JP3420415B2 - High thermal conductive composite material - Google Patents

High thermal conductive composite material

Info

Publication number
JP3420415B2
JP3420415B2 JP33336095A JP33336095A JP3420415B2 JP 3420415 B2 JP3420415 B2 JP 3420415B2 JP 33336095 A JP33336095 A JP 33336095A JP 33336095 A JP33336095 A JP 33336095A JP 3420415 B2 JP3420415 B2 JP 3420415B2
Authority
JP
Japan
Prior art keywords
weight
composite material
thermal expansion
silicon
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33336095A
Other languages
Japanese (ja)
Other versions
JPH09176758A (en
Inventor
理一 笹森
幹男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33336095A priority Critical patent/JP3420415B2/en
Publication of JPH09176758A publication Critical patent/JPH09176758A/en
Application granted granted Critical
Publication of JP3420415B2 publication Critical patent/JP3420415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、アルミナと同程度
の熱膨張係数と高い熱伝導率を有し、半導体装置のヒー
トシンク材等の放熱体として好適な高熱伝導率複合材料
に関する。 【0002】 【従来技術】近年、ICやLSIの演算速度の向上、ト
ランジスタの電気容量の増大、GaAsを用いた半導体
素子やFETの出現等によって、駆動時に半導体素子に
発生する発熱量が増大しているため、この熱をいかに放
熱させるかという点が大きな課題となっている。 【0003】一般に、半導体素子内に発生する熱は、半
導体素子を搭載したパッケージ基板を通してヒートシン
ク等の放熱体よりパッケージ等の容器外に排出される。
従って、発熱量の多い半導体素子を搭載するパッケージ
等においては、パッケージ基板およびヒートシンク材料
は、熱伝導率が大きいことが必要である。 【0004】また、パッケージ基板または半導体素子と
接合される放熱体は、熱膨張率が半導体素子やパッケー
ジ基板と近いこと等が必要である。これまで、パッケー
ジ基板としては、その信頼性の高さからアルミナ質焼結
体が最も多用されている。 【0005】これまで、かかる条件に適した放熱体材料
として、例えば特開昭59ー141247号公報に記載
されるようなCu−W系又はCu−Mo系の複合材料が
知られている。CuとW,Moを複合させた放熱体材料
では、Cuの含有量を変化させることにより、熱膨張率
及び熱伝導率を任意に選ぶことができる。そのため、搭
載しようとする半導体素子の材質及びパッケージ基板を
構成するセラミックスの材質、パッケージの形状、大き
さ等に応じて最適のCu含有量を調整して適切な熱膨張
率を持ち、熱伝導性に優れた放熱体材料を製造できる。 【0006】 【発明が解決しようとする課題】しかし、近年の半導体
装置の高集積化に伴い、半導体装置に用いられる放熱体
材料にも軽量化が要求されているが、上記のCu−W系
又はCu−Mo系の複合材料は、いずれも比重が10以
上と大きいために、要求に満足して対応することができ
ないのが現状であった。また、ヒートシンクを取り付け
る基板の熱膨張差により発生する機械的応力による微小
なひび割れ、剥がれ等を防止するために、アルミナ基板
等と近似した熱膨張係数を有することも必要である。 【0007】よって、本発明の目的は、比重が小さく、
熱膨張特性がアルミナと近似した高熱伝導性複合材料を
提供することにある。 【0008】 【課題を解決するための手段】本発明者等は上記目的を
達成するため種々検討を重ねた結果、従来から用いられ
ているCu−WあるいはCu−Moにおいて、Wまたは
Moの一部を低熱膨張係数で良好な熱伝導率を有しさら
に比重の小さいケイ素により置き換えることにより、従
来の材料よりも軽量の高熱伝導性複合材料が得られるこ
とを見いだし本発明に至った。 【0009】即ち、本発明の高熱伝導率複合材料は、銅
を20〜50重量%、ケイ素を15〜70重量%、ニッ
ケルとタングステンとを合量で10〜50重量%の割合
で含有する焼結体からなり、比重が7.5以下、熱伝導
率が60W/m・K以上、室温から800℃までの熱膨
張係数が7〜8ppm/℃であることを特徴とするもの
である。 【0010】 【作用】本発明によれば、Cu、Wおよび/またはMo
からなる高熱伝導性材料に対して、W、Moの一部を、
W、Moよりも比重の小さいケイ素により置き換え、ケ
イ素量を特定の範囲に制御することにより、比重の小さ
いケイ素により置き換えることにより、Cuの高熱伝導
性とケイ素の低比重とを併せ持った高熱伝導性複合材料
を容易に得ることができる。 【0011】また、高熱伝導性複合材料の熱膨張係数を
アルミナ(7ppm/℃)と近似させることにより、熱
膨張差により発生する機械的応力により微小なひび割れ
やはがれ等の発生を防止することができる。 【0012】 【発明の実施の形態】本発明の高熱伝導性複合材料は、
組成上、銅を20〜50重量%、ケイ素を15〜70重
量%、ニッケルとタングステンとを合量で10〜50重
量%の割合で含有する焼結体からなる。これらの元素の
含有量を上記の範囲に限定したのは、この範囲を逸脱し
た組成の焼結体では熱膨張係数が室温から800℃にお
いて7〜8ppm/℃の範囲に入らなかったり、比重が
7を越えたり、あるいは熱伝導率が60W/m・Kより
小さくなるためである。なお、W,Niは、焼結性を上
げるためのものである。 【0013】本発明における高熱伝導性複合材料の好ま
しい組成範囲は、銅が35〜50重量%、ケイ素が30
〜55重量%で、銅とケイ素の合量が55〜80重量%
であり、ニッケルとタングステンとが合量で10〜50
重量%からなるものは、熱膨張係数が7〜7.5ppm
/℃、熱伝導率70W/m・k以上が達成できる。な
お、Ni量は1〜3重量%であることが焼結性を高める
上で望ましい。 【0014】本発明の高熱伝導性複合材料を製造するに
は、銅粉末、ケイ素粉末、ニッケル粉末およびタングス
テン粉末を用いて、前述した範囲に秤量混合した後、こ
れを所望の成形手段、例えば、金型プレス,冷間静水圧
プレス,押出し成形等により任意の形状に成形後、焼成
する。 【0015】焼成は、1100℃以上、特に1150〜
1250℃で焼成することにより、相対密度95%以上
に緻密化することができる。焼成する際は、銅及びケイ
素が酸化されないように、真空中、またはN2 やAr等
の非酸化性雰囲気で焼成する必要がある。特に、1×1
-2〜10-6Torrの真空度による焼成が望ましい。
これは、1×10-2Torrよりも真空度が低い場合に
は原料中の金属が酸化されてしまい、10-6Torrよ
りも真空度が高い場合には銅の蒸発が容易に起こるため
である。 【0016】 【実施例】純度99.5%の銅粉末と、純度99.9%
のケイ素粉末と、純度99.9%のニッケル粉末および
タングステン粉末を用いて表1の比率で秤量し、ボール
ミルで24時間混合した後、1ton/cm2 の圧力で
圧粉体に成形した。ついでこの成形体を表1に記載の焼
成条件で焼成した。なお、真空とは1×10-6torr
のオーダーである。 【0017】得られた焼結体に対して、アルキメデス法
による比重測定、室温から800℃までの温度範囲にお
ける熱膨張係数、および試料厚み3mmによるレーザー
フラッシュ法により熱伝導率を測定した。結果は表1に
示した。 【0018】 【表1】【0019】表1の結果から明らかなように、銅の含有
量が20重量%より少ない試料No.1では、熱伝導率が
低くしかも熱膨張係数が6.6ppm/℃と小さくな
り、ケイ素の含有量が5重量%より少ない試料No.10
では、比重が大きい。また銅の含有量が50重量%より
多い試料No.8では、熱膨張係数が8.5ppm/℃と
なり、ケイ素の含有量が70重量%より多い試料No.9
では、熱膨張係数が6.8ppm/℃以下と低くなっ
た。 【0020】これらの比較例に対して、本発明の試料
は、従来のCu−W、Cu−Mo系材料と比較して、い
ずれも比重が7.5以下と軽量化が実現できるととも
に、熱伝導率が60W/m・k以上、熱膨張係数が7〜
8ppm/℃とアルミナに近似した高熱伝導性複合材料
を作製することができた。 【0021】 【発明の効果】以上詳述したように、本発明によれば、
従来のCu−W系又はCu−Mo系の複合材料に比較し
て低比重の高熱伝導率複合材料が得られる。そのため、
半導体装置のヒートシンク材や放熱基板に使用した場
合、非常に軽量なパッケージを供給することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a thermal expansion coefficient similar to that of alumina and a high thermal conductivity, and is suitable as a radiator such as a heat sink material of a semiconductor device. The present invention relates to a high thermal conductivity composite material. 2. Description of the Related Art In recent years, the amount of heat generated in a semiconductor element at the time of driving has increased due to an increase in the operation speed of an IC or LSI, an increase in the electric capacity of a transistor, the appearance of a semiconductor element or FET using GaAs, and the like. Therefore, how to dissipate this heat is a major issue. In general, heat generated in a semiconductor device is discharged from a package such as a package through a heat radiator such as a heat sink through a package substrate on which the semiconductor device is mounted.
Therefore, in a package or the like on which a semiconductor element generating a large amount of heat is mounted, the package substrate and the heat sink material need to have high thermal conductivity. Further, a heat radiator to be joined to a package substrate or a semiconductor element needs to have a coefficient of thermal expansion close to that of the semiconductor element or the package substrate. Heretofore, alumina-based sintered bodies have been most frequently used as package substrates because of their high reliability. Heretofore, as a radiator material suitable for such a condition, for example, a Cu-W or Cu-Mo composite material as described in JP-A-59-141247 has been known. In the heat radiator material in which Cu, W, and Mo are combined, the thermal expansion coefficient and the thermal conductivity can be arbitrarily selected by changing the Cu content. Therefore, the optimal Cu content is adjusted according to the material of the semiconductor element to be mounted, the material of the ceramics constituting the package substrate, the shape and size of the package, etc., so that it has an appropriate coefficient of thermal expansion and has a thermal conductivity. Excellent heat dissipating material can be manufactured. [0006] However, with the recent increase in the degree of integration of semiconductor devices, the weight of the heat radiator used in the semiconductor devices has been required to be reduced. Further, since the specific gravity of each of the Cu-Mo-based composite materials is as large as 10 or more, it has been impossible at the present time to satisfy the demands and respond. Further, in order to prevent minute cracks and peeling due to mechanical stress caused by a difference in thermal expansion of a substrate on which a heat sink is mounted, the substrate must have a thermal expansion coefficient similar to that of an alumina substrate or the like. Accordingly, an object of the present invention is to provide a low specific gravity,
An object of the present invention is to provide a high thermal conductive composite material having a thermal expansion characteristic similar to that of alumina. The present inventors have conducted various studies in order to achieve the above-mentioned object, and as a result, have found that one of the Cu-W or Cu-Mo conventionally used is one of W and Mo. By replacing the part with silicon having a low coefficient of thermal expansion, good thermal conductivity and low specific gravity, it has been found that a high-thermal-conductivity composite material that is lighter than conventional materials can be obtained, leading to the present invention. That is, the high thermal conductivity composite material of the present invention contains 20 to 50% by weight of copper, 15 to 70% by weight of silicon, and 10 to 50% by weight of nickel and tungsten in total. It has a specific gravity of 7.5 or less, a thermal conductivity of 60 W / m · K or more, and a coefficient of thermal expansion from room temperature to 800 ° C. of 7 to 8 ppm / ° C. According to the present invention, Cu, W and / or Mo
For a high thermal conductive material consisting of:
High thermal conductivity that combines high thermal conductivity of Cu and low specific gravity of silicon by replacing with silicon having a lower specific gravity by replacing silicon with a silicon having a lower specific gravity than W and Mo and controlling the amount of silicon to a specific range. A composite material can be easily obtained. Further, by making the coefficient of thermal expansion of the high thermal conductive composite material close to that of alumina (7 ppm / ° C.), it is possible to prevent the occurrence of minute cracks or peeling due to mechanical stress generated by the difference in thermal expansion. it can. BEST MODE FOR CARRYING OUT THE INVENTION The highly thermally conductive composite material of the present invention
The sintered body contains 20 to 50% by weight of copper, 15 to 70% by weight of silicon, and 10 to 50% by weight of nickel and tungsten in total in terms of composition. The content of these elements is limited to the above range, because the sintered body having a composition outside this range does not have a thermal expansion coefficient falling within the range of 7 to 8 ppm / ° C. from room temperature to 800 ° C., or has a specific gravity. This is because the thermal conductivity exceeds 7 or the thermal conductivity becomes smaller than 60 W / m · K. Note that W and Ni are for improving sinterability. The preferred composition range of the high thermal conductive composite material in the present invention is that copper is 35 to 50% by weight and silicon is 30% by weight.
~ 55% by weight, the total amount of copper and silicon is 55-80% by weight
And the total amount of nickel and tungsten is 10 to 50
Those consisting of weight% have a coefficient of thermal expansion of 7 to 7.5 ppm.
/ ° C and a thermal conductivity of 70 W / m · k or more. Note that the Ni content is desirably 1 to 3% by weight in order to enhance sinterability. In order to produce the high heat conductive composite material of the present invention, copper powder, silicon powder, nickel powder and tungsten powder are weighed and mixed in the above-mentioned range, and then mixed with a desired molding means, for example, After being formed into an arbitrary shape by a die press, a cold isostatic press, an extrusion molding or the like, it is fired. The calcination is performed at 1100 ° C. or more,
By firing at 1250 ° C., it is possible to densify to a relative density of 95% or more. When firing, it is necessary to fire in a vacuum or in a non-oxidizing atmosphere such as N 2 or Ar so that copper and silicon are not oxidized. In particular, 1 × 1
Firing at a vacuum of 0 -2 to 10 -6 Torr is desirable.
This is because when the degree of vacuum is lower than 1 × 10 −2 Torr, the metal in the raw material is oxidized, and when the degree of vacuum is higher than 10 −6 Torr, copper is easily evaporated. is there. EXAMPLE Copper powder having a purity of 99.5% and purity of 99.9%
Was weighed at a ratio shown in Table 1 using silicon powder having a purity of 99.9%, and nickel powder and tungsten powder having a purity of 99.9%, mixed with a ball mill for 24 hours, and formed into a green compact at a pressure of 1 ton / cm 2 . Then, the molded body was fired under the firing conditions shown in Table 1. In addition, the vacuum is 1 × 10 −6 torr.
It is an order. The obtained sintered body was measured for specific gravity by Archimedes method, thermal expansion coefficient in a temperature range from room temperature to 800 ° C., and thermal conductivity by laser flash method with a sample thickness of 3 mm. The results are shown in Table 1. [Table 1] As is clear from the results shown in Table 1, in Sample No. 1 having a copper content of less than 20% by weight, the thermal conductivity was low and the thermal expansion coefficient was as low as 6.6 ppm / ° C. Sample No. 10 containing less than 5% by weight
Then, the specific gravity is large. Sample No. 8 having a copper content of more than 50% by weight had a coefficient of thermal expansion of 8.5 ppm / ° C., and sample No. 9 having a silicon content of more than 70% by weight.
Has a low coefficient of thermal expansion of 6.8 ppm / ° C. or less. In contrast to these comparative examples, the sample of the present invention has a specific gravity of 7.5 or less as compared with the conventional Cu-W and Cu-Mo-based materials, and can realize a lighter weight. Conductivity is 60 W / m · k or more, thermal expansion coefficient is 7 ~
A highly thermally conductive composite material having an alumina content of 8 ppm / ° C. was obtained. As described in detail above, according to the present invention,
A high-thermal-conductivity composite material having a lower specific gravity than that of a conventional Cu-W-based or Cu-Mo-based composite material can be obtained. for that reason,
When used for a heat sink material or a heat dissipation substrate of a semiconductor device, a very lightweight package can be supplied.

Claims (1)

(57)【特許請求の範囲】 【請求項1】銅を20〜50重量%、ケイ素を15〜7
0重量%、ニッケルとタングステンとを合量で10〜5
0重量%の割合で含有する焼結体であって、比重が7.
5以下、熱伝導率が60W/m・K以上、室温から80
0℃までの熱膨張係数が7〜8ppm/℃であることを
特徴とする高熱伝導性複合材料。
(57) [Claim 1] 20 to 50% by weight of copper and 15 to 7% of silicon
0% by weight, nickel and tungsten in a total amount of 10 to 5
A sintered body containing 0% by weight and having a specific gravity of 7.
5 or less, thermal conductivity of 60 W / m · K or more, from room temperature to 80
A highly thermally conductive composite material having a coefficient of thermal expansion up to 0 ° C of 7 to 8 ppm / ° C.
JP33336095A 1995-12-21 1995-12-21 High thermal conductive composite material Expired - Fee Related JP3420415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33336095A JP3420415B2 (en) 1995-12-21 1995-12-21 High thermal conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33336095A JP3420415B2 (en) 1995-12-21 1995-12-21 High thermal conductive composite material

Publications (2)

Publication Number Publication Date
JPH09176758A JPH09176758A (en) 1997-07-08
JP3420415B2 true JP3420415B2 (en) 2003-06-23

Family

ID=18265247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33336095A Expired - Fee Related JP3420415B2 (en) 1995-12-21 1995-12-21 High thermal conductive composite material

Country Status (1)

Country Link
JP (1) JP3420415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880791B (en) * 2010-06-04 2011-08-10 北京工业大学 Cu-base alloy baseband for coated conductor and preparation method thereof

Also Published As

Publication number Publication date
JPH09176758A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US6737168B1 (en) Composite material and semiconductor device using the same
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPH04254477A (en) Glass-aluminum nitride composite material
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
JPH07149588A (en) Metallized highly heat conductive silicon nitride substrate, its production and silicon nitride module
JP3420415B2 (en) High thermal conductive composite material
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2900711B2 (en) Method of manufacturing low-temperature sintering porcelain for mounting semiconductor devices
JPH09209058A (en) Composite material with high thermal conductivity and its production
JP3451979B2 (en) Semiconductor device
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JP2967065B2 (en) Semiconductor module
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP3999989B2 (en) Copper-tungsten carbide composite material
JP2975882B2 (en) Silicon nitride heatsink for pressure welding and pressure welding structural parts using it
JP2003105470A (en) Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
JPS63295479A (en) Sintered aluminum nitride body and its production
JP3180100B2 (en) Semiconductor module
JPH09202928A (en) High thermal conductivity composite material
JP3194118B2 (en) Semiconductor device and method of manufacturing semiconductor component used in the semiconductor device
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2000311973A (en) Composite material and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees