放熱体としてのパワーモジュール用基板は、セラミックス材料からなる絶縁基板(セラミックス基板)に金属薄板が直接積層され、この金属薄板に可塑性多孔質金属層を介し、ヒートシンクからなる放熱体が積層接着される(例えば、特許文献1参照)。可塑性多孔質金属層は、気孔率20〜50%のCuの多孔質焼結体であって、絶縁基板が、これに搭載されている半導体チップからの熱を受けたとき、その熱変形を吸収する応力緩和層をなす構成であり、これにより、絶縁基板及び放熱体の反りや割れを防止できて、放熱体が良好な放熱作用を果たすこともできるようになっている。
【0003】
【特許文献1】
特開平8−335652号公報(第4−12頁、図1〜図5)
【0004】
【発明が解決しようとする課題】
ところで、上記従来のものでは、被放熱体としてのパワーモジュール用基板に設けられた可塑性多孔質金属層が、絶縁基板や放熱体の熱変形を吸収するので、絶縁基板と放熱体との熱膨張係数が異なっても、絶縁基板、放熱体に反りや割れが起こるのを防止できるようにしているものの、絶縁基板と放熱体との間に可塑性多孔質金属層が介在しているので、その分だけ熱抵抗が上昇して熱伝導率が低下してしまい、そのため、放熱体の放熱効果が悪くなっていた。
【0005】
一般に、放熱体は、被放熱体との間で互いに熱膨張係数の異なる材質で構成する場合、両者の熱膨張係数の差による反りを防ぐためには、両者の熱膨張係数を合わせることが容易に考えられる。その場合、熱膨張係数の低い方(被放熱体)に合わせることとなるが、そうすると、反りを低減できる反面、その分だけ熱伝達率が低下して放熱効果の低下をきたしてしまい、反り対策と良好な熱伝導との双方を兼ね備えたものの要請に応えることができない問題があった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、被放熱体との間で熱膨張係数差があっても、これに拘わることなく反りを低減することができると共に、熱伝導率が低下するのも抑制することができる放熱体を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、被放熱体の熱を放熱させる放熱体において、前記放熱体は、放熱体本体に該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材を積層して構成され、該低熱膨張材の被放熱体と対応する領域に、放熱体側の熱膨張係数と被放熱体側の熱膨張係数との差に基づき、段差部を設けることを特徴とする。
【0008】
この発明に係る放熱体によれば、被放熱体と放熱体との膨張係数に差があっても、放熱体内における低熱膨張材の被放熱体と対応する領域に双方の熱膨張係数の差に基づいて設けられた段差部により、熱膨張係数の差を緩和することで反りを抑制でき、また、低熱膨張材が金属であってかつ相応の熱伝導率を有していることから、被放熱体からの発熱が、放熱体を介して外部に放熱される結果、熱伝導率が低下するのを抑制することもできる。
【0009】
請求項2に係る発明は、請求項1記載の放熱体において、前記段差部は、放熱体において、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より小さいとき、低熱膨張材の前記被放熱体と対応する領域を、被放熱体から遠ざかる方向に凹んで形成させる一方、被放熱体側の熱膨張係数より放熱体側の熱膨張係数が小さいとき、低熱膨張材の前記被放熱体と対応する領域を、被放熱体に近づく方向に隆起させて形成することを特徴とする。
【0010】
この発明に係る放熱体によれば、低熱膨張材の段差部が放熱体において、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より小さいとき、被放熱体から遠ざかる方向に凹んで形成され、また被放熱体側の熱膨張係数より放熱体側の熱膨張係数が小さいとき、被放熱体に近づく方向に隆起して形成されるので、被放熱体側の熱膨張係数との差に応じて低熱膨張材の段差部の位置を変えることで、双方の熱膨張係数の差を緩和することができ、反りの抑制を良好に行うことができる。
【0011】
請求項3に係る発明は、請求項1又は2記載の放熱体において、前記低熱膨張材にはこれを貫通する孔が穿設されていることを特徴とする。
この発明に係る放熱体によれば、低熱膨張材に設けられた孔により、被放熱体からの熱を放熱体の外部に放熱させることができるので、熱伝導率が低下するのを抑制することもできる。
【0012】
請求項4に係る発明は、請求項1〜3のいずれか一項に記載の放熱体において、前記低熱膨張材は、リブを有していることを特徴とする。
この発明に係る放熱体によれば、低熱膨張材がリブを有していると、放熱体全体としての剛性が上がり、強度を増大させることができるので、反りをいっそう抑えることができる。
【0013】
請求項5に係る発明は、請求項1〜4のいずれか一項に記載の放熱体において、前記孔は、前記低熱膨張材において、被放熱体と対応する領域に設けられた断面積より、該対応領域の周辺領域に設けられた断面積を大きくさせていることを特徴とする。
【0014】
この発明に係る放熱体によれば、低熱膨張材において、被放熱体との対応領域に設けられた孔の断面積が、その対応領域の周辺領域に設けられた孔の断面積より少なくなっているので、被放熱体からの熱影響で、対応領域が熱変形を受けて反りが発生するのを防ぐことができる一方、前記対応領域より周辺領域に設けられた孔の断面積が大きくなることで、放熱体本体間の熱伝達をいっそう良好にさせることができ、これによって、放熱体の熱伝達をいっそう良好に行うことができる。
【0015】
請求項6に係る発明は、請求項1〜5のいずれか一項に記載の放熱体において、前記低熱膨張材は、放熱体の一方の面と他方の面とに亘る厚み方向に連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して放熱体本体に鋳ぐまれる構成としたことを特徴とする。
【0016】
この発明に係る放熱体によれば、低熱膨張材の連絡開口部を介して放熱体本体を充填することで、低熱放熱材が放熱体本体に鋳ぐまれる構成としたので、放熱体全体としての熱膨張係数を確実に下げることができ、被放熱体と放熱体全体との熱膨張係数の差を可及的に小さくすることができ、従って、被放熱体と放熱体とをはんだ等によって接合した場合、放熱体に被放熱体に向かう反りが発生するのを確実に低減することができると共に、放熱体の熱伝導率が低下するのを抑制することができる。
【0017】
請求項7に係る発明は、請求項6記載の放熱体において、前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする。
【0018】
この発明に係る放熱体によれば、帯状の単位板状体を同列位置で互いに組付けて連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設したので、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できる。
【0019】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1及び図2はこの発明の第1の実施の形態に係る放熱体を適用したパワーモジュールを示す図であって、図1は放熱体側の熱膨張係数が被放熱体側の熱膨張係数より小さい場合の全体図、図2は放熱体側の熱膨張係数が被放熱体側の熱膨張係数より大きい場合の全体図である。
この実施形態のパワーモジュール10は、図1に示すように、被放熱体としてのパワーモジュール用基板11に放熱体16が接合して構成されている。
パワーモジュール用基板11は、例えばAlN、Al、Si、SiC等により所望の大きさに形成された絶縁基板であって、その上面及び下面に回路層12及び金属層13がそれぞれ積層接合される。回路層12及び金属層13は、Al、Cu等により形成されている。以下は、パワーモジュール用基板11を「絶縁基板11」と略称する。
【0020】
絶縁基板11の回路層12上にはんだ14によって半導体チップ30がそれぞれ搭載される一方、それぞれの絶縁基板11の金属層13の下面にはんだ15によって、或いはろう付けや拡散接合等によって放熱体16が接合され、更に、この放熱体16が冷却シンク部31に取り付けられて使用され、該冷却シンク部31内の冷却水(或いは冷却空気)32により、放熱体16に伝達される熱が外部に放熱されることで、パワーモジュール10が構成されている。放熱体16は、冷却シンク部31に取付ねじ33によって密着した状態で取り付けられる。
【0021】
この実施形態において、放熱体16の放熱体本体17に低熱膨張材18が積層されている。放熱体本体17は、例えばAl、Cu等のような熱伝導率の良好な材質、いわゆる高熱伝導材によって形成されている。高熱伝導材としては、熱伝導率が例えば100W/m・K、好ましくは150W/m・Kのものである。
【0022】
一方、低熱膨張材18は、放熱体本体17の熱膨張係数より低い熱膨張係数の材質からなっており、放熱体本体17に積層することで、放熱体16全体の熱膨張係数と絶縁基板11側の熱膨張係数との差を可及的に近づけさせるためのものであり、例えばインバーからなっていて、熱膨張係数がおよそ5ppm/℃以下である。
インバー合金とは、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
【0023】
このような材質からなる低熱膨張材18は、図1及び図2に示すように、放熱体本体17と17との間に接合され、従って、放熱体16が二枚の放熱体本体17と一枚の低熱膨張材18との三層構造であって、絶縁基板11側と冷却シンク部31側とに放熱体本体17が配置されている。
【0024】
また、この低熱膨張材18は、絶縁基板11と対向する領域に厚み方向に段差部20が設けられている。この段差部20は、絶縁基板11側の熱膨張係数が低熱膨張材18を有する放熱体16側の熱膨張係数より小さい場合、図1に示すように、放熱体16内において、低熱膨張材18の絶縁基板11と対応する領域が、冷却シンク部31に近づくように、つまり、絶縁基板11から遠ざかるように凹んで形成される。
【0025】
反対に、放熱体16側の熱膨張係数が絶縁基板11側の熱膨張係数より小さい場合、段差部20は、図2に示すように、放熱体16内において、低熱膨張材18の絶縁基板11との対応位置を、冷却シンク部31から遠ざかるように、つまり絶縁基板11側に近づくように隆起して形成されている。
【0026】
つまり、放熱体16内における低熱膨張材18の段差部20の位置は、絶縁基板11側の熱膨張係数α1と放熱体16側の熱膨張係数α2との大きさに基づいて選定され、例えばα1<α2のとき、t1>t2となる一方、α1>α2のとき、t1<t2となる。このt1及びt2の寸法は、具体的には、α1及びα2の大きさの比率に基づいて適宜決定されることとなる。
なお、t1は、放熱体16において絶縁基板11との接合面から段差部20までの厚み方向の寸法であり、t2は同じく冷却シンク部31との接合面から段差部20までの厚み方向の寸法である。図1及び図2は、低熱膨張材18における段差部20の構成が異なるだけであり、それ以外は同様に構成されている。
【0027】
このように、パワーモジュール10を構成する放熱体16が、放熱体本体17と低熱膨張材18とを互いに積層して形成されると、放熱体16全体としての熱膨張係数を確実に下げることができるので、絶縁基板11と放熱体16全体との熱膨張係数の差を可及的に小さくできる。
ところが、放熱体16側の熱膨張係数と、絶縁基板11側との熱膨張係数の差は、放熱体16に低熱膨張材18を用いているにも拘わらず、必然的に差が生じしてしまう。
【0028】
この実施形態では、前述のように、放熱体16内の低熱膨張材18には、絶縁基板11と対応する領域に、絶縁基板11側の熱膨張係数α1と放熱体16側の熱膨張係数α2との大きさに基づき、絶縁基板11と対応する領域を絶縁基板11側と冷却シンク部31側とのいずれかに近づくよう段差部20が設けられているので、以下の作用が得られる。
【0029】
即ち、図1に示すように、絶縁基板11側の熱膨張係数α1が低熱膨張材18を有する放熱体16側の熱膨張係数α2より小さい場合、低熱膨張材18の段差部20が、絶縁基板11と対応する領域を、絶縁基板11から遠ざかる方向に凹んで形成されていると、放熱体16において、絶縁基板11が搭載されている面と反対側の面近傍の領域Aでの熱膨張係数が見かけ上、下がることになる。これにより、絶縁基板11から放熱体16にかけた領域は、熱膨張係数が異なる3層に分けられた構成となる。すなわち、絶縁基板11側の低熱膨張層と、放熱体16において絶縁基板11が搭載されている面と反対側の面近傍の領域Aからなる低熱膨張層と、これら低熱膨張層に挟まれた放熱体16の上部の領域Bからなる高熱膨張層である。従って、前記高熱膨張層が前記2層の低熱膨張層に挟まれた構成となり、前記低熱膨張層の熱膨張係数を、パワーモジュール10全体としての熱膨張係数に対して支配的とする構成を実現することができ、反りの発生を抑えることができる。
【0030】
従って、絶縁基板11側と放熱体16側とに膨張係数の差があっても、その差を緩和することで反りを抑制することができ、また、低熱膨張材18が金属であってかつ相応の熱伝導率を有していることから、絶縁基板11上の半導体チップ30からの発熱が、回路層12、絶縁基板11、金属層13、はんだ15、放熱体16及び冷却シンク部31を介して外部に放熱される結果、熱伝導率が低下するのを抑制することもできる。
【0031】
一方、図2に示すように、放熱体16側の熱膨張係数α2が絶縁基板11側の熱膨張係数α1より小さい場合、低熱膨張材18の段差部20が、絶縁基板11との対応領域を絶縁基板11側に近づく方向に隆起して形成されていると、放熱体16において、絶縁基板11との接合近傍では、段差部20としての低熱膨張材が存在することで、絶縁基板から遠ざかる部分での熱膨張係数が見かけ上、上がることとなるので、絶縁基板11側の熱膨張係数α1と放熱体16側の絶縁基板から遠ざかる部分での熱膨張係数の差を緩和することができ、反りを抑制することができる。
【0032】
その結果、絶縁基板11と放熱体16との膨張係数の差に拘わることなく、反りの抑制と熱伝導率の低下の抑制とを両立させた、良好な放熱体16を得ることができ、これにより、放熱特性に優れたパワーモジュール10が得られる。
【0033】
図3及び図4は、この発明の第2の実施の形態に係る放熱体を示している。
この場合は、低熱膨張材18にこれを貫通する孔19が複数穿設されている。孔19は、放熱体16自体に低熱膨張材18を設けると、それだけ熱伝導率が低下するので、その熱伝導率が低下するのを極力抑えるようにするためのものである。その場合、図4に示すように、低熱膨張材18において、絶縁基板11と対応する領域Aには孔19の穿設される数を少なくすると共に、その対応領域Aの周辺領域Bには孔19の穿設される数を多くしている。
【0034】
つまり、低熱膨張材18において絶縁基板11との対応領域Aでは穿設される孔19の個数を少なくすると共に、それを除く周辺領域Bでは孔19の個数を多くすることにより、孔19の断面積の分布を変えている。この場合、低熱膨張材18に穿設される孔19の数が徒らに増えると、低熱膨張材としての機能を果たし難くなることから、低熱膨張材18の表面積に対し、絶縁基板11及び放熱体本体17並びに低熱膨張材18の材質等に基づき、およそ20〜50%の割合の面積で孔19が形成されることが好ましい。なお、孔19は、この実施形態では丸孔をなしているが、その形状は任意である。図3は、図2に対応させて図示しており、冷却シンク部31が省略されている。
【0035】
この実施形態によれば、低熱膨張材18に段差部20が設けられているので、基本的には前述した第1の実施形態と同様の作用効果が得られる。
これに加え、低熱膨張材18に孔19が設けられているので、この孔19を形成する空間により、絶縁基板11側の放熱体本体17から冷却シンク部20側の放熱体本体17への熱伝達を良好に行うことができ、これによって、放熱体16本来の放熱効果を的確に果たすことができる。
【0036】
しかも孔19は、図4に示すように、絶縁基板11との対応領域Aでは、その周辺領域Bより少ない個数で穿設され、孔19の断面積が周辺領域Bより少なくしているので、絶縁基板11からの熱影響で、その対応領域Aが熱変形を受けて反りが発生するのをより防ぐことができる一方、周辺領域B内の孔19の断面積が対応領域Aより大きくなることで、放熱体本体17間の熱伝達をより良好にさせることができ、これによって、熱伝達をいっそう良好に行い、熱伝達が低下するのを抑制することもできる。
【0037】
図5及び図6は、この発明の第3の実施の形態に係る放熱体を示している。
この場合は、放熱体16に設けられた低熱膨張材18がリブを有している。
リブは、低熱膨張材18に設けられる孔19の製作に際し、予め所定の厚みに形成された板材に図6に示す切り込みが設けられ、この切り込みを利用することで形成される。即ち、予め設けられた切り込みを上下方向に立上げたり、立下げたりして折り曲げることで孔19を形成したとき、上記切り込みによって立上げ片18a及び立下げ片18bが共に形成され、これらからなるリブを有する低熱膨張材18が製作される。
そして、この低熱膨張材18が放熱体本体17と17との間に挟着されることで、放熱体16が構成される。
【0038】
この実施形態によれば、放熱体16が放熱体本体17に孔19を穿設した低熱膨張材18が積層されるので、基本的は前述した第2の実施形態と同様の作用効果が得られる。
これに加え、低熱膨張材18が立上げ片18a及び立下げ片18bからなるリブを有しているので、放熱体全体としての剛性が上がり、強度を増大させることができるので、これによっても、絶縁基板11の熱による反りをいっそう抑えることができる。
【0039】
なお、低熱膨張材18は、上述の実施形態では、放熱体本体17間に積層されたり、また放熱体本体17間に挟着することで設けられた例を示したが、これに限らず、例えば、粉末冶金によって孔19付き板を焼成した後、これにリブを後付けして設けるようにしてもよく、又は、ダイカスト鋳造法によって形成することもでき、更には、熱間鍛造より高温処理される溶融鍛造法によって形成することもできる。それ以外として、以下に示すように放熱体16を構成することもできる。
【0040】
図7及び図8は、この発明の第4の実施の形態に係る放熱体を示す図であって、放熱体の構成図である。
この場合の低熱膨張材18は、絶縁基板11側の放熱体本体17と接合される一方の面と、冷却シンク部31側の放熱体本体17と接合される他方の面とに亘る厚み方向に連絡すると共に、該厚み方向と交差方向で互いに連なる開口空間部40を有して設けられ、かつ該開口空間部40に放熱体本体17が充填されることで、図7に示すように、放熱体本体17に鋳ぐまれる構成となっている。
【0041】
具体的に述べると、低熱膨張材18は、図8に示すように、例えば二枚からなる帯状の単位板状体41、42を厚み方向に沿って組付けることで連結開口部40を連続的に有する連鎖状体43が形成される。
そして、これら連鎖状体43が同一平面上で複数列設けられると共に、連設開口部40を互いに隣接する列毎に互い違いに配列して形成されている。
【0042】
このように形成された低熱膨張材18は、放熱体16の形成時、放熱体本体17の材料が注入されると、その材料がいずれかの連結開口部40内に側方から充填され、側面から見たとき、図7に示すように、絶縁基板11側である上層の放熱体本体17と、冷却シンク部31側である下層の放熱体本体17間に埋設されるように形成される。
【0043】
この実施形態によれば、低熱膨張材18が厚み方向に沿い放熱体本体17に鋳ぐまれて形成したので、放熱体16全体の熱膨張率を下げることができ、また連絡開口部40により放熱体本体17が絶縁基板11からの熱を良好に受けると共に、その熱を冷却シンク部31に対して伝達させることができ、従って、反りを抑えつつ熱伝達が良好となり、基本的には前述した実施形態と同様の作用効果が得られる。
【0044】
また、上記の実施の形態の変形例として、図7、図8に示す低熱膨張材18としての連鎖状体43に代えて、図9(a)、(b)に示す連鎖状体51,61を用いても良い。図9(a)に示す連鎖状体51は、帯状の板体を平坦部50a、立上がり部50b、平坦部50c、折返し部50dを有するように折り曲げて、これを一方向に繰り返すように形成されたものである。また、図9(b)に示す連鎖状体61は、帯状の板体を、矩形形状に組んでこの矩形部60が繰り返されるように形成されたものである。
これらの連鎖状体51,61を一平面上で位置をずらせて配置し、これを前述したように鋳ぐるんだ構成、また更に一平面上にこれらを複数配置したものを複数段重ね合わせ、かつ重ね合わせる際に各層ごとに向きを変えてこれを鋳ぐるんだ構成を採用することができる。
また、他の連鎖状体としてハニカム構造を有するプレス加工材を上記と同様に用いることも可能である。
また、図10は、この発明の第5の実施の形態を示す図である。この実施の形態は、上記の各実施の形態において用いた冷却シンク部に変えて放熱フィン70を用いたものである。放熱フィン70は、前述した図9(a)に示す連鎖状体51と同一構成であり、各平坦部50aが放熱体16の表面にろう付け手段により接合された構成となっている。
この実施の形態においても、上記の実施の形態と同様の作用、効果を得ることができる。
なお、上記実施の形態において、放熱体に積層された低熱膨張材として、インバーを用いた例を示したが、他の低熱膨張材、例えば高炭素鋼(Fe−C)、42合金、モリブデン(Mo)、タングステン(W)等で構成しても、同様の作用効果が得られる。
また、放熱体16がパワーモジュール用基板11に取り付けられた例を示したが、該基板11に限らず、他の発熱体や熱源に取り付けられる場合にも適用することができ、要は、放熱を必要とする種々の被放熱体に用いられることで実用上有益となる。更に、放熱体16が取り付けられるパワーモジュール用基板11として、放熱体16側の面に金属層13が積層された例を示したが、金属層13が設けられていない絶縁基板11を放熱体16に直接接合しても、同様の作用効果が得られる。
【0045】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、放熱体内における低熱膨張材の被放熱体と対応する領域に双方の熱膨張係数の差に基づいて設けられた段差部により、熱膨張係数の差を緩和することで反りを抑制し、また熱伝導率が低下するのも抑制できるように構成したので、被放熱体との材質の熱膨張係数に差があっても、反りの抑制と熱伝導率の低下の抑制とを両立させた良好な放熱体が得られるという効果がある。
【0046】
請求項2に係る発明によれば、被放熱体側の熱膨張係数との差に応じて低熱膨張材の段差部の位置を変えることで、双方の熱膨張係数の差を緩和することができ、反りの抑制を良好にできる効果が得られる。
【0047】
請求項3に係る発明によれば、低熱膨張材に設けられた孔により、被放熱体からの熱を放熱体の外部に放熱させることができるので、熱伝導率が低下するのを抑制できる効果が得られる。
【0048】
請求項4に係る発明によれば、低熱膨張材のリブにより、放熱体全体としての剛性が上がり、強度を増大させることができるので、反りをいっそう抑えることができる効果が得られる。
【0049】
請求項5に係る発明によれば、孔の断面積の分布を変えることで、放熱体の熱伝達をいっそう良好に行うことができる効果が得られる。
【0050】
請求項6に係る発明によれば、被放熱体と放熱体とを接合した場合、放熱体に被放熱体に向かう反りが発生するのを確実に低減することができると共に、放熱体の熱伝導率が低下するのを抑制することができるという効果が得られる。
【0051】
請求項7に係る発明によれば、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の第1の実施の形態に係る放熱体を適用したパワーモジュールを示す図であって、放熱体側の熱膨張係数が被放熱体側の熱膨張係数より小さい場合の全体図である。
【図2】 放熱体側の熱膨張係数が被放熱体側の熱膨張係数より大きい場合のパワーモジュールを示す全体図である。
【図3】 この発明の第2の実施の形態に係る放熱体を示す説明図である。
【図4】 放熱体における低熱膨張材を上から見た説明図である。
【図5】 この発明の第3の実施の形態に係る放熱体を示す説明図である。
【図6】 低熱膨張材の孔の製作に際し、板材にリブを設ける説明図である。
【図7】 この発明の第4の実施の形態に係る放熱体を示す図であって、放熱体を側面から見た断面説明図である。
【図8】 低熱膨張材の要部を示す斜視図である。
【図9】 (a)、(b)は、いずれも低熱膨張材の変形例を示す断面図である。
【図10】 この発明の第5の実施の形態に係る放熱体を示す説明図である。
【符号の説明】
10 パワーモジュール
11 被放熱体(パワーモジュール用基板、絶縁基板)
16 放熱体
17 放熱体本体
18 低熱膨張材
18a リブ(立上げ片)
18b リブ(立下げ片)
19 孔
20 段差部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat radiating body used in a semiconductor device for controlling a large voltage and a large current, and more particularly to a heat radiating body suitable for radiating heat transmitted to a heat radiating body on which a heat generating body such as a semiconductor chip is mounted. .
[0002]
[Prior art]
In general, a power module as a semiconductor device has a semiconductor chip mounted on a power module substrate and heat of the semiconductor chip is transmitted to the power module substrate. Therefore, it is necessary to dissipate heat transmitted to the power module substrate. .
In such a power module substrate as a heat sink, a metal thin plate is directly laminated on an insulating substrate (ceramic substrate) made of a ceramic material, and a heat sink made of a heat sink is interposed on the metal thin plate with a plastic porous metal layer. Laminated and bonded (see, for example, Patent Document 1). The plastic porous metal layer is a porous sintered body of Cu having a porosity of 20 to 50%, and when the insulating substrate receives heat from the semiconductor chip mounted thereon, it absorbs the thermal deformation. Thus, it is possible to prevent warping and cracking of the insulating substrate and the heat radiating body, and the heat radiating body can also perform a good heat radiating action.
[0003]
[Patent Document 1]
JP-A-8-335652 (page 4-12, FIGS. 1 to 5)
[0004]
[Problems to be solved by the invention]
By the way, in the said conventional thing, since the plastic porous metal layer provided in the board | substrate for power modules as a to-be-radiated body absorbs the thermal deformation of an insulated substrate or a radiator, the thermal expansion of an insulated substrate and a radiator is carried out. Even if the coefficients are different, the insulation substrate and the heat sink can be prevented from warping or cracking, but the plastic porous metal layer is interposed between the insulation substrate and the heat sink. As a result, the thermal resistance is increased and the thermal conductivity is decreased, so that the heat dissipation effect of the radiator is deteriorated.
[0005]
In general, when the heat dissipating body is made of a material having a different thermal expansion coefficient with respect to the heat radiating body, in order to prevent warping due to the difference between the two thermal expansion coefficients, it is easy to match the thermal expansion coefficients of both. Conceivable. In that case, it will be matched to the one with the lower thermal expansion coefficient (heat radiating body), but doing so will reduce the warpage, but the heat transfer coefficient will decrease by that much and the heat dissipation effect will be reduced. However, there was a problem that it was not possible to meet the demand of what had both good heat conduction.
[0006]
The present invention has been made in consideration of such circumstances, and the object thereof is to reduce warpage without regard to this even if there is a difference in thermal expansion coefficient between the heat radiating body and the invention. An object of the present invention is to provide a heat dissipating body that can suppress a decrease in thermal conductivity.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a heat radiator that dissipates heat from a heat radiating body, wherein the heat radiator is formed by laminating a low thermal expansion material made of a material lower than a thermal expansion coefficient of the heat radiator main body. In the region corresponding to the heat radiating member of the low thermal expansion material, a step portion is provided based on the difference between the thermal expansion coefficient on the heat radiating member side and the thermal expansion coefficient on the heat radiating member side.
[0008]
According to the heat radiator according to the present invention, even if there is a difference in expansion coefficient between the heat radiating body and the heat radiating body, there is a difference between the thermal expansion coefficients of the low heat expansion material in the heat radiating body in the region corresponding to the heat radiating body. Warpage can be suppressed by reducing the difference in coefficient of thermal expansion by the step portion provided on the basis of this, and since the low thermal expansion material is a metal and has a corresponding thermal conductivity, As a result of heat generated from the body being radiated to the outside through the heat radiating body, it is possible to suppress a decrease in thermal conductivity.
[0009]
The invention according to claim 2 is the heat radiating body according to claim 1, wherein the stepped portion of the heat radiating body has a lower thermal expansion coefficient than the heat radiating body side when the thermal expansion coefficient is smaller than that of the heat radiating body. While the region corresponding to the radiator is formed to be recessed in the direction away from the radiator, when the thermal expansion coefficient on the radiator side is smaller than the thermal expansion coefficient on the radiator body, the region corresponds to the radiator of the low thermal expansion material. The region is formed by being raised in a direction approaching the heat radiating member.
[0010]
According to the radiator according to the present invention, the step portion of the low thermal expansion material is formed in the radiator so as to be recessed in the direction away from the radiator when the thermal expansion coefficient on the radiator body is smaller than the thermal expansion coefficient on the radiator body. In addition, when the thermal expansion coefficient on the radiator side is smaller than the thermal expansion coefficient on the radiator body, it is formed so as to rise in the direction approaching the radiator body, so that the low thermal expansion depends on the difference from the thermal expansion coefficient on the radiator body side. By changing the position of the stepped portion of the material, the difference between the two thermal expansion coefficients can be relaxed, and the warpage can be satisfactorily suppressed.
[0011]
According to a third aspect of the present invention, in the heat radiator according to the first or second aspect, the low thermal expansion material is provided with a hole penetrating the low thermal expansion material.
According to the heat radiator according to the present invention, the heat provided from the heat radiating body can be radiated to the outside of the heat radiating body by the holes provided in the low thermal expansion material, so that the thermal conductivity is prevented from decreasing. You can also.
[0012]
The invention according to claim 4 is the heat dissipating body according to any one of claims 1 to 3, wherein the low thermal expansion material has ribs.
According to the heat dissipating body according to the present invention, when the low thermal expansion material has ribs, the rigidity of the entire heat dissipating body is increased and the strength can be increased, so that warpage can be further suppressed.
[0013]
The invention which concerns on Claim 5 is a heat radiator as described in any one of Claims 1-4, In the said low thermal expansion material, the said hole is from the cross-sectional area provided in the area | region corresponding to a to-be-radiated body, The cross-sectional area provided in the peripheral region of the corresponding region is increased.
[0014]
According to the heat dissipating body according to the present invention, in the low thermal expansion material, the cross-sectional area of the hole provided in the region corresponding to the heat-radiating body is smaller than the cross-sectional area of the hole provided in the peripheral region of the corresponding region. Therefore, it is possible to prevent the corresponding region from being warped due to thermal influence from the heat radiating body, while the cross-sectional area of the hole provided in the peripheral region is larger than the corresponding region. Thus, the heat transfer between the radiator bodies can be further improved, and the heat transfer of the radiator can be further improved.
[0015]
The invention which concerns on Claim 6 is a heat radiator as described in any one of Claims 1-5, The said low thermal expansion material is connected to the thickness direction over the one surface and the other surface of a heat radiator, And it is provided with the connection opening part which mutually continues in the thickness direction and the crossing direction, and it was set as the structure cast | casted by the heat radiator main body through this connection opening part.
[0016]
According to the heat dissipating body according to the present invention, the low heat dissipating material is filled in the heat dissipating body main body by filling the heat dissipating body main body through the communication opening of the low thermal expansion material. The thermal expansion coefficient can be reliably reduced, and the difference in thermal expansion coefficient between the heat radiating body and the entire heat radiating body can be made as small as possible. Therefore, the heat radiating body and the heat radiating body are joined by solder or the like. When it does, it can reduce reliably that the curvature which goes to a to-be-heated body generate | occur | produces in a heat radiator, and it can suppress that the thermal conductivity of a heat radiator falls.
[0017]
The invention according to claim 7 is the heat dissipating body according to claim 6, wherein the low thermal expansion material is a chain-like body in which strip-like unit plate-like bodies are assembled to each other at the same row position and the communication opening is continuously provided. The chain-like body is formed and provided in a plurality of rows on the same plane, and the position of the communication opening is shifted for each row adjacent to each other.
[0018]
According to the heat dissipating body according to the present invention, the band-like unit plate-like bodies are assembled to each other at the same row position to form a chain-like body having continuous connection openings, and the chain-like bodies are arranged in a plurality of rows on the same plane. Since the connecting openings are arranged at different positions for each adjacent row, a low thermal expansion material having connecting openings that are continuous in the thickness direction across one surface and the other surface is reliably formed. it can.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 are views showing a power module to which a radiator according to the first embodiment of the present invention is applied. FIG. 1 shows that the thermal expansion coefficient on the radiator side is smaller than the thermal expansion coefficient on the radiator side. FIG. 2 is an overall view when the thermal expansion coefficient on the radiator side is larger than the thermal expansion coefficient on the radiator side.
As shown in FIG. 1, the power module 10 of this embodiment is configured by joining a heat radiator 16 to a power module substrate 11 as a heat radiating body.
The power module substrate 11 is an insulating substrate formed in a desired size with, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like, and a circuit layer 12 and a metal layer 13 are formed on the upper and lower surfaces thereof. Each is laminated and joined. The circuit layer 12 and the metal layer 13 are made of Al, Cu or the like. Hereinafter, the power module substrate 11 is abbreviated as “insulating substrate 11”.
[0020]
While the semiconductor chip 30 is mounted on the circuit layer 12 of the insulating substrate 11 by the solder 14, the radiator 16 is attached to the lower surface of the metal layer 13 of the insulating substrate 11 by the solder 15 or by brazing or diffusion bonding. In addition, the heat radiating body 16 is attached to the cooling sink portion 31 and used, and the heat transmitted to the heat radiating body 16 is radiated to the outside by the cooling water (or cooling air) 32 in the cooling sink portion 31. As a result, the power module 10 is configured. The radiator 16 is attached to the cooling sink portion 31 in close contact with the attachment screw 33.
[0021]
In this embodiment, a low thermal expansion material 18 is laminated on the heat radiating body 17 of the heat radiating body 16. The heat dissipating body 17 is formed of a material having a good thermal conductivity such as Al, Cu, for example, a so-called high heat conducting material. The high thermal conductivity material has a thermal conductivity of, for example, 100 W / m · K, preferably 150 W / m · K.
[0022]
On the other hand, the low thermal expansion material 18 is made of a material having a thermal expansion coefficient lower than the thermal expansion coefficient of the heat radiating body 17, and is laminated on the heat radiating body 17 so that the thermal expansion coefficient of the entire heat radiating body 16 and the insulating substrate 11 are increased. For example, it is made of invar and has a thermal expansion coefficient of about 5 ppm / ° C. or less.
An Invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% Fe and 35.4 mol% Ni. However, Fe containing other inevitable impurities is also called an Invar alloy.
[0023]
As shown in FIGS. 1 and 2, the low thermal expansion material 18 made of such a material is joined between the radiator bodies 17 and 17, so that the radiator 16 and the two radiator bodies 17 are identical. The heat sink body 17 is arranged on the insulating substrate 11 side and the cooling sink portion 31 side.
[0024]
Further, the low thermal expansion material 18 is provided with a stepped portion 20 in the thickness direction in a region facing the insulating substrate 11. When the thermal expansion coefficient on the insulating substrate 11 side is smaller than the thermal expansion coefficient on the radiator 16 side having the low thermal expansion material 18, the stepped portion 20 has a low thermal expansion material 18 in the radiator 16 as shown in FIG. A region corresponding to the insulating substrate 11 is formed to be recessed so as to approach the cooling sink portion 31, that is, away from the insulating substrate 11.
[0025]
On the contrary, when the thermal expansion coefficient on the side of the radiator 16 is smaller than the thermal expansion coefficient on the side of the insulating substrate 11, the stepped portion 20 is formed in the insulating substrate 11 of the low thermal expansion material 18 in the radiator 16 as shown in FIG. 2. Are raised so as to move away from the cooling sink portion 31, that is, closer to the insulating substrate 11 side.
[0026]
That is, the position of the step portion 20 of the low thermal expansion material 18 in the radiator 16 is selected based on the magnitude of the thermal expansion coefficient α1 on the insulating substrate 11 side and the thermal expansion coefficient α2 on the radiator 16 side. When <α2, t1> t2, while when α1> α2, t1 <t2. Specifically, the dimensions of t1 and t2 are appropriately determined based on the ratio of the sizes of α1 and α2.
In addition, t1 is a dimension in the thickness direction from the joint surface with the insulating substrate 11 to the stepped portion 20 in the radiator 16, and t2 is a dimension in the thickness direction from the joint surface to the cooling sink portion 31 to the stepped portion 20 in the same manner. It is. 1 and 2 differ only in the configuration of the stepped portion 20 in the low thermal expansion material 18, and are otherwise configured in the same manner.
[0027]
As described above, when the heat dissipating body 16 constituting the power module 10 is formed by laminating the heat dissipating body 17 and the low thermal expansion material 18, the thermal expansion coefficient of the entire heat dissipating body 16 can be reliably lowered. Therefore, the difference in coefficient of thermal expansion between the insulating substrate 11 and the entire radiator 16 can be made as small as possible.
However, the difference between the thermal expansion coefficient on the radiator 16 side and the thermal expansion coefficient on the insulating substrate 11 side inevitably differs even though the low thermal expansion material 18 is used for the radiator 16. End up.
[0028]
In this embodiment, as described above, the low thermal expansion material 18 in the radiator 16 includes the thermal expansion coefficient α1 on the insulating substrate 11 side and the thermal expansion coefficient α2 on the radiator 16 side in a region corresponding to the insulating substrate 11. Since the step portion 20 is provided so that the region corresponding to the insulating substrate 11 approaches either the insulating substrate 11 side or the cooling sink portion 31 side, the following operation is obtained.
[0029]
That is, as shown in FIG. 1, when the thermal expansion coefficient α1 on the insulating substrate 11 side is smaller than the thermal expansion coefficient α2 on the radiator 16 side having the low thermal expansion material 18, the step portion 20 of the low thermal expansion material 18 is 11 is formed so as to be recessed away from the insulating substrate 11, the thermal expansion coefficient in the region A in the vicinity of the surface opposite to the surface on which the insulating substrate 11 is mounted in the radiator 16. Apparently goes down. As a result, the region from the insulating substrate 11 to the heat radiating body 16 is divided into three layers having different thermal expansion coefficients. That is, a low thermal expansion layer on the insulating substrate 11 side, a low thermal expansion layer composed of a region A in the vicinity of the surface opposite to the surface on which the insulating substrate 11 is mounted in the radiator 16, and heat dissipation sandwiched between these low thermal expansion layers This is a high thermal expansion layer composed of the region B above the body 16. Therefore, the high thermal expansion layer is sandwiched between the two low thermal expansion layers, and the thermal expansion coefficient of the low thermal expansion layer is dominant over the thermal expansion coefficient of the power module 10 as a whole. And the occurrence of warpage can be suppressed.
[0030]
Therefore, even if there is a difference in expansion coefficient between the insulating substrate 11 side and the heat radiating body 16 side, it is possible to suppress the warp by relaxing the difference, and the low thermal expansion material 18 is made of metal and correspondingly. Therefore, heat generated from the semiconductor chip 30 on the insulating substrate 11 is transmitted through the circuit layer 12, the insulating substrate 11, the metal layer 13, the solder 15, the radiator 16, and the cooling sink portion 31. As a result of heat dissipation to the outside, it is also possible to suppress a decrease in thermal conductivity.
[0031]
On the other hand, as shown in FIG. 2, when the thermal expansion coefficient α2 on the radiator 16 side is smaller than the thermal expansion coefficient α1 on the insulating substrate 11 side, the stepped portion 20 of the low thermal expansion material 18 forms a corresponding region with the insulating substrate 11. When the heat sink 16 is formed so as to rise in the direction approaching the insulating substrate 11, a portion that is away from the insulating substrate due to the presence of the low thermal expansion material as the stepped portion 20 in the vicinity of the junction with the insulating substrate 11 in the radiator 16. Therefore, the difference between the thermal expansion coefficient α1 on the insulating substrate 11 side and the thermal expansion coefficient in the portion away from the insulating substrate on the heat dissipating body 16 side can be reduced, and the warpage is increased. Can be suppressed.
[0032]
As a result, it is possible to obtain a good heat radiator 16 that achieves both suppression of warpage and suppression of decrease in thermal conductivity without regard to the difference in expansion coefficient between the insulating substrate 11 and the heat radiator 16. Thus, the power module 10 having excellent heat dissipation characteristics can be obtained.
[0033]
3 and 4 show a heat radiator according to the second embodiment of the present invention.
In this case, a plurality of holes 19 penetrating the low thermal expansion material 18 are formed. The holes 19 are provided so as to suppress the decrease in the thermal conductivity as much as possible since the thermal conductivity is lowered by providing the low thermal expansion material 18 in the radiator 16 itself. In that case, as shown in FIG. 4, in the low thermal expansion material 18, the number of holes 19 is reduced in the region A corresponding to the insulating substrate 11, and the hole B is formed in the peripheral region B of the corresponding region A. The number of 19 drilled holes is increased.
[0034]
In other words, in the low thermal expansion material 18, the number of holes 19 formed in the region A corresponding to the insulating substrate 11 is reduced, and in the peripheral region B other than that, the number of holes 19 is increased, so that the holes 19 are cut off. The area distribution is changed. In this case, if the number of holes 19 drilled in the low thermal expansion material 18 increases, it becomes difficult to perform the function as the low thermal expansion material. The holes 19 are preferably formed with an area of approximately 20 to 50% based on the material of the body main body 17 and the low thermal expansion material 18. In addition, although the hole 19 has comprised the round hole in this embodiment, the shape is arbitrary. FIG. 3 is shown corresponding to FIG. 2, and the cooling sink portion 31 is omitted.
[0035]
According to this embodiment, since the step part 20 is provided in the low thermal expansion material 18, the effect similar to 1st Embodiment mentioned above is fundamentally obtained.
In addition, since the hole 19 is provided in the low thermal expansion material 18, heat from the radiator body 17 on the insulating substrate 11 side to the radiator body 17 on the cooling sink portion 20 side is increased by the space in which the hole 19 is formed. Transmission can be performed satisfactorily, whereby the original heat radiation effect of the heat radiator 16 can be achieved accurately.
[0036]
In addition, as shown in FIG. 4, the holes 19 are formed in a smaller number in the corresponding area A with the insulating substrate 11 than in the peripheral area B, and the cross-sectional area of the holes 19 is smaller than that in the peripheral area B. It is possible to prevent the corresponding region A from undergoing thermal deformation and warping due to the thermal influence from the insulating substrate 11, while the cross-sectional area of the hole 19 in the peripheral region B is larger than the corresponding region A. Thus, the heat transfer between the radiator bodies 17 can be made better, whereby the heat transfer can be performed more satisfactorily and the heat transfer can be suppressed from decreasing.
[0037]
5 and 6 show a radiator according to the third embodiment of the present invention.
In this case, the low thermal expansion material 18 provided on the radiator 16 has ribs.
When the hole 19 provided in the low thermal expansion material 18 is manufactured, the rib is formed by using a notch shown in FIG. 6 in a plate material previously formed to have a predetermined thickness. That is, when the hole 19 is formed by bending a notch provided in advance by raising or lowering in the vertical direction, the rising piece 18a and the falling piece 18b are both formed by the above-mentioned notch, and are composed of these. A low thermal expansion material 18 having ribs is produced.
The low thermal expansion material 18 is sandwiched between the heat radiating body main bodies 17 and 17 to constitute the heat radiating body 16.
[0038]
According to this embodiment, since the heat dissipating body 16 is laminated with the low thermal expansion material 18 in which the holes 19 are formed in the heat dissipating body main body 17, basically the same effects as those of the second embodiment described above can be obtained. .
In addition to this, since the low thermal expansion material 18 has ribs made up of the rising pieces 18a and the falling pieces 18b, the rigidity of the entire radiator can be increased and the strength can be increased. Warpage due to heat of the insulating substrate 11 can be further suppressed.
[0039]
In addition, although the low thermal expansion material 18 showed the example provided by being laminated | stacked between the heat radiator main bodies 17 or being pinched between the heat radiator main bodies 17 in the above-mentioned embodiment, it is not restricted to this, For example, a plate with holes 19 may be fired by powder metallurgy and then provided with ribs attached thereto, or may be formed by die casting, and further processed at a higher temperature than hot forging. It can also be formed by a melt forging method. Otherwise, the heat radiator 16 can also be configured as shown below.
[0040]
7 and 8 are views showing a heat dissipating body according to the fourth embodiment of the present invention, and are configuration diagrams of the heat dissipating body.
In this case, the low thermal expansion material 18 has a thickness direction extending from one surface joined to the radiator body 17 on the insulating substrate 11 side to the other surface joined to the radiator body 17 on the cooling sink portion 31 side. As shown in FIG. 7, as shown in FIG. 7, the heat sink body 17 is provided in contact with each other in the direction intersecting with the thickness direction and provided with the open space portion 40 and filled with the radiator body 17. The body body 17 is configured to be cast.
[0041]
Specifically, as shown in FIG. 8, the low thermal expansion material 18 is formed by continuously connecting the connection openings 40 by assembling, for example, two strip-shaped unit plate bodies 41 and 42 along the thickness direction. A chain-like body 43 is formed.
The chain-like bodies 43 are provided in a plurality of rows on the same plane, and the continuous openings 40 are alternately arranged in rows adjacent to each other.
[0042]
In the low thermal expansion material 18 formed in this way, when the material of the heat radiating body 17 is injected when the heat radiating body 16 is formed, the material is filled into one of the connection openings 40 from the side. 7, it is formed so as to be embedded between the upper radiator body 17 on the insulating substrate 11 side and the lower radiator body 17 on the cooling sink portion 31 side.
[0043]
According to this embodiment, since the low thermal expansion material 18 is cast and formed in the heat radiating body 17 along the thickness direction, the thermal expansion coefficient of the entire heat radiating body 16 can be lowered, and heat is radiated by the communication opening 40. The body main body 17 can receive heat from the insulating substrate 11 well and can transmit the heat to the cooling sink portion 31. Therefore, heat transfer is improved while suppressing warpage, and basically the above-mentioned The same effect as the embodiment can be obtained.
[0044]
As a modification of the above embodiment, instead of the chain-like body 43 as the low thermal expansion material 18 shown in FIGS. 7 and 8, the chain-like bodies 51 and 61 shown in FIGS. 9A and 9B are used. May be used. The chain-like body 51 shown in FIG. 9A is formed by bending a belt-like plate body so as to have a flat portion 50a, a rising portion 50b, a flat portion 50c, and a folded portion 50d, and repeating this in one direction. It is a thing. Moreover, the chain-like body 61 shown in FIG. 9B is formed by assembling a strip-like plate body into a rectangular shape so that the rectangular portion 60 is repeated.
These chain-like bodies 51 and 61 are arranged with their positions shifted on one plane, and this is cast as described above, and further, a plurality of these arranged on one plane are stacked in multiple stages, In addition, it is possible to adopt a configuration in which the orientation is changed for each layer when casting and this is cast.
Moreover, it is also possible to use the press-working material which has a honeycomb structure as another chain-like body similarly to the above.
FIG. 10 is a diagram showing a fifth embodiment of the present invention. In this embodiment, a heat radiating fin 70 is used instead of the cooling sink portion used in each of the above embodiments. The radiating fins 70 have the same configuration as the chained body 51 shown in FIG. 9A described above, and each flat portion 50a is joined to the surface of the radiating body 16 by brazing means.
Also in this embodiment, the same operation and effect as the above embodiment can be obtained.
In the above embodiment, an example of using invar was shown as the low thermal expansion material laminated on the radiator, but other low thermal expansion materials such as high carbon steel (Fe-C), 42 alloy, molybdenum ( Even if it is made of Mo), tungsten (W) or the like, the same effect can be obtained.
Moreover, although the example which attached the heat radiator 16 to the board | substrate 11 for power modules was shown, it is applicable not only to this board | substrate 11, but when it attaches to another heat generating body and a heat source. It is useful in practice by being used for various heat-dissipating bodies that require. Further, as an example of the power module substrate 11 to which the radiator 16 is attached, the metal layer 13 is laminated on the surface on the radiator 16 side. However, the insulating substrate 11 on which the metal layer 13 is not provided is used as the radiator 16. Even if it is directly joined to the same, the same effect can be obtained.
[0045]
【The invention's effect】
As described above, according to the first aspect of the present invention, the thermal expansion is performed by the step portion provided in the region corresponding to the heat radiated body of the low thermal expansion material in the heat radiating body based on the difference between the two thermal expansion coefficients. Since it has been configured to suppress warpage by reducing the difference in coefficient and to suppress the decrease in thermal conductivity, even if there is a difference in the thermal expansion coefficient of the material with the heat sink, suppression of warpage There is an effect that a good heat radiating body in which both the reduction of the thermal conductivity and the suppression of the thermal conductivity can be obtained.
[0046]
According to the invention according to claim 2, by changing the position of the step portion of the low thermal expansion material according to the difference with the thermal expansion coefficient on the heat radiating member side, the difference between both thermal expansion coefficients can be relaxed, The effect which can make curvature suppression favorable is acquired.
[0047]
According to the invention of claim 3, since the heat from the heat radiating body can be radiated to the outside of the heat radiating body by the holes provided in the low thermal expansion material, it is possible to suppress the decrease in the thermal conductivity. Is obtained.
[0048]
According to the fourth aspect of the invention, the rib of the low thermal expansion material increases the rigidity of the entire heat dissipating body and increases the strength, so that the effect of further suppressing warpage can be obtained.
[0049]
According to the invention which concerns on Claim 5, the effect which can perform the heat transfer of a thermal radiation body further better is acquired by changing distribution of the cross-sectional area of a hole.
[0050]
According to the invention which concerns on Claim 6, when joining a to-be-radiated body and a heat radiator, it can reduce reliably that the curvature which goes to a to-be-heated body occurs in a heat radiator, and heat conduction of a heat radiator. The effect that it can suppress that a rate falls is acquired.
[0051]
According to the invention which concerns on Claim 7, the effect that the low thermal expansion material which has a connection opening part mutually connected in the thickness direction over one surface and the other surface can be formed reliably is acquired.
[Brief description of the drawings]
FIG. 1 is a diagram showing a power module to which a radiator according to a first embodiment of the present invention is applied, and is an overall view when the thermal expansion coefficient on the radiator side is smaller than the thermal expansion coefficient on the radiator side. is there.
FIG. 2 is an overall view showing a power module when a thermal expansion coefficient on the radiator side is larger than a thermal expansion coefficient on the radiator side.
FIG. 3 is an explanatory view showing a heat radiator according to a second embodiment of the present invention.
FIG. 4 is an explanatory view of a low thermal expansion material in a heat radiating body as viewed from above.
FIG. 5 is an explanatory view showing a heat dissipating body according to a third embodiment of the present invention.
FIG. 6 is an explanatory diagram in which ribs are provided on a plate material when a hole of a low thermal expansion material is manufactured.
FIG. 7 is a view showing a heat radiating body according to a fourth embodiment of the present invention, and is a cross-sectional explanatory view of the heat radiating body as viewed from the side.
FIG. 8 is a perspective view showing a main part of the low thermal expansion material.
FIGS. 9A and 9B are cross-sectional views showing modified examples of the low thermal expansion material.
FIG. 10 is an explanatory view showing a heat radiator according to a fifth embodiment of the invention.
[Explanation of symbols]
10 Power Module 11 Heat Dissipator (Power Module Substrate, Insulating Substrate)
16 Heat radiating body 17 Heat radiating body main body 18 Low thermal expansion material 18a Rib (rise piece)
18b rib (falling piece)
19 Hole 20 Stepped part

Claims (7)

被放熱体の熱を放熱させる放熱体において、
前記放熱体は、放熱体本体に該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材を積層して構成され、該低熱膨張材の絶縁基板と対応する領域に、放熱体側の熱膨張係数と被放熱体側の熱膨張係数との差に基づき、段差部を設けることを特徴とする放熱体。
In the radiator that dissipates the heat of the radiator,
The radiator is configured by laminating a low thermal expansion material made of a material lower than the thermal expansion coefficient of the radiator body on the radiator body, and in a region corresponding to the insulating substrate of the low thermal expansion material, the thermal expansion on the radiator side. A radiator having a stepped portion based on a difference between a coefficient and a thermal expansion coefficient on the radiator side.
請求項1記載の放熱体において、
前記段差部は、放熱体において、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より小さいとき、低熱膨張材の前記絶縁基板と対応する領域を、絶縁基板から遠ざかる方向に凹んで形成させる一方、
被放熱体側の熱膨張係数より放熱体側の熱膨張係数が小さいとき、低熱膨張材の前記被放熱体と対応する領域を、被放熱体に近づく方向に隆起させて形成することを特徴とする放熱体。
The heat radiator according to claim 1,
When the thermal expansion coefficient on the heat radiating member side is smaller than the thermal expansion coefficient on the heat radiating member side, the stepped portion is formed by denting a region corresponding to the insulating substrate of the low thermal expansion material in a direction away from the insulating substrate. on the other hand,
When the thermal expansion coefficient on the heat radiating body side is smaller than the thermal expansion coefficient on the heat radiating body side, a region corresponding to the heat radiating body of the low thermal expansion material is formed by being raised in a direction approaching the heat radiating body. body.
請求項1又は2記載の放熱体において、
前記低熱膨張材にはこれを貫通する孔が穿設されていることを特徴とする放熱体。
In the heat radiator according to claim 1 or 2,
The low thermal expansion material is provided with a hole penetrating through the low thermal expansion material.
請求項1〜3のいずれか一項に記載の放熱体において、
前記低熱膨張材は、リブを有していることを特徴とする放熱体。
In the heat radiator as described in any one of Claims 1-3,
The low thermal expansion material has a rib.
請求項1〜4のいずれか一項に記載の放熱体において、
前記孔は、前記低熱膨張材において、被放熱体と対応する領域に設けられた断面積より、該対応領域の周辺領域に設けられた断面積を大きくさせていることを特徴とする放熱体。
In the heat radiator as described in any one of Claims 1-4,
In the low thermal expansion material, the hole has a larger cross-sectional area provided in a peripheral region of the corresponding region than a cross-sectional area provided in a region corresponding to the heat-radiating member.
請求項1〜5のいずれか一項に記載の放熱体において、
前記低熱膨張材は、放熱体の一方の面と他方の面とに亘る厚み方向に連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して放熱体本体に鋳ぐまれる構成としたことを特徴とする放熱体。
In the heat radiator as described in any one of Claims 1-5,
The low thermal expansion material is provided with a communication opening that communicates in the thickness direction across one surface and the other surface of the heat dissipating body and that is continuous with the thickness direction in a direction intersecting with the thickness direction. A heat dissipating body characterized in that the heat dissipating body is cast into the heat dissipating body.
請求項6記載の放熱体において、
前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする放熱体。
The heat radiator according to claim 6,
The low thermal expansion material is formed in a chain-like body having the connecting openings continuously by assembling the band-like unit plate-like bodies at the same row position, and providing a plurality of rows of the chain-like bodies on the same plane, A heat dissipating body characterized in that the connecting openings are arranged so as to be shifted in rows adjacent to each other.
JP2002303002A 2002-10-17 2002-10-17 Radiator Expired - Fee Related JP3960192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303002A JP3960192B2 (en) 2002-10-17 2002-10-17 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303002A JP3960192B2 (en) 2002-10-17 2002-10-17 Radiator

Publications (2)

Publication Number Publication Date
JP2004140159A JP2004140159A (en) 2004-05-13
JP3960192B2 true JP3960192B2 (en) 2007-08-15

Family

ID=32450911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303002A Expired - Fee Related JP3960192B2 (en) 2002-10-17 2002-10-17 Radiator

Country Status (1)

Country Link
JP (1) JP3960192B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816378B1 (en) * 2003-04-28 2004-11-09 Hewlett-Packard Development Company, L.P. Stack up assembly
US20050217226A1 (en) * 2004-04-05 2005-10-06 3M Innovative Properties Company Pleated aligned web filter
JP2006253601A (en) * 2005-03-14 2006-09-21 Oki Electric Ind Co Ltd Heat radiator and heat radiating structure using same
CN117457599B (en) * 2023-12-25 2024-04-16 东莞市湃泊科技有限公司 Radiating device of power device

Also Published As

Publication number Publication date
JP2004140159A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4867793B2 (en) Semiconductor device
WO2007007602A1 (en) Heat dissipation device and power module
JP2008294280A (en) Semiconductor device
JP5520815B2 (en) Insulating substrate and base for power module
JP2004153075A (en) Substrate for power module and power module
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP3960192B2 (en) Radiator
JP2008270294A (en) Heat sink member and semiconductor device
JP3912255B2 (en) Power module substrate and power module
JP3975910B2 (en) Radiator
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP3933031B2 (en) Radiator
JP6316219B2 (en) Power semiconductor module
JP2008270296A (en) Semiconductor device
JP4667723B2 (en) Power module substrate
TW202032874A (en) Semiconductor laser light source device equipped with a plurality of semiconductor laser elements and capable of realizing both high density and high heat dissipation
JP2004152969A (en) Power module substrate and power module
JP3873870B2 (en) Radiator
JP2004200369A (en) Power module and substrate therefor
JP4019914B2 (en) Power module substrate and power module
JP3901109B2 (en) Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator
JP3901078B2 (en) Power module substrate and power module
JP4179055B2 (en) Power module substrate, radiator and method of manufacturing the radiator
WO2023171019A1 (en) Insulated circuit board with integrated heat sink, and electronic device
JP2002043480A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3960192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees