JP2004207619A - Power module and substrate therefor - Google Patents

Power module and substrate therefor Download PDF

Info

Publication number
JP2004207619A
JP2004207619A JP2002377387A JP2002377387A JP2004207619A JP 2004207619 A JP2004207619 A JP 2004207619A JP 2002377387 A JP2002377387 A JP 2002377387A JP 2002377387 A JP2002377387 A JP 2002377387A JP 2004207619 A JP2004207619 A JP 2004207619A
Authority
JP
Japan
Prior art keywords
radiator
power module
insulating substrate
heat
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377387A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagatomo
義幸 長友
Toshiyuki Nagase
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002377387A priority Critical patent/JP2004207619A/en
Publication of JP2004207619A publication Critical patent/JP2004207619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To reduce warping, and to inhibit the lowering of a heat transfer coefficient even when there is the difference of a coefficient of thermal expansion in both an insulating substrate and a radiator. <P>SOLUTION: The radiator 16 is formed in a multilayer structure in which a radiator body 17 and a low thermal-expansion material 18 are joined. The radiator body 17 is formed of a high heat-conduction material having an excellent thermal conductivity such as Al, Cu or the like. The difference of a coefficient of thermal expansion of the whole radiator 16 and that of the insulating substrate 11 is brought close as much as possible by a laminating on the radiator body 17 in the low thermal-expansion material 18, and the low thermal-expansion material 18 is composed of high carbon steel (Fe-C) when the insulating substrate 11 and the radiator body 17 consist of AlN and Al respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、大電圧・大電流を制御する半導体装置に用いられるパワーモジュール用基板に係り、特に半導体チップの発熱体から発生する熱を放散させる放熱体を有するパワーモジュール用基板及びパワーモジュールに関する。
【0002】
【従来の技術】
従来のこの種のパワーモジュール用基板にあっては、図5に示すように、酸化アルミニウム焼結体からなる絶縁基板1の両面に、Cuからなる回路層2、金属層3がそれぞれ積層されている。回路層2には、半導体チップ100を搭載するための回路パターンが形成されている。
【0003】
そして、絶縁基板1の金属層3にはんだ4、或いはろう付け等によって放熱体5が接合されている。この放熱体5は、下方が例えば冷却シンク部(図示せず)に取り付けられて使用されたとき、該冷却シンク部内の冷却水(若しくは冷却空気)が放熱体5に伝達される熱を外部に放熱させ、これによって、回路層2に搭載された半導体チップ100の熱が回路層2、絶縁基板1、金属層3、はんだ4、放熱体5を介して伝達されることで、良好な熱伝達が得られるようになっている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平4−12554号公報(第1−3頁、第1図、第2図)
【0005】
【発明が解決しようとする課題】
ところで、上記に示す従来のパワーモジュール用基板は、絶縁基板1と放熱体5との熱膨張係数が互いに異なるので、両者1、5がはんだ4によって接合された後、冷却して常温に戻すと、絶縁基板1の熱膨張係数が小さく、放熱体5の収縮寸法が大きいことから、図6に示すように、放熱体5が絶縁基板1側に向けて凸状に反ってしまう現象が起こる。放熱体5に絶縁基板1側に向かう反りが発生すると、放熱体5が図6の鎖線に示す冷却シンク部6に取り付けられたとき、放熱体5と冷却シンク部6間に隙間が生じてしまうので、熱伝達の低下をきたし、そのため、発熱量の大きい半導体チップを用いた場合、熱により半導体チップ100が機能しなくなるという問題があった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、絶縁基板と放熱体との熱膨張係数の差を少なくして反りを低減でき、しかも熱伝達率が低下するのを抑制できるパワーモジュール用基板及びパワーモジュールを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、絶縁基板と、該絶縁基板の一方の面に接合される放熱体とを備えたパワーモジュール用基板において、前記放熱体は、高熱伝導材からなる放熱体本体と、該放熱体本体の熱膨張係数より低い低熱膨張材とを複数接合させて多層構造としたことを特徴とする。
【0008】
この発明に係るパワーモジュール用基板によれば、放熱体が、放熱体本体と低熱膨張材とを互いに積層して多層に形成されると、放熱体全体としての熱膨張係数を確実に下げることができるので、絶縁基板と放熱体全体との熱膨張係数の差を可及的に小さくすることができ、そのため、絶縁基板と放熱体とをはんだ等によって接合した場合、放熱体に絶縁基板に向かう反りが発生するのを確実に低減することができる。
【0009】
請求項2に係る発明は、請求項1記載のパワーモジュール用基板において、前記放熱体は、放熱体本体と低熱膨張材とが互い違いに接合されて、計5〜7枚の多層構造としたことを特徴とする。
【0010】
この発明に係るパワーモジュール用基板によれば、放熱体本体と、低熱膨張材とを5〜7枚接合した多層構造に形成されるので、反りの抑制をいっそう的確に行うことができる。
【0011】
請求項3に係る発明は、請求項1又は2記載の絶縁基板上にチップを搭載してなることを特徴とする。
この発明に係るパワーモジュールによれば、絶縁基板と放熱体との熱膨張係数の差を可及的に小さくでき、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュールが得られる。
【0012】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。
<第一の実施形態>
図1及び図2はこの発明の第一の実施の形態に係るパワーモジュール及びパワーモジュール用基板を示す図であって、図1はパワーモジュールの全体図、図2は放熱体の破断拡大図である。
この実施形態のパワーモジュールPにおいて、パワーモジュール用基板10は、大別すると図1に示すように、絶縁基板11と、放熱体16とを備える。
絶縁基板11は、例えばAlN、Al、Si、SiC等により所望の大きさに形成され、その上面及び下面に回路層12及び金属層13がそれぞれ積層して接合される。回路層12及び金属層13は、Al、Cu等により形成されている。
【0013】
絶縁基板11の回路層12上にはんだ14によって半導体チップ30が搭載される一方、金属層13の下面にはんだ15によって、或いはろう付けや拡散接合等によって放熱体16が直接接合され、更に、この放熱体16が冷却シンク部20に取り付けられて使用され、該冷却シンク部20内の冷却水(或いは冷却空気)21によって放熱体16に伝達される熱が外部に放熱されるようになっている。放熱体16は、冷却シンク部20に取付ねじ22によって密着した状態で取り付けられる。
【0014】
この実施形態は、放熱体16が、放熱体本体17と低熱膨張材18とを複数接合させて多層構造に形成されている。
放熱体本体17は、例えばAl、Cu等のような熱伝導率の良好な材質、いわゆる高熱伝導材によって形成されている。高熱伝導材としては、熱伝導率が例えば180W/mK以上、好ましくは200W/mK以上のものである。
一方、低熱膨張材18は、放熱体本体17に積層することで、放熱体16全体の熱膨張係数と絶縁基板11の熱膨張係数との差を可及的に近づけるためのものであり、熱膨張係数が例えば10ppm/℃以下、好ましくは7ppm/℃以下であり、本例では絶縁基板11がAlNで、放熱体本体17がAlのとき、例えば高炭素鋼(Fe−C)からなっている。
【0015】
上記の材質からなる低熱膨張材18は、図1及び図2に示すように、放熱体本体17と17との間に接合されている。従って、放熱体16が二枚の放熱体本体17と一枚の低熱膨張材18との三層構造であって、絶縁基板11側と冷却シンク部20側とに放熱体本体17が配置されている。
なお、図2において、符号19は、放熱体16に穿設された取付ねじ22の挿通孔である。
【0016】
このように、パワーモジュール用基板10を構成する放熱体16が、放熱体本体17と低熱膨張材18とを互いに積層して多層に形成すると、放熱体16全体としての熱膨張係数を確実に下げることができるので、絶縁基板11と放熱体16全体との熱膨張係数の差を可及的に小さくすることができる。
そのため、絶縁基板11と放熱体16とをはんだ15(若しくはろう付けや拡散接合等)によって接合した場合、放熱体16に従来のように絶縁基板11に向かう反りが発生するのを確実に低減することができるので、放熱体16を冷却シンク部20に取り付けても、冷却シンク部20と放熱体16との間に隙間が発生するのを防止することができる。
【0017】
しかも、低熱膨張材18が金属であってかつ相応の熱伝導率を有しているので、絶縁基板11上の半導体チップ30からの発熱が、回路層12、絶縁基板11、金属層13、はんだ15、放熱体16及び冷却シンク部20を介して外部に放熱される結果、熱伝達率が低下するのを抑制することもできる。
その結果、絶縁基板11と放熱体16との材質の膨張係数に差があっても、反りの抑制と熱伝達率の低下の抑制とを両立させた、良好なパワーモジュール基板10を得ることができる。
【0018】
また、放熱体16が、二層からなる放熱体本体17、17の間に低熱膨張材18が挟まれた状態で接合されているので、つまり、放熱体16において絶縁基板11側と冷却シンク部20側との層に放熱体本体17がそれぞれ配置して形成されているので、絶縁基板11からの熱を良好に受けると共に、その熱を冷却シンク部20に対して良好に伝達させることができ、これによって、放熱体16本来の放熱効果を的確に果たすことができる。
【0019】
<第2の実施形態>
図3は、この発明の第2の実施の形態に係るパワーモジュール用基板の放熱体を示している。この実施形態では、低熱膨張材18として、インバー合金を用いている。そして、この低熱膨張材18と、Alからなる高熱伝導材としての放熱体本体17とが、図3に示すように下方に順次互い違いに接合されることで、六層構造の放熱体16が形成されている。絶縁基板は、AlNからなっている。
【0020】
なお、インバー合金とは、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
【0021】
<第3の実施形態>
図示しないが、この実施形態では、低熱膨張材18として42合金を用い、これを図3に示す第2の実施形態と同様、Alからなる放熱体本体17に互い違いに積層して六層構造とすることで、放熱体16が形成されている。
なお、42合金は、Feが58mol%で、Niが42mol%の組成率となったFe系合金である。
【0022】
<第4の実施形態>
図4は、この発明の第4の実施の形態に係るパワーモジュール用基板の放熱体を示している。
図4に示す実施形態では、低熱膨張材18としてMoを用い、この低熱膨張材18と、Cuからなる放熱体本体17とが互い違いに接合されることで、全体として五層構造の放熱体16が構成されている。この場合、放熱体16において、絶縁基板11側の層と冷却シンク部20側の層とにそれぞれ放熱体本体17が配置される。
【0023】
<第5の実施形態>
図示しないが、この実施形態では、低熱膨張材18としてWを用い、この低熱膨張材18と、Cuからなる放熱体本体17とが互い違いに積層されることで、全体として図4のような五層構造の放熱体16が構成される。この場合も、放熱体16の絶縁基板11側の層と冷却シンク部20側の層とにそれぞれ放熱体本体17が配置される。
上記した各実施形態及び比較例の試験結果を表1にまとめた。
【0024】
【表1】

Figure 2004207619
【0025】
なお、表1において、「接合方法」とは、放熱体と絶縁基板との接合方法を表している。また、比較例の放熱体は、CuにMoを分散させたものである。
【0026】
上記表1において、第4の実施形態が比較例と対応するものであり、第4の実施形態の反り量が比較例の反り量より遙かに小さな値となっており、反り量を大幅に低減できることが明らかである。
表紙1における「反り量」とは、測定長さ200mmの範囲内で、反りが最も大きくなっている部分を測定したときの数値である。
【0027】
なお、上記表1において、第2及び第3の実施形態の反り量が他の実施形態より大きい値となっているが、これは放熱体16が、表に示す材質からなる六層構造であること等に起因するものである。また、これら第2及び第3の実施形態は、比較例と条件が大幅に異なるため、比較例との測定結果の比較は適切でない。
試験結果から、放熱体16が、高熱伝導材としての放熱体本体17と、低熱膨張材18とを5〜7枚接合した多層構造に形成される場合にも、反りの抑制を的確に行うことができることを確認した。
【0028】
そして、放熱体16における放熱体本体17の全体厚みと、低熱膨張材18の全体厚みとは、概略的には適宜の割合に規定してもよいが、これに限らず、それぞれの厚みのみならず大きさを任意に変えたりしても良いのは勿論である。
なお、図示実施形態では、絶縁基板11において放熱体16側の面に金属層13が積層された例を示したが、これに限らず、金属層13が設けられていない絶縁基板11を放熱体16に直接接合しても、同様の作用効果が得られる。
【0029】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、放熱体が、放熱体本体と低熱膨張材とを互いに積層して多層に形成されることで、絶縁基板と放熱体全体との熱膨張係数の差を可及的に小さくできるように構成したので、放熱体に絶縁基板に向かう反りが発生するのを確実に低減することができる結果、絶縁基板と放熱体との材質の膨張係数に差があっても、反りの抑制と熱伝達率の低下の抑制とを両立させた、良好なパワーモジュール基板が得られるという効果がある。
【0030】
請求項2に係る発明によれば、放熱体本体と、低熱膨張材とを5〜7枚接合した多層構造に形成されるので、反りの抑制をいっそう的確に行うことができるという効果が得られる。
【0031】
請求項3に係る発明によれば、絶縁基板と放熱体との熱膨張係数の差を可及的に小さくすることができ、両者の反りを可及的に抑えつつ良好な熱伝達率を有するパワーモジュールが得られる効果がある。
【図面の簡単な説明】
【図1】この発明の第一の実施の形態に係るパワーモジュールを示す全体構成図である。
【図2】図1における放熱体の破断拡大図である。
【図3】この発明の第2の実施の形態に係るパワーモジュール用基板を示す破断拡大図である。
【図4】この発明の第4の実施の形態に係るパワーモジュール用基板の放熱体を示す破断拡大図である。
【図5】従来のパワーモジュール用基板を示す概略図である。
【図6】従来のパワーモジュール用基板に反りが発生した説明図である。
【符号の説明】
P パワーモジュール
10 パワーモジュール用基板
11 絶縁基板
16 放熱体
17 放熱体本体(高熱伝導材)
18 低熱膨張材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power module substrate used for a semiconductor device for controlling a large voltage and a large current, and more particularly to a power module substrate and a power module having a heat radiator for dissipating heat generated from a heat generator of a semiconductor chip.
[0002]
[Prior art]
In a conventional power module substrate of this type, as shown in FIG. 5, a circuit layer 2 made of Cu and a metal layer 3 are respectively laminated on both surfaces of an insulating substrate 1 made of an aluminum oxide sintered body. I have. On the circuit layer 2, a circuit pattern for mounting the semiconductor chip 100 is formed.
[0003]
Then, a heat radiator 5 is joined to the metal layer 3 of the insulating substrate 1 by solder 4 or brazing. When the lower part of the radiator 5 is used, for example, attached to a cooling sink (not shown), the cooling water in the cooling sink (or the cooling air) transfers heat transmitted to the radiator 5 to the outside. By dissipating the heat, the heat of the semiconductor chip 100 mounted on the circuit layer 2 is transmitted through the circuit layer 2, the insulating substrate 1, the metal layer 3, the solder 4, and the radiator 5, thereby providing good heat transfer. (For example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-4-12554 (pages 1-3, FIG. 1, FIG. 2)
[0005]
[Problems to be solved by the invention]
By the way, in the conventional power module substrate described above, since the thermal expansion coefficients of the insulating substrate 1 and the radiator 5 are different from each other, when the two are joined by the solder 4 and then cooled to room temperature. Since the thermal expansion coefficient of the insulating substrate 1 is small and the shrinkage dimension of the heat radiator 5 is large, a phenomenon occurs in which the heat radiator 5 warps convexly toward the insulating substrate 1 as shown in FIG. When the heat radiator 5 is warped toward the insulating substrate 1, when the heat radiator 5 is attached to the cooling sink portion 6 shown by a chain line in FIG. 6, a gap is generated between the heat radiator 5 and the cooling sink portion 6. As a result, heat transfer is reduced. Therefore, when a semiconductor chip having a large amount of heat is used, there is a problem that the semiconductor chip 100 does not function due to heat.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the difference in thermal expansion coefficient between an insulating substrate and a radiator, thereby reducing warpage and reducing the heat transfer coefficient. It is an object of the present invention to provide a power module substrate and a power module capable of suppressing the occurrence of the power module.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a power module substrate including an insulating substrate and a radiator bonded to one surface of the insulating substrate, wherein the radiator includes a radiator main body made of a high heat conductive material; It is characterized in that a plurality of low thermal expansion materials having a lower thermal expansion coefficient than that of the radiator body are joined to form a multilayer structure.
[0008]
ADVANTAGE OF THE INVENTION According to the board | substrate for power modules which concerns on this invention, when a radiator is formed by laminating a radiator main body and a low-thermal-expansion material mutually, and it can reduce the thermal expansion coefficient as a whole radiator reliably. Since the difference in thermal expansion coefficient between the insulating substrate and the entire radiator can be made as small as possible, when the insulating substrate and the radiator are joined by soldering or the like, the radiator faces the radiator toward the insulating substrate. The occurrence of warpage can be reliably reduced.
[0009]
According to a second aspect of the present invention, in the power module substrate according to the first aspect, the radiator has a multilayer structure of a total of 5 to 7 sheets in which a radiator body and a low thermal expansion material are alternately joined. It is characterized by.
[0010]
ADVANTAGE OF THE INVENTION According to the board | substrate for power modules which concerns on this invention, since a radiator main body and a low-thermal-expansion material are formed in the multilayer structure which joined 5-7 sheets, the suppression of a warp can be performed more exactly.
[0011]
The invention according to claim 3 is characterized in that a chip is mounted on the insulating substrate according to claim 1 or 2.
ADVANTAGE OF THE INVENTION According to the power module which concerns on this invention, the difference of the thermal expansion coefficient of an insulating board and a radiator can be made as small as possible, and the power module which has favorable thermal conductivity, suppressing the curvature of both as much as possible. can get.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First embodiment>
1 and 2 are views showing a power module and a power module substrate according to a first embodiment of the present invention. FIG. 1 is an overall view of the power module, and FIG. is there.
In the power module P of this embodiment, the power module substrate 10 includes an insulating substrate 11 and a heat radiator 16 as roughly shown in FIG.
The insulating substrate 11 is formed in a desired size by using, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like, and a circuit layer 12 and a metal layer 13 are respectively laminated and joined on the upper and lower surfaces thereof. The circuit layer 12 and the metal layer 13 are formed of Al, Cu, or the like.
[0013]
The semiconductor chip 30 is mounted on the circuit layer 12 of the insulating substrate 11 by the solder 14, while the radiator 16 is directly bonded to the lower surface of the metal layer 13 by the solder 15 or by brazing or diffusion bonding. The radiator 16 is used by being attached to the cooling sink unit 20, and heat transmitted to the radiator 16 by the cooling water (or cooling air) 21 in the cooling sink unit 20 is radiated to the outside. . The radiator 16 is attached to the cooling sink unit 20 in a state in which the radiator 16 is in close contact with the attachment screw 22.
[0014]
In this embodiment, the heat radiator 16 is formed in a multilayer structure by joining a plurality of heat radiator main bodies 17 and low thermal expansion materials 18.
The radiator body 17 is formed of a material having good thermal conductivity such as Al, Cu, or the like, that is, a so-called high thermal conductive material. The high thermal conductive material has a thermal conductivity of, for example, 180 W / mK or more, preferably 200 W / mK or more.
On the other hand, the low thermal expansion material 18 is provided on the radiator body 17 so as to make the difference between the thermal expansion coefficient of the entire radiator 16 and the thermal expansion coefficient of the insulating substrate 11 as close as possible. The expansion coefficient is, for example, 10 ppm / ° C. or less, preferably 7 ppm / ° C. or less. In this example, when the insulating substrate 11 is AlN and the radiator body 17 is Al, it is made of, for example, high carbon steel (Fe—C). .
[0015]
As shown in FIGS. 1 and 2, the low thermal expansion material 18 made of the above-described material is joined between the radiator bodies 17. Therefore, the radiator 16 has a three-layer structure of two radiator bodies 17 and one low-thermal-expansion material 18, and the radiator body 17 is arranged on the insulating substrate 11 side and the cooling sink part 20 side. I have.
In FIG. 2, reference numeral 19 denotes an insertion hole for the mounting screw 22 formed in the heat radiator 16.
[0016]
As described above, when the heat radiator 16 constituting the power module substrate 10 is formed in a multilayer structure by laminating the heat radiator body 17 and the low thermal expansion material 18, the thermal expansion coefficient of the heat radiator 16 as a whole is reliably reduced. Therefore, the difference in the coefficient of thermal expansion between the insulating substrate 11 and the entire radiator 16 can be reduced as much as possible.
Therefore, when the insulating substrate 11 and the radiator 16 are joined by the solder 15 (or brazing, diffusion bonding, or the like), it is possible to reliably reduce the occurrence of warpage of the radiator 16 toward the insulating substrate 11 as in the related art. Therefore, even if the heat radiator 16 is attached to the cooling sink 20, it is possible to prevent a gap from being generated between the cooling sink 20 and the heat radiator 16.
[0017]
Moreover, since the low thermal expansion material 18 is a metal and has a corresponding thermal conductivity, heat generated from the semiconductor chip 30 on the insulating substrate 11 is generated by the circuit layer 12, the insulating substrate 11, the metal layer 13, and the solder. As a result, the heat is radiated to the outside via the radiator 16 and the cooling sink portion 20, so that a decrease in the heat transfer coefficient can be suppressed.
As a result, even if there is a difference between the expansion coefficients of the materials of the insulating substrate 11 and the heat radiator 16, it is possible to obtain a good power module substrate 10 that achieves both suppression of warpage and suppression of a decrease in heat transfer coefficient. it can.
[0018]
Further, since the heat radiator 16 is joined in a state where the low thermal expansion material 18 is sandwiched between the heat radiator bodies 17, 17 composed of two layers, in other words, the heat sink 16 and the cooling sink portion are connected to each other. Since the heat radiator main bodies 17 are arranged and formed on the layers on the side of the heat sink 20, respectively, the heat from the insulating substrate 11 can be received well and the heat can be transmitted well to the cooling sink portion 20. Thus, the original heat radiation effect of the heat radiator 16 can be accurately achieved.
[0019]
<Second embodiment>
FIG. 3 shows a radiator of a power module substrate according to a second embodiment of the present invention. In this embodiment, an invar alloy is used as the low thermal expansion material 18. The low-thermal-expansion material 18 and the radiator main body 17 as a high-thermal-conductivity material made of Al are joined alternately downward, as shown in FIG. 3, to form a radiator 16 having a six-layer structure. Have been. The insulating substrate is made of AlN.
[0020]
The invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% of Fe and 35.4 mol% of Ni. However, Fe containing other unavoidable impurities is also called an Invar alloy.
[0021]
<Third embodiment>
Although not shown, in this embodiment, a 42 alloy is used as the low thermal expansion material 18, which is alternately stacked on the radiator body 17 made of Al to form a six-layer structure, similarly to the second embodiment shown in FIG. By doing so, the heat radiator 16 is formed.
The 42 alloy is an Fe-based alloy having a composition ratio of 58 mol% of Fe and 42 mol% of Ni.
[0022]
<Fourth embodiment>
FIG. 4 shows a radiator of a power module substrate according to a fourth embodiment of the present invention.
In the embodiment shown in FIG. 4, Mo is used as the low-thermal-expansion material 18, and the low-thermal-expansion material 18 and the radiator body 17 made of Cu are alternately joined, so that the radiator 16 having a five-layer structure as a whole is obtained. Is configured. In this case, in the radiator 16, the radiator main body 17 is disposed on each of the layer on the insulating substrate 11 side and the layer on the cooling sink unit 20 side.
[0023]
<Fifth embodiment>
Although not shown, in this embodiment, W is used as the low thermal expansion material 18, and the low thermal expansion material 18 and the radiator body 17 made of Cu are alternately laminated to form a five-dimensional structure as shown in FIG. A radiator 16 having a layer structure is configured. Also in this case, the radiator body 17 is disposed on each of the layer on the insulating substrate 11 side and the layer on the cooling sink section 20 side of the radiator 16.
Table 1 summarizes the test results of the above embodiments and comparative examples.
[0024]
[Table 1]
Figure 2004207619
[0025]
In Table 1, the term "joining method" indicates a method of joining the heat radiator and the insulating substrate. The heat radiator of the comparative example is one in which Mo is dispersed in Cu.
[0026]
In the above Table 1, the fourth embodiment corresponds to the comparative example. The amount of warpage of the fourth embodiment is much smaller than the amount of warpage of the comparative example, and the amount of warpage is significantly reduced. It is clear that it can be reduced.
The “warp amount” in the cover 1 is a numerical value when a portion where the warp is the largest is measured within the range of the measurement length of 200 mm.
[0027]
In Table 1, the amount of warpage of the second and third embodiments is larger than that of the other embodiments, but this is a six-layer structure in which the radiator 16 is made of the material shown in the table. It is caused by the above. Further, in the second and third embodiments, since the conditions are significantly different from those of the comparative example, the comparison of the measurement results with the comparative example is not appropriate.
From the test results, even when the heat radiator 16 is formed in a multilayer structure in which five to seven radiator bodies 17 as high thermal conductive materials and the low thermal expansion material 18 are joined, it is necessary to accurately control the warpage. I confirmed that I can do it.
[0028]
The overall thickness of the radiator body 17 and the overall thickness of the low-thermal-expansion material 18 in the radiator 16 may be roughly defined at an appropriate ratio, but is not limited to this. Needless to say, the size may be arbitrarily changed.
In the illustrated embodiment, the example in which the metal layer 13 is laminated on the surface of the insulating substrate 11 on the side of the heat radiator 16 is shown. However, the present invention is not limited to this. The same operation and effect can be obtained by directly joining to the base member 16.
[0029]
【The invention's effect】
As described above, according to the first aspect of the invention, the heat radiator is formed in a multilayer structure by laminating the heat radiator body and the low thermal expansion material to each other, so that the heat radiation between the insulating substrate and the heat radiator as a whole. Since the difference in expansion coefficient is configured to be as small as possible, it is possible to reliably reduce the occurrence of warping toward the insulating substrate in the heat radiator, and as a result, the expansion coefficient of the material between the insulating substrate and the heat radiator is reduced. However, there is an effect that a good power module substrate that achieves both suppression of warpage and suppression of a decrease in heat transfer coefficient can be obtained.
[0030]
According to the second aspect of the present invention, since the radiator body and the low-thermal-expansion material are formed in a multilayer structure in which five to seven sheets are joined, the effect that the warpage can be suppressed more accurately can be obtained. .
[0031]
According to the third aspect of the present invention, the difference in the coefficient of thermal expansion between the insulating substrate and the radiator can be made as small as possible, and a good heat transfer coefficient can be obtained while minimizing the warpage of both. There is an effect that a power module can be obtained.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a power module according to a first embodiment of the present invention.
FIG. 2 is an enlarged cutaway view of a heat radiator in FIG. 1;
FIG. 3 is an enlarged cutaway view showing a power module substrate according to a second embodiment of the present invention.
FIG. 4 is an enlarged cutaway view showing a heat radiator of a power module substrate according to a fourth embodiment of the present invention.
FIG. 5 is a schematic view showing a conventional power module substrate.
FIG. 6 is an explanatory view in which warpage has occurred in a conventional power module substrate.
[Explanation of symbols]
P Power module 10 Power module substrate 11 Insulating substrate 16 Heat radiator 17 Heat radiator body (high thermal conductive material)
18 Low thermal expansion material

Claims (3)

絶縁基板と、該絶縁基板の一方の面に接合される放熱体とを備えたパワーモジュール用基板において、
前記放熱体は、高熱伝導材からなる放熱体本体と、該放熱体本体の熱膨張係数より低い低熱膨張材とを複数接合させて多層構造としたことを特徴とするパワーモジュール用基板。
In a power module substrate including an insulating substrate and a radiator bonded to one surface of the insulating substrate,
A power module substrate, wherein the radiator has a multilayer structure in which a plurality of radiator main bodies made of a high thermal conductive material and a low thermal expansion material having a lower thermal expansion coefficient than the radiator main body are joined.
請求項1記載のパワーモジュール用基板において、
前記放熱体は、放熱体本体と低熱膨張材とが互い違いに接合されて、計5〜7枚の多層構造としたことを特徴とするパワーモジュール用基板。
The power module substrate according to claim 1,
A power module substrate, wherein the radiator has a radiator body and a low thermal expansion material which are alternately joined to form a total of 5 to 7 multilayer structures.
請求項1又は2記載の絶縁基板上にチップを搭載してなることを特徴とするパワーモジュール。A power module comprising a chip mounted on the insulating substrate according to claim 1.
JP2002377387A 2002-12-26 2002-12-26 Power module and substrate therefor Pending JP2004207619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377387A JP2004207619A (en) 2002-12-26 2002-12-26 Power module and substrate therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377387A JP2004207619A (en) 2002-12-26 2002-12-26 Power module and substrate therefor

Publications (1)

Publication Number Publication Date
JP2004207619A true JP2004207619A (en) 2004-07-22

Family

ID=32814575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377387A Pending JP2004207619A (en) 2002-12-26 2002-12-26 Power module and substrate therefor

Country Status (1)

Country Link
JP (1) JP2004207619A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352019A (en) * 2005-06-20 2006-12-28 Hamamatsu Photonics Kk Heat sink, laser device having the same, and laser stacking device
WO2012050132A1 (en) * 2010-10-15 2012-04-19 浜松ホトニクス株式会社 Semiconductor laser device
JP2012089585A (en) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk Semiconductor laser apparatus
JP2012089584A (en) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk Semiconductor laser apparatus
WO2013147124A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
WO2020245975A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Warpage control structure for metal base plate, semiconductor module, and inverter device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352019A (en) * 2005-06-20 2006-12-28 Hamamatsu Photonics Kk Heat sink, laser device having the same, and laser stacking device
JP4675690B2 (en) * 2005-06-20 2011-04-27 浜松ホトニクス株式会社 Laser stack equipment
US7944956B2 (en) 2005-06-20 2011-05-17 Hamamatsu Photonics K.K. Heat sink, laser apparatus provided with such heat sink, and laser stack apparatus
CN103155310A (en) * 2010-10-15 2013-06-12 浜松光子学株式会社 Semiconductor laser device
JP2012089585A (en) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk Semiconductor laser apparatus
JP2012089584A (en) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk Semiconductor laser apparatus
WO2012050132A1 (en) * 2010-10-15 2012-04-19 浜松ホトニクス株式会社 Semiconductor laser device
US8879592B2 (en) 2010-10-15 2014-11-04 Hamamatsu Photonics K.K. Semiconductor laser device
WO2013147124A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
KR20140142256A (en) 2012-03-30 2014-12-11 미쓰비시 마테리알 가부시키가이샤 Power module substrate with heat sink, power module substrate with cooler, and power module
WO2020245975A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Warpage control structure for metal base plate, semiconductor module, and inverter device
JPWO2020245975A1 (en) * 2019-06-06 2021-10-21 三菱電機株式会社 Warp control structure of metal base plate, semiconductor module and inverter device
JP7154410B2 (en) 2019-06-06 2022-10-17 三菱電機株式会社 Warpage control structure of metal base plate, semiconductor module and inverter device

Similar Documents

Publication Publication Date Title
JP4015023B2 (en) ELECTRONIC CIRCUIT MEMBER, ITS MANUFACTURING METHOD, AND ELECTRONIC COMPONENT
WO2009116439A1 (en) Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2004153075A (en) Substrate for power module and power module
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP4044449B2 (en) Power module substrate
KR20200108599A (en) Heat sink plate
JP2004207619A (en) Power module and substrate therefor
JP2011023545A (en) Heat dissipation structure and power module
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2010238965A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP6565735B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2005328087A (en) Power module substrate
JP2005019694A (en) Power module
JP3912255B2 (en) Power module substrate and power module
JP3960192B2 (en) Radiator
JP2004200369A (en) Power module and substrate therefor
JP3933031B2 (en) Radiator
JP3975910B2 (en) Radiator
JP2015043356A (en) Power module
JP4667723B2 (en) Power module substrate
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JP2004200567A (en) Radiator and its producing process, substrate for power module, power module
JP3901109B2 (en) Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212